
Layering in Provenance-
Aware Storage Systems

The Harvard community has made this
article openly available.  Please share  how
this access benefits you. Your story matters

Citation Muniswamy-Reddy, Kiran-Kumar, Joseph Barillari, Uri Braun, David
A. Holland, Diana Maclean, Margo Seltzer, and Stephen D. Holland.
2008. Layering in Provenance-Aware Storage Systems. Harvard
Computer Science Group Technical Report TR-04-08.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:23597698

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/154869895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Layering%20in%20Provenance-Aware%20Storage%20Systems&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=7aa4124f927f81791595d2b9a03e3022&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23597698
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


 
 

Layering in Provenance-Aware Storage Systems 
 

Kiran-Kumar Muniswamy-Reddy, Joseph Barillari, Uri Braun, 
David A. Holland, Diana Maclean, Margo Seltzer, Stephen D. Holland 

 
 
 

TR-04-08 
 
 
 
 
 

 

Computer Science Group 
Harvard University 

Cambridge, Massachusetts 



Layering in Provenance-Aware Storage Systems

Kiran-Kumar Muniswamy-Reddy, Joseph Barillari†, Uri Braun,
David A. Holland, Diana Maclean, Margo Seltzer

Harvard School of Engineering and Applied Sciences
†and the Harvard-MIT Division of Health Sciences and Technology

Stephen D. Holland
Iowa State University Department of Aerospace Engineering ∗

Abstract
Digital provenance describes the ancestry or history of a
digital document. Provenance provides answers to ques-
tions such as: “How does the ancestry of these objects
differ?” “Are there source code files tainted by propri-
etary software?” “How was this object created?”

Prior systems used to collect and maintain provenance
operate within a single layer of abstraction: the system
call boundary, a workflow specification language, or in a
domain-specific application level. The provenance col-
lected at each of these layers of abstraction is different,
and all of it is important at one time or another.

All of these solutions fundamentally fail to account for
the different layers of abstraction at which users need to
reason about their data and processes. None of these sys-
tems support queries across different layers of abstrac-
tion to answer a question such as “The calculated values
in my spreadsheet have changed. Is this due to a change
in the spreadsheet, a difference in the spreadsheet appli-
cation, the libraries being used, or the operating system
being used?”

We present an architecture for provenance collection
that facilitates the integration of provenance across mul-
tiple layers of abstraction and across network boundaries.
We show how the need to support provenance collection
at multiple layers drives the architecture. We present
provenance-aware use cases from the field of thermog-
raphy and quantify system overheads, showing that we
can provide new functionality with acceptable overhead.

1 Introduction

In digital systems, provenance is the record of the cre-
ation and modification of an object. Provenance-aware

∗This material is based on work supported by the Federal Avia-
tion Administration under Contract #DTFA03-98-D-00008, Delivery
Order #0037 and performed at Iowa State University’s Center for Non-
Destructive Evaluation as part of the Engine Titanium Consortium
Phase III Thermal Acoustic Studies program.

database systems such as Trio [23] record provenance at
tuple-granularity in a database. Service-oriented archi-
tecture (SOA) approaches [8, 9, 17] track provenance of
user- or application-defined objects. System-call-based
systems such as ES3 [3] and PASS [16] track provenance
of files. In all of these cases, provenance increases the
value of the data it describes.

The fundamental difference between these systems
is the layer of abstraction at which each identifies and
records provenance. Application level systems, such as
Trio, record provenance at the semantic level of the appli-
cation – tuples for a database system. Other application-
level solutions record provenance at the level of business
objects, lines of a source file, or other units that have se-
mantic meaning to the application. SOA approaches are
typically associated with workflow engines and record
provenance at the level of workflow stages and data or
message exchanges. System-call-based systems record
provenance at the level communicated via system calls –
processes and files.

While each level of abstraction is useful in its own
right, integration across these layers is crucial and cur-
rently absent. For example, consider the following sce-
nario: we obtain proprietary files from a third party, ana-
lyze those files with Python programs, and report results.
The proprietary files have names that reveal confidential
information, so one member of our lab copies the real
files into generic data files with meaningless names. Any
member of the team can then use the anonymized data
files and perform analyses. When we report results we
must map back the original file names. Historically, this
is done manually via notes scribbled down during the ini-
tial anonymization. In a provenance-aware world, the
system takes these notes automatically.

A solution that collects provenance only in Python (or
in a Python application) does not address the confiden-
tiality management problem. A solution at the system
call layer cannot capture the details of the Python anal-
yses. Solving the combined problem requires an ap-
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proach that integrates the information in a provenance-
aware Python and a provenance-aware operating system,
so that dependencies can be tracked across both layers.

We describe the PASSv2 system that enables this
seamless integration. It is a system-call-level prove-
nance system that natively tracks the provenance of files.
PASSv2’s layered architecture enables integration with
an application-level Python-library we developed.

The contributions of this work are:

• An architecture for provenance-aware systems that
integrates provenance across multiple layers of ab-
straction.

• A provenance-aware Python library and a general
framework for provenance-aware applications.

• A provenance-aware NFS implementation.

• A query language for asking provenance questions.

• A prototype system encompassing provenance-
aware applications, a provenance-aware kernel, and
provenance-aware network attached storage.

• Use cases demonstrating the integration between
provenance-aware applications and a provenance-
aware system.

The rest of this paper is organized as follows. In Sec-
tion 2 we make the case for provenance collection as a
key infrastructure component and then discuss the unmet
challenges it introduces in Section 3. In Section 4 we
present our layered architecture, addressing issues such
as functionality, recovery, and security. Section 5 intro-
duces the challenges in querying provenance In Section
6 we discuss our experience making applications and
NFS provenance aware. In Section 7 we describe sev-
eral provenance use cases, demonstrating how they are
addressed by our system. Section 8 presents the cost of
providing these features in terms of time and space over-
heads, and we conclude in Section 9.

2 The Case for Provenance

Provenance systems are a crucial infrastructure compo-
nent in areas like scientific computation, regulatory com-
pliance, intellectual property management, system audit-
ing, and data archival.

Provenance potentially eases the burden of regulatory
compliance faced by many companies. Regulatory com-
pliance has two main components: supervision and dis-
covery [7], both of which are easily and naturally ex-
pressed in terms of provenance. For example, in order
to comply with the United States Securities Exchange
(SEC) rule 10b-5[20] (which prohibits insider trading),

companies are required both to supervise all electronic
communications to detect and prevent sensitive informa-
tion disclosure and also to maintain records of all elec-
tronic communications to show compliance and respond
to discovery in litigation [7]. In both cases, data ancestry
plays a significant role, and provenance offers a natural
solution for the problem domain. Supervision, for ex-
ample, might stipulate that communications out of the
finance office that derive from corporate earnings data
should not be transmitted to anyone or any system that
directly interfaces to the team that manages 401(K) in-
vestments. Discovery, on the other hand, might require
finding all communications between employees E1 and
E2, and client C, that contain the words/phrases “earn-
ings”, “trades” and “stock prices” – a combination of
data query and a provenance query. Current solutions
tend to be highly domain-specific (for example, partic-
ular to stock trading); the advantage of a provenance-
based approach is that we can address larger, more ab-
stract notions of regulatory compliance.

Another domain for which provenance is well suited
is verifying intellectual property compliance. For ex-
ample, companies that use and develop both proprietary
software and open source software routinely require pre-
release checks to make sure the proprietary software has
not been tainted by open source software and vice-versa.
In most cases, this is a tedious, manual process. A system
that tracks provenance can look for paths in the ancestry
tree between source files with different licensing models.

Provenance is also related to data security. The tra-
ditional concept of classified information is readily ex-
pressed in terms of provenance: no unclassified data shall
descend from classified data except via a legitimate de-
classification. Furthermore, system auditing and prove-
nance collection are closely related; in both cases one
records actions taken and flows of information from file
to file. One may be able to detect intrusions by looking
for unusual patterns in provenance, similar to the tech-
nique based on unusual patterns of system calls [21].
Provenance is also useful for forensics after an intrusion
has been detected [14].

3 Background

Previous work exists at each of the layers of abstraction
discussed in the introduction, but there is no approach
that integrates across the different levels providing a uni-
fied solution.

At the domain-specific level, systems like GenePat-
tern [10] and our Python wrappers (described below)
provide provenance for environments in which scientists
perform routine analyses. Experiments done within the
analysis environment retain provenance, but the chain of
creation is often broken as data moves into or out of the
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environment. One of the most common provenance use
cases in this domain is the ability to extract the sequence
of processing steps that, after days or weeks of interac-
tive experimentation, produced an important result.

Tracking provenance at the level provided by work-
flow engines – such as Pasoa [17], myGrid [24] and
Chimera [9] – enables users to group related collections
into single logical entities. For example, scientists fre-
quently refer to logical data sets containing hundreds or
thousands of individual files. These systems can answer
queries such as “What were all the output files of a par-
ticular experiment?” or “What version of the software re-
lease are we using for this analysis?” These systems lose
some of the semantic knowledge available at the domain-
specific level, but do provide the ability to form larger,
virtual objects such as collections.

System level solutions like ES3 [3] and PASS [16]
capture information at the system level, losing both the
semantic information of domain-specific solutions and
also the relationships among data sets and processing
units found in workflow engines. However, these sys-
tems provide a wealth of information about the environ-
ment in which objects are created, such as the specific
binaries, libraries, and kernel modules in use.

All of these solutions fundamentally fail to account
for the different layers of abstraction at which users need
to reason about their data and processes. Simply taking
the union of provenance at different layers of abstraction
is insufficient, because the relationships between the ob-
jects appearing at different layers are vital.

There are two basic aspects to provenance: attributes
and relationships. Attributes state facts about an object,
such as its name or creation time. Relationships indicat-
ing things like data flow, process nesting, and versioning,
represent the ancestry and are more interesting.

These relationships form a directed acyclic graph
(DAG). (Why a DAG? Ancestry relationships must be
acyclic; cyclic ancestry violates causality. They are di-
rected; ancestor-of is not the same as descendent-of. An-
cestry forms a graph, not a tree: if one process writes two
files and another reads them, a “diamond” is formed.)

A naive approach to unifying provenance at differing
layers of abstraction is to take the union of the DAGs.
This overlays the DAGs without forming any connec-
tions between them. At a minimum, objects at each layer
of abstraction must be mapped to objects at the surround-
ing layers so that the DAGs can be merged, allowing
queries to cross the layers of abstraction. Managing these
mappings of identities automatically requires the layers
to share meaningful identity information. This observa-
tion is fundamental to handling provenance at multiple
levels of abstraction and drives the layering architecture
described in the next section.

Figure 1: PASSv2 Architecture

4 Architecture

We present the PASSv2 architecture in six parts. We be-
gin with a high level overview that introduces the main
components of the PASS system. Following this, we
detail five aspects of the PASS system that address the
fundamental issues that we have encountered in prove-
nance collection, namely: cycles (Section 4.2), layering
(Section 4.3), persistence (Section 4.4), recovery (Sec-
tion 4.5), and security (Section 4.6).

4.1 Overview
From a user perspective, PASSv2 is an operating system
that collects provenance invisibly. Users interact with
it as they would with any Linux system, except that af-
ter running unmodified applications, they can then run
queries against the provenance via a GUI or command-
line query tool. Figure 2, for example, shows the ances-
try graph of a workload in brain imaging [18].

PASSv2 also incorporates provenance collected by
provenance-aware applications. Application develop-
ers can develop PASS provenance-aware applications by
augmenting their code to make it provenance aware and
then linking their applications against libpass.

We present the PASSv2 architecture in four functional
units: control, generation, analysis and recording, and
index and query.

4.1.1 Control

The control component of PASSv2 interfaces between
the application and the system. Provenance-aware appli-
cations disclose their own provenance to the system and
will sometimes disable provenance collection for some
objects. The control component allows this.
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Figure 2: This figure shows the ancestors of the output file atlas-x.jpg from a brain imaging workload. The
graph comprises 167 nodes and 379 edges. The light gray triangles are instances of the alignuswarp process; the
dark gray triangles are instances of the reslice process. The heavy black line highlights one particular instance of
a common processing pattern.

Control is implemented via a library, libpass,
against which applications can link. This allows them
to transmit provenance to PASS, disable provenance col-
lection, and set security attributes on the collected prove-
nance.

An application that does not link against libpass
still has provenance collected for it; it simply is not
provenance-aware as far as PASS is concerned. Thus,
it provides no application provenance to the system and
has no control over what observed provenance is or is not
collected.

4.1.2 Generation

Provenance generation takes place as applications run,
and consists of identifying relevant events and translating
these events (system calls) into provenance information.
For example, a read system call is a relevant event that
must be translated into provenance stating that the pro-
cess issuing the system call depends upon the file it read.
Similarly, a write system call is a relevant event that
translates to the converse relationship. When the same
process does both of these, we implicitly establish that
the second file depends transitively on the first.

The two components responsible for generation are

the interceptor, which identifies relevant events, and
the observer, which translates the identified events into
provenance. These two components are distinguished
primarily for implementation reasons: the observer is a
self-contained piece of code, but the interceptor is a col-
lection of small patches widely dispersed about the sys-
tem call layer of the kernel. Enforcing a clear separation
between them improves the robustness of the code. Also,
we believe the distinction may be meaningful or helpful
in the general case of provenance collection.

4.1.3 Analysis & Recording

PASSv2 gathers provenance explicitly from higher-level,
provenance-aware applications and implicitly from the
observer. These two streams come together at the an-
alyzer, which eliminates cycles and redundant prove-
nance. The analyzer was the most troublesome compo-
nent in the original PASS prototype, and our experience
with it led to several significant changes. First, instead of
copying a process’s provenance into each object it cre-
ates, we materialize processes in the storage system as
first class objects with provenance. Second, we changed
to a simpler cycle-breaking algorithm based on times-
tamp ordering, described in more detail in Section 4.2.
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Third, we realized that analyzers had to stack to provide
the layering we needed. Section 4.3 discusses layering in
more detail.

Since processes are first-class objects, the system must
track and store process provenance. However, pro-
cesses are not by themselves persistent objects residing
on a PASS-enabled volume, introducing the question of
where their provenance should be stored. Similar is-
sues arise with pipe objects, files from non-PASS vol-
umes, and objects introduced by provenance-aware ap-
plications. In these cases, PASSv2 must select some
PASS-enabled volume on which to record their prove-
nance. We introduce the distributor to address this issue.

The distributor caches provenance records for all ob-
jects that are not PASS files. When those objects become
part of the ancestry of a persistent object on a PASS-
enabled volume, the distributor assigns these objects to
that PASS volume and arranges for their provenance to
be written.

The last piece of the analysis and recording component
is making provenance persistent in the file system. The
fundamental issue is consistency: what does it mean for
on-disk provenance to be “consistent”, and what guaran-
tees does the file system provide?

Our definition of consistency is that all data on disk
is described by provenance, and the provenance on disk
accurately reflects the data on disk. Ensuring this re-
quires that provenance and data flow together through
the system and are identifiable as being inextricably cou-
pled. For this reason we store provenance inside the file
system; we can thus provide an integrated interface that
maintains the coupling.

In PASSv2 we have a stacked file system called
Lasagna1. Lasagna’s stacking infrastructure is is derived
from ecryptfs [11].

The first PASS prototype wrote provenance directly
into databases that provided indexed access to prove-
nance. This arrangement was neither efficient nor scal-
able, so PASSv2 writes all provenance records to a log
that is later moved to a database and indexed by a user-
level daemon process. (This log and its database are hid-
den within the stacked file system.)

The log is implemented as a collection of files, named
log.nnnnnnnnnn, where the n’s represent decimal
digits. The kernel appends entries to the current log
file, until it exceeds a parameterized maximum size or
has been dormant for a parameterized length of time, at
which point the the kernel closes that file and creates a
new one with the next file number. The user-level dae-
mon Waldo (described in the next section) uses the Linux
inotify interface to monitor this activity, so when a

1The file system in our earlier prototype was called PASTA, Prove-
nance And Stacking. Since this file system includes support for layer-
ing, Lasagna seemed an obvious name.

log file is complete it can wake up, process it into the
database, and remove it.

To ensure that the on-disk provenance accurately re-
flects the on-disk data, we use a write-ahead-provenance
(WAP) protocol. WAP is analogous to write-ahead-
logging from the database literature [13]. It means that
all provenance records must be written to disk before the
data they describe. This eliminates the possibility that
unprovenanced data can get to disk. However, it is pos-
sible for the system to crash when provenance has been
written but its corresponding data has not. This case is
detected and addressed during file system recovery, dis-
cussed in Section 4.5.

4.1.4 Index and Query

Provenance queries come in numerous forms, and in-
dices are essential for acceptable performance [4]. As we
learned with the first PASS prototype, inline indexing de-
grades application performance by introducing long la-
tencies. The PASSv2 log-based scheme decouples writ-
ing provenance records from entering those records into
a database and indexing them. This allows indexing to
go on in the background without forcing applications to
wait, so we can maintain a rich set of indexes.

Our user level daemon, Waldo, reads provenance
records from the log and stores the provenance into a
Berkeley DB database as named attributes: name, in-
ode, argv, environment, etc. On top of this base table,
Waldo creates several indices used for query optimiza-
tion. Chief among these is the descendent index: in the
primary database we keep only ancestors, because this
avoids having to update a widely scattered set of ancestor
objects every time a descendent is created. The descen-
dent index maintains reverse mappings. We also main-
tain indexes of object names and the contents of argv
and environment strings.

In addition to writing the provenance database and in-
dexes, Waldo is responsible for accessing the database on
behalf of the query engine, sage. There is one Waldo
for each PASS volume; there is one sage for each ma-
chine, which talks to the the various Waldo processes as
necessary. It is also responsible for enforcing the security
model discussed in Section 4.6.

4.2 Cycles

It seems contradictory that provenance could have cycles
– after all, provenance represents ancestry and it is phys-
ically impossible to be one’s own ancestor. So, how can
cycles arise?

Cycles arise because the system is trying to avoid gen-
erating a large number of versions. Consider a process P
that reads a file A and then writes A. Since A is an input
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to P , P depends on A. However, since P writes A, A
also depends on P . Thus, we have constructed a cycle.

The obvious solution is to assume the write to A cre-
ates a new version of A, eliminating the cycle. In fact,
if every write creates a new version, there can never be
cycles. Unfortunately, creating a new version on every
write is unacceptably expensive. Not doing so, how-
ever, opens up the possibility of cycles. The fundamental
question is when it is necessary to declare a new version;
the goal is to do so, other than at user request, only when
necessary to avoid creating a cycle.

PASSv2 uses a time-stamp based algorithm, leverag-
ing work in the database literature. The main motivation
for this approach is that it is simpler and adapts more nat-
urally to an environment where analyzers stack in layers
(see Section 4.3). The algorithm is as follows:

• Create a new version of an object before adding a
cross-reference adding either a new ancestor or a
new version of an existing ancestor.

The above rule is sufficient to avoid cycles.

4.3 Layering

Support for layering is critical for three reasons. First, a
system that supports provenance-aware applications cap-
tures semantic data at multiple layers in the system. Sec-
ond, our experience with the Second Provenance Chal-
lenge [19] revealed that object naming is fundamental for
provenance interoperability, and layering is essential to
relate semantically equivalent objects that have different
names in different layers. Third, we wanted to support
provenance-aware storage systems attached as network
storage.

The fundamental issue in integrating application
provenance with system provenance is resolving names
between the layers. Applications must be able to map
application objects to system objects or create handles to
application objects to which the system can refer. This
requires fairly simple handle creation and management
support in our API between different provenance levels.
Section 4.4 describes these APIs.

Supporting network-attached storage proved even
more challenging. An analyzer must process all the
provenance records at its abstraction layer in order to
properly avoid cycles. Now, consider this in the con-
text of a NAS setup where a single process on a client
accesses data from two different storage servers. The an-
alyzer must reside at the client, because that is the only
place where all related provenance records are processed.

Next consider two programs running on different
clients accessing the same server. By the same logic,
the analyzer must reside on the server, because that is

the only place where all related provenance records are
processed.

Finally, combine these two scenarios: two client pro-
grams each accessing files from two different file servers.
In this case, we need analyzers on both the clients and the
servers.

This means that in general we must have an analyzer
on every client and also an analyzer on every server;
this in turn means that the client instance of the analyzer
must be able to stack on top of the server instance, which
means that the input and output data representations must
be the same.

4.4 The Provenance File System, Lasagna
Lasagna extends the VFS interface with three new in-
ode operations and one new superblock operation. The
inode operations pass_read and pass_write map
to standard read and write calls but are provenance-
aware. The pass_write call takes both a data buffer
and a collection (“bundle”) of provenance records that
describe that buffer; pass_read returns both the data
requested and the unique identifier for the version of the
file that was read. In a layered system, cycle-breaking
at one layer might require creation of a new version in
lower layers. Lasagna supports the pass_freeze in-
ode operation to provide this versioning support. (Freeze
“finishes” a version of an object; after being frozen, new
activity “thaws” the object and increments the version
number.)

A user-level provenance system may need to create
new objects that do not map to a particular file sys-
tem object, so Lasagna provides a superblock operation
make_object that creates such objects. Such objects
can also call pass_write to store provenance.

4.5 Recovery
As discussed in Section 4.1.3, our goal is that every piece
of data on a PASS is accurately described by provenance
records, and any provenance record reflects a current or
past state of the data. WAP guarantees that all data is de-
scribed by provenance, and recovery is the process guar-
anteeing that all provenance accurately describes data.

The goal of recovery is to handle the case where prove-
nance records were written to disk, but the data they de-
scribe were not. There are two ways that this might hap-
pen. First, the disk write of the data can fail after the
provenance records are on disk. Second, the system can
crash.

In the first case, the system is still running and can take
appropriate action. For each independent data write to
disk, we generate a provenance WAP record that records
the file to which the data belongs, the page to which
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the write is being applied, and an MD5 checksum of
the page. All the WAP records corresponding to a sin-
gle write system call are bracketed between BEGIN and
END records to provide logical grouping. WAP records
are forced to the log before the system issues the cor-
responding data writes. If the data write fails, we write
a CANCEL record to the log. The CANCEL indicates
to the recovery process that the write failed and that
the provenance associated with the write should not be
placed in the provenance database. If only a part of the
data is written, i.e., short write, we re-issue WAP records
that record the MD5 checksum of the page with just the
successfully written data on it.

In the second case (system crash), recovery runs be-
fore the PASS volume is mounted. We first process all
outstanding log files except the last one; the kernel han-
dles each new log file as a checkpoint, so all data writes
with provenance in the completed log files are present on
disk. This processing is identical to normal Waldo pro-
cessing except we check for duplicates and drop them.

For the final file, we break it up into transactions iden-
tified by BEGIN and END pairs. Any uncommitted
transaction (no END record) is ignored. Next, we go
through the transactions in reverse order. For each trans-
action, we iterate over the WAP records in that transac-
tion. We then validate the checksum in each WAP record
against the bytes in the file to which it refers. If the WAP
record validates, we record that the designated page is
now validated, and ignore any WAP records we later en-
counter for this page. If one write went to disk properly,
then all previous writes to the same page must have also
gone to disk, because we guarantee that writes are logged
in the same order they are applied to the file system buffer
cache.

If the data does not validate, we take all provenance
records in the current transaction and write them to the
provenance database, tagged with a MISMATCH flag.
We do not generate regular indexes for these records, but
instead enter them into a special mismatch index, so that
we can generate reports about possible data corruption.

After recovery, we remove all log files and start the file
system.

4.6 Security

We explicitly chose not to tackle the security problem in
our first prototype, because security on provenance was
not a well understood question, let alone a question with
commonly accepted answers. The fundamental prove-
nance security problem is that provenance and the data it
describes do not necessarily share the same access con-
trol. There is no universally correct rule that dictates
which of the two (data or provenance) requires stronger
control. For example, consider a paper review – the data

(contents of the review) must clearly be accessible to the
authors, but the provenance (reviewers’ identities) must
not be accessible. In this case, the provenance must be
more tightly controlled than the data. Now consider the
documents produced by a government panel. The doc-
ument produced (the data) may be marked as classified,
but the membership of the committee and the identities
of all participants in briefings (the provenance) might be
entirely public. In this case, the data carries stronger ac-
cess control than the provenance.

Securing provenance requires security for both prove-
nance attributes (the names of applications, the peo-
ple/uids that ran those programs) and the ancestry graph
(the documents from which this document was derived
and the ancestors of those documents). Securing at-
tributes is straightforward and standard methods of spec-
ifying access controls are appropriate; we use the access
control method provided by the host system. Securing
ancestry is more complicated.

We use a graph-based access control model for secur-
ing ancestry data. Permissions for each ancestry relation-
ship are set on a per-user basis. The possible permissions
for an ancestry relationship are: none – the user is not
permitted to know anything about the given relationship,
including whether it exists; exists – the user is allowed
to know the relationship exists but nothing about the an-
cestor/descendent on the other side of the relationship;
traversal – the user has full knowledge of the ancestry re-
lationship. Applications can use libpass to set access
control on provenance attributes and/or ancestry relation-
ships. During queries, the sage query engine enforces
the access controls.

We are currently working on a formalization and ac-
companying proofs for this security model.

5 Querying

We stated earlier that provenance forms a directed
acyclic graph (DAG). In this section, we discuss the im-
plications and how they drove us to our current data
model and our new query language.

We undertook a study where we shadowed computa-
tional science users to understand what types of queries
they might ask a provenance system. We found that they
were frequently interested in identifying files that were
friends – files that had been through similar processing
steps. Such a sequence of processing steps is a particu-
lar path through the ancestry graph, and users frequently
wish to express shorthands for commonly used paths.
Conversely, having previously identified a pair of objects
believed to be friends, one might wish to compare the
processing sequences that generated them. These sorts
of queries are easily visualized. Figure 3 shows a subset
of the workflow from Figure 2). The grey nodes repre-
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Figure 3: Cropped view of Figure 2, indicating a single
path from the input file anatomy4.img (furthest-left
white square), to the align_warp process, its output
file warp4.warp (middle white square), the reslice
process, and its output resliced4.img (rightmost
right square). The grey nodes represent the processing
steps on paths of friends of resliced4.img.

Figure 4: Collapsed version of Figure 3. All the friend
paths, described as align_warp→ ∗ →reslice
have been replaced by a single inverted triangle. (col-
ored white) representing a higher-level processing step.

sent paths that lead to friends of atlas-x.jpg. Fig-
ure 4 shows the same subset with the friend workflows
collapsed to a single processing step corresponding to
the two-step path in Figure 3. After struggling through
three generations of query languages for PASS and con-
sidering what we observed about our users, we composed
the following list of requirements for a provenance query
language:

• Paths through graphs are a central feature.

• Paths should be first class objects.

• The language should support regular expression
matching on paths.

• The language should support aggregation operators
(count, sum, etc.)

• The language should support sub-queries.

Most existing provenance systems use either an XML-
based or relational representation. We found both lack-
ing. XML has a notion of paths (XPath) but is inherently
tree-structured and does not extend well to graphs. SQL
has no native concept of paths; writing path-like queries
in SQL requires mentally translating the paths into recur-
sive queries, which are themselves expensive and unnat-
ural to a relational environment. It seemed most appro-

priate to find a query language that was designed specif-
ically for querying graphs.

The Lore semistructured database project at Stanford
provided us with the Lorel [1] query language and its
“OEM” data model. A semistructured database is one
with no fixed schema; the data model in Lore is that of a
collection of arbitrary objects, some holding values and
some holding tables of named linkages to other objects.
The data types of values and linkages are not fixed, and
the query language is designed accordingly.

The OEM data model is appealing for provenance,
because it naturally represents both graphs and object
attributes, and Lorel provides the path-oriented query
model for which we were looking. Unfortunately, we
found that Lorel had several shortcomings. In particu-
lar, it did not support boolean values in the database, its
formal grammar was ambiguous, and there were corner
cases where the semantics were not well defined.

We also needed to extend Lorel to allow traversal of
graph edges in both directions. While the edges in prove-
nance graphs are directed (ancestor-of is not the same as
descendent-of) it is clearly necessary to be able to tra-
verse edges in either direction: “find all descendents”
and “find all ancestors” are both valid and useful queries.

We present a more in-depth discussion of these issues
in an upcoming publication [12].

We have developed a new query language based on
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Lorel, which we call Path Query Language (PQL or
“pickle”). It is specifically geared to handle our require-
ments for querying provenance.

Lorel is derived from OQL [5], the object query lan-
guage from the O2 database system [6], which is in turn
derived from SQL. This heritage is evident in the general
syntax and language organization. In all these languages
the basic unit is the select-from-where construction, and
PQL is no exception:

select atlas.input.name
from Provenance.obj as atlas
where atlas.name = "atlas-x.gif"

and atlas.type = "file"

The from-clause names collections that are implicitly
iterated; each combination of values is tested against the
where-clause, and those that match are used in the select-
clause to construct results. The collections to be iterated
are sets of objects found by following paths.

PQL’s conception of a path is a fully general regu-
lar expression over graph edges. This extends Lorel,
where regular expressions only allowed repetition of sin-
gle steps. Lorel’s paths are in turn a generalization of the
structure member references in OQL.

The example query above searches all the objects
reachable from a single obj edge from the global object
Provenance that have the given type and file name,
and for each returns the names of all immediate inputs –
processes that wrote to the file. This is a simple query
that could be handled easily by almost any query system;
the real power of PQL comes into play when more com-
plex searches are desired. For example:

select result.name
from Provenance.obj{atlas}

(.input{intermed})+ as result
where atlas.name = "atlas-x.gif"

and atlas.type = "file"
and intermed.name <> "softmean"
and intermed.type <> "proc"

This is the second standard query from the Provenance
Challenge [15]. It returns the names of all ancestors of
the file atlas-x.gif, omitting everything reachable
only through a process named softmean.

In PQL (as in Lorel) variables can be bound to the ob-
jects found at intermediate places in a path. The vari-
able atlas is bound to the first object found starting
from Provenance (as in the earlier example); then,
under the regular expression operator +, the variable
intermed is bound in turn to every object found after
an input edge. Thus, in addition to fixing the starting
point of the repetition, the where-clause excludes any in-
termediate step that is a softmean process.

Variables can also be bound to a path directly; the
value of such a “path variable” is the precise sequence of
nodes and edges found while traversing the path. Such
values can be compared or returned as query results; this
allows inspecting the structure of the database.

6 Provenance-Enabled Systems

We have been developing provenance-aware prototypes
for a collection of tools including the Z-shell (zsh)
the statistical environment R, Python, and NFS. In this
section, we discuss how we made Python and NFS
provenance-aware and the more-general approach we de-
veloped to make applications provenance-aware.

6.1 Provenance-Aware Python

The applications for which we wanted to collect prove-
nance are all written in Python and manipulate large data
files containing semantically meaningful chunks inside
them.

We needed support in Python to track provenance at
a useful level while retaining the ability to track prove-
nance between our analysis programs and regular shell
commands.

We developed a Python wrapper class that makes
Python programs provenance aware. The wrapper ex-
poses application objects, such as Python objects and
methods, to the kernel. We associate objects and method
invocations with provenance descriptors and automat-
ically record their relationships to one another and to
system-level objects. On each method invocation we
record the parameters as inputs to the method invocation
and record the relationship between the method invoca-
tion and its return value. We provide this with a Python
provenance library and Python bindings for libpass.

Our Python wrapper connects to the provenance li-
braries using Python’s ctypes foreign-function inter-
face module. The python wrapper has two methods:
wrap() and wrapmod(). wrap() takes a Python ob-
ject and encloses it in a wrapper that creates provenance
descriptor records for each method call, each call’s ar-
guments, and each call’s results. Suppose that obj is
an object and obj.func is a method on it that takes a
single argument x and returns a single value ret. Call-
ing wrap(obj) produces wobj, a provenance-aware
wrapper around obj that intercepts method calls and
produces provenance records.

Calling wobj.func(x) causes this wrapper to gen-
erate the following items:

• A provenance descriptor for the function call in-
stance (call_pd).
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• A cross-reference from call_pd to the container
object a.

• A cross-reference from x to the call instance
(call_pd).

• A cross-reference from call_pd to the returned
object ret.

The wrapmod() function works similarly, except
that it wraps Python module instances instead of Python
object instances.

The user can control whether provenance informa-
tion is recorded by selecting which objects to bind to
file descriptors on provenance-tracked partitions. For in-
stance, a user who wanted to record the provenance of
ret through its creation by a.func and dependency
on a.func’s argument x would create a cross-reference
from ret to a file descriptor on a PASS volume.

While tracking provenance through wrapper classes
implemented directly in the target language has the ad-
vantage of simplicity, it also has some limitations. It
is not possible for the wrapping process to be entirely
transparent; since the wrapper is implemented in that
language, it is inherently accessible to that language,
whereas an interpreter that tracks provenance itself could
completely hide that tracking from the target language.
In Python, we found that some library routines used un-
necessarily stringent type-checking that got caught up on
our wrapper. Depending on the language, there may also
be important operations that are difficult or impossible to
wrap, such as constructors for builtin primitives. Never-
theless, our provenance system with its Python wrapper
(and a few workarounds for issues such as the above)
is able to evaluate the provenance of output files from
Python scripts through method and function calls back
to the origin of the data.

6.2 The General Case
Our experience with Python, zsh, and R led to a sim-
ple set of guidelines for making applications provenance-
aware.

While PASS considers processes and files applica-
tions consider functions or methods and objects or vari-
ables. In the same way that our kernel PASS implemen-
tation maintains provenance records as files are accessed
and processes execute, applications maintain provenance
records on variables and the functions that operate upon
them. Applications use the make_object call to cre-
ate provenance descriptors (handles) for their variables
and functions. They also obtain handles when read-
ing data from the underlying PASS by replacing nor-
mal read calls with passusread calls. Finally, when
they output persistent data, they replace write calls with

passuswrite calls, passing the provenance they have
collected to the kernel at this point.

The relative ease with which application needs
matched our own internal system needs convinced us that
our APIs are correct. The Python system was originally
implemented by someone outside the PASS project. We
obtained the library and integrated it with PASS in ap-
proximately 24 hours.

6.3 Provenance-Aware NFS

While provenance-aware applications stretch our design
upwards, supporting network-attached storage stretched
it downwards through the system stack. We selected
NFSv4 as the basis for our provenance-aware NAS layer.
We implemented provenance-aware NFS (PANFS2) on
Linux 2.6.23.17 as it had a stable NFSv4 server imple-
mentation.

6.3.1 NFSv4 Background

We designed PANFS to fit in naturally with NFSv4. In
this section, we review those features of NFSv4 most rel-
evant to our implementation.

Client Side Caching NFSv4 supports close-to-open
consistency caching. In this model, the NFS client
caches data and its attributes on close. If an applica-
tion at the client re-opens the file within a fixed period,
the NFS client queries the server for the latest attributes.
If the attributes returned by the server match those on the
client, the cached data is valid and used as is; otherwise
it is flushed. This mode provides sufficient consistency
for most NFS applications. However, it does not provide
complete consistency and can lead to problems, as we
will see later in the section.

Delegations When a file is being accessed by a single
client, the server delegates the file to the client. The client
can perform all operations locally and the server prevents
other clients from performing conflicting operations. If
another client accesses the file, the server revokes the del-
egation and the client reverts to using close-to-open con-
sistency. Delegations are different from leases/locks in
that they are driven from the server side.

Mandatory Locking NFSv4 provides mandatory
locking that allows clients to serialize access to a file.
Previous versions used NLM, which was only advisory.

2One serves Lasagna in a PANFS.
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6.3.2 Implementing PASS Operations in NFS

Section 4.1.3 discussed how we extended the inode and
superblock operations to support local provenance-aware
storage. Here, we discuss how these extensions affect an
NFS implementation.

pass_write pass_write requires that we trans-
mit provenance with data in a manner that enables
the server to enforce WAP. We create an NFS op-
eration analogous to the local pass_write, called
OP_PASSWRITE, that transmits both data and prove-
nance to the server. As long as the data is smaller than the
NFSv4 client’s block size (typically 64 KB in NFSv4),
this approach is sufficient.

Unfortunately, not all data and provenance packets
fit this limit. In these cases, we use NFS transac-
tions to encapsulate a collection of operations that must
be handled atomically by the server. First, we invoke
an OP_BEGINTXN operation, that obtains a transaction
ID from the pass volume that the server is exporting.
Then, we send the provenance to the server in 64 KB
chunks, using a series of OP_PASSPROV operations. Fi-
nally, we transmit the data along with a single ENDTXN
provenance record using the OP_PASSWRITE opera-
tion. The ENDTXN indicates the end of the transaction
to the server.

We considered an alternate implementation that ob-
tains a mandatory lock on the file, writes the provenance,
and then writes the data as a separate operation. This ap-
proach would have provided the coupling between prove-
nance and data that we need for WAP; however, it does
not allow us to recover from a client crash. If the client
wrote the provenance, crashed before sending the data,
and then came back up, there is no way for the server to
determine that the provenance must be discarded. Our
implementation solves this problem, because the trans-
action ID enables the server’s Waldo to identify the or-
phaned provenance.

pass_read The NFS pass_read uses the
OP_PASSREAD operation, which is quite similar to
the normal NFS read. In addition to returning data,
OP_PASSREAD also returns additional information
necessary to construct a reference to the provenance of
the object.

pass_freeze We implement the pass_freeze
operation as a provenance record type in
OPPASSWRITE. When the analyzer at the client
issues a pass_freeze, the client increments the
version and attaches a freeze record to the file. Later,
when the client sends the file’s provenance to the
server with an OP_PASSWRITE, the server’s Lasagna

processes the freeze records, increasing the version
number accordingly.

make_object Recall that the make_object is
used by applications to create new objects that do not
map to particular file system objects We added a new op-
eration called OP_MKOBJECT that performs this func-
tion. We could have implemented this operation by cre-
ating a file handle at the server and returning it to the
client. The client would then use the handle to write
provenance. However, the problem with this approach
is that it is hard to recover from either a server or client
crash. Instead, the operation just returns a pnode number
(object ID) to the client and the client constructs a surro-
gate inode and exports that to the userland as a file. To
create the provenance descriptor, the user has to provide
a handle to an object on the PASS volume. We bind the
provenance descriptor to this PASS object and perform
passuswrite calls to the provenance descriptor using
that object’s pass_write operation. The advantage of
this implementation is that it leaves no state on the server.
If the server crashes and comes back up, the client can
continue to use the provenance descriptor as the PASS
object can be rebuilt from the PASS object’s file handle.
Similarly, if the client crashes, the server does not have
to clean up any state as it has only allocated a number to
the client.

6.3.3 Network issues

Version Branching Due to the close-to-open consis-
tency model, two different clients can open the same
version of a file and concurrently make modifications to
it. As we cannot fix the (in)consistency issues inherent
in close-to-open systems, our goal is simply to provide
the same guarantees that we do locally, that the on-disk
provenance and data match. Our approach of versioning
at the client and later versioning at the server can lead
to version branching, where. two clients create indepen-
dent copies of an object with the same version. We in-
tend to explore allocating versions to clients in chunks to
avoid this problem, but have not yet done so. Given the
overall lack of precise consistency semantics in NFS, we
do not expect our current solution to be problematic for
existing applications.

Conflicts due to Partitions A client with a file delega-
tion can make modifications to that file and then become
partitioned before it flushes its provenance and data to
the server. Another client could then modify the file and
flush it to the server. If the original client returns, NFSv4
has mechanisms to detect that there is inconsistency and
suggests that clients write conflicting data to a new file.
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We leverage NFSv4’s solution and attach provenance to
the newly created file.

Operation ordering Operations issued by a client may
arrive at the server in an order different than that is-
sued by the client. pass_read and make_object
are independent of the order in which they are executed,
so they pose no problems. However, pass_freeze
and pass_write are order-sensitive, particularly since
pass_freeze is issued to break cycles in the records
that are about to be written. An out of order ar-
rival might result in a failure to break cycles. We
avoid this problem by coupling pass_freeze with
pass_write by making pass_freeze a record type
for NFS pass_write.

Operation Idempotency NFS operations are sup-
posed to be idempotent, but only OP_PASSREAD is
idempotent. (That is, replaying it does not alter
the state of the system.) The OP_PASSWRITE and
OP_MKOBJECT are not. A replayed OP_PASSWRITE
operation can result in provenance being attached to the
wrong version of a file. We use a reply cache of the
RPC transaction IDs of the OP_PASSWRITE operations
to solve this problem. Although, OP_MKOBJECT is not
idempotent, it is sufficiently cheap and stateless that we
do nothing to make it idempotent.

Space Issues When an NFSv4 server delegates a file
it specifies the amount of new data that the client can
cache for the file, so that the client is guaranteed that
there will be space on the server when it flushes the dele-
gated file. When a client approaches this limit, it flushes
the file’s accumulated data to the server. We use the same
approach, tracking both the provenance and data to deter-
mine when the client should flush its data.

7 Application Use Cases

Our use cases come from the Thermography Research
Group at Iowa State University [22]. The group finds
cracks in aerospace materials through frictional heating
caused by rubbing of the crack surfaces due to vibration.
This heating is imaged with an infrared camera.

The usual analysis procedure is to explore the mea-
sured data interactively using Python or Matlab. Without
provenance tracking it is necessary to manually develop
a script for analyzing the measured data through cutting
and pasting commands between Python or Matlab and a
text editor. Usually this script generates a graph to be
used in a paper or presentation. Provenance provides the
potential to use provenance to automate the script devel-
opment. Provenance tracking also provides for implic-

itly tracking the relationship between calculated results
such as graphs, the raw data from which those graphs
originated, and the scripts and tools used to generate the
graphics from the raw data. For the use case presented
here, we used the Python wrapper class described in sec-
tion 6.1.

7.1 Use Case: Determining Data Origin
Through approximately 400 experiments on 60 speci-
mens over the course of a week, the research team at
Iowa State developed a set of data quantitatively relat-
ing crack heating to the vibrational stresses on the crack.
The experiment log for these data were stored in a se-
ries of XML files by the team’s data acquisition system.
A team member developed a plot relating crack heating
as a function of crack length for two different classifi-
cations of vibrational stress σ: 20MPa < σ < 30MPa
and 100MPa < σ < 120MPa. In this case the interac-
tive Python session used to create the plot was already
reduced to a script. Our goal was to evaluate, based on
provenance, which XML data files actually contributed
to the plot.

This would have been a simple problem for a prove-
nance aware filesystem, except that in order to figure
out which data to use in the plot, the script read in all
the XML data files. The provenance-aware filesystem
alone is not capable of distinguishing the data used in
the plot from the data read in by the script. In contrast,
the layered provenance-aware Python/filesystem combi-
nation was able to both determine which XML data files
were actually used in the plot, and in addition determine
what Python scripts, modules, and libraries were used in
generating that plot.

select inputfile.name
from Provenance.obj{plot}
.%*{func1}.%+{func2}.%* as inputfile

where plot.name = "plot.png"
and plot.type = "FILE"
and inputfile.name glob "*.xml"
and inputfile.type = "file"
and func1.type = "func"
and func2.type = "func"

This finds XML files in an ancestry chain that has
passed through at least two Python functions. (We need
two because of the details of the Python scripts involved.)

7.2 Use Case: Process Validation
The calculation routine we used to estimate crack heat-
ing temperatures during some of the experimental runs
turned out to be flawed. While it calculated correct val-
ues most of the time, about 10% of the time it produced
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erroneous temperatures. We replaced the errant routine
with a fixed routine that calculated correct values from
the binary data files and inserted them into the XML ex-
periment log alongside the (renamed) old values. We
then generated plots illustrating the correction process,
manually reviewing each case where the calculation rou-
tines calculated different values. The provenance al-
lowed us to directly connect each generated plot to the
binary data file from which it came and quickly identify
and troubleshoot any cases in which the the new routine
gave incorrect data.

7.3 Summary
While provenance-aware applications are generally use-
ful and many researchers develop ad hoc solutions to the
problems they solve, the ability to integrate such solu-
tions with system level approaches increases the value
of both the system-level provenance and the application-
level provenance.

8 Overheads

While the main contribution of this work is in the new ca-
pabilities available from the system, we need to demon-
strate that these capabilities do not impose excessive
overheads. We are concerned with execution time over-
heads due to the additional work that we do to collect
provenance, and space overheads due to the space used
to store provenance.

We evaluate these overheads using a domain specific
workload and the commonly-used Linux compile work-
load. Our domain-specific workload comes from com-
putational biology. We used blast [2] to find the pro-
tein sequences in a species that are closely related to
the protein sequences in another species. The workload,
which is identical to the one used in the original PASS
paper [16], consists of formatting two input data files
with a tool called formatdb, processing the two files
with blast and then massaging the output data with a
series of perl scripts. This is mostly CPU bound, there is
little provenance generated, and both the processing and
typical queries are simple.

We use five different configurations, comparing un-
modified ext2 to PASS for each, demonstrating the over-
heads imposed by different parts of the system.

• local: The file system is mounted locally.

• nfs: The file system is mounted via NFS.

• nfs-async: The file system is mounted in NFS asyn-
chronous mode.

• nfs-2c: Two clients access a single NFS-mounted
server.
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Figure 5: Figure shows the elapsed time for Linux compile for
various configurations.
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Figure 6: Figure shows the elapsed time for Blast workload
for various configurations.

• nfs-4c: Four clients access a single NFS-mounted
server.

For each configuration, we report elapsed times and
space utilization.

Figures 5 and 6 compare PASS performance to that
of the vanilla counterparts. In the local case, we impose
a 16.1% overhead, but in the remote case, performance
of the two systems is comparable, because the default
NFS configuration runs in synchronous mode, and the
disk write time dominates everything else. We also show
the comparison when NFS is mounted in asynchronous
mode, which produces a 21.5% overhead. When we in-
crease the number of clients to two and four, our perfor-
mance is again comparable to that of vanilla NFS.

The blast workload exhibits almost no overhead. We
do not discuss other configurations for blast as they show
equally small (and uninteresting) results.
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Data Provenance %overhead

Linux PA-local 1.25GB 190MB 14.79
Linux PA-nfs 1.25GB 165MB 12.8
Blast PA-local 5.6MB 820KB 14.28
Blast PA-nfs 5.6MB 152KB 2.64

Figure 7: Space overheads.

Table 7 shows the space overhead for both the Linux
compile and blast workloads. We show only a single
local and remote case, as adding more clients does not
change the overhead percentage. It is interesting to note
that the NFS cases generate less overhead, because client
caching eliminates a significant number of records.

9 Conclusions

We have presented a second generation provenance-
aware storage system that permits integration of multiple
layers of provenance systems as well as network attached
storage. These new features drive a layered architecture
and dictate how provenance, data, and versions must flow
through the system. The architecture has proved versa-
tile enough to facilitate integration with application-level
libraries and NFS. The ease with which we were able to
integrate the application library with PASS convinces us
that the architecture is substantially correct.

With our architecture, we make strong guarantees
about the relationship between data and its provenance
during both normal operation and after a crash. Fi-
nally, we demonstrate an end-to-end system encompass-
ing provenance-aware applications and network-attached
storage. We achieve all this with reasonable space and
time overheads ranging between 0 and 16%.
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