
An Activity Coordination System
The Harvard community has made this

article openly available. Please share how
this access benefits you. Your story matters

Citation Karr, Michael and Thomas E. Cheatham. 1998. An Activity
Coordination System. Harvard Computer Science Group Technical
Report TR-03-98

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:23574655

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/154869863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=An%20Activity%20Coordination%20System&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23574655
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

An Activity Coordination System

Michael Karr

Thomas E. Cheatham

May 21, 1993

Harvard University

and

Software Options, Inc.

Cambridge, Mass. 02138

Contents

1 Introduction 1

2 An Example | The Editor/Reviewer Activity 1

3 Activity Descriptions 2

3.1 The Reviewer's Activity : 3

3.2 The Editor's Activity : 5

3.3 The Combined Editor/Reviewer Activity : 6

3.4 Viewing Activity Descriptions : 7

4 Transaction Graphs 8

5 The Activity Coordination System 9

5.1 The Dynamic Type System : 10

5.2 Activation Servers : 11

5.3 Other Tools : 11

6 Extending the Activity Coordination System 12

6.1 New Protocols : 12

6.2 New Node Types : 13

6.3 New Data Types : 13

6.4 New Communication Media : 14

7 Status and Future Plans 14

ii

1 Introduction

This paper presents an overview of an activity coordination system that is currently oper-

ational on unix based systems. The purpose of this system is to support combinations of

people and computers engaged in a wide variety of activities. Some of the activities that the

system has supported are:

� An editor/reviewer activity in which a proposed reviewer accepts or declines some

review task and, having accepted, eventually completes the review or else decides not

to do it.

� Modi�cation and testing of some program module with respect to some proposed set

of changes and acceptance of the result by a change control board.

� Release of a software system.

� Generation of a request for proposals.

Activitiesmay take place over long periods of time, sometimesmonths or years. Activities

may also take place over large amounts of space in the sense that the participants may be at

sites scattered world wide. And, the communication media may vary widely, from using local

area networks, internets, dial-up, e-mail, and so on. An important feature of the activity

coordination system is its open architecture that, over time, will accomodate new data types,

hardware architectures, protocols, and comunication media.

Central to the system is the so-called activity description that speci�es the various aspects

of some activity and, when instantiated, produces a program or programs whose execution

enacts the activity speci�ed, providing communication and coordination among the several

participants in the activity and dealing with the persistence of the activity over time.

The next section discusses the simple editor/reviewer activity and is followed by a section

containing a detailed presentation of the activity description for this activity. Following this,

we provide a brief discussion of transaction graphs, the formalism that underlies activity de-

scriptions and provides the basis for the implementation of the activity coordination system.

We then discuss some of the implementation issues that have been addressed. The section

following then describes how extensions to the system are accomodated and we close with a

discussion of the current status of the system and some future plans.

2 An Example | The Editor/Reviewer Activity

Consider an activity that involves an editor who wishes to have some document reviewed

and a reviewer who is asked to review that document. When the activity is initiated, the

1

�rst issue is whether the reviewer accepts the reviewing task or declines it. If the reviewer's

response is to decline the review, the editor is informed and that is the end of the activity. If

the reviewer's response is to accept the review, the editor is informed and the reviewer then

eventually does one of the following:

� The reviewer completes the review, so informing the editor, or

� the reviewer decides that doing the review is impossible, and the editor is informed of

this decision.

Before the reviewer responds, the reviewer may receive a reminder that the review is due,

to which the reviewer is to respond with an estimate of when the review will be completed.

Additionally, the editor may decide to cancel the review before the reviewer responds and in

this case the activity terminates.

From the editor's point of view, the �rst issue is whether the reviewer accepts or declines

doing the review. If the latter, the activity is over (and presumably a new activity with

another reviewer will ensue). If the reviewer accepts, the editor is informed and the due date

is noted so that the reviewer can be reminded if necessary.

Several things can then transpire:

� The due date arrives and a reminder is sent to the reviewer.

� The editor sees that the review is done or that the reviewer has quit and will not do

the review. If either event transpires the activity terminates.

� The editor gets a response from the reviewer after the reviewer is reminded that the

review is due and resets the due date.

� Finally, the editor can decide to cancel the review by this particular reviewer and the

activity then terminates.

The overall activity takes three parameters, the names of the editor and reviewer and

the due date of the review.

3 Activity Descriptions

An activity description plays several roles in the activity coordination system:

� It is a program whose execution models the enactment of the activity described,

� it is a window through which the current state of an activity in progress may be viewed,

and

2

� it is a window through which a participant in an activity may interact with that

activity.

Visually, an activity description takes the form of a graph whose nodes are sub-activities

and whose arcs depict the sorts of communications that may take place among the sub-

activities.

3.1 The Reviewer's Activity

reviewer-task(reviewer:string)

reviewer
"accept"
none

reviewer
"decline"

none

reviewer
"more time"

string

reviewer
"quit"
none

reviewer
"done"
none

reminder

soon

decline quit cancel done accept

Figure 1: The Reviewer's Activity

An activity description for the reviewer activity described above is shown in �gure 1. The �rst

line, reviewer-task(reviewer: string), identi�es the activity and speci�es that, when

instantiated, the activity will have a parameter named reviewer that is a string naming

the person chosen as the reviewer. The several occurences of reviewer in the sub-activities

in �gure 1 refer to that same person.

The half rounded node at the top is an initiate node and its function is to send a value

down each of the two directed arcs emanating from it when the activity is instantiated. It

is often the case that the actual value sent on an arc is not of interest, only the fact that a

value is sent being important, and that is the case with this initiate node. The type, none,

is provided for this purpose and there is a single value of this type called synch. Thus,

this particular initiate node sends synch to the two nodes below it. These nodes are user

interaction nodes. A user interaction node has, in general, a set of input arcs, a set of output

3

arcs, a set of contention arcs that can be either exclusion arcs or reset arcs, and a user. The

behavior of a user interaction node is as follows:

1. It is quiescent until values have arrived on all its input arcs.

2. It then becomes active and informs the user that a response from that user is requested,

remaining in the active state until the response is provided or the node is disabled.

3. When the user provides a response, the user interaction node attempts to \grab" all

its exclusion arcs. If successful, it becomes enabled and sends values on all its output

arcs. If unsuccessful, it becomes disabled and does not send values on any of its output

arcs. In either event, the user is informed that the response requested is no longer

relevant and the user interaction node becomes quiescent, awaiting a possible new

wave of inputs, whence the behavior is repeated.

When the topmost user interaction nodes in the reviewer activity have received the synch

value on their input arcs, they become active and inform the user indicated by reviewer that

the node is active and awaiting a response from that user. The "decline" and "accept"

�elds of those nodes suggest what the user is told, namely that the user can decline or

accept doing the review. These nodes are connected with an exclusion arc, the undirected

arc between them. When the user responds, one of the two nodes will become enabled

and the other disabled. The enabled node will send values out on its output arcs. The

speci�cation none in these nodes is the type of value sent, and thus each node will send the

value synch if it is enabled.

We could think of the reviewer as providing the response in two di�erent ways. One

would be for the reviewer to essentially say either accept or decline and the other would

be for the user to have two \buttons", one for accepting and the other for declining the

reviewing task. It is the latter that is modeled here and the undirected arc between the two

user interaction nodes depicts the \contention" between the two possible responses in the

sense that if the reviewer pushes both buttons at the same time, one will \win" and the

other will \lose".

If the decline response wins, the left user interaction node will output synch on the

\dangling" arc that is labeled decline and the right node will output nothing. Each dangling

arc must eventually be connected to something and, in this case, that is an arc in the editor's

activity as we shall see presently. If the accept response wins, the left node will output

nothing and the right node will output synch on each of its three output arcs. Two of these

will provide the inputs to the lower right pair of user interaction nodes, activating them,

and the third will inform the editor of the fact that the reviewer has accepted the reviewing

task via the dangling arc labeled accept. In any event, both the topmost user interaction

nodes will then become disabled in the sense that a response from the reviewer to accept or

decline the review will be ignored.

The behavior of the two user interaction nodes in the lower right part of �gure 1 is very

much like that of the two user interaction nodes preceeding them, informing the reviewer

that the responses quit and/or done are awaited, indicating that the reviewer has decided to

reject the reviewing task or has completed it.

4

The leftmost user interaction node is enabled when an input arrives on the arc labeled

reminder and it queries the reviewer for a new estimate of the date when the review will be

done, sending that date to the editor on the arc labeled soon. Note that the three lowest

user ineraction nodes are all connected by undirected contention arcs, via the exclusion node

that is depicted as a circle. As we noted earlier, from the point of view of a particular user

interaction node a contention arc is either a reset arc or an exclusion arc and the two are

distinguished by the arc becoming dotted near a node if that node views the arc as a reset

arc. Thus, the leftmost of the three lower user intraction nodes views the contention arc as a

reset arc while the other two view their contention arcs as exclusion arcs. If the leftmost user

interaction node attempts to \grab" its exclusion arcs it will succeed since it has none, only

a reset arc. If one of the two other user interaction nodes attempts to \grab" its exclusion

arcs, it will have to win over the other two. The point, in this particular activity, is that

if the reviewer responds to the \more time" request we want the other two user interaction

nodes remain in the state they are in, actively awaiting a quit or done response from the

reviewer, but if the reviewer responds with quit or done all three of the user interaction

nodes need to be \shut down" and the exclusion arcs provide for this.

3.2 The Editor's Activity

editor-task(editor:string, due-date:string)

accept

editor
"cancel"
none

due-date

soon

reminder

cancel

decline

quit done

Figure 2: The Editor's Activity

The editor's side of the activity is presented in �gure 2 and it takes two parameters, the

editor and the due-date, specifying the name of the person playing the role of editor and

the date that the review is due back from the reviewer. The �rst thing that will happen in

this activity is that synch will arrive on the arc labeled accept or the arc labeled decline,

5

indicating which response the reviewer made to doing the review. The value on the decline

arc is input to the half oval node that is a terminate node. Its sole role is to simply record

the value received. In this example, we have chosen to have four terminate nodes, the one

eventually receiving a value indicating the way in which the activity terminated because

the value, synch, received by each is the same. An alternative protocol could have a single

terminate node that received on of four di�erent values to distinguish among the ways in

which the activity terminated.

If synch arrives on the accept arc, it is \split" and sent to both the rectangle node

and to the user interaction node with query "cancel". When the rectangle node has all its

inputs it sends its outputs out, in this case a single output that is speci�ed as the value of

the parameter, due-date. The triangular merge node to which the due date is sent simply

sends that value on its output arc, in this case to the timer node below it. In general, a

merge node immediately sends out on its output arc each value received on any of its input

arcs. In this example, the other possibile input is a new date, received on the soon arc, that

is the reviewers response when requesting more time.

The user interaction node for the editor provides for the editor deciding to cancel the

review by the current reviewer and this node contends with the timer node and whatever

nodes are connected via the contention arc labeled cancel (that will be connected to the

contention arc labeled cancel in the reviewer activity).

The timer node becomes \armed" when a time arrives on its input arc and it does nothing

until that time arrives. It then attempts to grab all of its exclusion arcs and, if succesful,

sends synch on its output arc. Thus this particular timer will send synch out when the time

for which it is set arrives, because it has no exclusion arcs, only a reset arc. The timer may

later become re-armed when another time arrives on the arc labeled soon.

If a \grab" is attempted by the exclusion node (the circle betwen the user interaction

node and the timer) the timer will become disabled and the user interaction node will either

be enabled or be disabled, depending on whether it wins the grab or one of the two user

interaction nodes in the reviewer activity connected via the arc labeled cancel wins the

grab. In any event, the result will eventually be that one of the three lowest terminate nodes

receives synch, the one receiving it indicating why the activity terminated.

3.3 The Combined Editor/Reviewer Activity

The activity description for the combined editor/reviewer activity is shown in �gure 3 and

it indicates that the combined activity has three parameters, the editor, reviewer, and the

due date. The two oval nodes are condensation nodes that refer, respectively, to the editor

activity description and the reviewer activity description presented above. The labels inside

the ovals in �gure 3 near its border correspond to the labels of the \dangling" arcs in those

two activity descriptions and the arcs between the ovals indicate which dangling arcs in one

connect to which dangling arcs in the other.

The combined activity description is equivalent to one that has the nodes of both the

editor and reviewer descriptions but with the dangling arcs eliminated by connecting the ap-

propriate nodes directly. The reason for using two separate descriptions is that by separating

6

editor-reviewer(editor:string, reviewer:string, due-date:string)

editor-task(editor, due-date)decline
accept

quit done soon
reminder

cancel

reviewer-task(reviewer)decline
accept

quit done soon
reminder

cancel

Figure 3: The Editor and Reviewer

the descriptions, the reviewer's and editor's sides of the activity can be viewed separately.

Also, if the descriptions are combined, the resulting graph becomes somewhat cluttered.

Obviously deciding which node goes in which description is somewhat arbitrary. For ex-

ample the terminate nodes that re
ect termination because of some response by the reviewer

could have been included in the reviewer's activity and the timer could have been placed in

either activity.

3.4 Viewing Activity Descriptions

If an activity description has been instantiated it is possible to view that particular instan-

tiation of the activity as it executes. For example, a view on the reviewer's activity takes

the form of the graph in �gure 1 with a few di�erences:

� The actual parameters used to instantiate the activity description replace the param-

eter names (with color used for emphasis),

� active nodes (those that have received values and have not yet sent outputs or been

disabled) are highlighted using color, and

� active user interaction nodes are sensitive in the sense that they can be mouse selected

resulting in the appearance of a box that can be used to provide some response that

the user wishes to make.

Thus, as soon as the reviewer's activity is instantiated it can be viewed and the ac-

cept/decline nodes will initially be highlighted. The reviewer can then accept or decline by

7

a simple gesture. Any authorized user other than the reviewer can also view the activity,

but of course only the reviewer is allowed to provide a response.

4 Transaction Graphs

The mathematical formalism that underlies activity descriptions and provides a speci�cation

for the implementation of the activity coordination system is called transaction graphs. We

here provide a brief sketch of transaction graphs, referring the interested reader to [1] for

details. Transaction graphs essentially play the role of a \machine language" for supporting

the high level language provided by activity descriptions.

A transaction graph is a graph with nodes and undirected arcs and each node, �, has

some associated state, S

�

. At any point in time each node, �, in a transaction graph shows

a value, V

�;�

, on each arc, �, impinging on � that the node, �

0

, at the other end of arc �

sees. A transaction is as follows: A node, �, that sees a value, V

�

0

;�

, on arc � to node �

0

may

change its state and show a new value, V

0

�;�

to �

0

. If, at the same time, �

0

also attempts to

change its state and show � a new value on arc �, then one of � and �

0

will win and one

will lose. This de�nition of a transaction leads to the serializability of transactions, that is,

the execution of a transaction graph does not allow two nodes to change the values shown

on some arc simultaneously, but instead one must precede the other and the choice of the

winner is non-deterministic.

Some changes that are required to the state of a node in a transaction graph are not

reasonable to model in transaction graphs themselves, a good example being an alarm clock

that \goes o�" (that is, changes some state) at some particular time. Thus, transaction

graphs accomodate the notion of out-of-graph messages | changes to the state of some

node that, e�ectively, occur spontaneously.

Given two nodes � and �

0

connected by an arc �, � and �

0

have protocols P

�;�

and P

�

0

;�

,

where P

�;�

describes the behavior on arc � from �s point of view and vice versa. The set,

P , of protocols has a transposition operator, T : P ! P , where p

TT

= p for all p 2 P

and, in general, p

T

produces the protocol for the other end of the arc that has protocol

p. While the activity descriptions presented earlier suggest that some arcs in an activity

description are directed (those depicted by arcs with barbs at one end) this is not the case

at the level of transaction graphs. The reason is that there are many di�erent protocols

involving various handshakes between nodes that result in a behavior that we think of as

associated with directed arcs; the activity descriptions used for user interaction nodes and

others with directed arcs use one particular protocol, but other protocols for directing arcs

may also be provided. Another sort of protocol that is provided is that for mutual exclusion,

used on exclusion arcs. Again there are many possible protocols for mutual exclusion and one

of the possible extensions of the activity coordination system is to add new mutual exclusion

protocols that might be appropriate for certain applications.

Protocols are realized by so-called � functions that take as parameters the value seen on

some arc of some node and the state of that node. A � function outputs a proposed change

to the state and a new value proposed to be shown on the arc. Thus, if �

�;�

is the � function

8

for node � on arc �, we have �

�;�

: S

�

�V ! 2

S

�

�V

0

, where V and V

0

are the sets of values

seen and shown on arc �. A node, �, may also have an out-of-graph function !

�

: S

�

! 2

S

�

that can change its state.

Transaction graphs provide a formalism for stating and proving such properties as live-

ness, freedom from deadlock, and the like that are very important to be able to demonstrate

when dealing with concurrent and distributed computations.

Another important property of transaction graphs is the set of transaction graph pre-

serving transformations that are possible. Consider two nodes �

1

and �

2

that share no arcs.

We can \pinch" these two nodes into a node �

12

whose arcs are those of �

1

plus those of

�

2

, whose state is S

�

1

� S

�

2

, and whose behavior on arcs is that of �

1

or �

2

as appropriate.

Eliminating �

1

and �

2

from the graph G and adding �

12

yields a transaction graph G' with

the same behavior and properties of G but with one less node.

As another example of a graph preserving transformation, consider a node with an arc to

itself (perhaps as the result of previously pinching two nodes). We can \shrink" that node,

removing the self-arc, pulling the semantics inside the node as an out-of-graph state change.

Pinching and shrinking allow a transaction graph to eventually be reduced to a single

node.

Such transformations are important in the world of activity descriptions, there permitting

coalescing of nodes to simplify an activity description by having fewer nodes. One application

of this is to transform an activity description containing lots of detail to a simpler one that

elides much of this detail and provides the basis for the activity being viewed, say, by a high

level manager who is concerned with appraising a global picture uncluttered by local details.

5 The Activity Coordination System

The Activity Coordination System provides an implementation of transaction graphs and

the graphic tools used to construct and view them. It provides:

� A library of � and ! functions that realize a variety of protocols for arcs and out-of-

graph messages,

� a library of instantiation functions that construct nodes and arcs and initialize the

state of each node,

� a manager that calls the � and ! functions associated with a node whenever the state

of a node is altered, and

� an activity description editor that provides for creating new activity descriptions and

for viewing executing activity descriptions.

Although the above sounds reasonably straightforward, there are a number of consider-

ations that complicate matters:

9

� Activities may be executed over very long periods of time, often involving weeks or

months.

� An activity may execute at several di�erent sites that are connected via a variety of

communication media.

� Data must be transported among di�erent sites and among di�erent hardware archi-

tectures.

In order to obtain the program whose execution models the enactment of some activity,

the activity description for that activity is instantiated to produce one or more activations

| think of these as executable programs plus some current state | that then commence

executing. The instantiation process involves binding actual parameters, linking with ap-

propriate libraries, and producing the executable(s). A situation in which more than one

executable is required is an activity that spans more than one site so that an executable is

required for each site.

Each site has an activation server, a program that manages activations at that site and

communicates with activation servers at other sites as required. Additionally, each site has

an activations plex and an instantiations plex, data structures that contain the appropriate

records for each activation and instantiation at that site. At any point in time, a given

activation can be awake or be sleeping and most activations are sleeping most of the time.

We can think of the activation server as a program that awakens an activation that then does

a few transactions and goes back to sleep. The activation server must update the activations

plex as apropriate, in particular capturing the state of a sleeping activation so that the

execution of that activation can be later resumed and information about its state can be

provided to other activations that request it. For example, if an activity is to be viewed at

some site other than that at which it executes, the activation server at the viewing site would

request the activation server at the executing site to provide the state of the activation that

is required to present the view.

5.1 The Dynamic Type System

The current implementation is based on a dynamic type system that provides a rich variety

of data types and the data transport mechanisms required to deal with disparate hardware

architectures. Another problem that the dynamic type system addresses is that of dealing

with state changes. Recall that the changes proposed to the state of some node may have

to be aborted because of con
ict between two nodes. That is, if two nodes connected by an

arc propose changes simultaneously, one will win and one will lose and the loser's proposed

changes must be retracted. Since the loser might have meanwhile proposed other changes to

the state that do go through, getting the correct state cannot be handled simply by \rolling

back" the state to some previous value.

The dynamic type system provides a delta mechanism and proposed state changes are

represented as deltas to the state. Those deltas that go through are eventually applied to

the state and those that do not are discarded.

10

The dynamic type system provides several basic types like integer, boolean, string, and

none and type constructors like vector, product, disjoint-union, and set. For each, there is an

internal representation appropriate for a particular target architecture as well as a \transport

representation" that is independent of hardware architecture. This representation is used

in communicating values between activations, possibly at di�erent sites. The representation

uses character strings to represent values that are then converted to the appropriate internal

representation in a hardware dependent manner. Additionally the dynamic type system

provides functions for interconverting values between the representation used in the dynamic

type system and the \native" representation used by the particular target architecture, for

example between an integer value and a C int.

There is also the type, any, that provides for any sort of value and it is particularly useful

for dealing with some node that passes around arbitrary values that it never looks at and

whose type it does not need to know.

While our present implementation provides the dynamic type system through C pro-

grams, any programming language may be used to host activities so long as a compatible

dynamic type system is provided for that language.

The dynamic type system must be realized independently on each di�erent type of hard-

ware architecture so that the internal representations for integers, reals, and the like are used

when data is converted from the transport representation to the internal representation for

the particular target architecture. In most cases, of course, the di�erences are completely

trivial (on unix systems amounting to using the appropriate scanf function).

5.2 Activation Servers

An activation server has the task of dealing with activations at the same site and activation

servers at other sites. It is realized using remote procedure call (RPC) mechanisms. In the

unix implementation, an activation server is contacted using a canonical host/port mechnism

that isolates sites. Each site has a data structure called the sites plex that records the

canonical host/port for itself and all other sites and enables communication with other sites

independently of how those sites are con�gured so long as the computer at the site that is

running the activation server can be contacted using the canonical host/port mechanism.

5.3 Other Tools

The other tools that are required are those to do with the editing and viewing of activity

descriptions. These tools use the X window system to provide turf for graphs and capture

various gestures like mouse gestures on various nodes or arcs or other gestures like keystrokes.

Additionally, the ghostview postscript interpreter is used to actually produce the pixels that

are viewed. The normal way that activity descriptions are created or modi�ed is with the

activity description editor. This is a graphical editor that provides menus of available nodes

and arcs and an activity description is created by selecting nodes and arcs, placing them

on the screen, and supplying various parameters that specialize the nodes and/or arcs in

11

various ways. For example, if a user interaction node is required, the icon for that node

type is selected and placed in the graph under construction. At that point, such things as

the number of input arcs and the types of values received on them, the user to be contacted

(usually a parameter of the activity description but possibly a constant or a value received

dynamically), and the number of output arcs and the types of values sent on these arcs are

speci�ed.

Having placed one or more nodes, arcs between nodes can then be established by appro-

priate mouse gestures.

Thus, the activity description \programmer" needs to understand the underlying \execu-

tion model" and the semantics of each node type (most activity descriptions require only a

dozen or so node types) and each arc type (most activity descriptions require only a handfull

of arc types) in order to create programs based on activity descriptions.

In the future there are a number of tools that deal with reasoning about activity descrip-

tions envisioned. These would include identifying cul de sacs, the absence of deadlock, and

so on.

6 Extending the Activity Coordination System

The activity coordination system has an open architecture and we believe that this is very

important since new applications may require new functionality and it should be relatively

easy to extend the system to provide this functionality. Some of the axes along which

extensions are probably mandated are:

� The addition of new protocols,

� the addition of new node types,

� the addition of new types of data,

� the accomodation of new communication media,

� the accomodation of new kinds of hardware architectures, and

� the addition of new tools for reasoning about activity descriptions.

In the paragraphs below we comment on doing these sorts of extensions.

6.1 New Protocols

Providing a new protocol for transactions between nodes means writing a new � function

that embodies that protocol and adding it to the library of � functions. To do this sort

of extension requires detailed knowledge of the dynamic type system and techniques for

constructing deltas. For the current system such functions are usually written in C (though,

12

in principle, any language whose compiler produces an executable that can be linked with

C produced executables would do). We are currently preparing a document that describes

the current � function library, and expect that this will help anyone who is writing a new �

function by providing a library of paradigms for writing � functions.

6.2 New Node Types

To provide a new node type requires �nding or creating the appropriate � functions, writing

a function that will instantiate a node of the new type, and \introducing" the new node

type to the activity description editor. We have evolved a style of specifying nodes that, we

believe, will usually make the introduction of new node types quite simple.

It is often convenient to think of a node as consisting of one or more node parts where

each node part operates more or less independently. An example is the functionality for

dealing with a wave of inputs on a set of input arcs. For this particular node part, the

functionality is that when the � functions for the input arcs have seen values on all the

arcs then whatever actions are appropriate are taken. The node part for input waves does

the bookeeping to determine when the complete wave has arrived and then calls a coupling

function that provides for the appropriate actions, usually informing the other parts of the

node that the wave of inputs has arrived. Thus to specify an input wave node part for some

new node type, we simply �nd or write the appropriate coupling function for the node type

being de�ned. Again, there is a library of node parts and coupling functions and it usually

su�ces to mix and match elements of this library in order to develop a new node type.

The instantiation function for the new node type is usually a function that simply calls the

instantiation functions for the node parts used.

A new node type must also be \introduced" to the activity description editor so that

that new type can be used to create and view activity descriptions. The issues that must

be addressed include specifying the icon that represents the node, providing the queries that

elicit such information as the number of arcs and type of values on those arcs when an

instance of the node type is installed in an activity description, and specifying what part

of the state is presented in a view and the format for depicting that state. The activity

description has a library of templates for such purposes and de�ning a new node type usualy

means at most adding one or more new templates.

6.3 New Data Types

To add a new data type to the dynamic type system requires extending that system with

functions for manipulating values of the new type and functions that provide the appropriate

delta mechanisms for these values.

To do this sort of extension obviously requires detailed knowledge of the dynamic type

system.

13

6.4 New Communication Media

The present implementation provides for LAN, internet, e-mail, and dialup communications

but it is certainly possible that some new media (or new protocol on an existing media) might

be desired. This sort of extension would typically require writing the functions required and

installing them as new RPCs that can be serviced by the activation server.

7 Status and Future Plans

The activity coordination system described in this paper is operational and and has been

used extensively by a group at TRW. The current system is Unix based and implemented in

C and Lisp. Based on the experience of others it would appear that proting the system to,

for example, Windows 95 or NT based systems would be quite straigtforward.

There is a library of node types that includes twenty or so entries, including the so-called

procedure based nodes that await receiving a wave of inputs, perform some computations,

and then send out a wave of outputs that result from those computations. The computations

performed are completely arbitrary in the sense that they are speci�ed by naming one or

more functions that are to be applied to the inputs received in order to produce the outputs

to be sent. Thus, the procedure based node is really itself a library of nodes in the sense that,

by adding new functions to do the input/output mapping, new behaviors can be provided.

There is also a library of � functions providing a number of di�erent protocols that can

be used for such things as directing arcs, mutual exclusion, and so on.

There are four major directions in which development would be required in order to have

a production quality system. One of these is to provide for a PC based system. Another is

to develop an extensive library of activity descriptions and gain experience with their use in

a variety of activities.

The third direction involves various extensions of the present activity coordination sys-

tem. One of the issues we have investigated is that of dealing with the logs produced as an

activity is enacted. These logs provide the history of the activity, but presently in a form

that only a computer wants to see. We plan to investigate various ways of presenting this

history in human oriented form, for example, essentially replaying the history by annotating

the activity description for the activity over time.

The fourth direction is developing a suite of tools for reasoning about various aspects of

activity descriptions like insuring the absencce of deadlocks and cul de sacs.

Another issue that we have investigated is that referred to as cutover, by which we mean

changing an activity description and one or more \in progress" instantiations of it. This is

important because the rules governing real human activities often change in the midst of

the activity. The essential idea in providing a cutover capability is to use two facts. First,

a node in an instantiation can have its state changed, without a�ecting any neighbors, so

long as its exposed values remain the same. Second, because subgraphs are semantically

equivalent to complicated nodes, the previous statement applies to entire subgraphs as well

as single nodes, with the understanding that exposed values on the boundary arcs of the

14

changed subgraph do not change.

References

[1] Mike Karr Transaction Graphs: A Sketch Formalism for Activity Coordination, Tech-

nical Report, Software Options, Inc., April 1990.

[2] Michael Karr and Thomas Cheatham A Solution to the ISPW-6 Software Process Mod-

eling Example, Proceedings ISPW-6, Hokaido Japan, Oct 1990.

15

