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Abstract 

Specific Language Impairment (SLI), a genetic developmental disorder, offers insights into 

the neurobiological and computational organization of language. A subtype, Grammatical-

SLI, involves greater impairments in “extended” grammatical representations, which are 

nonlocal, hierarchical, abstract, and composed, than in “basic” ones, which are local, linear, 

semantic, and holistic. This distinction is seen in syntax, morphology, and phonology, and 

may be tied to abnormalities in the left hemisphere and basal ganglia, consistent with new 

models of the neurobiology of language which distinguish dorsal and ventral processing 

streams. Delineating neurolinguistic phenotypes promises a better understanding of the 

effects of genes on the brain circuitry underlying normal and impaired language abilities.  
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Introduction 

With the lack of animal models for language, and the inability to use invasive procedures 

with humans except out of medical necessity, our knowledge of the neurobiology of 

language has long depended upon natural experiments. During the 19th and 20th centuries, 

studies of patients with acquired brain lesions provided key insights [1-3]. Understanding of 

language in the 21st century promises to be enriched by data from developmental disorders. 

Specific Language Impairment (SLI), a family of language impairments in otherwise normal 

children, is highly heritable and has been linked so far to four genes. These discoveries 

provide a new route to understanding the complex pathways from genes and environment to 

the neural systems underpinning language.  

 

This understanding depends, however, on breaking down the coarse categories of 

“language” and “language impairment” and examining the way that specific components of 

language are affected in specific disorders, and how they correlate with brain function and 

structure. That is, rather than searching for a direct link from genotype to behaviour, we 

suggest linking genetic variants with alterations in the neural substrates of subcomponents 

of language processing.  

 

Specific Language Impairment (SLI)  

SLI is a heterogeneous family of impairments which affect the acquisition of language in 7% 

of children, an average of two in every classroom [4]. It frequently co-occurs with other 

disorders such as Dyslexia, Autistic Spectrum Disorders, and Attention Deficit and 

Hyperactivity Disorder [5, 6], with which it also shares some phenotypic and genotypic 

characteristics [7, 8]. Many genetic variants contribute to SLI across individuals, consistent 

with the heterogeneity of the disorder [7]. Despite this heterogeneity, the majority of children 

are impaired in grammatical functions, particularly syntax and morphology, and often 
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phonology as well (Box 1) [4, 9, 10]. One of us has identified a subtype of the broad SLI 

category called Grammatical SLI (G-SLI) which is concentrated in grammar, though it may 

embrace secondary deficits, for example, in the lexicon [4, 9-11], though see also [12, Rice, 

1998 #2042, 13]. Though discovered in English-speaking children, G-SLI has since been 

identified in other languages [14-16].   

 

Grammatical Phenotypes of SLI 

This paper focuses on what G-SLI can reveal about the structure and neural instantiation of 

language. Crucially, G-SLI is not a global impairment of language or even of grammar but is 

strongly manifested in certain aspects of linguistic performance while leaving others largely 

intact. This raises the possibility that the contrast reflects a key division within the neural or 

genetic substrates of language. In particular, children with G-SLI have difficulty interpreting 

and producing syntactic structures such as wh-questions, the passive voice, and tense-

marking; words that must be grammatically inflected in real time; and complex phonological 

structures embracing multiple syllables and clusters of phonemes. But they have age-typical 

performance on syntactic tasks in which lexical semantic information is sufficient, on 

morphological tasks in which stored, nondecomposed forms are sufficient, and on 

phonological tasks in which strings of phonological units are sufficient. The problems with 

composed forms, moreover, persist into adulthood. We suggest that this pattern of deficits 

may reflect two modes of grammatical representation and processing we call Basic and 

Extended (Box 1), and that individuals with G-SLI are specifically impaired in processing 

Extended representations.  

 

Extended versus Basic Syntax  

Extended Syntax involves hierarchical structures and dependencies between words, often 

spanning the entire clause, which are computed in real time. For example, in wh-questions 
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such as Who did Joe see __? the wh-word and the empty position after see are in a 

dependent relation, which may be analysed as the movement of the word from its original 

position in an underlying structure (Figure 1). Additionally, Extended syntax is abstract: the 

assembly and interpretation of phrases depend on their grammatical categories (noun, verb, 

tense) and relations (subject, head, complement) defined by correlated privileges of 

occurrence. Abstraction is central to grammar: the acquisition of abstract symbolic rules 

enables a person to generalize a pattern learned from a finite number of exemplars to an 

infinite number of new ones which need not resemble them in sound or meaning [17, 18].  

 

Basic Syntax, in contrast, involves relations between words that can be determined from the 

meanings of the words themselves or from dependencies between adjacent words. Basic 

syntax may consist of holistic representations, in which sequences are stored and retrieved 

without necessarily analysing their grammatical structure, and instead are linked directly to 

their semantic and pragmatic properties and their ordering relative to adjacent units.  

 

Extended and Basic representations differ in their processing requirements. In basic syntax,  

words and their features (number, gender, meaning) can be inserted directly from the 

lexicon, whereas in Extended syntax, relations between words within and across hierarchical 

units must be computed by operations such as movement and feature checking or 

unification.  Figure 1 shows some of the extended syntactic relations which must be 

computed, according to a major theory of grammar [19], in assigning tense to a clause and 

in producing or interpreting wh-questions; other theories require operations of comparable 

complexity.  

 

Impairments in Syntax 

Table 1 shows the results of a variety of experiments, differing widely in their methods  and 

processing demands, in which children with G-SLI display problems with Extended syntax 
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(specifically, wh-questions similar to those illustrated in Figure 1), but perform well in control 

conditions requiring only basic syntax or lexical semantics [9, 10, 20].  

 

Experiments testing other syntactic constructions show similar patterns. For example, 

teenagers with SLI rely on number information as a shortcut to understanding relative 

clauses in the same way that unimpaired six-year-olds do [21]: upon hearing The cat that is 

chasing the dogs is black,  they understand that the cat is black rather than the dog, 

because plural dogs cannot be the subject of singular is black, whereas with The cat that is 

chasing the dog is black, which provides no such cue, their performance is close to chance. 

Other examples of structures which require extended syntax for interpretation, and with 

which individuals with SLI show comprehension difficulties, are reversible passive 

sentences, such as The truck was hit by the car [22]. Likewise, they have trouble assigning 

an ambiguous pronoun to an  antecedent specified by grammatical constraints, as in Mowglii 

said Balooj is tickling him (in which Baloo must be tickling Mowgli, not himself, as opposed to 

Mowglii said Balooj is tickling himself, where Baloo can only be tickling himself), while having 

no trouble assigning pronouns to antecedents of the same gender, as in Jane says Paul is 

tickling her, where her can only be female Jane, not male Paul [23]. Similar patterns are 

found in SLI children speaking other languages [15]. When the memory load required to link 

a pronoun to its antecedent is controlled or reduced (as in agentless passive sentences such 

as The truck was hit), or when memory abilities are matched in a control group, the 

individuals with G-SLI still have more trouble with sentences requiring extended syntactic 

analysis [9, 21, 24]. G-SLI children’s difficulties are also seen in their production, such as the 

omission of tense-marking (as in Yesterday I fall down [9, 25], a phenomenon at the 

intersection of syntax and morphology.  

 

The abstractness of extended syntax also poses problems. When teenagers with G-SLI try 

to learn simple abstract rules, such as ABB vs ABA (realized in contrasts such as vi ko ko 
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versus  vi ka vi), they failed learn the instances, to generalize them to new sequences, and 

to show the expected electrophysiological brain response to violations.  

 

Extended versus Basic Morphology  

G-SLI also impairs morphology in a selective fashion which targets abstract combinatorial 

operations. Extended morphological objects are generated, perceived, and represented as 

combinations of two or more morphemes, whereas Basic ones are stored and retrieved as 

wholes, or at best as containing parts which do not freely combine with other parts [9, 10]. 

For example, in English, irregular past-tense forms (ate, bought) are basic and handled by 

memory, while regular past-tense forms (jumped, agreed) are morphologically complex and 

may be computed from the verb stem and -ed suffix, particularly when the verb is rare or 

novel [18, 26],  

 

Impairments in Morphology 

Problems with regular inflectional morphology (an Extended process) are a hallmark of SLI 

in English speakers [9, 27-30]. In contrast to unimpaired children, children with G-SLI seem 

to habitually store regular forms as wholes: they have more trouble with low-frequency than 

with high-frequency regular forms (suggesting they have memorized the high-frequency 

ones); they are no better at producing regular than irregular forms; they produce regular 

plurals inside compounds (rats-eater), which unimpaired speakers deem ungrammatical; and 

they have great difficulty inflecting novel verbs and nouns, where the demand on 

computation is highest and memory lookup is unavailable [9, 10, 28-30]. 

 

Similarly, even when decomposition of extended morphological forms would facilitate 

production and perception, children with G-SLI link the word’s sound directly to its lexical 

form in memory [9, 10]. For example, words ending in sequences that never occur in 
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monomorphemic forms, such as vd in loved and gd in hugged, or the German fst as in du 

kaufst (you buy), must have a morphological boundary falling within the word-final cluster, 

making them unambiguously inflected. Unimpaired individuals are sensitive to this cue; G-

SLI individuals are not [9, 10, 31]. 

 

At first glance, derivational morphology (Box 1) ought to parallel inflectional morphology, with 

predictable, freely generated regular forms (e.g., uncorkability) and idiosyncratic, stored 

irregular ones (e.g., destroy-destruction). Nonetheless with unimpaired speakers even 

regular derived forms seem to be stored and retrieved as wholes [32], presumably because 

derivational suffixes have more semantic content than inflectional ones and their 

combinations are more likely to be lexically specific. We speculate that this may parallel the 

surprising ability of G-SLI individuals to provide regular derived forms on demand, such as 

sillier from silly and rocky from rock [33]. Though the children rarely omit derivational 

suffixes, they occasionally misapply them, as when they convert happy to happer or happest 

rather than happier and happiest, and frills to frillsy rather than frilly. This pattern may reflect 

their mosaic of abilities: they have slots in memory for familiar derived forms but are 

impaired at reconstructing the sequence of morphemes that fills it.  

 

Extended versus Basic Phonology 

We now heuristically apply the Extended-Basic distinction to a third component of language, 

phonology. In this extension, Basic phonological representations consist of strings of 

phonemic segments made up of distinctive features. Extended phonological representations 

are hierarchically organized into prosodic units of increasing size: the syllable, the foot, the 

prosodic word, the intonational phrase, and the utterance [34]. 

 

In speech perception, the Basic and Extended aspects of phonological representations are 

initially processed via independent streams which are then later integrated [35, 36]. Basic 
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representations require the analysis of rapidly changing events in the speech signal within a 

narrow time window. This enables acoustic distinctions to be drawn between phonemes 

(such as the place contrast between b and d) and phoneme sequences (such as ts versus 

st). Basic phonology is necessary for building segments into syllables. 

 

In contrast, Extended representations require the analysis of more slowly unfolding events in 

the speech signal using a wider sampling window. Extended phonology is necessary for 

building syllables into feet, words, and larger prosodic domains. Amongst other things, it 

handles word stress, syllable rate, and intonation. 

 

Impairments in phonology 

Contrary to a common assumption that SLI originates in a difficulty in processing transient 

speech signals which then propagates to higher-level representations, individuals with G-­‐SLI 

have few problems processing Basic phonological representations such as segments. They 

are age-­‐appropriate in categorical perception of phonemes such as b and d [4, 37], and 

children with broad SLI can distinguish minimal segmental contrasts between stored words, 

such as van and fan [37]. Children with broad SLI also compensate for coarticulation effects 

that can mask phonemic contrasts; for example, they recognize that brow[n] roof and 

brow[m] bell contain instances of the word brown but that brow[m] lamp does not [38]. They 

can also follow instructions to exchange segments in words, such as converting sad cat to 

cad sat [37].  

 

Basic phonology is also sufficient for people with broad SLI to perceive and articulate 

adjacent sounds in consonant clusters in real and novel words. Their problem consists in 

putting them in the wrong structural position, saying flakesta rather than faklesta, 

presumably because they fail to represent details of the extended phonological structure 

[39]. Similarly, they have more trouble producing regularly inflected forms that end in 
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complex clusters (jumped) than those with simple endings (sewed) [40]. This may explain 

their reduction of trisyllabic derived forms such as happiest to *happest [Marshall, 2007, 

#7929}. 

 

Individuals with G-­‐SLI also have difficulties with the extended representations needed to 

handle prosody. In non-­‐word repetition tasks, they make more errors in producing consonant 

clusters as the words become more prosodically complex [41]. Children with broad SLI also 

have difficulty using prosodic cues to distinguish phrases such as [red] [and black and pink 

socks] from [red and black] [and pink socks] [42].  

 

Neural Substrates of the Distinction between Basic and Extended 

Grammar   

Recent advances using EEG, MEG, fMRI, and DTI tractography have led to sophisticated 

new models of the neural organization of language [35, 43-45]. They allow us to assess 

whether the Extended processes which pose the greatest problems in G-SLI implicate brain 

networks that are different from those supporting Basic processes.  

 

Syntax 

The new models (Figure 2) go beyond the classic Broca’s and Wernicke’s areas and 

distinguish at least three fronto-temporal networks related to syntactic processing [43]. First, 

a dorsal pathway links Brodmann Area  44 (a part of Broca’s Area) via the arcuate fasciculus 

(AF) to the posterior Superior Temporal Gyrus (a part of Wernicke’s Area). It is said to 

underlie “hierarchical structures independent of semantics” in natural and artificial 

languages, and “syntactically complex sentences,” particularly those involving movement 

[43, 44]. It is associated with the rapid (100-200 ms) Early Left Anterior Negativity [44] and 
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Syntactic-Mismatch Negativity [46-48], which we will lump together as Early Syntactic Brain 

Responses (ESPRs).  

 

There are also two ventral pathways.  One, which supports “local phrase structure,” links the 

frontal operculum (adjacent to Broca’s) via the Uncinate Fasciculus (UF) to the anterior STG, 

and it is associated with a later (300-700 ms) Left Anterior Negativity (LAN). The other, 

supporting retrieval of stored words and lexical semantic processing, links BA45 (another 

part of Broca’s Area) via the Extreme Capsule Fibre System (ECFS), to the posterior 

temporal lobe, particularly the Superior Temporal Gyrus and Superior Temporal Sulcus.  

 

The functions of the dorsal and ventral syntactic circuits correspond well to what we call 

Extended and Basic syntax. Interestingly, the dorsal pathways, unlike the ventral ones, do 

not fully mature until around 7 years [49]. Accordingly, the brain responses of 2-year-olds are 

sensitive to sentences that violate Basic syntax, with a left lateralised ERP, but not to 

violations of Extended syntax [50], which only develops by 7-9 years [20]. Interestingly, the 

dorsal pathways in human brains differ substantially from those in other primates, suggesting 

that phylogenetic changes to the dorsal pathway may have been a key driver of the evolution 

of language [43].  

A still later neural response, which is elicited with both extended and basic syntax, reaches a 

maximum at around 600 msecs (the P600), and is observed bilaterally in frontal or parietal-

central locations; it represents a second-pass reanalysis under participants’ strategic control  

[51]. The P600 also involves subcortical structures, namely the caudate nucleus of the basal 

ganglia, which responds to ungrammatical and ambiguous sentences [52].  

 

Morphology 

Two aspects of morphology require Extended processing: the recognition that a word must 

be inflected in certain contexts (e.g., in tensed clauses; Figure 1), and the computation of the 
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appropriate inflectional form, which for regular verbs (particularly novel and rare ones) 

involves the analysis of the word as a stem plus a suffix. Both computations are composed, 

hierarchical, and abstract (though local), and as mentioned, both present difficulties to 

children with G-SLI. Both components of morphological processing have long been 

associated with Broca’s area [26, 53, 54, 55 4760].  A recent study using high-precision 

intracranial recordings revealed distinct areas within Broca’s area corresponding to the 

selection of the appropriate tense or number (at ~320 msec) and to the computation of the 

appropriate morphological form (at 450 msec) [56]. fMRI of the same patients implicated the 

posterior superior temporal cortex as well. These studies suggest that as with Extended 

syntax, Extended morphology is mediated by a dorsal pathway.  

 

These studies did not distinguish regular from irregular inflection, but a comprehensive study 

of priming patterns in aphasic patients, together with fMRI in normal adults, specifically tied 

regular inflection to “a core decompositional network linking left inferior frontal cortex with 

superior and middle temporal cortex, connected via the arcuate fasciculus” [45]—namely, a 

dorsal pathway similar to the one identified for Extended syntax (Figure 3). A recent meta-

analysis of neuroimaging studies similarly found that regular inflection consistently activates 

BA 44 [57].  As with syntax, studies regular inflection also appears to engage the head of the 

caudate nucleus [52-54].  

 

In contrast, the computation of irregular forms involves storage and retrieval from lexical 

memory, a Basic process. Studies with aphasic patients and with fMRI suggest that its 

neural substrate is largely distinct from that for regulars, involving bilateral posterior 

temporoparietal regions [45, 53, 54, 58, 59]. They are thought to be part of a larger, complex 

network for lexical storage and retrieval.  
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Yet another pattern was found with derivational morphology. As with inflection, some derived 

words are regular and transparent in their structure and could be analysed by rules (bravely), 

whereas others are opaque and irregular (archer, depth). However, regular derived forms do 

not seem to implicate the dorsal network, nor do they differ in their anatomical substrate from 

irregular ones: both are stored in a network of whole forms that activates the ventral pathway 

bilaterally, specifically, BA47, the temporal pole, and anterior MTG [32].  (The transparent 

derived forms, however, showed different patterns of activity within this network from the 

opaque ones.) We speculate that the nondecompositional (Basic) nature of derivation may 

explain why G-SLI children are competent at generating derived forms (albeit not always 

with the proper choice of suffix).   

 

Phonology 

A recent model of the cortical organization of phonology [35] makes a distinction similar to 

what we call Basic and Extended phonological processing (Figure 4). The auditory input is 

first subjected to spectrotemporal analyses in auditory cortex bilaterally (though with some 

hemispheric differences), and then phonological analysis in the Superior Temporal Sulcus, 

before it splits into two streams. One is a left-hemisphere dorsal pathway which relates 

words’ sounds to their articulation; it is deployed in word learning, speech monitoring, verbal 

working memory, and the articulation of long, complex, low-frequency, and novel words. The 

other is a bilateral ventral pathway which relates words’ sounds to their meanings, and from 

there to diffuse bilateral conceptual networks, as well as to a left-hemisphere anterior 

temporal “combinatorial network.” 

 

The dorsal network appears to overlap the dorsal network proposed for syntax and 

morphology; the ventral pathway, the two ventral networks proposed by Friederici for syntax. 

The dorsal pathway seems to underlie the Extended Phonological skills that challenge SLI 

children, such as repeating or generating words with complex sequences of clusters, 
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syllables, or suffixes, and disambiguating phrases based on their prosody. The less-affected 

Basic Phonological processes, such as perceiving, discriminating, and exchanging 

phonemes, appear to be handled by areas for auditory and phonological analysis prior to the 

dorsal-ventral split, possibly a dorsal sub-stream extending to premotor areas (see Figure 4), 

and the ventral pathway, since G-SLI children are relatively good at recognizing words from 

their sounds.  

 

The brains of Individuals with SLI  

Neuroanatomy  

A recent meta-analysis of  25 studies of the neuroanatomical correlates of broad SLI 

revealed consistent structural anomalies in two regions: frontal cortex, particularly Broca’s 

Area and its right-hemisphere homologue, and the caudate nucleus [60]. The findings are 

generally consistent with SLI being a deficit of Extended processing (though Broca’s 

participates in aspects of Basic syntax and probably Basic morphology as well). The 

heterogeneity of SLI may mean that any meta-analysis of the entire syndrome will average 

away more specific neuroanatomical differences associated with its subtypes, including G-

SLI.  

Electrophysiology and Functional Neuroimaging  

Studies of ev,ent-related potentials have found that G-SLI speakers, unlike unimpaired 

controls, fail to show a difference in their Early Syntactic Brain Response between sentences 

with violations of movement and traces (Who did Barbie push the clown into the wall?) and 

their grammatical counterparts, presumably because they cannot parse the correct versions 

and so treat them as ungrammatical. The G-SLI participants also show an unexpected 

parietal right-lateralised N400-like  response, co-occurring with a typical P600 [20, 61]. The 

presence of the N400-like response (ordinarily elicited by semantically anomalous 
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sentences) suggests that individuals with G-SLI may be using ventral networks for lexical 

and semantic syntactic processing, perhaps to compensate for their deficit with Extended 

syntax [20]. French-, German-, and Italian-speaking individuals with SLI [62-65] showed a 

similar pattern. Looking within a similar time window (250-400 ms) at responses of English-

speaking children with broad SLI to grammatical words, other investigators found reduced or 

reversed asymmetries from sources in the lateral surfaces of the temporal cortices, and the 

absence of a deep neural generator in the hippocampus or basal ganglia {Shafer, 2001 

#2572;Shafer, 2000 #2573; Neville, 1993 #1171}.   

The functional and neuroanatomical data on SLI are still too coarse (both in SLI 

subcategories and neuroanatomical pathways) to strongly support the theory that G-SLI is 

caused by defects in the anatomical systems underlying Extended grammatical processing, 

but they are broadly consistent with it. They point to the left IFG, particularly BA44 and 

BA45, BA22 (superior temporal lobe), fibre tracts of the dorsal route which connect them, 

and to the basal ganglia.  

 

Genetic Correlates of Grammar Impairments  

Language impairment is highly heritable [66, 67], but as with all heritable variation, the 

individual genes underlying the variation have been elusive [68]. In this regard, SLI has seen 

more success than other psychological traits: to date, four candidate genes have been 

robustly associated with it  

 

The FOXP2 gene on chromosome 7q, which codes for a transcription factor that regulates 

many other genes, is perfectly associated within a large extended family (and in a small 

number of unrelated individuals) with a form of SLI which co-occurs with verbal dyspraxia (a 

motor-speech disorder). The sequence of the FOXP2 gene in humans differs from that in 

nonhuman primates, and has been identified as a target of natural selection [69 2305].  
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The CNTNAP2 gene on chromosome 7q (downstream from FOXP2) is associated with 

genetically complex forms of SLI, where different genetic variants are risk factors for the 

disorder [70]. The gene is also associated with Autism, Dyslexia and other developmental 

disorders that impact on language [70]. Its main linguistic manifestation demonstrated so far 

is in non-word repetition, which requires phonological analysis and memory, though it also 

associated with low composite scores for expressive and receptive language [8, 70]. 

Unimpaired Individuals with the CNTNAP2 alleles associated with SLI and autism have 

increased contralateral fMRI activation in the right frontal operculum (BA44) and middle 

temporal gyrus (BA 21), suggesting that CNTNAP2 variants can affect brain areas 

associated with language even in the general population [71].  

 

Two additional genes that appear specific to SLI are on chromosome 16q: ATP2C2 and 

CMIP. Both appear to cause an impairment of phonology and phonological memory [72]. 

Other studies have implicated other genes, with varying degrees of replicability and 

specificity [73]. All the genes associated with SLI appear to affect early embryonic 

development [7, 8]. During cortical neurogenesis they are expressed in similar brain regions, 

including deep layers of the cerebral cortex, striatum and cerebellum, presumably leading to 

abnormal neurobiological pathways later in life.  

 

A limitation of the extant literature is that most studies have used non-specific tests of 

language that do not isolate aspects of processing or their neural correlates. We suggest 

that a more promising strategy for discovering links to genes is to identify intermediate 

phenotypes consisting of functional and anatomical brain circuits which underlie particular 

aspects of the impairment (such as the distinction between Basic and Extended processing 

which we suggest characterizes the G-SLI subtype). The use of quick yet reliable tests (such 

as the Grammar And Phonology Screening test [74, 75], which can identify G-SLI by testing 
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extended syntax, morphology and phonology, promises to add new precision to the study of 

the genetic correlates of language impairment.  

 

Conclusion 

We have suggested that the study of language impairment has opened a new frontier of 

research which promises a comprehensive biological understanding of language, from 

evolution and genes through neuroanatomy and neural function to linguistic computation and 

then to overt speech and comprehension. These advances depend on a multi-level 

approach. Rather than mapping genetic variants directly to overall language impairment, 

researchers must characterize the intermediate links by probing for finer-grained linguistic 

components and modes of processing together with their neural substrates.  

 

As a preliminary example, we have argued for a distinction between a family of Basic 

representations and processes and a family of Extended ones. Extended syntax involves 

hierarchical, composed phrase structures, abstract rules, and movement; Basic syntax 

involves local phrases, lexical retrieval, and interpretation based on lexical semantics.   

Extended morphology involves multimorphemic, composed, regular forms; Basic 

morphology involves the retrieval of whole words comprising irregular, derived, or high-

frequency regular forms. Extended phonology involves the composition of complex syllables 

and higher prosodic units out of segments; Basic phonology involves discriminating and 

isolating segments and retrieving stored lexical forms. In all three components the Extended 

representations and processes are substantially more impaired than the Basic ones. 

Furthermore, the behavioural impairment with Extended grammar may be caused by 

abnormalities in the anatomy or functioning of distinct neural pathways, particularly dorsal 

circuits in which the arcuate fasciculus links regions in the superior posterior temporal lobe to 

the left inferior frontal gyrus, with further interconnections with  the left basal ganglia. The 

pattern of impairment in G-SLI thus points to a set of neural pathways underlying Extended 
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processing which appear to be a recently evolved, late developing, and genetically complex 

substrate for the most distinctively human cognitive trait.  
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Figure 1 Caption 

Examples of Extended Syntax  

 

The English rules for forming questions and marking tense and agreement are complex and 

belong to what we call Extended Syntax. Questions with wh-words (who, what, which, etc.) 

such as those in (B-F) require movement (solid arrows) from an underlying position 

(underscore) to a position in the surface string.  The result of the movement is audible when 

the wh-word corresponds to an object (C), the subject of an embedded clause (D, E), or the 

object of a preposition (F), but it is covert when the wh-word corresponds to the subject of a 

main clause (B). Tense and subject-verb agreement are obligatory in English main clauses; 

in wh-questions they must be marked on the auxiliary do if the clause lacks any another 

auxiliary, and the auxiliary must be inverted with the subject (Did he leave? rather than Left 

he?). These operations are handled by a complex sequence of movement and feature-

checking operations which we abbreviate here with dashed lines. If checking or movement 

has not been reliably computed, as (we hypothesize) is common in G-SLI, then for verbs that 

should be marked for tense, the infinitival form may be used instead, and the auxiliary may 

be omitted.  For wh-questions, the problem may be manifested as a filled gap or, if the 

movement is partial, the wh-word may be copied in the medial moved position (D, E). See 

Table 1 for examples of errors produced by such children.  

 

Figure 2 

Neural Correlates of Extended and Basic Syntax  

Syntactic processing in the brain is implemented in distinct dorsal and ventral circuits which 

may correspond to Extended and Basic syntax (Friederici, 2009 #2694;Friederici, 2012 
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#8487}. The dorsal route (solid red arrow) links Brodmann Area 44 (BA44, a part of Broca’s 

Area) via the arcuate fasciculus to the posterior Superior Temporal Gyrus (STG, a part of 

Wernicke’s Area); this pathway has been implicated in complex syntactic processing, 

including hierarchical phrase structure and movement, that is, Extended syntax. The caudate 

nucleus of the basal ganglia (not shown), a subcortical structure, is interconnected with 

frontal cortex, and it has also been found to affect Extended syntax. The first of the two 

ventral circuits (blue arrow) links the frontal operculum (FO, the cortex inferior and medial to 

BA 44 and 45, mostly hidden) via the uncinate fasciculus to the anterior STG; it supports 

local phrase structure. The second (purple arrow) links Brodmann Areas 45 (BA45, another 

part of Broca’s Area) and 47 via the Extreme Capsule Fibre System to the middle portion of 

the superior and middle temporal lobe; it supports retrieval of stored words and associated 

semantic processing. The two ventral pathways thus may correspond to Basic syntactic 

processing.  

 

Figure 3 

Neural Correlates of Extended and Basic Morphology  

Regular inflectional forms (walked, played) are computed by Extended processes that 

closely overlap with those underlying Extended syntax, namely BA 45 extending into BA 44 

and BA47, the arcuate fasciculus, and the superior and middle temporal cortex (Marslen-

Wilson, 2007 #6530.} The frontal regions are part of a circuit that also includes the caudate 

nucleus (not shown). In contrast, the storage and retrieval of irregular forms (brought, went) 

appears to be mediated bilaterally (blue outline) in a more diffuse set of posterior and middle 

temporal lobe structures (Tyler, 2005 #9670}. Derived morphological forms, both regular 

(bravely) and irregular (archer), activate a third, bilateral network, which we tentatively 

associate with the ventral pathway, specifically, BA47 extending into BA45, and the anterior 

Superior and Middle Temporal gyri (purple lines) [32]. This network may support a network 
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of related but whole word forms. Individuals with G-SLI are impaired in productive regular 

inflection, an Extended process that engages the dorsal route, but their performance is less 

impaired with the retrieval of irregular and derived forms, a Basic process which is more tried 

to lexical memory, and which engages bilateral ventral and posterior routes. 

 

Figure 4: 

Neural Correlates of Extended and Basic Phonology 

Phonological processing begins with spectrotemporal and segmental processing in bilateral 

auditory cortex (Superior Temporal Gyrus, STG, and Superior Temporal Sulcus, STS; right 

hemisphere not shown). From there it splits into two streams. A left-hemisphere Dorsal 

stream runs to a sensorimotor integration area in the Sylvian portion of the parietal-temporal 

junction (SPT), and from there further bifurcates into a pathway along the Superior 

Longitudinal Fasciculus to premotor areas (PM; pink arrow) and a pathway along the 

Arcuate Fasciculus to Broca’s Area (BA44; red arrow). These pathways connect acoustic 

speech representations to articulatory ones, the former perhaps to basic articulatory 

phonetic skills, the latter to complex syllables and words, self-monitoring speech, and verbal 

working memory. A bilateral Ventral stream (right hemisphere portion not shown) runs from 

auditory cortex to the Middle and Inferior Temporal Gyri (MTG and ITG), and from there to 

the anterior Temporal lobe, and also to a conceptual network widely distributed through the 

temporal and other lobes. This pathway connects the sounds of words to their meanings. We 

suggest that the Extended Phonology which challenges G-SLI is associated with the part of 

the Dorsal pathway that runs to Broca’s Area (red), but perhaps not the part that runs to 

Premotor areas (pink), as articulation in the syndrome is relatively unimpaired. Basic 

Phonology is associated with acoustic and phonological analysis in auditory cortex and with 

the Ventral pathway.  
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Table 1 caption.  

Patterns of Errors with wh-questions by Language-Impaired 

Children  

Table 1 summarizes experiments with G-SLI children investigating wh- questions (who, 

what, which) in production, grammaticality judgments, on-line cross-modal priming, and EEG 

recordings. In each experiment the children failed to compute the Extended syntactic 

relations between the wh-word and the position to which it is related (Figure 1). The diversity 

of methods and tasks suggest that the deficit is independent of the paradigm and processing 

demands. Similar patterns are found with French, Italian, German, Hebrew and Greek [14-

16, 76, 77].  

 

The Elicitation task [78] shows that children and teenagers with G-SLI fail to compute filler-

gap relations and fail to check and mark tense (Figure 1).  In the Sentence Judgment task 

[79], G-SLI teenagers correctly reject semantic violations and accept grammatical 

sentences, but incorrectly accept sentences with errors in filler-gap relations and tense. The 

task Eliciting Embedded Questions [80] illustrates omission of the auxiliary did  and a 

copying error, where the wh-word is only partially moved and ends up in an intermediate 

position. The Cross-Modal Priming study [24]  shows that in children and teenagers with G-

SLI, a wh-filler does not prime its related word at the gap position, though it does prime it at 

the verb’s offset, suggesting they are sensitive to the verb ‘s semantics. The ERP study [20] 

shows that G-SLI teenagers have an appropriate response (the N400) to violations of lexical 

semantics (i and ii). Responses of violations to syntax were tested with wh-questions in 

which agents perform actions on inanimate objects. Unimpaired subjects perceive a 

syntactic violation as soon as they encounter an animate noun that could be linked with the 

wh-word, such as clown in (iv), and thus show an Early Syntactic Brain Response (ESBR); 

the G-SLI subjects instead show the N400 ordinarily elicted by semantic violations.  
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Table 1 

Task Description Lead-in or prime 

(see  Fig 1 for the 

syntactic structure) 

Control child’s 

typical 

response 

Child with G-SLI’s 

response 

Elicitation 

of wh-

questions 

wh-subject question Someone saw Mrs 

White. Ask me who. 

Who saw Mrs 

White? 

Who someone see 

Mrs White? 

wh-object question Mrs White stole a ring. 

Ask me which one? 

Which ring did 

Mrs White steal? 

Which [....] Mrs 

White stole the 

ring? 

Sentence 

Judgements 

Semantic 

judgement  

i) Barbie bakes the 

cakes 

ii) Barbie drinks the 

cakes 

i). Yes 

ii). No 

i). Yes 

ii). No 

Syntactic 

judgement: Tense 

i) Who did Mrs White 

see? 

ii) Who did Mrs White 

saw? 

i). Yes 

ii). No 

i). Yes 

ii). Yes 

Syntactic 

judgement: wh-

movement 

i) Who did Mrs White 

see? 

ii) Who did Mrs White 

see someone? 

i). Yes 

ii). No 

i). Yes 

ii). Yes 

Elicitation 

of 

Embedded 

Embedded subject 

wh-question 

Joe thought someone 

hit the man. Ask me 

who? 

Who did Joe 

think hit the 

man? 

Who did Joe think 

who hit the man? 
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wh-

questions 

Embedded object 

wh-question 

Joe thought Mr White 

hit someone. Ask me 

who? 

Who did Joe 

think Mr White 

hit? 

Who [...] Joe think 

Mr White hit 

someone? 

Cross-

modal 

Sentence- 

Picture 

Priming 

The child is shown 

a picture of a rabbit 

or a ladder at one 

of three points 

during a spoken 

sentence and 

presses a button 

indicating whether it 

is animate or 

inanimate. 

Response time for 

position [2], after 

the adjective, 

serves as a control. 

Priming (faster 

responding) at 

position [1] shows 

sensitivity to basic 

verb semantics 

(give + recipient). 

Priming at position 

[3] (the wh-gap) 

shows sensitivity to 

syntactic 

movement: the 

rabbit matches the 

Baloo gives a long 

carrot to the rabbit at 

the farm. Who did 

Baloo give [1] the long 

[2] carrots to [3] at the 

farm? 

 

[1] No priming.  

[2] No priming. 

[3] Priming.  

[1] Priming. 

[2] No priming.  

[3] No priming. 
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who which had 

been moved from 

that position.  

Event 

Related 

Potentials 

(ERP) 

Violation of 

expectation based 

on semantics (ERP 

time-locked to the 

underlined word) 

i). Control: Barbie 

bakes the cakes in 

the oven. 

ii).Violation: Barbie 

bakes the people in 

the oven. 

 

 

N400 

 

 

N400 

Violation of 

expectation based 

on syntax (ERP 

time-locked to the 

underlined word) 

iii). Control: Who did 

Barbie push the ball 

into? 

iv). Violation: Who did 

Barbie push the clown 

into the wall? 

 

 

ELAN, P600 

 

 

Right lateralised 

N400, P600 
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Box 1 
 
Components of Language  
 
Language is traditionally divided into several subsystems [81]: 
 

• Syntax:  The combination of words into phrases and sentences, and 
assignment of grammatical relations (subject, object, head, etc.) which 
determine their compositional meaning. 

 
• Morphology: The combination of words or parts of words (morphemes) into 

new words, further subdivided into inflection (modifying a word according to its 
role in the sentence) and derivation (creating a new word from old ones). 

 
• Phonology: The combination of sounds into morphemes, and the modification 

of sounds according to their contexts.  
 

• Pragmatics: Principles governing the use of language in a discourse and 
communicative context.  

 
• Lexicon: The component of memory which stores words, idioms, and other 

fixed forms. 
 
We concentrate on the first three, and propose that they are cross-classified by a 
distinction in representation and processing: 
 

Extended grammatical representations are 

• abstract, consisting of categories defined by their grammatical privileges 
rather than their semantic content 

• hierarchical, defined by a tree of constituents embedded in larger 
constituents 

• nonlocal, potentially spanning long distances in the string 
• composed, namely assembled into meaningful combinations by rules 

 
• Basic grammatical representations are 

• semantic and lexical, consisting of words or features of meaning 
• linear, defined by left-to-right ordering 
• local, involving adjacent or nearby elements 
• holistic, consisting of entire assemblies stored in memory 

 

 

Box 2 
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Outstanding questions 

 

• Can subtypes of SLI (such as the Grammatical-SLI discussed in this paper) be 

reliably identified across populations, languages, and laboratories?  

• Can more sensitive methods of neural function, cortical and subcortical anatomy, and 

tractography identify the neural substrates of different language components more 

precisely?  

“Geno’s paradox” is the failure to pinpoint specific genes that underlie massively 

heritable traits, presumably because most behavioural traits involve either many 

genes with small effects, rare genes with larger effects, or both. Will new genomic 

methods designed to resolve the paradox identify additional genetic contributors to 

SLI?  

• What are the patterns of overlap and non-overlap in language disabilities, 

neruoanatomical differences, and genetic causes between different forms of SLI, 

other developmental disorders (e.g., Autistic Spectrum Disorders), and degenerative 

disorders (such as Huntington’s and Parkinson’s Disease?  

• Are there forms of language impairment that show impaired Basic representations 

and ventral pathways, but relatively spared dorsal pathways?  

• What are the clinical implications with respect to focused remediation in children with 

SLI?  Should we attempt to strengthen their Extended processes, or encourage them 

to compensate using their strengths in Basic representations? 
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