
A Neuroidal Architecture
for Cognitive Computation
The Harvard community has made this

article openly available. Please share how
this access benefits you. Your story matters

Citation Valiant, Leslie G. 1998. A Neuroidal Architecture for Cognitive
Computation. Harvard Computer Science Group Technical Report
TR-04-98.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:23853806

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/154869926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=A%20Neuroidal%20Architecture%20for%20Cognitive%20Computation&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=466b2f0fa42147fd9e0921c849b906dc&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23853806
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

A Neuroidal Architecture for Cognitive

Computation

Leslie G. Valiant

TR-04-98

Computer Science Group

Harvard University

Cambridge, Massachusetts

A Neuroidal Architecture for Cognitive

Computation

�

Leslie G. Valiant

Division of Engineering and Applied Sciences

Harvard University

Cambridge, MA 02138

Abstract

An architecture is described for designing systems that acquire and manip-

ulate large amounts of unsystematized, or so-called commonsense, knowledge.

Its aim is to exploit to the full those aspects of computational learning that are

known to o�er powerful solutions in the acquisition and maintenance of robust

knowledge bases. The architecture makes explicit the requirements on the basic

computational tasks that are to be performed and is designed to make these

computationally tractable even for very large databases. The main claims are

that (i) the basic learning tasks are tractable and (ii) tractable learning o�ers

viable approaches to a range of issues that have been previously identi�ed as

problematic for arti�cial intelligence systems that are entirely programmed. In

particular, attribute e�ciency holds a central place in the de�nition of the learn-

ing tasks, as does also the capability to handle relational information e�ciently.

Among the issues that learning o�ers to resolve are robustness to inconsisten-

cies, robustness to incomplete information and resolving among alternatives.

1 Introduction

We take the view that intelligence is a large scale computational phenomenon. It

is associated with large amounts of knowledge, abilities to manipulate this knowl-

edge to derive conclusions about situations not previously experienced, the capability

to acquire more knowledge, and the ability to learn and apply strategies of some

�

This research was supported in part by grants NSF-CCR-95-04436, ONR-N00014-96-1-0550, and

ARO-DAAL-03-92-G-0115

1

complexity. The large scale nature of the phenomenon suggests two prerequisites for

constructing arti�cial systems with these characteristics. First, some theoretical ba-

sis has to be found within which the various apparent impediments to this endeavor

that have been identi�ed can be addressed systematically. Second, some large-scale

experiments need to be conducted to validate the suggested basis { it is possible that

the fundamental phenomena do not scale down and that small-scale experiments do

not throw light on them.

Much e�ort has been devoted to identifying such a theoretical basis. One major

thrust has been to develop de�nitions of capabilities that are functionally adequate.

Functionalities that, even if realized, would not go far towards achieving a signi�cant

level of performance are of little interest. Another thrust has been the search for

capabilities that are demonstrably computationally feasible. Functionalities that are

computationally intractable are again of little direct interest. A third viewpoint is

that of biological plausibility. Perhaps an understanding of how cortex is constrained

to perform these tasks would suggest speci�c mechanisms that the other viewpoints

are not able to provide.

The hypothesis of this paper is that for intelligent systems to be realized the sought

after theoretical basis has not only to be discovered, but needs to be embodied in an

architecture that o�ers guidelines for constructing them. Composed as these systems

will be of possibly numerous components, each performing a di�erent function, and

each connected to the others in a possibly complex overall design, there will need to

be some unity of nature among the components, their interfaces, and the mechanisms

they use.

We shall describe a candidate for such an architecture. This candidate emerged

from a study that attempted to look at the issues of functional adequacy, compu-

tational feasibility and biological constraints together [52]. We call the architecture

neuroidal since it respects the most basic constraints imposed by that model of neural

computation. One feature of that study was that it was a \whole systems" study. It

addressed a range of issues simultaneously insisting on biological and computational

feasibility, plausible and simple interactions with the outside world, and adequate ex-

planations about the internal control of the system. While de�nitions of intelligence,

thinking and consciousness have all proved elusive, it appears that the basic compu-

tational substrate that neural systems have to support to realize these phenomena

might be identi�ed more easily. We believe that the functions and mechanisms associ-

ated with this substrate characterize an area and style of computation that is suitably

referred to as cognitive computation.

In abstracting an AI architecture from that neural study, as we do here, we dis-

pense with some of the most onerous constraints considered there to be imposed by

biology. In the mammalian brain these constraints include, among others, the spar-

sity of the interconnections among the components, the inaccessibility of the separate

2

components to an external teacher or trainer, and certain bounds on the weights of in-

dividual synapses. In arti�cial systems these constraints are not fundamental, and in

order to maximize the computational power of the architecture we will free ourselves

of them here.

Our purpose in describing the architecture is to suggest it as a basis for large scale

experiments. The �rst critical question we ask is whether it is theoretically adequate:

Can some of the obstacles that have been identi�ed by researchers be solved, in

principle, within the model? Are there further fundamental obstacles? The second

critical question, which will need to be resolved empirically, is whether systems based

on this architecture can indeed be constructed, that exhibit the phenomena outlined

in our �rst paragraph to a more signi�cantly extent than current systems.

As to the �rst question we observe that the McCulloch-Pitts model may be viewed

as a valid architecture for intelligence, if one accepts threshold elements as represent-

ing the basic steps of cortical computation. Its shortcoming, clearly, is that it does

not appear to o�er useful guidelines for constructing systems.

Our architecture, in contrast, is designed to provide a design methodology. In

particular, its main feature is that it comes with a set of associated algorithms and

mechanisms. The basic constituents of the architecture are classical enough, being

circuit units consisting of linear threshold elements, and short term memory devices

called image units. The novelty is that for aggregates of such devices we can detail how

the accompanying mechanisms can perform, at least in principle, a list of tasks that

address signi�cant problems. The bulk of this paper is devoted to enumerating these

problems and describing how they can be addressed. Our purpose here is to point

out that this broad variety of mechanisms can be supported on this single uni�ed

architecture, and that together, they go some way toward addressing an impressive

array of problems.

There will remain the second question as to how to validate the architecture.

As we shall suggest, this raises pragmatic issues that had previously received only

limited attention. The mechanisms provided emphasize the centrality of learning for

multiple purposes, from basic knowledge acquisition to ensuring robust behavior. To

construct a system one would need to do a high level design as well as, possibly,

some programming, although the main bene�t of the architecture is the potential for

massive knowledge infusion by learning.

If one is to realize a capability for massive knowledge infusion, we expect that

there will be needed a signi�cant new kind of e�ort directed towards the preparation

of teaching materials. Ideally available resources such as dictionaries and annotated

corpora of text should be usable. However, since the system will not operate identically

to humans, the teaching materials needed cannot be expected to be identical to those

that are e�ective for humans. The system and teaching materials need to be chosen

so as to �t each other, and we believe that the development of these in tandem is a

3

major challenge for future research. Although, clearly, there is much data available in

natural language form, aside from the issue of natural language understanding, there

is the independent question of whether these materials, without annotations, make

explicit all the commonsense and other information that would be needed.

To summarize, the main feature of the architecture is that it brings learning to

the heart of the general AI problem. Recent advances in machine learning help us to

distinguish those aspects of learning that have very e�ective computational solutions,

from those for which none is known. Thus in a learning task the problem of �nding new

compound features that are particularly e�ective is not one to which general e�ective

solutions are known. In contrast, we know that the presence of irrelevant features

can be tolerated in very large numbers, without degrading learning performance, for

some classes of functions. Our proposal is that these insights be incorporated into the

design of AI systems. We claim that this approach does o�er a new view of some of

the now traditional issues of AI. It also raises some new questions particularly with

regard to the training of such systems.

On a historical note it is interesting to recall Turing's 1950 paper on \Computing

Machinery and Intelligence" in which he describes his \Test". While he considers the

possibility that a programmed system might be built to solve it, he appears to come

out in favor of a learning machine. In the subsequent history of research on general

intelligent systems, the overwhelming emphasis has been on programmed systems. We

believe that this was largely because there existed a mathematical basis for following

this avenue, namely mathematical logic. However, in the intervening years there has

been much progress both on the theoretical foundations of machine learning, as well

as in the experimental study of learning algorithms. It is, therefore, appropriate now

to reexamine whether a synthesis can be found that resolves Turing's dilemma.

2 The Architecture

A system having the proposed architecture is composed of a number of circuit units

and a number of image units. The image units can be thought of as the working

memory of the system. During reasoning processes that is where the intermediate

results of the reasoning computations are stored. The circuit units are the long term

repositories of knowledge. Their behavior can be updated by both inductive learning

and explicit programming.

The circuit units are de�ned so as to ensure that they provably have certain

desirable learning capabilities. For this reason, we de�ne them to consist of one layer

of linear threshold gates or elements. The circuit units have one layer of inputs that

are the inputs to these gates, and one layer of outputs that are the outputs of the

gates themselves. The weights of the threshold elements can be either learned or

4

programmed.

The intention is that each gate recognize some predicate. We say that it \�res"

if such recognition has occurred in the sense that the output has taken value one or

\true". The inputs may be Boolean or real valued. The latter is needed if some of the

input devices or image units produce numerical values (or if we go outside the strict

model by allowing, for example, the outputs, of gates to be numerical functions of

the linear sums.).

The image units are short term repositories of information with unspeci�ed for-

mat. Their outputs are regarded as preprogrammed feature detectors and the inputs

include preprogrammed inverse features. For Boolean outputs, each output feature

will have value one for some information contents and zero for others. As input the

image may take information from a sensory device such as a camera. In addition the

inputs to an image unit may be of the form of inverse features that modify the con-

tents of the image so as to make some associated feature detectors �re. For example,

the image unit may have a feature detector that �res if the image contains a depiction

of an elephant, and it may also have an inverse feature that can create in the image

the illusion of an elephant in the sense that the information it creates in the image

makes the elephant feature detector �re. Thus image units can be used both to store

information received from the outside world through sensory devices, as well as to

store \imaginary constructs" that are useful for the system's internal computational

processes. It is possible to have a number of such constructs in the image simulta-

neously in a novel combination. The system can then bring the power of its circuits

to bear on a representation of a complex situation not previously represented in it.

Both preprogrammed features and preprogrammed inverse features can be composed

using the circuit units to create nodes that act as higher level features or inverse

features. Thus the elephant instance may be more plausibly realized at a higher level

in a hierarchy.

The circuit and image units will be composed together in a block diagram so that

the outputs of some of the units are identi�ed with the inputs of others. Typically

image units will interface directly with circuit units, rather than other image units.

Some inputs are identi�ed with the outputs of input devices, and some outputs with

the inputs of output devices. The block diagram may ultimately contain feedback or

cycles.

Some rules are further speci�ed for how the circuits can change in the process of

knowledge acquisition. For the gates, linear threshold units in our case, some update

rules are given, such as the perceptron algorithm [42] or Winnow [26], that specify

the supervised inductive learning process. In addition some further rules are given to

allow the acquisition of programmed knowledge. In particular new output gates may

be added and the parameters or weights of that gate assigned appropriate values so

that it �res under the intended conditions. These added gates can then also serve as

5

targets for inductive learning or as inputs to other units. One method of adding to

the circuit is to add gates to represent various �xed functions of existing nodes so as

to enrich the feature space. Thus one may add nodes that compute the conjunction

of all pairs from a certain set of existing nodes. Another method of programming a

circuit is to change a weight between an existing pair of nodes. Thus, one can create a

subcircuit to realize \grass) green" by making the weight from the node representing

\grass" to that representing \green" larger than the threshold.

2.1 Overview

We shall outline here the properties that are required for a device to be an image

unit. In the section to follow we shall describe one particular realization of image

units that is based on predicate calculus and highlights how our approach can be

used to generalize the capabilities of logic based AI systems.

An image unit will at any instant contain some data that we call the scene S. The

scene itself consists of a number of objects a

1

; � � � ; a

s

as well as information about the

properties of the objects and about the relationships amongst them. This information

may be represented, in principle, in any number of ways, of which predicate calculus

is one.

The computational processes that we describe are entirely in terms of interactions

between the circuit units and the image units. Since we are free to limit the number

of objects in the image units to some moderate number
, say equal to 10, we are

able to limit ab initio the computational cost of the so-called binding problem, that

grows with this number.

Even when we use standard logical notation to describe the contents of the image

or to label circuit nodes, our interpretation of it is slightly di�erent from the usual.

In particular the objects in our architecture are best viewed as internal artifacts in

the system. They are not intended to refer to the external world in the same direct

way as in more familiar uses of the predicate calculus. Further, the primary semantics

that we ascribe to nodes in the system are the PAC semantics described in the next

section, rather than the standard semantics of predicate calculus.

Each node of a circuit unit is in some state. Most simply, it is in one of two

states that indicates whether or not the predicate is true of the current scene in the

image unit. However, it can contain further information, such as a real number that

expresses a con�dence level for the validity of the predicate. (c.f. neuroids in [52]).

Each node can be thought of as representing an existentially quanti�ed relation,

e.g.

9x

1

9x

2

9x

3

R(x

1

; x

2

; x

3

)

6

where the existentially quanti�ed variables range over the objects a

1

; � � � ; a

in the

scene. The threshold will �re, in general, if this expression holds for the current scene.

While no general assumptions are made about how R is represented, it is assumed

that when this relation is recognized to hold for the current scene, a corresponding

binding, or mapping � from fx

1

; x

2

; x

3

g ! fa

1

; � � � ; a

g is made explicit in the system.

For brevity, where this leads to no ambiguity, we shall use R variously to refer to the

predicate computed, the value of the predicate or to the node itself.

An aggregate of circuit units is a directed graph in which each pair of nodes that

is connected is associated with a weight. Each node has an update function that

updates its state as a function of its previous state, the states of nodes from which

there are directed edges to it as well as the weights of these edges. More particularly

each circuit unit is a directed graph of depth one (i.e. one layer of input nodes, one

layer of output nodes, and no \hidden layer") and the update functions are linear

threshold functions.

An important aspect of the circuits is that a directed edge from node representing

R

1

to a node representing R

2

contains binding information called the connection bind-

ingR

1

! R

2

. If the nodes represent 9x

1

9x

2

9x

3

R

1

(x

1

; x

2

; x

3

) and 9y

1

9y

2

9y

3

R

2

(y

1

; y

2

; y

3

)

then the binding information could specify, for example, that x

1

and y

2

have to rep-

resent the same object but that x

2

; x

3

; y

1

and y

3

may be objects arbitrarily di�erent

from each other. For this reason there may be several connections from R

1

to R

2

, each

one corresponding to a di�erent connection binding and having a di�erent weight. For

example, if R

2

represents the notion of grandparent and R

1

that of parent then in

the de�nition of the former one may wish to invoke the latter twice with di�erent

bindings.

The scene S in an image unit contains information about which relations hold for

which object sets. An aggregate of circuit units can be evaluated for S node by node.

For a node that represents relation 9x

1

; � � � ; 9x

i

R(x

1

; � � � ; x

i

) the set of all bindings

�fx

1

; � � � ; x

i

g ! fa

1

; � � � ; a

g that make R hold will be evaluated. If the node R has

inputs from nodes R

1

and R

2

, and the gate at R evaluates the threshold function

R

1

+ R

2

� 2, then R will �re for a binding � if there exist bindings �

1

; �

2

of the

variables of R

1

and R

2

that respect the respective connection bindings R

1

! R and

R

2

! R; and make both R

1

and R

2

true. We shall expand on this in the next section.

2.2 An Implementation

We shall describe an implementation that is based on predicate calculus, but extends

it in the direction advocated in this paper, so as to allow for e�ective learning, with

attribute e�ciency and error resilience. In particular, a programmed system in which

knowledge is described as Horn clauses, and modus ponens is used as the rule of

inference, can be embedded into this framework. The central role in AI systems of

7

this language of description is discussed by Russell and Norvig ([45] pp 265-277).

We are claiming, therefore, that in at least this one possible implementation of our

architecture, it is the case that a signi�cant class of existing programmed systems

can be embedded. Systems so embedded would then have the addition bene�ts of a

powerful learning capability.

Let us consider the following restriction of the language of predicate calculus (e.g.

[45] p. 186). As constants we will choose the base objects A

B

= fa

1

; � � � ; a

g of the

image unit. We allow a set R

B

of base relations of arities that are arbitrary but upper

bounded by a constant �. We use no function symbols. We represent variable names

by fx

1

; � � � ; x

n

g and relations will be de�ned in terms of these.

The two features of predicate calculus that we exclude, therefore, are constants

that refer directly to individuals in the world (e.g. Shakespeare), and functions that

can be applied to them to refer to other individuals (e.g. Mother of (Shakespeare).).

In our system the only constants are the prede�ned base objects of the image, which

are internal constructs of the systems. In order to refer to an individual like Shake-

speare we shall use a unary predicate that can be applied to a base object. Thus

Shakespeare(a

3

) would express the fact that a

3

has the attributes of Shakespeare.

Also, we dispense with function symbols by referring to the resulting object as a base

object, and by expressing the necessary relation by an appropriate relation symbol.

Thus instead of saying x

1

= Mother of(x

2

) we would say Mother of(x

1

; x

2

); where the

latter is a binary relation. In these ways we ensure that the two linguistic restrictions,

on constants and functions symbols, do not restrict what can be expressed.

A term will be therefore a base object a

i

and an atomic sentence will be a single

relation such as Mother of 2 R

B

applied to one or a collection of base objects (e.g.

Mother of(a

3

; a

7

).) A Horn rule will be an implication

R

i

1

(x

i

1

;1

; � � �x

i

1

;�(i

1

)

) ^ � � � ^ R

i

r

(x

i

r

;1

; � � � ; x

i

r

;�(i

r

)

)

) R

i

r+1

(x

i

r+1

;1

; � � � ; x

i

r+1

;�(i

r+1

)

): (1)

where R

i

j

2 R

B

and �(k) is the arity of R

k

2 R

B

. We note that R

B

may include the

relation False that has zero arguments, that signi�es logical impossibility and may be

used meaningfully for R

i

r+1

on the right-hand side of an implication. Implications are

to be interpreted as quanti�ed universally over all the x variables that occur in them

but these quanti�ers are omitted for brevity.

A binding is a mapping from fx

1

; � � � ; x

n

g to fa

1

; � � � ; a

g. We say that a relation

R(x

1

; x

2

; x

3

) is made true by � if R(�(x

1

); �(x

2

); �(x

3

)); or R(�(x)) for short, holds.

The derivation rule modus ponens is the following:

\if R

i

1

(x) ^ � � � ^ R

i

r

(x)) R

i

r+1

(x)" is a rule,

and if, for some binding �; R

i

j

(�(x)) holds for 1 � j � r;

then R

i

r+1

(�(x)) also holds:

8

In a logic based system we would program a set of rules of the form (1) and

consider the input to be a set of atomic sentences. We could then consider the output

to be the set of all atomic sentences that can be deduced from the input by applying

the rules using modus ponens in all possible ways. This output could be derived in

the logical framework by means of forward chaining ([45]p. 273.).

Let us now describe the implementation of the neuroidal architecture into which

this process embeds naturally. In this implementation the contents of the image will

be simply the atomic sentences of the input. The circuits will implement the rules

as follows: For each relation R(x) 2 R

B

there will be a gate in the circuit. We shall

assume that each relation R occurs on the right-hand side in just one rule { otherwise

we replace multiple occurrences of R on the right hand side by di�erent names, say

R

1

; R

2

; � � � ; R

m

and add a new rule R

1

_ R

2

_ � � � _ R

m

) R.

For each Horn rule R

i

1

^ R

i

2

^ � � � ^ R

i

r

) R

i

r+1

we shall make a connection to

R

i

r+1

from each R

i

j

(1 � j � r). This connection will have the appropriate connection

binding, de�ned below. At the R

i

r+1

node we shall implement the equivalent of an

AND gate in terms of a threshold gate with threshold r. In other words, we regard

the values of the R

i

j

as Boolean f0; 1g, and have a gate that realizes.

R

i

r+1

= 1 if and only if

r

X

j=1

R

i

j

� r:

Executing this threshold gate will correspond, therefore, to performing one application

of modus ponens.

To simulate OR gates, which are needed if multiple occurrences of the same re-

lation occurs on the right hand side, we also use a threshold gate but have 1 as the

threshold instead of r, i.e.

P

R

i

k

� 1.

The further detail that needs to be clari�ed is the nature and meaning of the

connection bindings. Each rule with r relations on the left de�nes r connections and

connection bindings. Consider the following rule with r = 2:

R

1

(x

1

; x

2

; x

3

) ^ R

2

(x

3

; x

4

; x

5

)) R

3

(x

2

; x

3

; x

5

): (2)

This notation expresses the connection bindings implicitly. The binding of the con-

nection from R

1

to R

3

says simply that the second parameter of R

1

binds with the

�rst parameter of R

3

and the third parameter of R

1

with the second of R

3

, and that

there are no other constraints. The naming of the variables in each rule or gate can

express this precisely. Note that in this example the implication is that any bind-

ing of x

1

that makes R

1

true can be combined with any binding for x

4

that makes

R

2

true. For example, if elsewhere, we have the rules R

4

(x

7

)) R

1

(x

7

; x

8

; x

9

) and

R

4

(x

7

)) R

2

(x

10

; x

7

; x

11

), then it will be su�cient for these rules to be satis�ed for

distinct values of �(x

7

) since (2) did not require otherwise.

9

If from some R

i

there is more than one connection, then for conceptual purposes

it is simplest to think about a circuit in which the R

i

is replicated so that each node

has just one connection directed away from it and hence the circuit is a tree. In other

words connection bindings restrict the multiple inputs to a node but never the multiple

outputs. Note also that any correspondence between two variables occurring in two

relations on the left hand side (i.e. x

3

in this example,) can be enforced only by having

x

3

as an explicit variable in the right hand side relation, (i.e. R

3

in the example.)

This can be circumvented by de�ning a node that represents a particular compound

relation e.g. we could create a gate for computing R

1

(x

1

; x

2

; x

3

) ^ R

2

(x

3

; x

4

; x

5

); call

it R

5

(x

2

; x

5

) and have an implication R

5

(x

2

; x

5

)) R

3

(x

2

; x

5

) if we wish to avoid

mentioning x

3

in R

3

.

In this implementation we consider the network to evaluate for each gate all pos-

sible bindings � : fx

1

; � � � ; x

n

g ! fa

1

; � � � ; a

g so as to �nd all the ones, if any, that

make the gate evaluate to one. To do this we shall, for simplicity, impose here the

constraint that aggregates of circuit units are acyclic. We can then form a topological

sort of their nodes (e.g. Knuth [23]) and for one such topologically sorted order eval-

uate each node in succession. The evaluation of each node is for all the

d

bindings

�, where d < � is the arity of the relation R at that node. (Allowing cycles would al-

low recursive rules to be expressed, but would make the evaluation mechanisms more

complex. If the circuits express Horn rules, or other rules in which no negative weights

occur, then evaluating circuits with cycles can still be done in time polynomial in

�

and the number of gates.)

In this graph the input nodes with no predecessors will represent relations them-

selves. To evaluate a gate at R, we simply enumerate all the

d

bindings of the d

variables that appear in it. First we scan all the atomic sentences in the image that

contain R and see which bindings make R true, before any rules are applied. Then

for each binding, and for each predecessor node, if any, we determine whether that

binding can make the predecessor true. Having done this for each predecessor, we can,

for each binding compute the value of the gate at the current node, whether it is a

disjunction, conjunction, or more generally, an arbitrary linear threshold gate. Note

that the complexity of this task that is contributed by the binding problem is

d

. It

is exponential in the maximum arity of the relations, and not in the number of base

objects or the number of relations in a rule! (Note, however that this arity may be

made larger by the restriction that all binding information is in the connections. This

necessitates that if some correspondences among the variables need to be enforced on

the left hand side of a rule, they must be made explicit on the right hand side. For

example if we wish to represent father(x; z)^ mother(z; y)) grandfather(x; y) then

in our representation grandfather will need to have a third argument, say t, that is

to be identi�ed with the two occurrences of z by the connection bindings.)

It is easy to verify that this evaluation algorithm computes all satisfying bindings

10

for each relation that is represented at some node, in exactly the same way as would

applying modus ponens in all possible ways to the rules.

From what has been said it should be clear that our architecture is expressive

enough that programmed systems based on the Horn rules we have described and

modus ponens can be embedded into it. What the architecture adds to such systems

is a capability for learning. The point is that the gates we allow are not just Boolean

conjunctions and disjunctions, but linear threshold functions. This allows a host of

learning algorithms, discussed in later sections, that provide a provable learning ca-

pability that is not known to be available in strictly logical representations.

In conclusion we note that there are theoretical results that show for certain classes

of Boolean functions that extending the representation of the learner to threshold

functions makes the original class polynomial time learnable, while restricting the

learner to the minimal representation needed for expressing these functions would

make the task NP-compete [40]. Our richer representation, therefore, has not only the

obvious advantage of being able to express more, but has the additional computational

bene�ts of making Boolean domains potentially easier to learn. Also, while the quoted

result discusses the polynomial time criterion for learning, as we shall discuss at

length, we also desire and seek the further advantages that learning be achieved with

attribute-e�ciency and error-resilience.

3 Semantics

We cannot expect to develop a set of robust mechanisms for processing representations

of knowledge without a robust semantics for the representation. The emphasis here

is both on the necessity of semantics, that relates the representation to some reality

beyond itself, as well as robustness to the many uncertainties, changes and errors in

the world or in communications with the world, that the system will need to cope

with.

The need for semantics has explained the attractiveness of formal logic in AI

research. It is the need for robustness that forces us to look beyond logic, at notions

centered on learning. The semantics we shall describe here, PAC circuit semantics, or

PAC semantics for short, is based on the notion of computationally feasible learning

of functions that are probably approximately correct [50].

To explain the contrast in viewpoints consider the situation calculus described in

McCarthy and Hayes [30]. There, a situation is \the complete state of the world",

and general facts are relations among situations. Thus P) Q means that for all

situations for which P holds Q holds also. This is an all embracing claim about the

universe that is di�cult to grade gracefully and becomes problematic in the real world

where authoritative de�nitions of P and Q themselves may be di�cult to identify.

11

In contrast, PAC semantics makes quali�ed behavioral assertions about the com-

putational behavior of a particular system in a particular environment. In PAC se-

mantics P and Q would be de�ned as functions computed by �xed algorithms or

circuits within a system that takes input through a �xed feature set from a �xed but

arbitrarily complex world. The inputs range over a set X that consists of all possible

combinations of feature values that the input feature detectors can detect. There is

a probability distribution D over this set X that summarizes the world in all the

aspects that are discernible to the feature detectors of the system. The P and Q

could correspond to nodes in a circuit. The relationship between P and Q would be

typically of the following form: if a random example is taken from D that satis�es

P , then it also satis�es Q with a certain probability. The latter would, at best, be

known to be in some range with a certain con�dence. Thus the semantics is relative to

both the computational and sensory abilities of the system, and refers to an outside

world about which direct observations can be made only one observation at a time.

The claims that are made about the semantics do not go beyond what is empirically

veri�able in a computational feasible way by the system operating in the world. In

addition to making observations from D, the system can also acquire rules by being

told them. It can then use these as working hypotheses, subject to subsequent empir-

ical testing by the system in the PAC sense, and make deductions using them. The

general goal of the system is to learn from D the invariants of the world.

In constructing an arti�cial system we envisage that each circuit unit can be

trained separately. The unit will take as inputs the outputs of input devices or other

circuit or image units to which it is connected. Thus it would see the world through a

set of features that are themselves �ltered through the input devices and circuits of the

system. In contrast, the outputs of the unit being trained will be directly accessible

to the trainer, who can venture to train each such output to behave as is desired.

We note that if the system consists of a chain of circuit units trained in sequence

in the above manner then the errors in one circuit do not necessarily propagate to

the next. Each circuit will be accurate in the PAC sense as a function of the external

inputs { the fact that intermediate levels of gates only approximate the functions that

the trainer intended is not necessarily harmful. At each internal level these internal

feature sets may permit accurate PAC learning at that next stage.

Since our architecture can perform computations via the image units that are more

dynamic than the conventional view of circuits allows the terminology of circuits is

best viewed as an analogy. The more general computational functions of the system,

including those that use the image for reasoning as outlined in x4.8, for example, all

need to be e�ective in the PAC sense.

The key advantage of PAC semantics is that it gives an intellectual basis for

understanding learning and thereby validates empiricism and procedural views of

knowledge. Inductive learning will be the key to overcoming the impediments that

12

are to be enumerated in the next section. These will include defaults, nonmonotonic

reasoning, inconsistent data, and resolving among alternatives. Intelligent systems

will inevitably meet the dilemmas that these issues raise but they will have a learned

response to all but the rarer manifestations of them.

We mention that PAC learning, when o�ered as a basis for intelligent systems

or cognitive science, suggests the following view. The world is arbitrarily complex

and there is little hope that any system will ever be able to describe it in detail.

Nevertheless by learning some simple computational circuits such systems can learn to

cope, even in a world as complex as it is. Most often these circuits will be deterministic.

It is the complexities of the world and the uncertainties in the system's interactions

with it that force the framework of the semantics to be probabilistic.

Having circuits that have a probabilistic rather than a deterministic interpreta-

tion is an extension that may be considered, but this appears to make the learning

task computationally less tractable [17]. There is little evidence that probabilistic

processes are central to human reasoning [49]. While we do not exclude extensions to

probabilistic representations, we do not consider them here.

4 Some Algorithmic Mechanisms

In this section we shall enumerate a series of algorithmic techniques for manipulating

knowledge in a system having the described architecture. We claim that these mech-

anisms address issues that are inescapable for large scale learning based AI systems.

The mechanisms described here arose in the main in studies of formal models of var-

ious speci�c phenomena. Our observation is that they can be brought together and

adapted to provide an overall methodology within a single framework.

4.1 Conict Resolution

The circuit units will contain large numbers of nodes. In general each one corresponds

to a concept or action, that has some reference to the world or to the internal con-

structs of the image unit. The semantics of each node can be de�ned in the PAC sense.

Let us suppose that each one when regarded separately, is highly accurate, correct

say on 99% of the natural input distribution. The problem that arises is that because

of the sheer number of nodes, perhaps in the hundreds of thousands, on almost any

one input a large number of the nodes will be inaccurate.

In a natural scene we may expect a certain moderate number of predicates that

are represented in the circuits to hold and the corresponding nodes to �re. However,

the large numbers of remaining predicates will be represented with some inaccuracy,

a certain number of these additional nodes that should not �re will do so also. Further

13

some of these will be in semantic conict with the correct ones. They may recom-

mend inconsistent actions (e.g. \go left" as opposed to \go right") or inconsistent

classi�cations (e.g. \horse" versus \dog".)

This is a fundamental and inescapable issue for which a technical solution is

needed. A conventional approach is to suggest that each node be given a numerical

\strength", and that in situations where several nodes �re in conict the one with

highest strength be chosen to be the operative one. This approach clearly needs some

concrete technical mechanism for deriving the strengths. It also makes the assumption,

which needs justi�cation, that a single totally ordered set of numerical strengths is

su�cient for the overall resolving process.

Our approach is the following: we have a large number of circuit nodes, computing

functions x

1

; � � � ; x

n

, say, of the scene S. We assume that each x

i

is correct in the PAC

sense with high probability. Because of the sheer size of n, at any one time many of

the x

i

nodes will �re falsely, and we need a mechanism for resolving among them.

The proposed solution is to have another set y

1

; � � � ; y

n

of nodes where y

i

corresponds

to x

i

. The purpose of y

i

is the following: When y

i

�res this will be taken to assert

that x

i

is true, and further that x

i

is preferred over all the other x

j

that may be

�ring. The implementation will have a circuit unit with x

j

(1 � j � n) as inputs and

y

i

(1 � i � n) as outputs, and with a connection from each x

j

to each y

i

. Each y

i

will

be a linear threshold functions of the x

j

. Thus if x

7

, when �ring, is to be preferred to

all the x

j

except for x

2

; x

5

and x

8

, whose �ring should override that of x

7

, then the

appropriate linear inequality to be computed at y

7

will be

x

7

� x

2

� x

5

� x

8

� 1: (3)

This will have the e�ect that y

7

will �re if and only if x

7

�res and none of x

2

; x

5

or

x

8

�res.

The force of this approach is two-fold. First, it is more expressive than the to-

tally ordered strengths regime. For each x

i

one can specify which x

j

dominate it,

independently of the other x

i

. Second, the representation needed for expressing the

preferences, namely linear threshold functions, are learnable in a very favorable sense

as further discussed in subsection 4.2 below.

We are therefore suggesting that the conict resolution problem can be solved by

learning the correct resolutions from examples of past behavior. The justi�cation of

our architecture can be viewed as the possibility of repeated use of this same idea:

that learning can resolve many otherwise fundamentally problematic issues, and that

it can be realized e�ectively by the algorithms we describe. We chose to discuss the

conict resolution problem here, at the beginning, since it seems a particularly simple

and convincing instance.

14

4.2 Learning From Few Cases

The problem with advocating systems based on massive knowledge bases is that

one needs to specify mechanisms for coping with the issues of scale. In the previous

section, for example, we suggested that a learning mechanism for linear threshold

functions can address the issue of conict resolution. As we shall invoke learning as

the solution to a variety of other issues also, it is necessary to address the problem

that the learning process itself has to face in the presence of a massive knowledge

base.

The basic issue is fundamental and widely recognized. If there are n functions

represented in the system, and each one can depend on any of the n � 1 others,

as a linear threshold (or some other) function, then there are potentially about n

2

parameters. Since n is large, say in the tens of thousands, n

2

is very large. With this

backdrop it is a remarkable fact that biological learning systems appear to be able to

learn from relatively few examples, certainly much fewer than reasonable estimates of

the n (or n

2

.) Some mechanism needs to be present to enable very high dimensional

systems to learn from numbers of interactions with the world that are very small

compared with this dimension.

The most relevant theory we know of how this can be done is that of attribute-

e�cient learnability. The phenomenon here is that for certain function classes of n

variables one can prove that certain learning algorithms converge to a good hypothesis

after a number of examples that depends on n not linearly, the canonical situation

from dimensionality arguments, but much more slowly, sometimes logarithmically.

The phenomenon of e�cient attribute e�cient learning in the PAC sense was �rst

pointed out by Haussler [13]. A striking and remarkable embodiment of this idea

followed in the form of Littlestone's Winnow algorithm [26] for learning linear thresh-

old functions. The algorithm is similar in form to the classical perceptron algorithm

except that the updates to the weights are multiplicative rather than additive. The

modi�cation gives the algorithm the remarkable property that when learning a mono-

tone k-variable Boolean disjunction over fx

1

; � � � ; x

n

g the number of examples needed

for convergence, whether in the PAC or mistake-bounded sense, is upper bounded by

ck log

2

n, where c is a small constant, [26, 27]. Thus the sample complexity is linear

in k, the number of relevant variables, and logarithmic in the number of irrelevant

ones.

Littlestone's Theorem 9 [26] adapted to the case when coe�cients can be both

positive and negative (his Example 6) has the following more general statement; For

X � f0; 1g

n

suppose that for the functions g : X ! f0; 1g there exist �

1

; �

2

; � � � ; �

n

�

0 and ��

1

; ��

2

; � � � ; ��

n

� 0 such that for all (x

1

; � � � ; x

n

) 2 X

15

P

n

i=1

(�

i

x

i

+ ��

i

(1� x

i

)) � 1 if g(x

1

; � � � ; x

n

) = 1

and

P

n

i=1

(�

i

x

i

+ ��

i

(1� x

i

)) � 1� � if g(x

1

; � � � ; x

n

) = 0:

Then WINNOW2 with � = 2n and � = 1+�=2 applied to the variable set (x

1

; � � � ; x

n

; 1�

x

1

; � � � ; 1� x

n

) makes at most the following number of mistakes:

16

�

2

n

�

+

5

�

+

14ln�

�

2

!

n

X

i=1

(�

i

+ ��

i

): (4)

Here � and � are parameters of the algorithm and �, which quanti�es the margin by

which positive and negative examples are separated, is a parameter of the distribution

of examples. For a monotone disjunction of k out of n variables, we can have �

i

= 1

for the k variables in the disjunction, with all the other �

i

= 0, and all ��

i

= 0. Then

clearly � = 1. Hence (4) becomes O(k logn). In all these cases the algorithm can be

adapted so that it has similar bounds in the PAC model [27].

For linear inequalities of the form (3), we see that the particular example given is

equivalent to

1

4

(x

7

+ (1� x

2

) + (1� x

5

) + (1 � x

8

)) � 1 so that � =

1

4

. In general if

there were k negative terms then � = 1=(k+1). In order to make the margin larger it

is better to learn the negation of (3), namely (1�x

7

)+x

2

+x

5

+x

8

� 1 so that � = 1.

The generalization of this to k terms would also give � = 1 and hence the O(k logn)

bound.

It appears that some mechanism for attribute-e�ciency is essential to any large

scale learning system. The e�ectiveness of Winnow itself has been demonstrated in

a variety of experiments. A striking example in the cognitive domain is o�ered in

the work of Golding and Roth on spelling correction [11]. Even in the presence of

tens of thousands of variables, Winnow is able to learn accurately from few examples,

sometimes fewer than 100.

The question arises whether attribute e�cient learning is possible for more ex-

pressive knowledge representations. Recently it has been found that this is indeed the

case. Under a certain projection operation attribute-e�cient learning algorithms can

be composed to yield algorithms for a more expressive knowledge representation that

are still attribute e�cient. In subsection 4.4 we shall discuss this further.

Finally, we note that attribute-e�cient learning is closely related to the issue of

relevance, which has been widely discussed in the AI literature. Conventionally one

would expect to preprocess data to identify the attributes that are relevant to the

classi�cation or action in question. One would then eliminate the irrelevant attributes,

and apply a learning algorithm to a database containing only the relevant ones. There

is, however, no evidence that biological systems have such an explicit preprocessing

16

stage. Further, Winnow achieves the same overall e�ect implicitly, without explicitly

identifying which variables are irrelevant in a preprocessing stage. What it o�ers

therefore seems novel and important. (We note however that given an implicit method,

such as Winnow, one can with some e�ort, explicitly identify the relevant variables

by a binary search technique that needs about k logn applications of Winnow. This

is an observation of A. Beimel.)

4.3 Learning Relations

The important point about our representation of a relation R(x

1

; � � � ; x

k

) at a node is

its duality of nature. It is Boolean in the sense that at any instant the node either �res

or does not �re. On the other hand it is also relational in that at any instant it has

some binding � : fx

1

; � � � ; x

k

g ! fa

1

; � � � ; a

g, and the truth value taken depends on

whether the relation holds for this particular binding of the variables to the objects

in the image. This dichotomy exists also in other work on learning relations, such

as inductive logic programming [45], but needs to be addressed in a di�erent way

here because of the circuit orientation. An overriding concern for us throughout is, of

course, that the complexity of manipulating relations be controlled (c.f. [46]).

Suppose we have a connection. R

1

(x

1

; � � � ; x

n

)! R

2

(y

1

; � � � ; y

k

) and an associated

connection binding that speci�es x

1

= y

2

and x

2

= y

3

. What does a strong weight

on this connection mean? The interpretation of the semantics of circuit evaluation

de�ned in x 2.1 and x 2.2 implies that a strong weight means that for any scene and

any bindings of x

1

; x

2

to objects for which R

1

is true, it is the case that R

2

should

be \inclined" to be true also for any binding �

2

s.t. �

2

(y

2

) and �

2

(y

3

) agree with the

bindings of x

1

; x

2

. In other words, for any scene as far as the truth of R

2

is concerned

for any one binding �

2

; the only inuence of R

1

is via the question of whether there

exists some �

1

that makes R

1

true and agrees with �

2

on the object pairs speci�ed in

the connection binding R

1

! R

2

.

Clearly we need to use the same semantics for learning as for evaluation. Further

this is easy to do. If R is a node with connections from R

1

; � � � ; R

m

and with m

corresponding connection bindings, then during learning we shall for each relational

example (i.e. a scene and a labelling of R for some or all bindings � of its variables)

evaluate R

1

; � � � ; R

m

for each binding of their own variables. An example for the

learning algorithm will then consist simply of truth values for R

1

; � � � ; R

m

and a truth

value for R. Hence the truth value taken of R is simply its truth value on �. Also R

i

will be taken to be true if and only if there exists some binding �

i

of the variables of

R

i

that makes R

i

true and agrees with � on the connection binding R

i

! R.

If the learning algorithm learns a function (of R in terms of R

1

; � � � ; R

m

,) that is

consistent with the examples so presented, then the function that the resulting circuit

evaluates will be consistent with these examples.

17

Given one relational example, the distribution of Boolean examples presented to

the learning algorithm is not necessarily uniquely determined. The case in which

all bindings of R are considered, and each given the same probability is only one

choice, be it a natural one. If the vast majority of bindings give negative values for

the truth of R, it may be advantageous for reasons of economy to sample from the

negative examples. Also, in the case that cycles are allowed and the evaluation process

recomputes a node several times, there are further choices to be made.

4.4 Learning More Complex Functions and Strategies

The previous section showed that the learning of linear inequalities with large margins

can be done attribute e�ciently, and therefore that mechanisms for doing that are

ideal building blocks for our architecture. Clearly the intention of our architecture is

that each new function that is learned or programmed be expressible in terms of old

ones already represented in the system in a reasonably simple way. When discussing

learning the crucial issue is how far removed the new function can be allowed to be

from the old ones already represented, without necessitating a learning capability

that is computationally intractable. In other words the issue is one of the granularity

of the relative complexity of the successive functions that can be learned.

From what we have said linear threshold functions o�er a level of granularity that

is computationally attractive. The two questions raised therefore are: (1) is this level

of granularity su�ciently large to o�er a convincing approach to building cognitive

systems and (2) can this granularity be enlarged (i.e. to richer knowledge representa-

tions) while retaining attribute e�cient learnability.

Even when a function class is expressible as linear inequalities, this representa-

tion may be impractically large if many compound features need to be created. For

example, for Boolean variables fx

1

; � � � ; x

n

g each of the 2

2

n

Boolean functions can be

expressed as a disjunction of monomials over fx

1

; � � � ; x

n

; �x

1

; � � � �x

n

g and hence as a

linear inequality, but this requires a variable for each potential monomial, and there

are 3

n

of these.

Examples of function classes that can be expressed as inequalities over just n

variables are: disjunctions, conjunctions, and threshold-k functions. In the last case

we would have

n

X

i=1

z

i

� k

where z

i

is a variable over the reals that is given value 1 if x

i

= 1, and zero otherwise.

A further class that can be so expressed is that of 1-decision lists [41]. These test for

a sequence of literals y

i

1

; � � � ; y

i

m

where y

i

j

2 fx

1

; � � � ; x

n

; �x

1

; � � � ; �x

n

g: If the literal y

i

j

is true then the function is de�ned to be the constant c

j

for c

j

2 f0; 1g, otherwise

18

y

i

j+1

is tested. Decision lists can be expressed as linear inequalities over n variable

z

1

; � � � ; z

n

corresponding to x

1

; � � � ; x

n

. The size of the coe�cients grows exponentially,

however, with n. In the special case that most of the c

j

have one value, this growth

is more limited. In particular, it is shown in [55] that if c

j

has value 1 for d of the

m values of j then the decision list can be expressed as a linear inequality with

integer coe�cients, where the magnitudes of the coe�cients, and also their sum, is

upper bounded by (2m=d)

d

. If d << m then this is much better than the general

upper bound of 2

m

. Also, we see that this inequality can be expressed so as to �t

the requirements of expression 4.2 for Winnow. We then have � = (2m=d)

�d

and the

sum of the magnitudes of the coe�cients bounded by 1, so that the mistake bound

is quadratic in (2m=d)

d

and logarithmic in n.

The question of characterizing the classes of linear inequalities that are learnable

attribute e�ciently remains unsettled. The possibility that decision lists can be so

learned has not been excluded.

Another question is whether attribute e�cient learning can be achieved by classes

of functions beyond linear inequalities. A positive answer to this is provided by pro-

jection learning, which is is a technique that has been shown to extend the scope

of attribute e�cient learnability. It allows algorithms that are attribute e�cient to

be composed so as to obtain learning algorithms for more expressive representations

that are still attribute e�cient. Since Winnow is the paradigmatic attribute e�cient

algorithm currently known, the present applications of projection learning are based

on Winnow itself.

The basic idea is that for Boolean variables x

1

; � � �x

n

we de�ne a set J = f�

1

; � � � ; �

r

g

of projections that each map f0; 1g

n

to f0; 1g. For example, we could have r = 2n

and for each literal ` 2 fx

1

; � � � ; x

n

; �x

1

; � � � ; �x

n

g we have a projection �

`

de�ned as

�

`

(x) = 1 i� ` = 1 on x. This is the class of single variable projections. An alter-

native class has r = 2

k

with each member of J being a conjunction l

1

l

2

� � � l

k

where

l

i

2 fx

i

; �x

i

g; i.e. if � = x

1

�x

2

�x

3

then �(x) = 1 i� x

1

�x

2

�x

3

= 1:

For each � 2 J we consider the function f(x)�(x). Clearly this equals zero for

x s.t. �(x) = 0, and it equals f(x) otherwise. The hope is that for some of the

restrictions �, the function f(x)�(x) can be learned more accurately than f(x) can

directly, and that between the various choices of �, the f(x)�(x) that are learned do

cover the whole domain f0; 1g

n

of f(x).

Suppose that for the various choices of � 2 J the function learned that approxi-

mates f(x) on �(x) = 1 is f

0

�

(x). Then

P

f

0

�

(x)�(x) is taken as the approximation of

f that has been learned. The main result in [55] states that if the f(x)�(x) belong to

a class that is learnable attribute e�ciently on the restricted domain fx j �((x) = 1g

by an algorithm A say, and if a disjunction can be learned attribute e�ciently by an

algorithm B that shares certain speci�ed properties with Winnow, then the function

P

f

�

(x)�(x) can be learned attribute e�ciently, in the sense that the needed sample

19

complexity depends linearly on the number of relevant �

0

s and the number of relevant

variables in all the f

�

, but only logarithmically on the total numbers r and n.

There is a variety of directions for which this can be used to extend attribute

e�cient learning beyond linear threshold functions.

First, suppose that we learn a function of the form

P

�2

�

J

f

�

(x)�(x) where

�

J � J

for J the class of single variable projections, and f

�

are conjunctions. Then if the

conjunctions are assumed to be of length at most k, and the number of elements of

�

J is at most m, then the sample complexity of learning these will be linear in m

and k, and logarithmic in r and n. Furthermore, the circuit will need r nodes for the

various f

�

, n nodes for x

1

; � � � ; x

n

, and therefore rn weights to update, or O(n

2

) in

the case of single variable projections. Thus we are learning somewhat economically

a subclass of DNF formulae that have m monomials, each with at most k+1 literals.

To learn these via general (k + 1)-DNF learning methods [50] would be much more

expensive, and intractable if r and n are both large. For example, if we constructed

all the (k + 1)-monomials we would have about n

k+1

of them, which exceeds n

2

if

k > 1.

A second class of functions is given by

P

�2R

f

�

(x)�(x) where J is unchanged but

f is the class of disjunctions. Here the disjunctions will be assumed to contain at

most k literals, and the sum

P

�

to contain at most m nonzero terms. The result will

again be a subclass of DNF with at most 2 literals in each of the at most km terms.

While the overall complexity of learning this as a 2-DNF is not too di�erent, it would

require an architecture with n

2

nodes, rather than the O(n) nodes needed here.

A third way that projection learning can be used is best viewed as an application

outside the architecture that is attribute e�cient in a weaker sense. Consider a se-

quential covering algorithm, as in Rivest [41], for learning decision lists, or Khardon's

extension to propositional production rule systems [19]. In the simplest case such a

covering algorithm works as follows: it looks successively for a literal, say �x

3

, that is

the most predictive single literal, in some sense, of the function f being learned. For

the case �x

3

= 1 it will predict the most likely Boolean outcome for the function. For

the remaining subdomain, x

3

= 1 in this case, it will then repeat the process of �nd-

ing the next most predictive literal. Proceeding in this way it will obtain a decision

list or production system. We can extend these algorithms by projection learning as

follows: Instead of looking for a best literal we look for a best projection � from a

class J . Also, instead of predicting the most likely result on the subdomain where

� = 1, we learn a new hypothesis for the subdomain � = 1, and in the decision list

structure substitute the learned function, say a conjunction or disjunction instead of

true and false, at that point in the list. The procedure is then repeated on the subdo-

main where either � = 0 or the last hypothesis is false. This learning procedure can

be viewed as attribute e�cient if the learning algorithm used in the subdomains are

attribute e�cient, and if J is chosen to be itself small. Thus a preliminary analysis,

20

by, for example, simple Winnow may yield a candidate set of variables that are most

relevant (e.g. have high weights) and this small set may be chosen as the set J of

projections.

We note that the main motivation of projection learning is to learn more e�ectively

in cases in which a representation more complex than linear thresholds is needed. In

any one application domain we may have no a priori reason to believe that such a

representation is necessary. What we expect to �nd is that projection learning will al-

ways yield at least as good results as simple Winnow, (possibly at the expense of more

examples) and may yield better results when linear representations are insu�cient.

An area in which complex representations may need to be learned is that of

strategies and plans. Here production systems are widely believed to have useful

expressivity [38]. Khardon has shown that a rich class of these can be learned using

decision list algorithms [13]. The dilemma here is that no attribute-e�cient learning

algorithm is known for decision lists, unless the degree d is small, as explained in the

previous section. Hence we may have to look at the atter projective structures to

�nd representations of such strategies that are learnable attribute e�ciently.

4.5 Learning as an Approach to Robustness

Systems will acquire knowledge both by inductive learning as well as by explicit pro-

gramming. Errors and inconsistencies may occur in either kind of input, and mecha-

nisms are needed for coping with these.

In the case of inductive learning the issue of noise has been studied extensively.

On the theoretical side a range of noise models have been considered, ranging from a

malicious adversarial model [3] to the more benign random classi�cation noise model,

where the only noise is in the classi�cation of the examples and this is random [3].

At least for the more benign models there are some powerful general techniques for

making learning algorithms cope with noise in some generality [16].

For the problem of learning linear separators there exist theoretical results that

show that there is no fundamental computational impediment to overcoming ran-

dom classi�cation noise [5, 8]. Currently somewhat complex algorithms are needed

to establish this rigorously. In practice, fortunately, natural algorithms such as the

perceptron algorithm and Winnow, or the linear discriminant algorithm, behave well

on natural data sets which are often noisy, and for which there is no a priori reason

to believe that linear thresholds should work at all. This empirical evidence lends

credence to the use of linear threshold algorithms for complex cognitive data sets.

When knowledge is acquired by programming the issue of coping with noise also

arises. The view we take here is that we use the same PAC semantics for programmed

rules as for inductively learned rules. Thus the system would have high con�dence in

a rule that agreed with many examples. A programmed rule is therefore one which is

21

treated as a working hypothesis, and easily discarded if evidence builds up against it.

In addition to the opportunity to discard rules there is also one for re�ning them.

Thus we may have programmed rules P) R and Q) :R as working hypotheses,

but discover that they do not hold in all cases. In particular, it may happen that in

some relatively rare cases both P and Q hold and therefore the rules contradict each

other. It may be that after su�ciently many observations it is found that P ^Q) :R

is a reliable rule. In that case we would re�ne P) R to P ^:Q) R. The main point

is that the dilemma that arises from two potentially contradictory rules is resolved by

learning, even in the case that the original rules themselves are programmed rather

than learned.

4.6 Learning as an Approach to the Problem of Context

It has been widely observed that rules that express useful commonsense knowledge

often need quali�cation { they hold only in certain contexts. Thus a rule Q) R

may hold if context P is true, but not necessarily otherwise. Frames in the sense of

Minsky [33] can be viewed as contexts that have a rich set of associated rules. The

PAC semantics of such a rule is that on the subdomain in which P holds, Q) R is

the case, at least with high probability. In our architecture the simplest view to take

is that it can cope easily with a context P if it has a node for recognizing whether

an input satis�es P . If there is a node in a circuit unit that recognizes P , then a

subcircuit that implements P^Q) R will implement exactly what is wanted, the rule

Q) R applying in the subdomain in which P holds. The question remains as to how

domain sensitive knowledge can be learned. One answer is suggested immediately by

projection learning; each concept R that is learned is also learned for the projections

de�ned by every other concept P that has been previously learned or programmed.

Thus if we have nodes for P and R then a complex set of conditions Q that guarantee

R in the context of P can be learned from examples, for any P and R. This would

be, of course, computationally onerous unless the choice of P is restricted somehow.

4.7 Learning as an Approach to Incomplete Information and

Nonmonotonic Phenomena

Systems that attempt to describe the world declaratively run into methodological

problems that arise from the fact that at any time there will be captured only incom-

plete knowledge about the world. The di�culty is that such systems need to take a

generic view of how to treat incomplete information { they need a uniform theory,

such as circumscription or the closed world assumption that takes positions on how

to resolve the unknown [10, 29, 31].

22

PAC circuit semantics o�ers an advantage here { it resolves the unknown sepa-

rately in each case by using information learned from past experience of cases where

similar features to the case in hand were similarly unknown. A motivating observation

here is that gates in a circuit take values at all times. Consider the paradigm of non-

monotonic reasoning exempli�ed by the widely discussed example of the bird called

Tweety [10] . The system is invited to take positions on whether Tweety ies both

before and after it is revealed to it that Tweety is, in fact, a penguin. Suppose that in

a brain, for example, there is a two-valued gate intended to recognize penguins. This

would take value 1 say, when a penguin is identi�ed, in the PAC sense, and 0 when

what is seen is identi�ed in the PAC sense as not being a penguin. However, this gate

must also take some value in cases where conventionally one would say that the sys-

tem has not determined whether the object in question is a penguin or not. Suppose

that in these cases the gate takes the value 0. Then we could say that a 1 value means

fpenguing and a 0 means fnot penguin, undeterminedg. In this sense circuits repre-

sent internally the three cases fyes, no, undeterminedg even if no explicit provision

has been made for the third case. This means that learning and rule evaluations in

the system are carried out with a semantics in which the undetermined value of each

variable is represented. This is true both when a predicate is represented by a single

gate having just two possible values (whether representing fyes, undeterminedg/fnog

or fyesg/fno,undeterminedg by the two values) and also when there is a more explicit

representation, say by a pair of binary gates whose four possible values do distinguish

fyesg, fnog, and fundeterminedg. Hence once the system has reached stability in

learning it will cope with instances of incomplete information exactly as it does with

ones with complete information [52]. One could say further that in natural learning

systems instances of incomplete information are the natural ones, and usually the

only ones available.

Pursuing this example further, suppose that the system has a rule \bird = 1 and

penguin = 0) ies = 1". Suppose also that the gates \bird", \penguin", and

\ies" all have value 0 if the truth of the corresponding predicate is undetermined

in the system. Suppose further that this rule has been found to be consistent with

most natural cases experienced by the system in accordance with the probability

distribution D that describes the external world. It will then follow that for instances

in which birdhood is con�rmed but penguinhood is undetermined, it will be a reason-

able conclusion that ies will be true and that the corresponding gate should indeed

have value 1 to indicate that. This will be a valid inference since the same was true

for past cases in the PAC sense. Thus the unde�ned is resolved here by learning from

the real world distribution D, as seen through the feature set of the system. In this

example D captured the fact that in the particular source of examples to which this

system was exposed, in the majority of cases where a bird was identi�ed but nothing

was said about penguinhood, the bird did indeed y.

23

In arti�cial systems, of course, the unde�ned value � may be treated more explic-

itly. For example, gates may take three values f0; 1; �g, or, closer to the spirit of our

architecture, the three values may be represented by a pair of binary gates.

Defaults may be viewed from this same perspective. Ignorance of the value of a

predicate is rightly interpreted as not relevant to the value of another if in natural past

cases of ignorance of the former, a certain consequence was true with high probability

for the latter. We regard defaults as rules where certain predicates are assumed to

have the undetermined value in the precondition. Their validity arises from the fact

that they had proved accurate in the past, or that they could be deduced from those

that had. Further examples are given in [43, 52, 53].

4.8 Reasoning

Much e�ort has been put into seeing whether the various formalisms that have been

suggested for reasoning in AI, at least those outside the probabilistic realm, can be

formulated within predicate calculus. The general answer found to this question is in

the a�rmative, in the sense that many of the various alternative formalisms, including

those based on graph models, can be reexpressed in terms of the predicate calculus.

Some of these alternative formalisms, and the necessary transformations are described

by Russell and Norvig [45].

Instead of reformulating this body of work so as to �t in with our architecture, we

will be content here to claim that a substantial part of it can be supported directly

without change. In particular, we described an implementation of our architecture

that can support modus ponens on Horn clauses. It follows that our architecture can

do reasoning in all these frameworks whenever the translation results in Horn clauses.

Further, it can do this by simple circuit evaluation of the contents of an image.

In addition, our architecture has capabilities for reasoning beyond those provided

by circuit evaluations alone. In particular, the circuits and the image units can be used

together more proactively within the reasoning process. The evaluation of a circuit

may result in various actions on the image, such as the addition of further objects,

the addition of statements of further relationships, or the deletion of an object. Thus

a circuit may cause the execution of a step of a more complex reasoning strategy.

In evaluating a scene, a circuit may add an object representing something already

in the scene but at a later time, and add a relationship that expresses the future

condition of the object. In other words the circuits may be able to depict a likely

scenario following on from the current one. The way the future scenario is depicted

can depend critically on the current one. In other words we need circuits that are able

to make useful modi�cations to the scene in a highly content dependent manner.

The upshot is that the circuits will contain, in addition to information about

the external world as implied in previous sections, further information that concerns

24

the strategies that are to be used for the internal deliberations of the system. These

deliberations will be seriously restricted, of course, by computational constraints, such

as limits on the number of objects allowed in a scene.

4.9 System Design

It has been asked whether in our architecture one still has to design AI systems,

exactly as in the old way, and all that is o�ered in addition are some mechanisms

for the automatic adjustment of weights. While in some sense the answer to this is

yes, the more important point is that the learning capability o�ers things that are

qualitatively di�erent. First it provides a behavioral semantics. Further it o�ers a

uni�ed methodology for dealing with conict resolution, nonmonotonic phenomena,

incomplete information, robustness, and the problem of context among others. Above

all, it o�ers a viable approach for infusing knowledge into a system in bulk.

Clearly conventional design principles o�er a start in designing systems in this

domain also. In a programmed system one expects to construct various modules for

various functionalities, and have these interface with each other. In particular, one

may have a hierarchy of functions, lower level ones processing the inputs directly, and

higher level ones processing the outputs of the lower level ones. Thus an acyclic graph

of circuit units, in which some low level modules mimic the modules that would be

used in, say, a language system, is one possible starting point.

There are also some design choices that are unique to the architecture. For creating

new compound features there are various possibilities. Because of the centrality of

attribute e�cient learning algorithms, an obvious method is to generate large numbers

of combinations in a systematic simple way. Any relevant ones so discovered will be

valuable, and the irrelevant ones will do little harm. One approach is to generate

for any variable set the set of conjunctions of all pairs of them. Another choice is

to create conjunctions of just those pairs that occur with high correlation. More

generally one can generate some set of polynomialy generable combinations [51]. The

intention is that large numbers of variables, even if most are irrelevant, will not

degrade performance in the presence of attribute e�cient learning algorithms.

We are suggesting that the way to evaluate this architecture is by experimentation.

In that connection we note here one aspect. Most general approaches to AI attempt to

describe a uniform method for building a knowledge base starting from a blank slate.

Facts and reasoning about the most universal concepts such as time and space are

then formalized in the same framework as is more specialized knowledge (e.g. [25]).

In the neuroidal framework there is room reserved for treating the universal concepts

di�erently from the others. In particular, the features and inverse features of the

image units can be used to implement e�ciently certain universal knowledge, such

as to do with low-level visual processing, and reasoning about time or space. These

25

functions may be complex and specialized enough that implementing them directly

in the same framework as the more general knowledge would introduce unnecessary

di�culties. Thus interpreting a depiction of a three dimensional scene may be done

in the �rst instance by computational mechanisms that are preprogrammed in the

image units and expert at that task, and are possibly totally unrelated to the more

general knowledge manipulation capability of the circuit units. This dichotomy may

be analogous to that in biological systems between knowledge available at birth and

acquired during evolution, and that learned during life. However, we expect that some

circuit units will be programmed and do not exclude the possibility that some image

unit functions are learned.

The choice of what features to implement in the input devices and image units

poses signi�cant questions. In current machine learning applications the choice of

feature set is often critical to success. This phenomenon is probably accentuated

when we scale up to more general cognitive problems. In particular, the training data

may have to match the chosen feature set in some way. If, as is most likely, the feature

set chosen is signi�cantly di�erent from that used by the human nervous system, the

teaching materials that will succeed can be expected to be di�erent from those that

are e�ective for teaching humans.

5 Validating the Architecture

What we are claiming is that several of the generic di�culties that have been encoun-

tered in designing scalable AI systems are technically solvable within the described

architecture. To give convincing evidence for this claim one would need to construct

a system that uses general knowledge on the scale and with the success envisioned

here. A �rst experimental question, therefore, is how this architecture might be boot-

strapped to create a system whose performance in some cognitive area is indisputably

superior to existing ones.

In designing a system important choices need to be made regarding the feature

detectors of the images and of the input devices. If the main source of information

for the system is visual, for example, then problems with interpreting visual inputs

are likely to be inherited by the system. Our view is that the building of a database

that would comprise the �rst level of internal knowledge in the system for such cir-

cumstance will have to be pursued in a careful and purposeful manner. It would have

to acknowledge and compensate for the poverty of what we might be able to pro-

gram currently as feature detectors. The Golding-Roth paper [11] is a good example,

however, of how one might start. They take a linguistic corpus and create complex

features out of single words, grammatical parts of speech of single words, and boolean

conjunctions of these for sets of words that occur in close proximity in the text. Such

26

features, though arti�cial, do capture useful information about meaning beyond what

can be gleaned from examining each word in isolation. By using such a set of features

they are able to learn to disambiguate certain pairs of words that humans often con-

fuse. Although the feature set is imperfect and arti�cial, the system is able to create

a useful level of knowledge that is a level of abstraction above the individual words.

By analogy one would hope to build a larger knowledge base in a succession of

similar steps. This would be done by a managed combination of inductive training

operations, and the use of programmed knowledge as contained, for example, in dic-

tionaries. We believe that learning will need to play a large part of the overall task

if we are to achieve the various kinds of robustness discussed in this paper. Purely

programmed systems would appear to have an inherent limitation in this regard.

It is quite likely that if all this is to be achieved, natural language inputs will

play a major role. Corpora suitably annotated with the appropriate levels of knowl-

edge will have to be created. Substantial infrastructure will need to be manufactured

to provide the teaching materials for these systems. This would compensate for any

shortcoming in the range of preprogrammed features that we are able to realize. Al-

though large amounts of reliable knowledge are already available in linguistic format,

there are many obstacles to preparing or selecting useful linguistic teaching mate-

rials. Much commonsense knowledge is nowhere encoded, and much text produced

by humans contains linguistic constructs that are currently di�cult for machines to

analyze. These facts make the preparation of the teaching materials challenging, but,

we believe, not insurmountable

6 Conclusion

We have described a series of arguments that suggest that many of the problems

that have been identi�ed as obstacles to AI at a conceptual level, can be solved

if one gives inductive learning a suitable central role. In this respect the proposed

architecture di�ers from other general approaches to cognitive architectures that have

been described, such as [1], [37], and [38], in which inductive learning plays a much

smaller role.

We note that our use of PAC semantics suggests a modi�ed Turing test. His basic

criterion for whether a machine could think was that the performance of the machine

should be indistinguishable from that of a human to an interrogator communicating

via a teleprinter [47]. The signi�cance of this informally stated criterion is that it is a

purely behavioral one. What PAC semantics o�ers is a precise way of formulating such

behavioral criteria. In particular it insists that both the task being learned, and the

distribution of inputs over which learning is performed and performance measured,

need to be identi�ed.

27

The tasks in which we are interested here are those involving a large amount of

knowledge that has not been systematized into an exact science. A possible area in

which one might hope to test the performance of a system at such a task is that of

intelligent word processing. One can imagine a word processor that not only detects

misspelled words, but does a succession of more and more intelligent tasks, such as

suggesting alternative words and phrasing, or noting confusions or inconsistencies,

much as a teacher marking an essay might. There appears to be a continuum of

tasks of increasing di�culty in this area. Even when restricted to the disambiguation

tasks previously mentioned, systems could invoke more and more world knowledge

in their suggestions, and their perceived performance would increase correspondingly.

One can imagine experiments in which commentary to writers is provided variously

by humans and machines, and the writers' task is to distinguish which one was the

case. Such an instance of a modi�ed Turing Test would therefore refer to a concrete

real world distribution of cases generated, for example, by twelve year old students,

and created independently of the context of the test. Each such distribution would

de�ne a di�erent task and therefore a di�erent test. For an empirical validation of

our architecture one would need to show that systems can be built that pass such

speci�c tests of ever higher levels of di�culty.

7 Acknowledgment

I am grateful to Roni Khardon, Dan Roth, and Rocco Servedio for their helpful

comments on various versions of this paper.

References

[1] J.R. Anderson. The Architecture of Cognition. Harvard University Press, 1983.

[2] J.R. Anderson. Rules of the Mind. Erlbaum, Hillsdale, NJ, 1993.

[3] D. Angluin and P. Laird. Learning from noisy examples. Machine Learning,

2(4):343{370, 1988.

[4] A. Blum. Learning boolean functions in an in�nite attribute space. Machine

Learning, 9(4):373{386, 1992.

[5] A. Blum, et al. A polynomial time algorithm for learning noisy linear threshold

functions. In Proc. 37th IEEE Symp. on Theory of Computing, pages 330{338,

1996.

28

[6] T. Bylander. Learning linear threshold functions in the presence of classi�cation

noise. In Proc. 7th ACM Conference on Computational Learning Theory, pages

340{347, 1994.

[7] N. Cesa-Bianchi, et al. How to use expert advice. In Proc. 25th ACM Symp. on

Theory of Computing, pages 382{39, 1993.

[8] E. Cohen. Learning noisy perceptrons by a perceptron in polynomial time. In

Proc 38th IEEE Symp. on Foundation of Computer Science, pages 514{523, 1997.

[9] A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower bound

on the number of examples needed for learning. Inf. and Computation, 82(3):247{

266, 1989.

[10] M.L. Ginsberg. Readings in Nonmonotonic Reasoning. Morgan Kaufmann, Los

Altos, CA, 1989.

[11] A.R. Golding and D. Roth. Applying Winnow to context-sensitive spelling cor-

rection. In Proc 13th Int. Conf. on Machine Learning, pages 182{190, San Fran-

cisco, CA, 1996. Morgan Kaufmann.

[12] J.Y. Halpern. An analysis of �rst-order logics of probability. In Arti�cial Intel-

ligence Journal, volume 46, pages 311{350, 1990.

[13] D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant's

learning framework. Arti�cial Intelligence, 36:177{221, 1988.

[14] D. Haussler. Learning conjunctive concepts in structural domains. Machine

Learning, 4:7{40, 1989.

[15] M. Kearns and M. Li. Learning in the presence of malicious errors. SIAM Journal

on Computing, 22(4):807{837, 1993.

[16] M.J. Kearns. E�cient noise-tolerant learning from statistical queries. In Proc.

25th ACM Symp. on Theory of Computing, New York, 392-401 1993. ACM Press.

[17] M.J. Kearns and R.E. Schapire. E�cient distribution-free probabilistic concepts.

J. Comput. Syst. Sci., 48(3):464, 1994.

[18] M.J. Kearns and U.V. Vazirani. An Introduction to Computational Learning

Theory. MIT Press, 1994.

[19] R. Khardon. Learning to take actions. In Proc. National Conference on Arti�cial

Intelligence, pages 787{792. AAAI, 1996.

29

[20] R. Khardon and D. Roth. Learning to reason. In AAAI94, pages 682{687.

Morgan Kaufmann, 1994.

[21] R. Khardon and D. Roth. Learning to reason with a restricted view. In Proc.

8th ACM Conference on Computational Learning Theory, pages 301{310, 1995.

[22] J. Kivinen and M.K. Warmuth. The perceptron algorithm vs. Winnow: linear

vs. logarithmic mistake bounds when few input variables are relevant. In Proc.

8th ACM Conference on Computational Learning Theory, pages 289{296, 1995.

[23] D. Knuth. The Art of Computer Programming, volume 1. Addison Wesley,

Reading, MA, 1973.

[24] P. Langley, D. Klahr, and R Neches. Production System Models of Learning and

Development. MIT Press, 1987.

[25] D.B. Lenat, et al. CYC: Toward programs with common sense. In CACM,

volume 33:8, pages 30{49, 1990.

[26] N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-

threshold algorithm. Machine Learning, 2:285{318, 1988.

[27] N. Littlestone. From on-line to batch learning. In Proc. 2nd Workshop on

Computational Learing Theory, pages 269{284, 1989.

[28] J. McCarthy. Programs with commonsense. In Proc. Teddington Conference on

the Mechanization of Thought Processes, London, 1959. HMSO.

[29] J. McCarthy. Circumscription { a form of non-monotonic reasoning. Arti�cial

Intelligence, 13:27{39, 1980.

[30] J. McCarthy and P.J. Hayes. Some philosophical problems from the standpoint

of arti�cial intelligence. In D. Michie, editor, Machine Intelligence, volume 4,

New York, 1969. American Elsevier.

[31] D. McDermott and J. Doyle. Nonmonotonic logic I. Arti�cial Intelligence, 13(1),

1980.

[32] G.A. Miller. The magical number seven, plus or minus two: Some limits on our

capacity for processing information. Psychological Review, 63:81{97, 1956.

[33] M. Minsky. A framework for representing knowledge. In P.H. Winston, editor,

The Psychology of Computer Vision, New York, 1975. McGraw Hill.

30

[34] M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, MA, 1969.

[35] S. Minton. Quantitative results concerning the utility of explanation-based learn-

ing. Arti�cial Intelligence, pages 363{391, 1990.

[36] S. Muggleton. Inductive logic programming: derivations, successes and short-

comings. SIGART Bulletin, 5(1):5{11, 1994. Also other articles in same volume.

[37] A. Newell. Uni�ed Theories of Cognition. Harvard University Press, 1990.

[38] A. Newell and H.A. Simon. Human Problem Solving. Prentice-Hall, Englewood

Cli�s, NJ, 1972.

[39] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, Los Altos, CA, 1988.

[40] L. Pitt and L.G. Valiant. Computational limits on learning from examples. J.

ACM, 35:965{984, 1988.

[41] R.L. Rivest. Learning decision lists. Machine Learning, 2(3):229{246, 1987.

[42] F. Rosenblatt. Principles of Neurodynamics. Spartan, New York, 1962.

[43] D. Roth. Learning to reason: the non-monotonic case. Proc. Int. Joint Conf.

Art. Intl., pages 1178{118, 1995.

[44] D. Roth. A connectionist framework for reasoning: Reasoning with examples.

In Proc. National Conference on Arti�cial Intelligence, pages 1256{1261. AAAI,

1996.

[45] S. Russell and P. Norvig. Arti�cial Intelligence. Prentice Hall, Upper Saddle

River, NJ, 1995.

[46] M. Tambe, A. Newell, and P.S. Rosenbloom. The problem of expensive chunks

and its solution by restricting expressiveness. Machine Learning, 5:299{348, 1990.

[47] A.M. Turing. Computing machinery and intelligence. Mind 59, pages 433{460,

1950. (Reprinted in Collected Works of A.M. Turing: Mechanical Intelligence,

(D.C. Ince, ed.), North-Holland, 1992).

[48] A.M. Turing. Solvable and unsolvable problems. Science News, 31:7{23, 1954.

(Reprinted in Collected Works of A.M. Turing: Mechanical Intelligence (D.C.

Ince, ed.) North-Holland 1992).

31

[49] A. Tversky and D. Kahnemann. Causal schemata in judgments under uncer-

tainty. In Progress in Social Psychology, Erlbaum, Hillsdale, NJ, 1977.

[50] L.G. Valiant. A theory of the learnable. Comm. of ACM, 27(11):1134{1142,

1984.

[51] L.G. Valiant. Learning disjunctions of conjunctions. In International Joint Con-

ference on Arti�cial Intelligence, pages 560{566, Los Angeles, CA, 1985. Morgan

Kaufmann.

[52] L.G. Valiant. Circuits of the Mind. Oxford University Press, 1994.

[53] L.G. Valiant. Rationality. In Proc. 8th Ann. Conference on Computational

Learning Theory, pages 3{14. ACM Press, 1995.

[54] L.G. Valiant. A neuroidal architecture for cognitive computation. Technical

Report TR-11-96, Harvard University, 1996.

[55] L.G. Valiant. Projection learning. Technical Report TR-19-97, Harvard Univer-

sity, 1997.

32

