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How do individuals decide to become entrepreneurs and learn to make optimal entrepreneurial 

decisions? The concentration of entrepreneurs in regions such as Silicon Valley has stimulated 

research and policy interest into the influence of peers, but the causal effect is hard to identify 

empirically. We exploit the exogenous assignment of students into business-school sections to 

identify the causal effect of entrepreneurial peers. We show that, in contrast to prior findings, a 

higher share of entrepreneurial peers decreases, rather than increases, entrepreneurship. The 

decrease is driven by a reduction in unsuccessful entrepreneurial ventures; the effect on 

successful ventures is significantly more positive. (JEL ??) 
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The promotion of entrepreneurship has been a major focus of policymakers in recent 

years (Kanniainen and Keuschnigg 2004). Thousands of national and local initiatives 

have been launched to foster entrepreneurship in the belief that entrepreneurial activity is 

associated with the creation of wealth, technological innovation, and increased social 

welfare. Consistent with this assertion, cross-national studies (e.g., Djankov et al. 2002) 

suggest that nations with greater barriers to entry of new firms also have poorer-

functioning and more corrupt economies. Reflecting this interest, the returns to 

entrepreneurial ventures have become a topic of increasing scrutiny in financial 

economics, including research on the expected returns of investors in initial public 

offerings (Ritter 1991; Brav and Gompers 1997), venture capital (VC) and private equity 

funds (Kaplan and Schoar 2005; Phalippou and Gottschalg 2009; Korteweg and Sorensen 

2010), and angel investors (Kerr, Lerner, and Schoar forthcoming). 

What are, then, the determinants of entrepreneurial returns? The concentration of 

entrepreneurs in regions such as Silicon Valley has triggered speculation that the 

interaction of high-skilled individuals with similar interests lead to powerful peer effects 

among entrepreneurs. For instance, individuals who work at recently formed, venture-

backed firms are particularly likely to become entrepreneurs (Gompers, Lerner, and 

Scharfstein 2005), as are those who work at companies where colleagues become 

entrepreneurs (Nanda and Sorensen 2010) and in regions where many others opt for 

entrepreneurship (Giannetti and Simonov 2009). These studies suggest that peer effects 

are important determinants of entrepreneurial activity, consistent with findings on peer 

effects in other arenas of finance, such as the interaction among stock analysts and 

mutual fund managers (Cohen, Frazzini, and Malloy 2008, 2010). However, the inability 
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of these studies to fully control for unobserved heterogeneity or sorting of individuals 

into firms and locations means that our interpretation of the results must be cautious. 

A second issue with prior findings on the determinants of entrepreneurship, and 

on peer effects in particular, is its failure to distinguish between successful and 

unsuccessful entrepreneurial ventures. Calculations using both individual and aggregate 

data suggest that returns to entrepreneurship may be quite poor (Hamilton 2000; 

Moskowitz and Vissing-Jorgensen 2002; Hall and Woodward 2010). An emerging 

literature on “behavioral entrepreneurship” finds that individuals tend to pursue new 

ventures even if the expected returns are predictably meager (Camerer and Lovallo 1999; 

de Meza and Southey 1996; Arabsheibani et al. 2000; Landier and Thesmar 2009). Such 

self-selection of overconfident individuals into entrepreneurship may benefit society 

(Bernardo and Welch 2001), but the high failure rates of entrepreneurial ventures (e.g., 

Davis, Haltiwanger, and Schuh 1998) raise caution.2 Despite this concern, much of the 

previous research, including the work on peer effects in entrepreneurship, has focused on 

what induces entrepreneurship, rather than asking what increases the rate of successful 

but decreases the rate of unsuccessful ventures.  

In this paper, we distinguish between successful and unsuccessful ventures and 

make methodological progress in identifying peer effects in entrepreneurship. We exploit 

the exogenous assignment of Masters of Business Administration (MBA) students at 

Harvard Business School (HBS) into sections. At HBS, school administrators 

exogenously assign students into sections that spend the entirety of their first year in the 

program studying and working together. These sections form extremely close ties, and 

                                                 
2 Landier and Thesmar (2009) find that firms run by optimists—a characteristic that has been shown by 
Evans and Leighton (1989) to be associated with the decision to become an entrepreneur—grow less, die 
sooner, and are less profitable, despite the fact that these owners tend to put in more effort. 
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are a setting where peer effects—if they are empirically observable at all—would likely 

be seen. We exploit the fact that the representation of students with entrepreneurial 

backgrounds varies considerably across sections: We analyze the effect of students with 

prior entrepreneurial experience on the rate of post-MBA entrepreneurship among their 

section-mates (without such prior experience). Moreover, we collect detailed data about 

the students’ entrepreneurial ventures, which allow us to differentiate between successful 

and unsuccessful start-ups and to relate peer effects to entrepreneurial success. Our novel 

data set combines the official class card records of 5,897 students of the classes 1997 to 

2004, section-level post-MBA placement data, and hand-collected data on the success of 

entrepreneurial ventures.  

We find a striking pattern: exposure to a higher share of peers with a pre-MBA 

entrepreneurial background leads to lower rates of entrepreneurship post-MBA. A one 

standard deviation increase in the share of peers with an entrepreneurial background 

(evaluated at the mean of all independent variables) reduces the predicted share of the 

other students going into entrepreneurship by about one percentage point, a reduction of 

more than 25%. When we differentiate between successful and unsuccessful ventures, 

however, we find that the negative peer effect is exclusively driven by a decrease in 

unsuccessful entrepreneurship. The effect on successful post-MBA entrepreneurs is 

indistinguishable from zero, and significantly more positive than the effect on 

unsuccessful entrepreneurs.  

Our results are consistent with the presence of intra-section learning. An extensive 

literature, beginning with Jovanovic (1982), has highlighted the fact that entrepreneurs 

learn about their abilities through running their businesses. The close ties between 
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students in the same section may accelerate the learning process. Such intra-section 

learning may occur through several possible channels. First, students with entrepreneurial 

backgrounds may provide direct counsel to their peers and help identifying which 

business ideas are worth pursuing (selection of business ideas), or which students are able 

to run a business successfully (selection of individuals with business skills).3 Second, the 

mere presence of entrepreneurial peers and their reports about their experiences may help 

other students to realize the challenges involved in starting a company. That is, even 

without individual advice, pre-MBA entrepreneurs may inject realism into other students 

and discourage all but the best potential entrepreneurs from pursuing their ventures. 

Third, the presence of entrepreneurial peers may not affect individual decisions directly, 

but encourage students to take more elective entrepreneurship classes, which in turn lead 

to better decisions.  

We address the third mechanism by examining the enrollment in second-year 

elective entrepreneurship classes. We find no effect of the presence on entrepreneurial 

peers on enrollment in such classes, ruling out the third explanation. (This finding also 

casts doubt on the second explanation, since a more general discouragement would 

suggest lower enrollment.) In addition, we test whether prior entrepreneurs’ own (prior) 

success or failure is related to the sign or strength of the peer effect, as one would expect 

under the second channel. Since the success rate among prior entrepreneurs at HBS is 

unusually high (42%), our data provides the necessary variation. We do not find any such 

correlation. Hence, while the lack of micro-data on individual student-level interactions 

limits our ability to test the causal role of direct student interaction, the empirical patterns 

                                                 
3 Entrepreneurial peers might also introduce section-mates with promising ideas to venture capitalists or 
other sources of financing. 
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seem most consistent with this interpretation. 

This first channel is also consistent with our last finding: the variance of post-

MBA entrepreneurship rates is significantly lower when more entrepreneurs are present 

in the section. One interpretation of the reduction in variance is that, with a large enough 

number of entrepreneurial peers, it becomes more likely that at least one of them has the 

expertise to detect the flaw in a given business idea.  

Our analysis fills several gaps in the literature on the determinants of and returns 

to entrepreneurship. In addition to the above-mentioned appeal of the exogenous 

assignment and the availability of success measures, our setting overcomes some of the 

data limitations of the primary sources used in previous entrepreneurship research, such 

as Census data, Internal Revenue Service data, and the Panel Study of Entrepreneurial 

Dynamics. As highlighted by Parker (2004), those data capture a specific type of 

entrepreneurial activity, typically the self-reported decision to become self-employed 

(e.g., as a groundskeeper or consultant) rather than the founding of an entrepreneurial 

firm. In fact, in many databases, founders of entrepreneurial companies cannot be 

distinguished from employees of established firms. In our setting, we carefully trace the 

entrepreneurial histories of students who start a company.  

A second challenge facing much of the earlier empirical work is that the 

importance of entrepreneurial entities varies tremendously. While the bulk of 

entrepreneurial ventures simply replicate other entities and have limited growth potential 

(Bhide 2000; Hurst and Pugsley 2012), a small number of ventures create enormous 

wealth and have a profound economic impact. Our paper complements previous research 

in using data that include a significant number of high-potential start-ups. Historically, 
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HBS students have been instrumental in founding leading firms in a variety of industries 

[e.g., the Blackstone Group, Bloomberg, LLP, and the modern Xerox Corporation; for 

many more examples, see Cruikshank (2005)]. Even within our relatively recent sample, 

we encounter early-career entrepreneurs founding highly successful firms, such as 

athenahealth (publicly traded, with a market capitalization of $3.2 billion in August 2012) 

and SupplierMarket (acquired by Ariba for $581 million). In other words, this paper 

analyzes a particular and talented subset of the overall population, in contrast to much of 

the prior literature mentioned above.  

The differences in samples preclude comparisons with previous findings. Any 

differences in the sign and magnitude of peer effects in our analysis, relative to prior 

literature, may either reflect the improved identification or sample differences. However, 

given the highly skewed nature of entrepreneurial outcomes, the occupational choices and 

peer effects in this subset of individuals are particularly relevant and important. Our 

results suggest that, in this sample, much of the benefit from exposure to 

entrepreneurship does not to come from encouragement of more entrepreneurship but 

from help in weeding out ventures that are likely to fail. 

1. Identification 

Our identification strategy exploits three unique features of the data we collected. The 

first is the exogenous assignment of students to sections. The second is the identification 

of students with prior entrepreneurial experience, which allows us to distinguish between 

students who exert an entrepreneurial influence and those who are less likely to do so. 

And, third, we obtain information about the scale and success of the entrepreneurial 

ventures.  
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1.1. Challenges in identifying peer effects 

The identification of peer effects is a major challenge in economics. In the context of 

entrepreneurship, earlier papers measure peer effects by regressing entrepreneurship 

outcomes on entrepreneurship among peers. There are several difficulties in interpreting 

coefficients estimated with this approach (Manski 1993; Sacerdote 2001).  

The most important issue is self-selection. If individuals choose where to work or 

otherwise interact with their peers, it is difficult to separate selection from peer effects. In 

fact, several studies in the economics literature show that peer effects found in settings 

with endogenous sorting disappear once the analysis is redone exploiting exogenous 

assignment, regardless of how extensively observables were controlled for in the settings 

with endogenous sorting.4 In this paper, we move beyond the limitations of endogenous 

sorting by exploiting exogenous variation in the exposure to entrepreneurial peers. 

Another confounding issue in the literature on peer effects is the distinction 

between the effect of one peer on others and common shocks affecting the entire peer 

group.5 Focusing on pre-determined characteristics, such as entrepreneurial activities 

prior to graduate school, avoids this problem. 

A related issue is the distinction between the influences of peers versus the 

individual’s own prior inclinations. In the context of entrepreneurship, the question is 

whether one can distinguish between the influence of entrepreneurial peers versus an 

                                                 
4 Kremer and Levy (2008), for example, study the peer effects of college students who frequently con-
sumed alcohol prior to college on the GPA of their roommates, and find systematically different effects in 
the samples of randomly-assigned and self-selected roommates. Duflo and Saez (2002) analyze the influ-
ence of co-workers on the decision to invest in a retirement account in a setting with endogenous sorting. 
When they re-analyze the effect in a randomized experiment (Duflo and Saez 2003), they find significantly 
smaller (if any) peer effects. 
5 In the context of school outcomes, Sacerdote (2001) finds a significant correlation in the GPAs of ran-
domly-assigned college roommates but little evidence that roommates’ pre-college academic background 
(SAT scores and high-school performance) matter. Hence, common shocks due to dorm room characteris-
tics, infections, or joint class choices might explain part of the results (Kremer and Levy 2008). 
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individual’s own predisposition to become an entrepreneur, as well as interaction effects. 

To illustrate the identification problem, suppose we would like to identify the effect of 

how “entrepreneurial” the average peer is, separately from the effect of how 

“entrepreneurial” an individual herself is, on the individual’s decision to become an 

entrepreneur. A simple individual-level regression model can be written as follows: 

effectsotherXXXXY jijijijiji   ,,,,,  ,   (1) 

where i indicates the individual, j the group of peers, and Yi j is an indicator equal to 1 if 

individual i becomes an entrepreneur. jiX ,  is the average peer effect, i.e., the share of 

entrepreneurial peers in group j excluding individual i, and Xi,j is an indicator equal to 1 if 

individual i is entrepreneurial herself. The interaction term allows for a different peer 

effect on individuals who are entrepreneurial themselves versus those who are not. 

Summing the individual-level data by group (j) and dividing by group size, we obtain the 

group-level regression model: 

effectsother
MN

N

MN

N
XXY

jj

j

jj

j
jjj 









1

1
   (2) 

  effectsotherXXXY jjjj  1 ,    (3) 

where jY  is the share of individuals in group j who become entrepreneurs; jX  is the 

share of entrepreneurial peers in group j; 1jX is the share of entrepreneurial peers in 

group j after removing one entrepreneurial individual (and is equal to 0 if there is no 

entrepreneurial peer); Nj is the number of entrepreneurial peers in group j; and Mj is the 

number of non-entrepreneurial peers in group j. Equation (3) illustrates that we cannot 

separately estimate the entrepreneurial influence of peers (β) and an individual’s own 

entrepreneurial disposition (γ). Instead, we are measuring the combined effect (β + γ). In 
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addition, the interactive effect 1jj XX  complicates the estimation.  

Our empirical approach avoids this confounding effect since we identify 

individuals who are likely to exert entrepreneurial peer influence ex ante, using prior 

entrepreneurial experience as a proxy. At the same time, we exclude pre-MBA 

entrepreneurs from the outcome variable. In such a reduced sample, the individual-level 

regression (1) becomes: 

effectsotherXY jiji   ,, 00
 ,      (4) 

where i0 indicates an individual student in peer group j who has no prior entrepreneurial 

experience, }0|{ ,0  jiXii . Here, the peer effect jiX ,0  is the share of pre-MBA 

entrepreneurs in group j excluding student i0. Since none of the students in the reduced 

sample has prior entrepreneurial experience, jiX ,0  is identical for all i0 and amounts to 

the fraction of pre-MBA entrepreneurs relative to the size of section j minus 1:  

jiX ,0 = )1/(
,

 jjjii
MNX )1/(  jjj MNN jX ,1 .  

Finally, the third term and the fourth (interaction) terms of equation (1) disappear in (4) 

since jiX ,0
 = 0 for all i0. Summing over all non-prior entrepreneurs i0 by section j and 

dividing by their total number Mj, we obtain the new section-level model: 

)(,1 samplereducedincontrolsotherofshareXY jM j
  ,  (5) 

where 
jMY  indicates the fraction of students becoming entrepreneurs among all students 

without prior entrepreneurial experience, jXii jiM MYY
jij

/
}0|{ ,

,0 0 
 . We use model (5) 

for our regression analysis. 

1.2. Sections at Harvard Business School 
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We also exploit HBS’s long-established section system to address the above-mentioned 

identification challenges. MBA students spend their entire first year in a set group of 80 

to 95 students in a single classroom, taking a fixed slate of classes (e.g., accounting, 

finance, and marketing). There is no provision for switching between sections. And while 

administrators ensure that each section is taught by a mixture of junior and senior faculty, 

no effort is made to match faculty and section characteristics. The social ties established 

in the first year appear to remain extremely strong, even after graduation. For instance, at 

the 25th alumni reunions, fundraising and many activities are arranged on a section-by-

section basis. The power of the social experience engendered by HBS sections has been 

observed in both journalistic accounts and academic studies, which we report in more 

detail in the Appendix.  

Given the profound influence of the section experience, it seems conceivable that 

section-mates affect their peers’ decisions to become entrepreneurs. Cruickshank (2005) 

offers a number of illustrations where section-mates began businesses or refined business 

ideas together. Another place to see the impact of the section relationships on 

entrepreneurial choices is the HBS business plan contest. This contest, started in 1997, 

was open in its initial years only to second-year students. Many of the entries were the 

foundation for post-MBA ventures. In the contests between 1998 and 2004, 33% of 

student teams consisted of section-mates, even though students were free to choose 

partners across their entire class.6 Were the selection of partners random across sections, 

the expected share of section-mates would be 9% for 1998 to 2003 and 10% for 2004. 

                                                 
6 Students were allowed in these years to involve students from other schools but not first-year students. In 
our calculations, we consider all pairwise combinations, ignoring non-HBS students. For example, a team 
consisting of three students, hailing from sections A, B, and C, was regarded as involving three pairs, one 
of which consisted of students in the same section and two of which did not. There were 277 student teams 
consisting of 566 pairs of second-year students, and 185 of those pairs, or 33%, consisted of section-mates. 
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A second reason why the HBS section environment is a promising path to explore 

entrepreneurial peer effects is the professional experience of the students. Unlike other 

professional schools, HBS students have considerable work experience, between three 

and five years for the typical student in the classes under study.7 Moreover, there is 

considerable diversity of backgrounds, in particular in terms of entrepreneurial 

experience, which allows us to exploit the differences across sections empirically. 

1.3. Assignment to sections 

Students are assigned into sections by a computer program developed by HBS 

administrators. The assignment procedure is a mixture of randomization and 

stratification. It is based on the information about students on the official forms that all 

entering students fill out and that are also the basis of the class cards that we analyze. 

The assignment program has undergone slight modifications over the years, but 

worked as follows during the period under study: First, approximately 200 students are 

randomly chosen out of all entering students and randomly assigned to sections. Then, 

additional students are considered one at a time in random order and assigned to a section 

based on a stratification score. This score is a weighted average of the Herfindahl index 

of each stratification criterion. The program computes which assignment would make the 

weighted average Herfindahl index lowest, and assigns the student to that section.  

The stratification criteria are, in order of priority (and hence weight): gender; 

ethnicity; whether the student went to the remedial analytics course in August prior to 

matriculation, and if so, what (remedial) section the student was assigned to; quantitative 

and verbal skills, in particular, whether the student’s admission was conditional on a 

                                                 
7 http://www.hbs.edu/about/mba.html (accessed September 16, 2011) and unpublished tabulations. 
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remedial analytics course, supplemental work on quantitative skills, or work on verbal 

skills, and whether the student’s quantitative or verbal GMAT score was high, medium, 

or low; home region (distinguishes ten U.S. regions, most major European countries, 

Japan, China, India, and everywhere else); industry in which the student worked in his or 

her most recent job (e.g., consulting, finance, telecommunications, etc.); age; whether the 

student attended one of the major “feeder” colleges (Harvard, Yale, West Point, etc.); 

function in the student’s last job (e.g., sales or finance, etc., but there is no function for 

entrepreneurs); marital status; college major; whether the student worked for one of 49 

major companies in their last job.8 Once a section fills up, the assignments are only made 

to the remaining sections. Finally, the registrar staff “hand-adjust” these assignments to 

correct for two considerations: One is students born to expatriate parents. For example, a 

student born in the U.S. with French citizenship (which suggests French parents) may be 

switched to a section with fewer French people. The other is students with a military 

background whom the program missed because of a brief stint on Wall Street or in 

consulting before going to business school. Students will be swapped to ensure that the 

military component in each section is about even.  

Hence, the primary dimensions along which students are sorted are orthogonal to 

the ones of interest of our study. Some of the secondary considerations in assigning 

students to sections, such as the undergraduate institution (e.g., Ivy League vs. state 

university graduates) are not orthogonal to the variable of interest. However, while 

stratification along these dimensions may lower the power of our analysis, it does not 

                                                 
8 Due to software limitations (the program requires an exact match), this category works very poorly. For 
instance, it recognizes “McKinsey & Co.” or “McKinsey & Company,” but not “McKinsey” or “McKinsey 
Chicago.” Out of approximately 450 admits in the class of 2010 that we examined, the program only rec-
ognized the firms for about 10%. All others were bunched together in “other,” along with former entrepre-
neurs and students who worked for smaller firms. 
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bias our estimation given the exogenous assignment and our ability to control for the 

stratification categories. We had access to all information used about the students in the 

sectioning process (or approximations of that information) with the exception of that on 

test scores and conditional admissions.  

Most importantly, the administrators do not identify and balance out students who 

were entrepreneurs prior to HBS. Instead of the detailed textual analysis we undertake 

(see below), their assignment software uses only the subset of the class card information 

that can be readily sorted by the computer. Commonly, entrepreneurs are classified as 

“general management,” but this function is very broad and includes a wide range of other 

backgrounds.9 Overall, 52.5% of the students with an entrepreneurial experience and 

15.2% of all other students are classified as general management. As a result of the 

coarse classification, sections vary widely in the number of entrepreneurs. The section 

share of entrepreneurial peers ranges from 0% at the 10th percentile to 10% at the 90th 

percentile, which allows us to gain empirical identification.  

The broad definition of the “general management” function also ensures that the 

number of entrepreneurs in a section is not negatively correlated with other types of 

“general management” experience. A possible threat to identification could have been 

that sections with more entrepreneurs would have significantly fewer other students in the 

general management category and that the presence of more entrepreneurs therefore 

affects the types of non-entrepreneurial students in a section. To address this concern, we 

regress the share of pre-MBA entrepreneurs on the share of non-entrepreneurs with a 

                                                 
9 Examples include leadership positions at non-profits (e.g., an associate at a foundation), at for-profit 
organizations (e.g., the program director at a sports training academy, the general manager of a number of 
restaurants, or the senior manager of new business development at a heathcare firm), and in the military 
(e.g., junior officers). 
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general management background (and year dummies). We find that the relationship is 

statistically insignificant (with a t-statistic of -0.35) and economically negligible (with a 

coefficient of -0.04). Nevertheless, as an added control, we include “share of students 

without an entrepreneurial background who worked in a general management function” 

in all the regression analyses.  

2. The Data 

Our analysis draws on four primary sets of data. First, we collect data on the 

characteristics of students from their class cards. Class cards are initially filled in by 

school administrators based on students’ applications.10 Students can update their class 

cards while enrolled at HBS. We obtain the class cards for 6,129 students graduating 

between 1997 and 2004. The starting date was dictated by data availability; the end date 

by the need to have several years after graduation in order to identify which entrepreneurs 

were successful. We extract information on gender, nationality (in particular, sole or joint 

U.S. citizenship), age, family status, work experience, and educational background. Due 

to inappropriately classified students (e.g., cross registrants) and missing data, the usable 

data amounts to 5,897 students. For age, we use 21.5 years plus the time elapsed since 

college graduation.11 For family status, we use whether they had a partner, as well as 

whether they indicated children among their interests or other descriptive material. For 

                                                 
10 The fact that the class card information is drawn from applications alleviates concerns that students ex-
aggerate their accomplishments. Lying on one’s application is a very high-risk strategy, as it can lead to 
expulsion from the school or even the voiding of a degree. HBS takes ethics during the application process 
very seriously: several years ago, some accepted students who had checked the status of their application 
on a website earlier than allowed had their offers rescinded (Broughton 2008). 
11 This calculation is based on estimates by school administrators. While U.S. Census data suggest that the 
average graduate of an undergraduate program is considerably older, the majority of the school’s enrollees 
complete their undergraduate programs faster. The primary exceptions are Mormon students, who frequent-
ly take two years off from college to serve as missionaries.  
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work experience, we use the industry students had worked in after college.12 For 

educational background, we use college and college major. We classify whether their 

primary degrees are from an Ivy League school or, alternatively, an “Ivy Plus” school.13  

Going beyond the characteristics used by HBS for stratification, we also attempt 

to characterize risk attitudes, given suggestive evidence in the literature on lower risk-

aversion among entrepreneurs (Parker 2004). As an imperfect proxy, we exploit the 

riskiness of the activities listed by the students based on the injury data from American 

Sports Data 2005.14 We employ their compilation of “Total Injuries Ranked by Exposure 

Incidence,” which gives the number of injuries per 1,000 exposures for each sport. The 

most risky activity (boxing) causes 5.2 injuries per 1,000 exposures and gets a risk score 

of 1. Other activities are scaled accordingly. Lacrosse, for example, causes 2.9 injuries 

per 1,000 exposures and gets a risk score of 2.9/5.2 = 0.558. We average the top risk 

score for each student in the section. In unreported robustness checks, we employ the 

average across all activities listed by each student. We also calculate the share of students 

in each section whose top risk scores are higher than certain thresholds—higher than the 

mean (0.38), higher than the mean plus one standard deviation (0.48), and higher than the 

                                                 
12 We use a 60-industry scheme of the hiring and compensation database at HBS Career Services. Students 
who worked in multiple industries are coded as having participated in all of them. The results are robust to 
assigning each student to a single field—the one in which he or she spent the most time or, if the student 
worked an equal amount of time in two fields, the area in which he or she worked most recently.  
13 Ivy Plus is an association of administrators of leading schools, which includes the Ivy League schools 
plus CalTech, University of Chicago, Duke, MIT, Stanford, and the Universities of Cambridge and Oxford. 
In unreported analyses, we also use a classification that adds the top non-U.S. schools, as defined by the 
Times Higher Education Supplement, in addition to Cambridge and Oxford: the Ecole Polytechnique and 
the London School of Economics. These changes make little difference to the results. 
14 The data are based on a survey of 25,000 households in 2003 (62% response rate). Several injury 
measures are provided (e.g., total injuries, injuries resulting in an emergency room visit, etc.), which tend to 
be quite correlated. For sports not included in the American Sports Data, we substitute the closest sport 
(e.g., baseball for cricket, day hiking for orienteering). If there is no comparable listing, we assign the top 
ranking if they appear to be very high risk (e.g., motorcycle racing) and the median ranking if they are 
more moderate (e.g., fencing). We exclude activities that do not involve physical exertion (e.g., fantasy 
football and pigeon racing) or are too vague (e.g., “athletics” or “all sports”). 
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mean plus two standard deviations (0.58). Again, the results are little different. 

Finally, we use the class cards to construct the key variable for our analysis: prior 

entrepreneurial experience. We identify students who (co-)founded an entrepreneurial 

venture prior to entering business school. We do this by searching for terms such as “co-

founded,” “started,” or “launched.” We include ventures that are spun-off from another 

firm, but eliminate corporate ventures (e.g., starting up and heading a division within a 

company).15 Unlike the calculation of industry experience (which focused on post-college 

employment), we include businesses begun before graduating from college, on the 

grounds that these experiences also provide insights into the planning and 

implementation of entrepreneurial ventures. Overall, the prior entrepreneurial endeavors 

were quite diverse, but most fell into three broad categories: 

o Businesses geared toward a limited market. Frequent examples included campus-

oriented services (e.g., a bottled-water delivery service to dorm rooms at local college 

campuses) and food service facilities (e.g., a 14-unit retail bagel chain in Hungary).  

o Businesses that were acquired due to economies of scale or scope, such as a chain of 

eight bike shops sold to a larger competitor, or an Internet consulting firm that was 

sold to a more generally focused consulting firm after a failed initial public offering 

(IPO). 

o Ventures where the entrepreneurial founder was eventually shunted into a narrower 

functional role (e.g., chief technology officer) as the firm grew and professional 

management was recruited (e.g., in a security software firm). 

For supplemental analyses, we also assess the success of those prior 

                                                 
15 Freelance consulting is not counted as starting a business unless there are other consultants working for 
that person. We also do not include a small number of cases where students operated franchises as entre-
preneurs since operating a franchise is more similar to running a corporate unit. 
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entrepreneurial ventures. (This information is only used in the supplemental regressions 

presented in Table 8.) If there are entrepreneurial peer effects, the influence of successful 

entrepreneurs may be more encouraging than that of unsuccessful entrepreneurs. 

Moreover, while the core of our analysis focuses on spillovers from entrepreneurial 

experience rather than entrepreneurial skills, this measure allows us to approximate the 

latter. Our primary cut-off point for success is whether the business achieved a million 

dollars in annual revenues.16 Unlike the identification of the pre-MBA entrepreneurs, 

which is entirely based on official class card records, or the identification of post-

business success, where we have multiple, highly consistent information sources, our 

identification here is only approximate. In addition to the class cards, we use social 

networking sites such as Facebook and LinkedIn, and direct contacts with the students. In 

total, we classify 42% of the businesses as successful, 19% as unsuccessful, and the 

remainder as unknown.  

A success rate of 42% is unusually high compared to broader samples of 

entrepreneurs. Apparently, pre-MBA entrepreneurs often sold their businesses at a profit. 

We encountered descriptions such as “grew business from start-up to $6 million per year 

in revenues—my brother is managing now,” or “took $2 million in profits out of business 

in three years before wrapping it up.” To better understand this selection of 

entrepreneurs, we conducted interviews with MBAs who had been entrepreneurs prior to 

business school. They all emphasized their need for skill development and the intention 

to go onto new and larger ventures. Many had been technically trained prior to business 

school and highlighted that their lack of business training or insights into marketing, 

                                                 
16 Note that the cut-off is lower than in the definition of the success for post-business school entrepreneur-
ship discussed below. The lower hurdle reflects that students engaging in pre-business school entrepreneur-
ship had a lower opportunity cost.   
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finance, etc. had become increasingly problematic as their businesses grew and they 

interacted with individual angel investors and venture capitalists. The other main 

motivation mentioned was the desire for more contacts. Several respondents expected ties 

with venture investors, corporate development specialists, and wealthy people in general 

to result from enrollment at HBS, which would increase the probability of success of 

future ventures.  

A difficulty in the data collection was posed by the failure of HBS to archive class 

cards prior to 2000. We obtained cards for the years 1997 to 1999 from HBS professors 

who had saved the class cards of the classes they had taught. Some of these instructors 

had taught first-year classes, in which case they had information on all students in a given 

section. Others had taught second-year classes, in which case the class cards covered 

students from various sections who had chosen that class. As a result, the completeness of 

our information in the early years varies. 

Missing class cards reduce the precision with which we can characterize the 

features of sections and raise concerns about response bias. In high-count sections (all or 

almost all class cards), the cards are provided by HBS or by first-year instructors, who 

are assigned randomly to sections. Thus, there is little potential for bias. In low-count 

sections, instead, the cards come from second-year instructors. Only a minority of 

instructors saves the cards of former students, and these are typically professors of 

management practice (successful practitioners who become instructors after their 

business careers) and professors in more practically minded fields such as 

entrepreneurship. To prevent such selection biasing our result, the main analyses only 

employ sections where we have been able to gather at least 70 class cards. We undertake 
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supplemental analyses with all sections, with a less restrictive, and with a more restrictive 

sub-sample (sections with at least 40, 75, or 80 class cards).17 

Tables 1 and 2 show the summary statistics. Unlike in the rest of the paper, Table 

1 displays aggregate data on the entire student body, including students for whom we are 

missing class cards. The year-by-year statistics reveal that class size remained 

approximately constant, around 900 across all sections, but the composition changed: 

female, minority, and non-U.S. students were increasingly represented. In addition, the 

share of students with a technical or science background increased markedly. The 

average section size is stable, around 80 students, from the class of 1998, when the 

average section size shrank in conjunction with an added experimental accelerated MBA 

program, to the class of 2004, when the number of sections was reduced from 11 to 10 

after elimination of the accelerated program. 

The lower half of Table 1 shows measures of macro-economic financing 

conditions, which we use to control for the U.S. economic environment for 

entrepreneurship. One measure is the amount of U.S. VC provided annually in the initial 

and in all financing rounds of new firms. The information is taken from the National 

Venture Capital Association (2005), based on the records of Venture Economics. Another 

measure, compiled from Securities Data Company and the website of Jay Ritter, is the 

number and dollar volume of IPOs in the U.S., as well as the amount “left on the table” in 

these offerings (the difference between the closing price on the first day and the offer 

price, multiplied by the number of shares sold). Even though IPOs are typically confined 

                                                 
17 In the more expansive samples (all sections or all sections with 40+ class cards), we also replicated our 
analyses weighting the observations by the number of class cards. All of our main results are robust to all 
of these alternative approaches, though in some cases the levels of statistical significance are lower, which 
is consistent with underlying selection bias. All replication tables are available from the authors. 
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to firms that have several years of operations, they provide a useful proxy of the 

financing available to new ventures in the same industry, possibly reflecting investment 

opportunities in this industry (Gompers et al. 2010).  

The year-by-year tabulation in the lower half of Table 1 highlights the 

acceleration of activity during the “bubble years” of the late 1990s. This pattern is also 

illustrated in Figure 1. In our regression analysis, we employ both a VC and an IPO 

measure of financing conditions. Alternatively, we include year dummies. 

Table 2 shows detailed characteristics for those students for whom we have class 

card information. We aggregate by section to make the data compatible with the outcome 

data, which is available only by section (as described below). Panel A shows the 

summary statistics for all 86 sections, and Panel B for the 60 sections with at least 70 

class cards. In terms of control variables, the data reveal the heavy representation of 

students in investment banking and consulting.18 We also single out the share of students 

in private equity (which we define here to include both VC and buyout funds), since these 

students may be particularly well prepared to provide counsel to would-be entrepreneurs. 

Sections differ on a variety of personal characteristics, including the presence of students 

with children and graduates of elite schools. The differences between the 10th and 90th 

percentiles narrow when we require data on at least 70 students (Panel B), which reflects 

the fact that the distribution becomes less noisy. 

The key variable of interest is the share of students who previously worked as 

entrepreneurs. The average is around 5%, though the 10th-90th percentile range is quite 

large, between 0% and 10%. The scatter plot in Appendix Figure A1 shows the full range 

                                                 
18 The variation in the share of investment bankers (10th versus 90th percentile) reflects in large part time-
series variation, i.e., the ebb-and-flow of these admits across classes, rather than inter-section differences. 



 21

of variation by plotting the year-section data points, ordered by section. 

To distinguish time-series from cross-sectional variation, we graph the full 

distribution of entrepreneurs in a section, both the raw count (left graph in Figure 2A) and 

adjusted for year effects, i.e., the share divided by the average share in that year (right 

graph in Figure 2A). While some sections have no members with previous 

entrepreneurial ventures, others have up to 13% (12 pre-MBA entrepreneurs) and, year-

adjusted, a rate nearly three times the rate of the other sections in that year. The year-by-

year variation, shown in Panel B, is smaller, ranging from shares of 3.7% in 1998 to 6.3% 

in 1997. 

Our second data set contains the class choices in the second year. We determine 

all elective classes students enrolled in, as well as the fraction of such classes the course 

prospectus listed as (co-)sponsored by the Entrepreneurial Management unit. We 

compute the share of entrepreneurship classes for students without prior entrepreneurial 

experience. On average, non-entrepreneurs devote 19% of their elective classes to 

entrepreneurship. The ratio varies from as low as 9% to as high as 27% across sections 

and years.  

Our third data set provides information about the careers post-graduation, 

including the key outcome variable, post-MBA entrepreneurship. We use the annual HBS 

“exit survey.” Since HBS makes the picking of a cap and gown for graduation 

conditional on survey completion, participation is almost perfect.19 The survey offers 

multiple categories for the post-graduation industry of employment, for cases where the 

                                                 
19 The survey does not capture students who drop out without completing a degree. This (very small) frac-
tion, typically considerably under 1%, overwhelmingly represents students who leave the program involun-
tarily due to poor academic performance. Even at the peak of the Internet boom, only a handful of students 
permanently left school before graduation to pursue an entrepreneurial opportunity. 
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student is still looking for employment and for students who have founded or are 

planning to imminently found a new venture. The survey responses are anonymous to 

ensure candid responses. As the survey only reflects students’ intentions at graduation, it 

is possible that some would-be entrepreneurs abandon their quests later, or, vice versa, 

students decide to start a company later. Our measure of post-MBA entrepreneurship is 

unbiased if this inexactitude only introduces random noise; it is precise for the stated 

entrepreneurial intentions.  

We obtained access to the number of students starting an entrepreneurial venture, 

aggregated on the section level. We then separated out the shares of students who also 

were entrepreneurs pre-MBA. As discussed above, we need to exclude “pre-and-post-

MBA” entrepreneurs from the estimation of peer effects to obtain identification and to 

distinguish the estimated peer effect from the effect of own prior experience. Our desired 

outcome variable 
jMY  is the fraction of students in section j who become entrepreneurs 

post-MBA among all students with no prior entrepreneurial experience in that section: 

jjiXiiM MYY
jij

/,}0|{ 0,0  . 

The empirical difficulty lies in the anonymity of the aggregate, section-level 

placement data. To create the desired ratio, we need to identify, for all sections j, the 

number of students with prior entrepreneurial experience who also started a (new) 

company post-MBA. We use our individual-level class card data to identify students with 

prior entrepreneurial experience and research if they took an entrepreneurial position 

after graduation. The main sources were social networking sites, Google, and direct 

contacts. These data allow us to calculate the numerator of the outcome variable, 

  }0,|{ ,jXi ji
i

Y , as  



 23
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Another difficulty is that, for some sections, we do not have all class cards. In 

those sections, our measure of the fraction of post-MBA entrepreneurs among non-pre-

MBA entrepreneurs,
jMY , could be biased in two ways. First, if we calculated the number 

of pre-not-post-MBA entrepreneurs, Mj, by simply subtracting the number of “identified” 

pre-MBA entrepreneurs from the size of section j, we would overestimate Mj and hence 

underestimate the outcome variable 
jMY . We correct this potential bias by subtracting, 

instead, the proportion of pre-MBA entrepreneurs calculated in the sample of available 

class cards. That is, if jj MN
~~   is the sample of available class cards and )

~~
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~
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the pre-MBA entrepreneurship rate, we calculate Mj as: 
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 or, in words, 

# of post-MBA entrepreneurs in section j - # of pre-and-post entrepreneurs in section j. 
section size × (1 – section’s pre-MBA entrepreneurship rate) 

The second potential bias due to missing class cards is that, by missing out on 

some pre-MBA entrepreneurs, we might underestimate the number of pre-and-post-MBA 

entrepreneurs, jiXi Y
i ,}1|{  . This issue is similar to the one of missing that a pre-MBA 

entrepreneur became a post-MBA entrepreneur even though he or she (anonymously) 

indicated entrepreneurship in the placement survey. This bias leads us to overestimate the 
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number of “post-not-pre” entrepreneurs, which is the numerator of 
jMY , and hence to 

overestimate 
jMY . To check the robustness of our results to this bias, we re-do each 

analysis assuming a set percentage of pre-and-post entrepreneurs.20  

Finally, we collect data on the success of firms established by students while at 

HBS or within one year of graduation. An objective threshold criterion of “success” is 

hard to find. We define a successful business as one that, as of July 2011, (a) had gone 

public, (b) had been acquired for more than $5 million, or (c) had, then or at the time of 

the sale of the company, at least 50 employees or $5 million in annual revenues.21 The $5 

million cut-off is based on the following rationale: Hall and Woodward (2010) estimate 

the mean equity stake of entrepreneurial teams at the time of exit at 53%, and, according 

to Gompers, Lerner, and Scharfstein (2005), the typical venture-backed firm has 3.0 

founders. Assuming a valuation-to-revenue ratio of one,22 a $5 million valuation at exit 

guarantees that the equity per founder is (approximately) worth at least one million 

dollars. In supplemental analyses, we employ higher hurdles for criteria (b) and (c), 

namely $25 million or even $100 million. 

We use three sources. First, we obtain access to research of the HBS External 

Relations (Development) Office into its entrepreneurial alumni. Second, we obtain access 

to the online survey of the Rock Center for Entrepreneurship that collects information 

about students who participated in the business plan contest, as well as other early-career 

                                                 
20 We use a 30% rate in the results reported in the paper, based on the Rock Center survey described below. 
In unreported analyses, we also use other rates, e.g., 23% as suggested by our class card data (see Panel B 
of Table 2), and find little impact. 
21 While we would have liked to determine the success as of a set time after graduation (e.g., three years 
after degree completion), this information proved infeasible to gather.   
22 According to Thomson Reuters SDC data, the median multiple of valuation to the last 12 months reve-
nues in all U.S. IPOs between 1997 to 2004 was 1.55; when excluding the “bubble years” of 1999 and 
2000, it was 0.99. 
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entrepreneurs.23 Third, we conducted interviews with the three faculty members in the 

HBS Entrepreneurial Management unit who are intimately involved with most alumni 

ventures—whether as sponsors of the independent studies where the initial business plans 

are drawn up, or as directors, advisory board members, or investors in subsequently 

established ventures—and who often stay in touch with alumni entrepreneurs even 

without a formal role. As a result, they have extensive knowledge about the performance 

of these ventures. In cases where none of the three sources revealed the revenues, public 

status, or acquisitions of our sample firms, we consulted a wide variety of business 

databases, such as CorpTech, EDGAR, Factiva, and Orbis. We also contacted 

entrepreneurs directly to obtain information on a confidential basis.  

In total, 26 entrepreneurs (associated with a total of 19 firms) qualified for the 

lowest success hurdle, amounting to a success rate of only 13%. Of these, 14 were 

identified by the Development Office and 16 through the Rock Center survey (for a total 

of 22). The three faculty members identified respectively 19, 25, and 22 of the 

entrepreneurs. Given the high degree of overlap across these various sources, we are 

confident we have captured the universe of successful post-MBAs in our sample.  

After compiling this information on individual ventures, we again aggregate it on 

the section level. We compute the share of the class who became entrepreneurs after 

graduation, as well as those who became successful entrepreneurs, both for the entire 

graduating class and only for those who were not entrepreneurs prior to graduation. The 

latter is the dependent variable in our regression analyses.  

                                                 
23 The survey used a “viral” approach, whereby known entrepreneurs were asked to identify other entrepre-
neurs among their classmates, and encourage them to complete the survey. Alumni were initially contacted 
via email in January 2005. Non-respondents were contacted three times via email and telephone. Overall, 
41% of all contacted students participated. This rate is consistent with or above the level of responses typi-
cal in social science studies of this cohort (Baruch 1999). 
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Figure 2, Panel C, summarizes some key patterns of the outcomes data. (Because 

we have placement data for virtually all students, we report the data here for all sections.) 

Entrepreneurial activities vary over time, with the peak in entrepreneurial entry occurring 

around 2000. More than 10% of the class began entrepreneurial ventures upon graduating 

in 2000. The rate of successful entrepreneurship is low, even when using the lower ($5 

million) hurdle for success. The temporal pattern of success is less pronounced, but, 

generally, the years that saw the greatest number of successful entrepreneurs were earlier.  

3. Empirical Analysis 

Our analysis proceeds in several steps. First, we perform several tests of stratification and 

(conditional) randomization in section assignment. Then, we present our main result, the 

analysis of peer effects on the rate of students becoming entrepreneurs, as well as 

differential peer effects on the rate of successful versus unsuccessful entrepreneurs. 

Finally, we explore possible channels for entrepreneurial peer effects. 

3.1. Test of stratification and randomization 

We have seen already that the distribution of pre-MBA entrepreneurs across sections 

appears to be random (e.g., in Appendix Figure A1). We now test whether students 

without entrepreneurial background in sections with more (above median) and with fewer 

(below median) pre-MBA entrepreneurs display significant differences in any of their 

characteristics.  

The raw results for all 68 characteristics variables in our data are presented in 

Appendix Table A1. Out of all job-related characteristics (20 types of last job, 17 types of 

job functions), demographics (gender, U.S. citizenship, children, partner, age, ethnicity), 

our risk score measure, and education (major, attendance of an Ivy League or Ivy League 
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Plus college), six are significantly different at the 5% confidence level: sections with 

more entrepreneurs are less likely to have students who worked in entertainment (3.2% 

vs. 4.3%), who attended elite schools (22.7% vs. 25.2% for Ivy League and 32.7% vs. 

35.7% for Ivy League plus), who majored in history (2.9% vs. 4.2%), and who had a 

function in human resources (0.2% vs. 0.4%) and are more likely to have students who 

had a function in medical services (0.7% vs. 0.3%). Many of the differences, however, 

are in categories with a very small number of positive respondents, and the differences 

range only from 0.2% to 3.0%. Another ten variables differ at the 10% level.  

We aim to control for these differences in our main analysis. Given that we have 

60 sections with at least 70 class cards, we cannot use all 68 characteristics (nor even the 

16 significant characteristics). In order to identify the most relevant variables, we use two 

forward-selection procedures. First, we start with a number of variables that are 

commonly viewed as being particularly influential in determining the propensity of 

students to become entrepreneurs (Evans and Leighton 1989; Landier and Thesmar 

2009): having consulting, investment banking, and private equity backgrounds, gender, 

nationality, the presence of partners and children, attendance at an Ivy League or Ivy Plus 

college, risk appetite, and year of graduation. We then conduct a forward stepwise 

selection to identify which additional student characteristics have significant explanatory 

power (at the 5% level) in predicting the share of pre-MBA entrepreneurs in a section 

using a linear regression framework, controlling for year effects. As shown in Table 3, 

this leads to the identification of three additional independent variables: students having a 

background in agriculture and health care, and majoring in engineering. Second, we use a 

forward stepwise approach, with only year dummies preset, and include all additional 
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variables significant at the 5% level. In this case, we identify five variables in addition to 

the year dummies. 

We use both sets of control variables, in addition to the time dummies, in our 

analyses. We report the analyses with the first set of variables in the main tables. (All 

replications with the second set of independent variables are available from the authors.) 

In all regressions, we also control for the “share of students without an entrepreneurial 

background who worked in a general management function” to ensure that our results do 

not reflect negative sorting on this background category as discussed above.24 Finally, we 

add interactions between the independent variables as further controls. Given the 

stratification procedure employed for the section assignment, we would ideally include 

all possible interactions between all stratification variables. Because of the modest 

number of observations, this is not possible to implement. Instead, we include pairwise 

interactions between the following significant explanatory variables: the share of section 

that is male, that are U.S. citizens, with a partner, and with investment banking 

background. 

3.2. Univariate comparisons 

We begin the analysis of entrepreneurial peer effects by plotting the basic relationship 

between the representation of entrepreneurial students and the rates of post-MBA 

entrepreneurship, both in total and separating out unsuccessful and successful 

entrepreneurs. Panel A of Figure 3 relates the share of pre-MBA entrepreneurs to the 

                                                 
24 An alternative approach would have been to define all variables only for individuals with general man-
agement experience. We cannot implement the alternative specification since we do not have outcome vari-
ables by individual, or for the subset of individuals with general management experience.  
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share of post-MBA entrepreneurs (without prior entrepreneurial experience).25 Sections 

with more pre-MBA entrepreneurs have, on average, lower rates of post-MBA 

entrepreneurs. Moreover, these sections have considerably less variation in the share of 

post-MBA entrepreneurs. 

We then distinguish between unsuccessful and successful post-MBA 

entrepreneurs. We define the rate of unsuccessful entrepreneurship as the difference 

between the rates of total and of successful entrepreneurship.26 Panel B reveals the same 

pattern for the share of unsuccessful post-MBA entrepreneurs as in Panel A for all post-

MBA entrepreneurs. Meanwhile, the pattern for successful post-MBA entrepreneurs, in 

Panel C, is less pronounced and relatively flat, with the exception of one section with a 

high number of successful entrepreneurs and a high pre-MBA entrepreneurship rate. 

Certainly, no sign of a negative relationship, as identified in the other two panels, appears 

here.  

Table 4 examines the correlation coefficients between various characteristics of 

the sections and the share of students without an entrepreneurial background who became 

entrepreneurs after finishing the program. In Column 1, we see that sections with more 

males, U.S. citizens, and students with children have higher rates of entrepreneurship. 

(Again, all variables are computed using only students who were not pre-MBA 

entrepreneurs.) Both VC funding and IPO activity in the year of graduation are highly 

correlated with post-MBA entrepreneurship. Most importantly, there is a significantly 

                                                 
25 This is calculated by subtracting out the number of pre-and-post-MBA entrepreneurs (the first of the two 
possible corrective methodologies described in Section 2). 
26 While we believe that we identified a virtually comprehensive list of successful HBS entrepreneurs from 
the classes in our sample, a similar approach is not feasible for unsuccessful entrepreneurs. Unsuccessful 
ventures are much less visible after failure, and participants are often unwilling to disclose their failure 
(e.g., in response to a survey request).  
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negative relationship between the section share of pre-MBA entrepreneurs and the share 

of those who were not prior entrepreneurs but began ventures after their MBA, consistent 

with the pattern observed in Figure 3. This negative correlation provides another piece of 

suggestive evidence speaking to our main research question. 

Columns 2 and 3 in Table 4 reveal that this negative correlation is entirely driven 

by the share of unsuccessful post-MBA entrepreneurs, again consistent with Figure 3: 

The correlation with unsuccessful entrepreneurship is significantly negative, while the 

correlation with successful entrepreneurship is insignificant (and has a positive sign). 

More generally, the correlations with unsuccessful entrepreneurship in Column 2 mirror 

those of Column 1, while the correlations with successful entrepreneurship in Column 3 

are much weaker; the only significant correlates are having a partner and the risk aversion 

score (negative correlation) and the measures of entrepreneurial finance activity 

(positive). One reason for the lack of significance in the sample of successful 

entrepreneurs as well as for the close resemblance of correlation coefficients in the full 

and in the unsuccessful sample is simply the small number of successful post-MBA 

entrepreneurs. If we compare the fraction of successful entrepreneurs (among all post-

not-pre entrepreneurs27) in sections with above and below-median numbers of pre-MBA 

entrepreneurs, 18.0% versus 7.5%, the difference is not significant (p-value = 17.1%), but 

economically large. 

3.3. Regression analyses 

We test whether the suggestive univariate patterns hold up in a controlled regression 

framework. As before, the units of observation are section-years, and the main dependent 

                                                 
27 The calculation of the success rate excludes sections with no post-MBA entrepreneurship. 
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variable is the section share without prior entrepreneurial background who became 

entrepreneurs after graduation, either overall or divided into successful and unsuccessful. 

As derived in Section I.1., we control for the characteristics of these same students 

without prior entrepreneurial experience, using the variables selected in Section III.A.  

Table 5 presents the first main result, the analysis of entrepreneurial peer effects 

on the propensity of their section-mates without entrepreneurial experience to become 

entrepreneurs afterwards. Since the left-hand side variable is censored at zero, we first 

estimate a Tobit specification. The Tobit specification does not allow us to employ year 

dummy variables (the estimates do not converge), and we use the volume of venture 

financing and IPOs as controls. Alternatively, we estimate OLS coefficients with the 

inclusion of year dummies. In those specifications we can also add pairwise interactions 

between significant explanatory variables as additional controls, as discussed above. We 

use the two methods discussed in Section II to correct the overall post-MBA 

entrepreneurship rate for prior entrepreneurial experience: In the first three columns, we 

subtract the number of identified pre-and-post-MBA entrepreneurs; in the last three 

columns, we subtract an average pre-and-post-MBA entrepreneurship rate of 30%. 

All regressions confirm the pattern found in the raw data: The coefficient on the 

share of the section with an entrepreneurial background is always significantly negative. 

The effect is not only statistically significant, but also economically meaningful. Even 

using the low coefficient estimate from the OLS regression in the second column, a one 

standard deviation increase in the pre-MBA entrepreneurship rate translates into a 

decrease of 26% in the predicted rate of entrepreneurship after business school: the share 

of post-not-pre entrepreneurs drops by one percentage point (-0.35×0.029), from 3.9% to 
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2.9%. The second set of regressions suggests declines of even larger magnitudes.  

In addition to our main result, we observe several interesting patterns. The share 

of students with a private equity background is positive but insignificant (after the 

inclusion of year dummies). The difference in sign, relative to the negative estimate for 

pre-MBA entrepreneurs, may reflect that this category is dominated by buyout firms with 

little exposure to young firms, rather than venture capitalists. We also see that the 

coefficient on the share of the section that is male is always positive and typically 

statistically significant, while the share that has a partner is always negative and (at least 

marginally) significant. The coefficient on the mean risk tolerance of the section is 

generally insignificant. Finally, more entrepreneurial activity in the economy is 

associated with periods of more venture activity. When we employ class dummies, those 

for 1999 and 2000 have the greatest magnitude and significance.  

We then distinguish between unsuccessful and successful entrepreneurs. Table 6 

presents the same set of regression specifications as in the previous table but with 

different dependent variables: the share of post-MBA entrepreneurs who were not 

previously entrepreneurs and whose post-graduation ventures ultimately failed (in Panel 

A) or whose ventures were successful (in Panel B). In Panel C, we test whether the peer 

effects estimated for unsuccessful and for successful entrepreneurs in Panels A and B are 

the same. 

The results for unsuccessful entrepreneurship (Panel A of Table 6) are very 

similar to those for overall entrepreneurship. The section share with prior entrepreneurial 

background is significantly negatively associated with unsuccessful post-MBA 

entrepreneurship among their peers. In fact, the coefficient estimates of all independent 
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variables are quite similar in terms of significance and size. As expected, given the high 

likelihood of failure, a reduction in unsuccessful ventures drives the overall negative peer 

effect. 

The economic magnitude of the peer effect is somewhat larger for unsuccessful 

entrepreneurs than in the baseline, given the smaller baseline. Using again the coefficient 

estimate from the first OLS regression (column 2 of Panel A of Table 6), a one standard 

deviation increase in the pre-MBA entrepreneurship rate translates into a decrease of 

30%, namely, more than one percentage point [-0.36×0.029] out of 3.5% unsuccessful 

post-not-pre entrepreneurs.  

The results of the regressions explaining successful entrepreneurship (Panel B of 

Table 6) are rather different: The coefficients on the share of pre-MBA entrepreneurs are 

much smaller and always positive, ranging from 0.02 to 0.16. They are never statistically 

significant, nor are any of the other variables that are important in Table 5 consistently 

significant. The goodness-of-fit is also considerably lower.  

The lack of significance is not surprising, given the limited representation of 

successful entrepreneurs (0.4% of all students without prior entrepreneurial experience) 

and left-censoring. However, the consistently positive coefficient estimates point suggest 

the possibility that entrepreneurial peers are less discouraging, or even encouraging, when 

confronted with promising, and hence ultimately successful business ideas. 

We perform two tests to explore this possibility. First, we test whether the peer 

effects estimated for unsuccessful and for successful entrepreneurship in Panels A and B 

of Table 6 are the same. We employ the standard econometric approach: We estimate a 

pooled regression on observations from both regressions and then examine the 
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significance of the interaction between the pre-MBA entrepreneur share and the dummy 

variable denoting successful outcomes. This amounts to performing a t-test of the null 

hypothesis that the coefficients on the pre-MBA entrepreneurial share variable are not 

different in the successful and unsuccessful entrepreneurship regressions. We also 

undertake an F-test comparing all coefficients in the two regressions.  

As shown in Panel C of Table 6, the null hypothesis of no difference is always 

rejected at the 1% confidence level. Thus, peers with entrepreneurial experience tend to 

deter students without an entrepreneurial background from undertaking unsuccessful 

ventures, but their influence on would-be successful entrepreneurs is significantly more 

positive. 

We perform a second test to ensure that the significant difference estimated in 

Panel C of Table 6 is not merely a reflection of the lower (absolute) rate of successful 

entrepreneurs. That is, a potential concern is that the magnitude of a hypothetical 

negative peer effect on successful ventures is limited because the rate of successful 

ventures cannot fall below zero. For example, if the shares of both successful and 

unsuccessful ventures were to drop by the same percentage in response to peer 

interaction, we might still estimate a positive interaction coefficient given the higher 

baseline rate of unsuccessful ventures. 

To address this concern, we repeat the analysis in Table 5 using as a dependent 

variable the ratio of the number of failed to the number of total ventures. If the 

insignificantly positive coefficient estimated for successful entrepreneurs concealed a 

negative effect identical to the one on unsuccessful would-be entrepreneurs, then peers 

should have no effect on the ratio. If the effect is significantly more positive for 
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successful would-be entrepreneurs, the coefficient estimate should be negative. We deal 

with the cases of “no new ventures” in a section (zero denominator) in several alternative 

ways: dropping those observations; coding those ratios as “zero”; and adding a small 

number to both the numerator and denominator in all observations. We re-estimate all six 

regression models of Table 5 with each approach. We find that the coefficient on the 

number of pre-MBA entrepreneurs is negative in all cases: the peer effect is more 

negative on unsuccessful ventures. Since both the counts of unsuccessful and total 

ventures are likely to be noisily measured, it might be anticipated that the ratio would be 

particularly noisy. Nonetheless, the coefficient is significant at conventional significance 

levels in the majority of cases. For example, when we calculate the ratio dropping cases 

of zero ventures and when we calculate the ratio coding cases of zero ventures as zero, 

the coefficient estimate is significant in 9 out of 12 cases (marginally significant in the 

other cases). 

Taken together, our results imply that experienced peers are serving a positive 

role in disproportionately weeding out bad ventures. 

We perform a number of robustness checks. First we test whether our results are 

robust to employing higher thresholds for “success.” As discussed above, we chose the 

$5 million threshold for “success” in order to guarantee equity worth about $1 million or 

more per founder. In some cases, this cut-off may be too low. For example, Guru.com, an 

online marketplace for freelance talent in our sample, was sold for approximately $5 

million to rival Unicru in 2002. Given that Guru.com raised over $62 million in VC 

financing in 1999 and 2000, it is doubtful whether the parties involved regarded this as a 
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success.28 To address this concern, we use $25 million and $100 million as alternative 

cutoffs, which we term “very successful” and “super-successful” respectively. 

Columns 1 through 4 of Table 7 show results akin to those in the specifications of 

Column 2 of Table 6, Panels A and B. The coefficient estimates closely resemble those 

using our original success measure, not only in terms of sign and significance but also in 

terms of economic magnitude. Moreover, the coefficients on the share of pre-MBA 

entrepreneurs in the regressions predicting unsuccessful versus successful post-MBA 

entrepreneurship (i.e., “not very successful” vs. “very successful,” and “not super-

successful” vs. “super-successful”) are significantly different at the 1% confidence level 

in both cases. 

Another robustness check addresses the concerns that, as revealed in Figure 2.C, 

the class of 2000 had an extraordinary high post-MBA entrepreneurship rate and might 

explain all of our results. We reran the regressions without the observations from the 

class of 2000. The results were little changed. 

We also repeat the analyses in Tables 5 and 7, adding additional control variables 

suggested by the literature on the determinants of entrepreneurship, in particular, Eesley, 

Hsu, and Roberts (2007) and Evans and Leighton (1989). For instance the results were 

robust when we added, among other variables: section share (excluding prior 

entrepreneurs) that is white; section share (excluding prior entrepreneurs) that is Asian; 

section share (excluding prior entrepreneurs) that is Hispanic; section share (excluding 

prior entrepreneurs) that are races other than white, black, Asian, and Hispanic; section 

share (excluding prior entrepreneurs) that is aged 30 or over at matriculation; section 

                                                 
28 The information on Guru.com was obtained from http://www.venturexpert.com (accessed September 16, 
2011), Factiva, and other on-line sources. 



 37

share (excluding prior entrepreneurs) with a college major in natural science; section 

share (excluding prior entrepreneurs) with a college major in medical science; section 

share (excluding prior entrepreneurs) with a college major in computer science. 

Finally, the reported analyses focus on the 60 sections with at least 70 class cards. 

As additional robustness checks, we repeat the analyses using only sections with a 

minimum of 75 or 80 class cards (a total of 57 and 40 sections respectively). When we 

reproduce the analyses in Tables 5 and 6 using these higher cut-off points, the results are 

generally robust, despite the smaller sample sizes. Hence, the results are not a 

consequence of any assumptions regarding missing observations.   

3.4. Interpretation 

As noted in the introduction, we can offer a variety of explanations for the observed intra-

section learning. A first possible channel is direct interaction of pre-MBA entrepreneurs 

with aspiring entrepreneurs in their section and their counsel about what constitutes a 

good business idea. As argued by the alumni and students we interviewed, students who 

were entrepreneurs prior to business school play a critical if informal knowledge 

dissemination role: would-be entrepreneurs approach these individuals and receive help 

evaluating their potential business plans and understanding their strengths and 

weaknesses. While others in the section may have the same analytical skills, the personal 

experience of prior entrepreneurs gives them a credibility others do not have. 

A second interpretation is that the mere presence of former entrepreneurs and 

their reports about their prior entrepreneurial ventures discourage all but the best “would-

be entrepreneurs.” Aspiring entrepreneurs with less promising ideas abandon or at least 

postpone their plans to start a company, even without direct interaction and specific 
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counsel. This explanation is particularly plausible if the entrepreneurial peers had 

negative experiences, given that we estimated the peer effect to be significantly negative. 

A third interpretation is that entrepreneurs do not affect other students directly, 

but raise interest in entrepreneurship and induce their section-mates to take additional 

entrepreneurship classes as electives, which may help them to subsequently make better 

decisions about pursuing new ventures.  

The third hypothesis is directly testable. We use our additional data on enrollment 

in elective entrepreneurship classes to test whether there is a positive relationship with 

the presence of prior entrepreneurs in a section. We employ the share of classes under the 

sponsorship of the Entrepreneurial Management unit that students without entrepreneurial 

background took in their second year as the new outcome variable, and repeat the prior 

regression analyses. Column 5 of Table 7 displays the regression specification that 

mirrors Column 2 of Table 5. With the exception of two significant time dummies (the 

classes of 2000 and 2001 had the greatest enrollment in entrepreneurship classes), none 

of the coefficient estimates are significant at the 5% confidence level, and only the 

coefficient estimate for gender is marginally significant but varies depending on the 

regression specification. Most importantly, the impact of peers with an entrepreneurial 

background is very small and never significant.29 Hence, we find no support for the 

explanation that entrepreneurial peers induce others to take entrepreneurship classes. 

It is harder to distinguish between the remaining two explanations, “direct 

counsel” (channel 1) and “mere presence” (channel 2), though the finding on enrollment 

in entrepreneurship classes points towards channel 1: If the mere presence of 

                                                 
29 Because the number of electives shifted over time, and the number of sections with 70 or more class 
cards is not evenly distributed, we repeated these analyses for all sections and for the set of the sections 
with 40 or more class cards. We use weighted and unweighted data. The results are the same. 
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entrepreneurial peers discourages start-up activities, we might also expect it to dampen 

interest in entrepreneurship classes, and hence a negative coefficient.  

Relatedly, the second interpretation would be more plausible if pre-MBA 

entrepreneurs tended to be failed entrepreneurs, whose previous experiences diminish the 

enthusiasm of their peers about entrepreneurship. However, as we have seen, pre-MBA 

entrepreneurs in our sample have been quite successful, with some even having sold 

companies for tens of millions of dollars.  

Still, it is possible that prior entrepreneurial experiences color the influence that 

pre-MBA entrepreneurs exert on the entrepreneurial ambitions of their peers: A 

successful entrepreneur may be more encouraging, and a failed entrepreneur may be 

more discouraging. We test the latter hypothesis using our hand-collected data on the 

outcomes of prior ventures of MBA students. In Table 8, we present the same regression 

specifications as in Table 6, but split the share of pre-MBA entrepreneurs into those who 

were successful and those who failed (total rate minus successful rate).  

For unsuccessful post-MBA entrepreneurs, we find a negative peer effect both of 

successful prior entrepreneurs and of unsuccessful prior entrepreneurs (Panel A). Both 

coefficients are similar in magnitude to our previous estimations, though estimated less 

precisely. (The loss of significance is not surprising given that we are splitting the already 

small number of pre-MBA entrepreneurs into two groups.) Only the Tobit specification 

suggests a stronger peer effect of unsuccessful entrepreneurs, but the differences in 

coefficients are insignificant in all cases.  

Panel B of Table 8 shows the effect on successful entrepreneurs. As in Table 6.B, 

the goodness-of-fit is considerably lower, and only 2 out of the 12 coefficients of interest 
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are even marginally significant. Directionally, the peer effect of successful pre-MBA 

entrepreneurs is always positive while the effect of failed pre-MBA entrepreneurs is 

either negative or very close to zero. The differences are never significant.  

Overall, we have at best very weak evidence that the specific prior experience of 

entrepreneurial peers is central in explaining our results. Again, it is possible that the lack 

of significant results reflects the lack of power. 

As a final piece of evidence, we examine the variance, rather than the mean rate 

of entrepreneurship. If intra-section learning relies on direct interaction, then the effect 

will be noisier when there are few pre-MBA entrepreneurs present and, hence, interaction 

and productive feedback are less likely. With a large number of entrepreneurs, instead, 

one of them will be critical and experienced enough to detect the “flaw” in a business 

plan. Hence, sections with fewer pre-MBA entrepreneurs should display greater variance 

in their post-MBA entrepreneurship rates, particularly for unsuccessful entrepreneurs.  

Table 9 reports the variance in post-MBA entrepreneurship, separately for 

sections with below-median and above-median shares of pre-MBA entrepreneurs. We 

find that sections with more prior entrepreneurs have 44% less variance in the overall 

entrepreneurship rate, a pattern entirely driven by unsuccessful entrepreneurs. However, 

at least part of the reduction in variance may be mechanistic, due to the reduced 

likelihood of becoming entrepreneur when many pre-MBA entrepreneurs are present. To 

alleviate this concern, we repeat the analysis restricted to sections with a minimum 

number of students becoming an entrepreneur: at least three, five, or seven. In all cases, 

the results are directionally similar: the variance in the rate of unsuccessful (and overall) 

post-MBA entrepreneurship is always higher in sections with below-median numbers of 
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experienced entrepreneurs than in section with above median numbers, and the reverse 

holds for the rate of successful post-MBA entrepreneurship. Most of the differences in 

variance become insignificant, likely due to the small sample size when we impose the 

double-restriction of a minimum number of class cards (70+) and of a minimum number 

of post-MBA entrepreneurs. The results are significant when we only use the restriction 

of at least three, five, or seven post-MBA entrepreneurs, regardless of the class-card 

count. 

The robust (and non-mechanistic) reduction in variance is another piece of 

suggestive evidence, pointing to the role of direct interaction with entrepreneurial peers.  

4. Conclusions 

This paper tests how social interactions with peers affect an individual’s decision to 

become an entrepreneur and, hence, the aggregate returns to entrepreneurship. We 

examine the decision to become entrepreneur among recent graduates of the Harvard 

MBA program. This setting is empirically attractive due to the exogenous assignment of 

students to sections, the ability to distinguish success and failure in terms of firm 

outcomes, and the potentially high economic impact of these ventures.  

We find that a higher share of former entrepreneurs in a given section reduces 

entrepreneurship rates among students without an entrepreneurial background. This effect 

is driven by a significantly lower rate of (ultimately) unsuccessful entrepreneurs. The 

influence on (ultimately) successful post-MBA entrepreneurs, instead, is 

indistinguishable from zero, and significantly more positive than the effect on 

unsuccessful entrepreneurship. Whether former entrepreneurs were successful or 

unsuccessful themselves has, at best, a weak directional effect. Our results are consistent 
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with intra-section learning, where the close ties between students in a section lead to an 

enhanced understanding of the merits of proposed business ideas.  

Our analysis of peer effects in entrepreneurship is relevant to policy-makers, 

business school faculty, and administrators, given the emphasis they are placing on the 

promotion of entrepreneurship. During the 1990s and early 2000s, for example, U.S. 

business schools created over 300 endowed chairs in entrepreneurship, typically paying 

salaries significantly above those in other business disciplines (Katz 2004). Hundreds of 

business plan contests were launched during these years, and entrepreneurial activities 

often benefitted from public subsidies. The results of this paper suggest a slight 

redirection in educational and policy initiatives. Much of the benefit from exposure to 

entrepreneurship appears not to come from encouragement of more entrepreneurship, but 

from help in weeding out ventures that are likely to fail. Rather than attracting more 

people into entrepreneurship, schools and policy-makers may want to provide support to 

would-be entrepreneurs in critically evaluating their most promising business ideas. 

We see two avenues for future research. First, this paper suggests a richer role for 

peer effects in entrepreneurship. Most prior studies have implicitly assumed a “contagion 

effect,” where the decision of one individual to begin a firm leads others to do so 

likewise. Our analysis suggests that the mechanism is more complex: feedback of 

experienced entrepreneurs may encourage or discourage would-be entrepreneurs. 

Uncovering the exact channels of interaction would be worthwhile—also beyond the 

business school setting (e.g., for the design of business incubators).  

A second avenue for future research is exploiting section assignments at HBS for 

phenomena other than entrepreneurship. Shue’s (2011) analysis of executive 
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compensation and acquisition strategies of companies headed by HBS graduates 

represents one such analysis, and points to the breadth of research topic possible with 

these data. The differing educational, national, religious, and experiential mixtures of the 

various sections should make this a fertile testing ground for a variety of network and 

peer effects.  



 44

References 

 

American Sports Data, A Comprehensive Study of Sports Injuries in the U.S., (Cortlandt 

Manor, NY: American Sports Data, 2005). 

 

Arabsheibani, Gholamreza, David de Meza, John Maloney, and Bernard Pearson, “And a 

Vision Appeared unto them of a Great Profit: Evidence of Self-deception Among the 

Enemployed,” Economic Letters 67 (2000): 35-41. 

 

Baruch, Yehuda, Response Rates in Academic Studies—A Comparative Analysis, (Berlin: 

Springer Science+Business Media, 1999). 

 

Bernardo, Antonio, and Ivo Welch, “On the Evolution of Overconfidence and 

Entrepreneurship,” Journal of Economics & Management Strategy 10 (2001): 301-30. 

 

Bhide, Amar. The Origins and Evolution of New Businesses, (New York: Oxford, 2000). 

 

Brav, Alon and Paul Gompers, “Myth or reality? The Long-run Underperformance of 

Initial Public Offerings: Evidence from Venture and Nonventure Capital-backed 

Companies,” Journal of Finance 52 (1997): 1791-1821. 

 

Broughton, Philip, D., Ahead of the Curve: Two Years at Harvard Business School, (New 

York: Penguin, 2008).  



 45

 

Camerer, Colin, and Dan Lovallo, “Overconfidence and Excess Entry: An Experimental 

Approach,” American Economic Review 89 (1999): 306-318. 

 

Cohen, Lauren, Andrea Frazzini, and Christopher J. Malloy, “The Small World of 

Investing: Board Connections and Mutual Fund Returns,” Journal of Political Economy 

116 (2008): 951-979. 

 

Cohen, Lauren, Andrea Frazzini and Christopher Malloy, “Sell-side school ties,” Journal 

of Finance 65 (2010): 1409-1437. 

 

Cruikshank, Jeffrey L., Shaping the Waves: A History of Entrepreneurship at Harvard 

Business School (Boston: Harvard Business School Publishing, 2005).   

 

Davis, Steven J., John C. Haltiwanger, and Scott Schuh, Job Creation and Destruction 

(Cambridge: MIT Press, 1998). 

 

De Meza, David, and Clive Southey, “The Borrower’s Curse: Optimism, Finance, and 

Entrepreneurship,” Economic Journal 106 (1996): 375-386. 

 

Djankov, Simeon, Rafael La Porta, Florencio Lopez-de-Silanes, and Andrei Shleifer, 

“The Regulation of Entry,” Quarterly Journal of Economics 117 (2002): 1-37. 

 



 46

Duflo, Esther, and Emmanuel Saez, “Participation and Investment Decisions in a 

Retirement Plan: The Influence of Colleagues’ Choices,” Journal of Public Economics 85 

(2002): 121-148. 

 

Duflo, Esther, and Emmanuel Saez, “The Role of Information and Social Interactions in 

Retirement Plan Decisions: Evidence from a Randomized Experiment,” Quarterly 

Journal of Economics 118 (2003): 815-842. 

 

Eesley, Charles, David Hsu, and Edward Roberts, “Entrepreneurs from Technology-

based Universities: Evidence from MIT,” Research Policy 36 (2007): 768-788. 

 

Evans, David S., and Linda S. Leighton, “Some Empirical Aspects of Entrepreneurship,” 

American Economic Review 79 (1989): 519-535. 

 

Ewing, David W., Inside Harvard Business School: Strategies and Lessons of America’s 

Leading School of Business, (New York: Times Books, 1990). 

 

Giannetti, Mariassunta, and Andrei Simonov, “Social Interactions and Entrepreneurial 

Activity,” Journal of Economics and Management Strategy 18 (2009): 665-709.  

 

Gompers, Paul A., Anna Kovner, Josh Lerner, and David Scharfstein, “Performance 

Persistence in Entrepreneurship, Journal of Financial Economics 96 (2010): 18-32. 

 



 47

Gompers, Paul A., Anna Kovner, Josh Lerner, and David Scharfstein, “Venture Capital 

Investment Cycles: The Impact of Public Markets,” Journal of Financial Economics 87 

(2008): 1-23. 

 

Gompers, Paul A., Josh Lerner, and David Scharfstein, “Entrepreneurial Spawning: 

Public Corporations and the Genesis of New Ventures, 1986 to 1999,” Journal of 

Finance 60 (2005): 577-614. 

 

Hall, Robert E., and Susan E. Woodward, “The Burden of the Nondiversifiable Risk of 

Entrepreneurship,” American Economic Review 100 (June 2010): 1163–1194. 

 

Hurst, Erik K., and Benjamin W. Pugsley, “What Do Small Businesses Do?,” Brookings 

Papers on Economic Activity (2012, forthcoming). 

 

Jovanovic, Boyan, 1982, “Selection and the Evolution of Industry,” Econometrica 50 

(1982): 649-670. 

 

Kanniainen, Vesa, and Christian Keuschnigg, Venture Capital, Entrepreneurship, and 

Public Policy (Cambridge, Massachusetts: MIT Press, 2004). 

 

Kaplan, Steven and Antoinette Schoar, “Private Equity Performance: Returns, 

Persistence, and Capital Flows,” Journal of Finance 60 (2005): 1791-1823. 

 



 48

Katz, Jerome A., Survey of Endowed Positions in Entrepreneurship and Related Fields in 

the United States (St Louis, Missouri: J. A. Katz and Associates, 2004). 

 

Kerr, William, Josh Lerner and Antoinette Schoar, forthcoming, The consequences of 

entrepreneurial finance: evidence from angel financings, Review of Financial Studies. 

 

Korteweg, Arthur and Morten Sorensen, “Risk and Return Characteristics of Venture 

Capital-backed Entrepreneurial Companies,” Review of Financial Studies 23 (2010): 

3738-3772. 

 

Kremer, Michael and Dan Levy, “Peer Effects and Alcohol Use among College 

Students,” Journal of Economic Perspectives 22 (Summer 2008): 189-206. 

 

Landier, Augustin, and David Thesmar, “Financial Contracting with Optimistic 

Entrepreneurs: Theory and Evidence,” Review of Financial Studies 22 (2009):117-150.  

 

Manski, Charles F., “Identification of Endogenous Social Effects: The Reflection 

Problem,” Review of Economic Studies 60 (1993): 531–542. 

 

Nanda, Ramana, and Jesper Sorensen, “Workplace Peer Effects and Entrepreneurship,” 

Management Science 56 (2010): 1116-1126. 

 

National Venture Capital Association, 2005 Venture Capital Yearbook (Newark, New 



 49

Jersey: Venture Economics, 2005). 

 

Orth, Charles D., III, Social Structure and Learning Climate: The First Year at the 

Harvard Business School, (Boston: Division of Research, Graduate School of Business 

Administration, Harvard University,, 1963). 

 

Parker, Simon C., The Economics of Self-Employment and Entrepreneurship, (New York: 

Cambridge University Press, 2004). 

 

Phalippou, Ludovic and Oliver Gottschalg, “The Performance of Private Equity Funds,” 

Review of Financial Studies 22 (2009): 1747-1776. 

 

Ritter, Jay, “The Long-run Performance of Initial Public Offerings,” Journal of Finance 

46 (1991): 3-27. 

 

Sacerdote, Bruce, “Peer Effects with Random Assignment: Results for Dartmouth 

Roommates,” Quarterly Journal of Economics 116 (2001): 681-704. 

 

Shue, Kelly, “Executive Networks and Firm Policies: Evidence from the Random 

Assignment of MBA peers,” Unpublished working paper, Harvard University (2011). 

 

 

Appendix: The HBS Section System 



 50

Our paper exploits the section system of the Harvard Business School to address several 

challenges to identification present in previous literature. The key feature is the 

exogenous assignment into sections discussed in the paper. Another advantage of the 

empirical setting is that section-mates form extremely close ties, and are a setting where 

peer effects—if they are empirically observable at all—would likely be seen.  

The social ties established in the first year appear to remain extremely strong, 

even after the second-year, when student take elective classes together with the entire 

student body, and long after graduation. We provide two examples of the numerous 

journalistic accounts and academic studies analyzing the social experience engendered by 

HBS sections. First, in his account of Harvard Business School life, Ewing (1990) 

observes: 

If the Harvard Business School has a secret power, it is the section system. 

A first-year section has a life of its own, bigger than any student, more 

powerful than any instructor… All first-year instructors I know agree 

about the awesome power of the section. They may not like the way it 

works in all cases—who does—yet it drives B-school students to learn, 

influencing them in countless ways. 

 

Similarly, in a field-based analysis of the first-year HBS experience, Orth (1963) 

highlights that section-mates, “in order to insure feelings of safety and, if possible 

competence in a situation that is initially perceived to them to be threatening,” adopt 

“norms” that affect study patterns, social interactions, and even choices regarding 

employers with which to interview. He notes that “some norms appeared to be common 
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to all first-year sections and others appeared to develop as a result of a particular 

section’s pattern of adaptation to the conflicts and pressures of the first year.” 

 
 


