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The classical picture of the force on a capacitor assumes a large density of electronic states,

such that the electrochemical potential of charges added to the capacitor is given by the ex-

ternal electrostatic potential and the capacitance is determined purely by geometry. Here

we consider capacitively driven motion of a nano-mechanical resonator with a low density

of states, in which these assumptions can break down. We find three leading-order correc-

tions to the classical picture: the first of is a modulation in the static force due to variation in

the internal chemical potential; the second and third are change in static force and dynamic
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spring constant due to the rate of change of chemical potential, expressed as the quantum

(density of states) capacitance. As a demonstration, we study a capacitively driven graphene

mechanical resonators, where the chemical potential is modulated independently of the gate

voltage using an applied magnetic field to manipulate the energy of electrons residing in dis-

crete Landau levels. In these devices, we observe large periodic frequency shifts consistent

with the three corrections to the classical picture. In devices with extremely low strain and

disorder, the first correction term dominates and the resonant frequency closely follows the

chemical potential. The theoretical model fits the data with only one adjustable parameter

representing disorder-broadening of the Landau levels. The underlying electromechanical

coupling mechanism is not limited the particular choice of material, geometry, or mecha-

nism for variation in chemical potential, and can thus be extended to other low-dimensional

systems.

The calculation of the force between plates of a parallel-plate capacitor by energy methods

is a classic problem that illustrates the importance of correct definition of the system’s free en-

ergy: considering only the energy stored in the capacitor incorrectly predicts a repulsive force of

1
2 (dC/dz)�2, where C is the capacitance, dC/dz is its spatial derivative, and � is the electro-

static potential difference. The correct result (an attractive force �1
2 (dC/dz)�2) is only obtained

when the work done by the battery to maintain constant voltage is taken into account1. This result

assumes a simple system of metallic capacitors with large density of states (DOS), such that the

chemical potential µ is constant and the electrostatic potential is identical to the voltage applied

by the battery. This assumption breaks down in nanoscale systems, in which the DOS can be
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much smaller and µ is no longer fixed, an effect widely studied in electronic devices2–7. However,

the role of finite DOS in the force between capacitor plates has not been rigorously investigated.

Understanding the corrections to the classical model is of fundamental interest and important for

modeling of nano-mechanical systems in the atomically thin limit8, 9. Here we examine the case

of a resonant nano-mechanical device, and show that the first-order correction to the resonant fre-

quency consists of three terms, one proportional to µ and two proportional to its derivative dµ/dn,

with the latter represented through the inverse quantum capacitance C�1
Q =

1
Ae2

dµ
dn (A is the sample

size and e is the electron charge). The phenomenon is explored experimentally by examining the

behavior of a graphene resonator, in which µ is tuned by a perpendicular magnetic field B at fixed

electrochemical potential. We observe strong frequency shifts that are periodic in 1/B, and can be

quantitatively described by the theoretical model. We further find that, in the limit of an ultra-clean

device with low tension, the first term can provide the dominant tuning effect, demonstrating that

a nano-mechanical device can be used to track its own chemical potential.

We model a generic mechanical resonator as a mass on a nonlinear spring, capacitively ac-

tuated by a nearby gate electrode, as shown in fig. 1. A direct current (DC) voltage Vg applied to

the gate can both increase the resonant frequency by exerting a static force to change the equilib-

rium deflection ze, and decrease the frequency due to the nonlinear electrostatic potential, an effect

known as electrostatic spring softening10. The two effects provide an effective spring constant

given by:

keff = k + ⌘↵z2e �
1

2

d2Ctotal

dz2
V 2
g , (1)

where k is the linear spring constant, ↵ is the elastic nonlinear coefficient, and ⌘ is the geometric
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coefficient that depends on the exact form of static deflection (see Supplementary Information,

section 2). In rigid microelectromechanical devices (MEMS), the last capacitive softening term

provides the dominant tuning effect, whereas in atomically thin materials under low tension, the

second mechanical stiffening term can dominate.

The role of the finite density of states is modeled by considering the variation in µ with carrier

density n, such that the electrostatic potential is given by � = Vg � µ/e, and by including CQ in

series with Cg. In this case, we first find that the static capacitive force is given by (Supplementary

Information, section 3):

F = �1

2

⇣
Vg �

µ

e

⌘2
✓
1� 2

Cg

CQ

◆
dCg

dz
. (2)

When Vg is kept constant and µ and CQ are modulated, the change in static force is approximated

as:

�F ⇡ �

�µ

e
+ CgVg�

✓
1

CQ

◆�
Vg

dCg

dz
. (3)

The change in static force shifts the equilibrium deflection ze, thus the resonant frequency, and

alters the curvature of the potential energy at the equilibrium position, as determined from the

spatial derivative of �F . The leading term in the latter is given by:

�k =

d�F

dz
=

✓
Vg

dCg

dz

◆2

�

✓
1

CQ

◆
. (4)

Combining the effects from eq. (2) and (3), we arrive at the total frequency shift as:

�ftotal = �<V

✓
�µ

e

◆
�<VCgVg�

✓
1

CQ

◆
+

f0
2k0

✓
Vg

dCg

dz

◆2

�

✓
1

CQ

◆
, (5)

where <V = |df0/dVg| indicates how easily the resonant frequency f0 can be tuned by electrostatic

potential, k0 is the unmodulated spring constant, �µ is change in chemical potential, and � (1/CQ)
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represents the change in inverse quantum capacitance. The three terms in eq. (5) are referred to

below as �f1, �f2, and �f3, respectively. Importantly �f1 is a direct measure of variation in the

chemical potential, whereas �f2 and �f3 depend on the change in quantum capacitance. We also

note that these terms are closely related to experiments with nanotube quantum dot mechanical

resonators8, 9, in which �f2,3 are analogous to the diverging charge susceptibility of the quantum

dot that produces dips in the nanotube mechanical frequency at charge transitions, and �f1 plays a

similar role that changes the static tension and the mechanical frequency from discretely charging

the quantum dot.

We examine this phenomenon experimentally using graphene mechanical resonators11, 12,

where a transverse magnetic field B is used to tune µ and CQ independently of Vg. The samples

are in a three-terminal configuration (fig. 2a) with a local gate (LG) placed few hundred nanometers

away from the suspended graphene. The graphene is assumed to have built-in strain "0 from the

fabrication process, with additional strain induced by the DC gate voltage Vg. We use a continuum

mechanical model for calculation of f(Vg) at different levels of "0 (fig. 2b, also Supplementary

Information, section 3). Fig. 2c shows <V as a function of "0, at three different values of Vg, for a 2

by 2 µm single layer graphene resonator. Thus, in devices with low "0, <V can be large and �f1,2

are maximized whereas in devices with large "0, <V is substantially smaller and �f1,2 should be

minimized relative to �f3. We note that previous studies of graphene resonators in high magnetic

fields13 utilized samples with high tension and therefore observed only the effects of �f3; in the

experimental work below, we focus on samples with ultralow tension to directly observe the effects

of chemical potential variation.
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In a transverse magnetic field, electronic states of graphene form discrete Landau levels

(LLs), and µ oscillates in a sawtooth pattern with increasing B. The oscillation in µ is re-

flected in the longitudinal electrical resistivity14–16 (Shubnikov-de Haas oscillations), and in the

magnetization M = �dµ/dB (de Haas-van Alphen oscillations, typically detected by torque

magnetometry17), but can also be studied explicitly using a sensitive single-electron transistor

electrometer18, 19. In a single particle picture, the dependence of µ and CQ on B is determined

by the filling fraction ⌫ = 2⇡n~/eB (~ is the reduced Planck’s constant), and disorder. We con-

struct a simple model20 consisting of up to 20 Gaussian-broadened LLs with disorder-induced

width � (in units of vF
p
2e~B, where vF = 106 m/s is the Fermi velocity). The DOS is given

by D(E) = dn/dµ /
NP

exp[�(E � EN)
2/�2

], where EN is center of the N th LL. Within each

LL, EN of single-layer graphene evolves with B as EN(B) = vF sgn(N)

p
2e~B|N |. Here µ is

assigned as the highest filled energy level, and CQ is defined as Ae2D(E), where A is the sample

area. Figures 2d, 2e and 2f show the simulated �µ as a function of B and accompanying frequency

shifts calculated from each of the terms in eq. (5) for three different combinations of high/low ten-

sion and disorder. In the case of low tension but large disorder (fig. 2d), �f1,2,3 are all reflected

in the total frequency shift, but LL broadening largely obscures the variation in µ. In the case of

high tension and small disorder (fig. 2e), we found that �f3 > �f1,2 as expected, leading to sharp

spikes in frequency at LL transitions. Finally, in the case of both low tension and low disorder,

the frequency shift closely (but not completely) follows the contribution of �f1 and the sawtooth

variation of µ, with spikes at the transitions between LLs due to �f2,3.

This simulation motivates the use of graphene samples with very low built-in strain and
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disorder, in order to directly observe variation in µ. To prevent contamination, we prepare samples

by direct exfoliation of graphite over pre-patterned electrodes21, and further clean the graphene

by Joule heating in vacuum at low temperature22, 23. The electronic quality is examined through

separate measurements (Supplementary Information, section 1), and can yield charged impurity

density as low as ⇠ 8 ⇥ 10

9 cm�2. For mechanical resonance measurements, the graphene is

actuated electrostatically by adding a small radiofrequency drive voltage to the gate, and the gate-

drain current at the same frequency is read out by a vector network analyzer; on resonance, the

changing capacitance due to mechanical motion causes a measurable peak in the current21, 24. The

absence of DC bias avoids Joule heating and possible Lorentz forces. We scan Vg up to ±10 V at

zero magnetic field to determine <V and use the continuum mechanical model to extract "0. The

use of substrate-fixed electrodes eliminates tensioning due to thermal contraction of the metal12, 25,

and we are able to achieve <V as large as 10 MHz/V, with "0 ⇠ 10

�4.

Figure 3a shows the response of mechanical resonance to applied magnetic filed B, for de-

vice D1 with <V of 2 MHz/V. There is no obvious frequency shift with B, except for regimes

between LLs, where sharp spikes are evident but the signal becomes weak. Such observations

agree well with the predictions for small <V and experimental results reported by Singh et al.13.

Fig. 3b shows the same measurements on device D2 (length 2.4 µm, width 3.2 µm), with <V of 10

MHz/V. The data reveals a repeated pattern of oscillations that are periodic in 1/B (Supplementary

Information, section 4), allowing us to directly extract the carrier density n of 2.4⇥1011 cm�2. We

use the measured value of n at 5 different values of Vg, combined with finite element simulation

(COMSOL Multiphysics) to obtain the effective displacement ze and dCg/dz as Cg/ze as a func-
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tion of Vg. Therefore, the only free parameter left to fit eq. (5) is the disorder level �, which will

determine �µ and �(1/CQ). We found that a � of 0.1 gives satisfactory result. The corresponding

µ(B), that gives rise to �f1, is overlaid as a yellow curve in fig. 3b. For comparison, we also plot

EN(B) for the first five LLs as dotted green lines. We found that µ traces EN closely in each LL,

confirming that the frequency can closely track µ in high quality samples. The detailed fit between

the model and the data is shown in fig. 3c. Here, the solid points represent the resonant frequency

exctracted at each value of B from the data in fig. 3b, and the line represents the prediction of eq.

(5) with � = 0.1. The fit is excellent and validates the model presented above.

We briefly consider the region between LLs, where the frequency shift should be primarily

sensitive to CQ. At high magnetic fields, when the sample enters the well-developed quantum

Hall regime, its bulk becomes insulating and the edges host dissipationless one-dimensional edge

states. This will not change the static charge on the sample and the static force due to Vg, and

therefore first two terms of eq. (5) should be unaffected. However, when the bulk becomes suffi-

ciently insulating such that its RC charging time is greater than the mechanical resonance period,

the dynamic charging should be determined by the geometric capacitance between the gate and the

edge channels, which can be an order of magnitude smaller than Cg (see Supplementary Informa-

tion, section 5). This has two consequences. First, both the third term in eq. (5) and the classical

electrostatic softening term in eq. (1) should decrease with the decreasing dynamic capacitance;

in general, the classical term will dominate and the frequency spike will be larger than predicted

by eq. (5). Second, both the radiofrequency drive and capacitive displacement current will also

decrease, leading to substantial loss of signal. As a consequence, we can use the loss of signal
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to directly determine the onset of the bulk insulating behavior. In fig. 3b,c (also see fig. S11),

this is seen to occur for the final spike, at the transition between N = 2 and N = 1, indicated by

the dashed line in fig. 3c. For this transition, we expect that the model will not fit the data well,

and indeed, the magnitude and width of the frequency spike, where observable, seem to exceed

the prediction. Nevertheless, the best fit of the limited data in the region between LLs yields CQ

with values similar to previous measurements of high quality graphene samples27, 28. More detailed

modeling and alternative transduction techniques (e.g. optical detection) may allow better study of

the detailed behavior between LLs.

Figure 4a shows similar data at different values of Vg, with fits using � values within ±

10%. Since we are able to “read off” chemical potential variation directly through mechanical

resonance shifts, we can then track the chemical potential as a function of the filling fraction ⌫.

Fig. 4b shows �µ(⌫) at four different values of Vg: there are distinct jumps of µ at ⌫ = 4(N + 1/2),

which represent the energy gaps between neighboring LLs. We linearly extrapolate to extract the

energy gaps, as plotted in fig 4c. In addition, the same analysis allows extrapolation to determine

the chemical potential at zero magnetic field µ0 = ~vF
p
⇡n. As shown in fig. 4d, this follows

p
Vg as expected. Therefore the mechanical measurements can, under appropriate conditions,

provide a direct means to monitor the chemical potential evolution of the underlying system, in a

straightforward manner. We expect to extend our measurements into extreme quantum regimes at

larger B, where additional chemical potential jumps would suggest the formation of many-body

incompressible states.
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Our nanomechanical technique thus provides access to a key thermodynamic quantity (chem-

ical potential) in a self-contained manner. Specifically, our system allows measurements of both

the energy gaps, and the gradual energy transition between gaps, which would otherwise require

specialized instrumentation18, 19. In the future, measurements of other correlation effects like neg-

ative compressibility29, 30, fractional quantum Hall effects19, 31–35 and Wigner crystallization36, all

of which have thermodynamic signatures, should be possible using this technique. Finally, we

emphasize that the electromechanical mechanism identified in the present work is not specific to

graphene. Indeed, any atomically thin mechanical resonator with a quasi-2D electronic structure

will demonstrate this sensitive response to external fields via an electrostatically controlled mech-

anism.
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Methods

Device Fabrication High resistivity silicon wafers (>20,000 ⌦ cm) are used in the experiments

described in the main text, in order to minimize the parasitic capacitance in the radio frequency

(RF) range. 290 nm of thermal oxide is then grown to have best optical contrast for identifying

single layer graphene in later studies.

Source and drain electrodes (1 nm Cr, 15 nm Au) are first patterned by DUV photo-lithography

(ASML 300C DUV stepper, Cornell Nanofabrication Facility). Next, a dry etch (CF4) creates 200

nm deep trenches between source and drain electrodes, and finally local gate electrodes (1 nm Cr,

20 nm Au) are deposited in the trenches with careful alignment. The detail of the fabrication is

described elsewhere24.

Graphene samples are prepared by mechanical exfoliation of Kish graphite. The color con-

trast of the substrate-supported region aids in identification of thin flakes crossing the electrodes.

The precise number of layers is subsequently confirmed by Raman spectroscopy.

Device Characterization Suspended graphene samples are electrically tested at room temperature

under vacuum before cool-down. Only samples that possess reasonable transconductance (�R >

100⌦ with in 10 V change of gate voltage) are chosen for further investigation.

For low temperature measurements in a magnetic field, samples are wire-bonded and loaded

into a home-built insert for the Quantum Design Physical Properties Measurement System (PPMS,

1.8 K base temperature) with 8 semi-rigid coaxial cables to transmit both DC and RF signals. Most
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suspended graphene samples show improved quality (narrower Dirac peak) upon cooling. Sample

quality is further improved by gentle current annealing23. After such treatments, the smallest full-

width at half-maximum (FWHM) of the Dirac peak is about 0.2 V, corresponding to a disorder

density of ⇠ 8 ⇥ 10

9 cm�2. To avoid collapsing the graphene due to electrostatic force, we only

apply gate voltage within ±10 V.
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Figure 1 Mass on a nonlinear spring balanced with electrostatic force. The force ex-

erted by the spring varies nonlinearly with the displacement z, and the electrostatic force

is determined not only by gate capacitance Cg, electrostatic potential �, but also quantum

capacitance CQ. For fixed electrochemical potential Vg, � is directly modified by chemical

potential µ, therefore the total spring constant ktotal is modulated by both µ and CQ, and

magnified by the nonlinear effect (large ↵).

Figure 2 Mechanical resonance modulation. (a) Schematic of the graphene mechanical

resonator with source (S), drain (D) and local gate (LG) contacts. Scale bar: 1 µm. (b)

Simulated resonant frequency for a 2 by 2 µm graphene resonator with 120 nm gap, at

different initial strain "0. (c) Calculated <V as function of initial strain "0 for single layer

graphene resonator, at different gate voltage Vg. The negative <V indicates electrostatic

softening effect. (d), (e), (f) Simulated frequency shifts under high disorder and large <V ,

(d); low disorder and small <V (e); low disorder and large <V (f). Top panel: µ (to the

right) and accompanied frequency oscillation �f1 (to the left) as function of magnetic field

B. Middle panel: corresponding frequency shifts �f2 and �f3 (see main text). Bottom

panel: the total frequency shift as function of B, with �f1 overlaid on top (black), except

for (d). For all the simulations, Vg = 10V, "0 = 0.01%, Q = 2000, signal-to-noise ratio = 10

dB, f0 = 161.4 MHz, and fmin is 360 Hz assuming 100 Hz measurement bandwidth.

Figure 3 Chemical potential variation induced frequency shifts. (a) Measured magni-

tude of S21 transmission as function of applied magnetic field for device D1. Due to the
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small frequency tunability, there is no obvious mechanical resonance shift within single

LL. . Test conditions: T = 4.3 K, Vg = -6 V, drive power is -62 dBm. (b) Similar measure-

ment for device D2, which has larger frequency tunability. The corresponding chemical

potential variation is overlaid in yellow. The green dotted lines show the LL energies for

N = 1 to 5. Test conditions: T = 4.3 K, Vg = -4.2 V, drive power is -68 dBm. (c) Complete

fitted result (red curve) to the data shown in (b). The dashed line indicates where the

model is not expected to be accurate.

Figure 4 Chemical potential evolutions and overall fits to experimental data. (a) Me-

chanical resonant frequency as functions for applied magnetic fields at different Vg, and

corresponding fits (red curves). The dashed line for Vg = -3.4 V indicates where the model

is not expected to be accurate (see text). (b) Extracted chemical potential changes for dif-

ferent Vg, as function of filling factors. The dashed blue line shows the linear extrapolation

used to determine the energy gaps at integer filling factors. (c) Energy gaps at different

integer filling factors for various Vg. (d) Chemical potential at zero magnetic field, µ0 at

different Vg. Red solid curve is
p

Vg fit.
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Supplementary Information

1 Electrical and mechanical characterizations of graphene resonators

Magneto-transport measurements are performed prior to mechanical resonance measurement. Fig.

S1 also shows the two-terminal conductance G as a function of both gate voltage and applied

perpendicular magnetic field, for device D2. Well-formed quantum Hall plateaus are observed.

Typical contact resistances are '5 k⌦ · µm, estimated from the two-terminal resistance at large

carrier densities, and also from the deviation of the conductance from expected quantized values1.
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Figure S1 a. Resistance R of suspended graphene device D2 as a function of gate

voltage V

g

at 300 K and 4.3 K. Clear improvement of mobility is seen. b. Zoom-in of (a):

Resistance R as a function of applied V

g

before (black) and after (blue) current annealing.

c. Two-terminal conductance G of D2 as a function of both gate voltage V

g

and applied

perpendicular magnetic field B.

For mechanical resonance measurements, the graphene membranes are electrostatically ex-

cited and detected using direct RF readout2, 3. This technique, which uses the local gate to min-

imize stray capacitance, is two orders of magnitude faster than the commonly used heterodyne

1



mixing techniques4, 5 and enables quick characterization of device properties. In the meantime,

the applied DC gate voltage V

g

can tune the resonant frequency by electrostatically tensioning the

sheet. Therefore, we measure the dependence of the resonant frequency f on V

g

to identify devices

with large tunability (<
V

= |df0/dV
g

| ' 10 MHz/V) resulting from low initial strain, which have

the highest sensitivity to external forces.

Albeit quite robust, the direct RF readout method relies on finite dI
sd

/dV
g

to transduce motion

to the electrical domain, and typically a source-drain current of I
sd

⇠10 µA is required. Such large

currents cause significant heating at low temperatures, particularly in the QH regime. Moreover,

dI
sd

/dV
g

vanishes on QH plateaus, making this measurement challenging. We overcome this

issue by grounding the device (I
sd

= 0) and using only the modulation of the gate capacitance

to detect mechanical motion. The corresponding transmitted signal S21, which is proportional to

the vibration amplitude, is detected using a balanced bridge scheme to further reduce the parasitic

capacitance6, 7. Measurements are performed in ⇠ 10 mTorr He exchange gas, which is sufficient to

cool the sample to base temperature without affecting the mechanical quality factor. The measured

quality factor can be as high as ⇠ 10, 000 with small driving power5 (-80 to -60 dBm).
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Figure S2 Measured S21 magnitude (a) and phase (b) for device D2 at zero magnetic

field. The black curves are Lorentzian fits. Test conditions: T = 4.3 K, V
g

= -4.2 V, drive

2



power is -68 dBm. The extracted quality factor is about 4700, and signal-to-noise ratio is

9.3 dB.

2 Mechanical Model of Graphene Resonators

We model the suspended graphene as a membrane with zero flexural rigidity8 under a uniformly

distributed force F (electrostatic force induced from applied DC gate voltage). Its fundamental

vibrational mode is further treated in a 1D approximation, as that of a stretched string with a static

deflection ⇠(x). Here, x is taken along the 1D string, and ⇠(x) is taken perpendicular to x, i.e.,

perpendicular to the graphene membrane. The elastic energy stored in the stretched string U

el

can

be represented as9:

U

el

[⇠(x)] =

Z
L

0

T

2
⇠

02(x)dx =

Z
L

0


⇠

02(x)

✓
T0

2
+

ES

4L

Z
L

0

⇠

02(u)du
◆�

dx, (1)

where E, S, and L are the Young’s Modulus, cross-sectional area, length of the suspended graphene,

respectively, and ⇠

0(x) = d⇠(x)/dx. We ignore the bending moment EI⇠

02(x) where I is the

moment of inertia, since it is negligible in the case of single layer graphene, but can be sig-

nificant for thicker membrane. Here I is the second moment of inertia. The two terms in the

parentheses describe the total tension, T = T0 + T (V
g

), which comes from both built-in tension

T0 = "0ES due to the fabrication, "0 is the corresponding built-in strain, and the induced tension

T (V
g

) = ES

2L

R
L

0 ⇠

02dx due to the elongation caused by the DC gate voltage V

g

. Here the presence

of V
g

will also change the equilibrium position, i.e., the exact form of ⇠(x).

The form of the static deflection in the case of 1D string under a uniformly distributed force

is8

⇠(x) = zN(x) = z

6

L

2
(Lx� x

2), (2)

where N(x) is normalized deflection function, and z is the effective displacement, such that
R

L

0 ⇠(x)dx = zL. Then equation (1) becomes

U

el

=
12z2

L

✓
ES"0

2
+

3ESz

2

L

2

◆
. (3)
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Figure S3 Schematics of the suspended graphene membrane as 1D string.

The suspended graphene can be treated as a metallic plate over the local gate electrode. Hence,

the energy U

es

stored in the capacitor is 1
2Cg

V

2
g

, where C

g

is the gate capacitance. We also need

to consider the work done by the voltage source (battery) to keep the potential at V
g

, which is

U

batt

= �QV

g

= �C

g

V

2
g

. At zero magnetic field, the quantum capacitance is much larger than

geometric capacitance, and can be ignored.

We next consider how the capacitance increases as the sheet is deflected toward the gate. We

expand C

g

⇡ C0 + C

0
g

z + C

00
g

z

2
/2, where C

0
g

= dC
g

/dz, C 00
g

= d2
C

g

/dz2.

To determine the equilibrium position, we will consider the total energy, U
total

, where

U

total

= U

el

+ U

es

+ U

batt

, (4)

By taking the total derivative of total energy with respect to displacement, we obtain:

dU
total

dz
= 0 = ↵z

3 + �z + ⇣ (5)

4



where

↵ =
144ES

L

3
,

� =
12ES"0

L

� 1

2
C

00
g

V

2
g

,

⇣ = �1

2
C

0
g

V

2
g

The solution of (5), which gives the equilibrium mode shape z

e

N(x), is

z

e

= � 0.87�

3

q
9↵2

⇣ + 1.7
p

4↵3
�

3 + 27↵4
⇣

2

+

3

q
9↵2

⇣ + 1.7
p
4↵3

�

3 + 27↵4
⇣

2

2.6↵
, (6)

Using the actual device dimensions, typical built-in strain ⇠ 0.1 %, and a parallel plate model

for the gate capacitance with gate-graphene separation of about 200 nm, we obtain ↵ ⇠ 1015,

� ⇠ 100, and ⇣ ⇠ 10�8, all with SI units, which prevent us from further simplify (6). These values

give z

e

⇠ 10 nm for |V
g

| = 10V.

The resonant frequency of the resonators f is:

f =
!0

2⇡
=

1

2⇡

s
keff

meff
, (7)

where !0 is the angular resonant frequency, keff is the effective spring constant and meff is the

effective mass of graphene. If we assume the first vibrational mode is sinusoid, then for doubly

clamped case, meff = 0.5m0, where m0 is the physical mass. In most cases, the effective mass will

be larger than 0.5m0, due to the absorbed residue from fabrication.

Before we proceed, we will briefly discuss the effects of different forms of ⇠(x): if we assume

the vibrational amplitude is much smaller than the static deflection ⇠(x), then the effective elastic

restoring force acting on the graphene resonator can be written as:

F

el

=
1

L

Z
L

0

⇥
k⇠(x) + ↵̃⇠

3(x)
⇤

dx

= kz + ↵̃

1

L

Z
L

0

⇠

3(x)dx, (8)
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where k is the linear spring constant, and ↵̃ is the elastic nonlinear constant, and
R

L

0 ⇠(x)dx = zL.

Accordingly, the effective spring constant is:

keff,el = k + 3↵̃
1

L

Z
L

0

⇠

2(x)dx. (9)

If ⇠(x) is chosen such that it is independent of x, with ⇠(x) = z, then F

el

= kz + ↵̃z

3,

and keff,el = k + 3↵̃z2. This is just the simple point-mass-on-a-spring case. If ⇠(x) is chosen

with the sinusoidal mode shape with ⇠(x) = z

⇡

2 sin
⇡

L

x, then F

el

= kz + ⇡

2

6 ↵̃z
3, and keff,el =

k + 3⇡2

8 ↵̃z

2. Finally, with our treatment of parabolic static mode shape, F
el

= kz + 54
35 ↵̃z

3, and

keff,el = k + 18
5 ↵̃z

2.

From (5), the total effective spring constant keff is given as:

keff =
d2
U

total

dz2

�����
ze

=
12ES"0

L

+
432ES

L

3
z

2
e

� 1

2
C

00
g

V

2
g

. (10)

The first term in (10) determines the frequency of the graphene mechanical resonator at

V

g

= 0. The second term indicates the spring constant hardening due to the stretching: with

increasing |V
g

|, the suspended graphene is pulled more towards the gate, resulting a larger z

e

,

hence increase the spring constant. The last term is a spring constant softening, due to the non-

linear nature of electrostatic force, and observed in other NEMS resonators10, 11. For small "0, the

second term dominates4, and frequency increases monotonically with |V
g

|. For large "0, the last

term dominates10, and frequency decreases with |V
g

|. For intermediate "0, the resonant frequency

first decreases, then increases, as V
g

is increased12. Fig. S4 shows the simulated frequency tuning

on the 2⇥2 µm2 graphene resonator, but with 200 nm gate-graphene separation (different from fig.

3 in main text), with different "0.

6
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Figure S4 Simulated frequency tuning by V

g

for a 2⇥2 µm2 doubly clamped graphene

resonator with 200 nm gap. a. with initial strain of 10�4 (0.01%) and b. with initial strain of

10�3 (0.1%).

We can also applied this model to extract the initial strain and mass of the graphene from

measured frequency tuning data, as shown in fig. S5. For device D2 shown in the main text, the

initial strain is about 0.01%.
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Frequency tuning in atomically thin mechanical resonators. \textbf{(a)} Calculated voltage responsivity of 
resonant frequency $\Re_V$ as function of resonator thickness, with different initial strains $\epsilon_0$. 
\textbf{(b)} Calculated $\Re_V$ as function of initial strain $\epsilon_0$ for single layer graphene 
resonator, at different gate voltage $V_g$. The width ($w$) and length ($l$) of the resonator are assumed 
to be 2 $\mu$m, and the distance to the gate is 200 nm. \textbf{(c)} Top panel: resonant frequency of 
single layer graphene resonantor as function of $V_g$, obtained from different devices. Bottom panel: 
fitted result with corresponding initial strains. The device dimensions are shown in the bottom panel as 
well. 
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Figure S5 Top panel: resonant frequency of single layer graphene resonators as func-

tion of V
g

, obtained from different devices. Bottom panel: fitted result with corresponding

initial strains and mass (as multiples of pristine mass). The device dimensions are shown

in the bottom panel as well.

However, in order for the frequency shift to be observed, it needs to be larger than the min-

imum resolvable frequency shift �fmin. In a mechanical resonator13, �fmin can be approximated

as:

�fmin = 10�
SNR
20

s
BWf0

2⇡Q
, (11)

where BW is the measurement bandwidth, f0 is the resonant frequency, and Q is the quality

factor. For graphene resonators, with f0 in MHz range and Q ⇡ 10000 at low temperature, �fmin

is about few hundred Hz for reasonable BW . For a typical sample with mechanical resonance of

100 MHz, Q of 2000, and signal-to-noise ratio of 10 dB, in order to resolve 1 meV of chemical

8



potential variation from �f1 as described in main text, the minimum <
V

required is 5 MHz/V.

3 Mechanical Model of Graphene Resonators with Finite DOS

The above discussions treated graphene as prefect conductors, i.e., with infinite carrier density of

states (DOS). In reality, the finite DOS of graphene will modify the electrostatic and total potential

energy. Here, we will consider it as perturbation of previous case.

With the presence of finite (and varying) DOS, as in our experimental settings, the carrier

density n is no longer solely dependent of applied DC gate voltage V

g

, but also determined by

chemical potential µ. Their relation is implicitly defined by:

V

g

=
µ

e

+ A

ne

C

g

, (12)

where Ane/C

g

represents the electrostatic potential, and A, e is the area of the suspended mem-

brane and electron charge, respectively.

Total potential energy for DOS 6= 1. Under such conditions, the electrochemcial energy stored

in graphene is:

U

ec

= eA

Z
V

g

dñ

= eA

Z
n

0

✓
µ

e

+ A

ñe

C

g

◆
dñ

= eA

✓
µ

e

n+
1

2

Ae

C

g

n

2

◆
. (13)

When the membrane is deflected by different DC gate voltage V

g

, all the n, µ, and C

g

are

modified, therefore, the accompanied force dU
ec

/dz is given as:

dU
ec

dz
=

@U

ec

@n

�����
Cg ,µ

dn
dz

+
@U

ec

@C

g

�����
n,µ

dC
g

dz
+

@U

ec

@µ

�����
Cg ,n

dµ
dz

=

✓
Aµ+

A

2
e

2
n

C

g

◆
dn
dz

� 1

2

A

2
e

2
n

2

C

2
g

dC
g

dz
+ An

dµ
dz

. (14)
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Additionally, the applied DC gate voltage (electrochemical potential) is kept constant, and

from equation (12), we have:

dV
g

dz
=

@V

g

@n

�����
Cg ,µ

dn
dz

+
@V

g

@C

g

�����
n,µ

dC
g

dz
+

@V

g

@µ

�����
Cg ,n

dµ
dz

=
Ae

C

g

dn
dz

�
✓
Ane

C

2
g

◆
dC

g

dz
+

1

e

dµ
dz

= 0. (15)

By plugging equation (15) into equation (14), we are able to eliminate the dµ/dz term, and

equation (14) is simplified to

dU
ec

dz
= Aµ

dn
dz

+
1

2

A

2
e

2
n

2

C

2
g

dC
g

dz
. (16)

The presence of finite DOS does not change the expression for elastic energy U

el

, which is

same as equation (3). The work done the by the battery, U
batt

can again be written as U

batt

=

�V

g

Aen.

Taking the total derivative of all the three energy terms with respect to displacement z, we

have:
dU

total

dz
=

144ES

L

3
z

3 +
12ES"0

L

z + (Aµ� V

g

Ae)
dn
dz

+
1

2

A

2
e

2
n

2

C

2
g

dC
g

dz
. (17)

It is important to note there that, in the case of infinite DOS as discussed above, µ can be

treated as zero, and if we further ignore the effects from C

00
g

, equation (17) will return to equation

(5).

Force perturbation around equilibrium condition. Equation (17) reflects the total force F ex-

erted on the graphene. Before proceeding, we can rewrite F as

F

el

= =
144ES

L

3
z

3 +
12ES"0

L

z � 1

2

⇣
V

g

� µ

e

⌘2
✓
1� 2

C

g

C

Q

◆
dC

g

dz
(18)
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where C

Q

= Ae

2 (dn/dµ) is commonly known as quantum capacitance, and dn/dµ is the DOS.

In the derivation process, we again used the fact that dV
g

/dz = 0 and chain rule.

At equilibrium, F is zero with the displacement of z
e

, similar to the procedures that outlined

for the infinite DOS situation. However, our interest here is how the presence of finite DOS will

perturbate the force. When the magnetic field B is turned on, the graphene sample will go through

different Landau levels (LLs), and undergo resulting variation of µ and C

Q

(or equivalently, elec-

tronic compressibility). The force variation �F can be expressed as⇤:

�F ⇡ � [�µ/e+ C

g

V

g

� (1/C
Q

)]V
g

dC
g

dz
. (19)

In equation (19), �µ denotes the chemical variation, and �(1/C
Q

) represents the change in quan-

tum capacitance (or compressibility) when B is swept through different LLs. The latter (�(1/C
Q

))

is expected to be negligible except for cases between adjacent LLs.

Frequency shifts for B 6= 0. Next we will examine how the above force perturbation is translated

to frequency shifts. Generically, the spring constant k can be expressed as:

k =
d2
U

total

dz2

�����
ze

, (20)

with equilibrium displacement z
e

. Now with the perturbation of magnetic field, the system will

find a new minima of total potential energy, with new equilibrium displacement z̃
e

. The new

spring constant, k̃ can be written as:

k̃ =
d2 (U

total

+�U

total

)

dz2

�����
z̃e

⇡ d2
U

total

dz2

�����
ze

+
d3
U

total

dz3

�����
ze

�z

e

+
d2�U

total

dz2

�����
ze

= k0 �
dk
dz

�����
ze

�F

k0
� d�F

dz

�����
ze

= k0 +�k1 +�k2. (21)
⇤From hereon, the symbol � will denote the different between B 6= 0 and B = 0
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In equation (21), we will further approximate dk/dz with chain rule:

dk
dz

=
dk
dV

g

dV
g

dF
dF
dz

=
dk
dV

g

dV
g

dF
(�k0)

⇡ � dk
dV

g

k0

V

g

dCg

dz

. (22)

Finally, we arrive at the frequency shift �f = 0.5�k (f0/k0) for B 6= 0 as:

<
V

�F

V

g

dCg

dz

= �<
V

[�µ/e+ C

g

V

g

� (1/C
Q

)]

, (23)

where <
V

= |df/dV
g

|, which is obtained from experiments.

Similarly, we can obtain �f3 as:

�f3 ⇡
f0

2k0

"✓
V

g

dC
g

dz

◆2

� (1/C
Q

)

#
. (24)

4 Data Fitting

Geometric capacitance C

g

. In order to determine the parameters for data fitting purpose, it is

important to have accurate values of C
g

. The observed frequency oscillation is periodic in 1/B,

and by performing same measurements at different V
g

, we have found that the periodicity (in unit

of T�1) increase at decreasing |V
g

|. Such periodicity is related to the cross-section of the Fermi

surface14, and in case of two-dimensional electron gas (2DEG), the periodicity in 1/B is given

by15

�

✓
1

B

◆
=

2e

~⇡n, (25)

where ~ is the reduced Planck’s constant. Fig. S6 shows the 1/B period vs. V

g

, and the corre-

sponding carrier density n according to equation (25). The geometric capacitance C

g

is extracted

12



through:

C

g

= Ae

n

V

g

. (26)

To determine z

e

and dC
g

/dz, we use finite element analysis (COMSOL Multiphysics 4.2) to

compute the capacitance at different values of z
e

. We use the precise dimensions of the device,

including fabrication imperfections (spike-like features at the edges of the local gate electrode), as

shown in the inset of fig. S6. dC
g

/dz is then approximated as C
g

/z

e

.

1/
B

  p
er

io
d 

(T
-1

) 
n (10

11cm
-2) 

Vg (V) 

Cg and Cg’ 

Figure S6 1/B oscillation period and corresponding carrier density at different V
g

. Inset:

capacitance simulation with spike-like feature on local gate.

Frequency shifts for B 6= 0. The frequency tunability, <
V

, is extracted from B = 0, as shown in

fig. S7 for device D1 and D2.
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Figure S7 Voltage responsivities for device D1 and D2 at zero magnetic field.

As described in main text, we construct a simple DOS model consists of upto 20 LLs, each

of which is Gaussian-broadened. The chemical potential at any given B and n is numerically

determined as the highest energy level, and its evolution is shown schematically in fig. S8.

We therefore have obtained all information needed to perform the data fitting, with only LL

broadening � as fitting parameter. The results are shown in main text, for different V
g

. To obtain

the best fit, � is slightly different for each V

g

.
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Figure S8 Exemplary DOS evolution as functions of both magnetic field B and chem-

ical potential µ. The yellow and green traces on the left represent chemical potential µ

oscillation (with respect to B) with different disorder strength, and the red trace on the

right represent the chemical potential variation at B = 1 T, corresponding to the vertical

dashed line on the left, showing the profiles of different LLs.
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Vg  
(V) 

1/B period 
(T-1) 

n 
(1011cm-2) 

Cg  
(aF) 

ze 
(nm) 

dCg / dz 
(aF/nm) 

f at B=0 
(MHz) 

k at B=0 
(N/m) 

µ at B=0 
(meV) 

-7.5 0.219 4.43 681 104.4 6.52 115.8 1.50 77.8 

-6.5 0.255 3.81 668 103.3 6.47 105.6 1.27 72.1 

-5.4 0.285 3.41 709 106.7 6.64 94.8 1.023 64.9 

-4.2 0.398 2.42 638 100.5 6.35 75.3 0.636 57.7 

-3.4 0.546 1.78 560 91.8 6.1 64.8 0.471 49.3 

Figure S9 Summary of extracted parameters from experiments and COMSOL simula-

tions (yellow shaded).

5 Signal detections between LLs

When the two-terminal graphene is positioned between adjacent LLs, the bulk of the sample be-

comes insulating, hence unable to carry mobile charges. The charges are conducted through the

edges of the sample, resulting finite electrical resistance16. In such condition, the geometric ca-

pacitance C

g

between graphene and the underlying gate is decreased due to the reduced effective

lateral dimension, as well as the electrostatic force (fig. S10). For example, if the effective lateral

dimension is reduced from 2µm to 52 nm (twice of magnetic length at B = 1 T, accounting for both

edges), both the capacitance and capacitive force are dropped more than one order of magnitude.

Additionally, the motional current also scales with C

g

, therefore, the final measured signal will

scale with C

2
g

.

The diminishing electrostatic force and reduced signal transduction efficiency explain the van-

ishing of vibrational signal in regions between LLs, as shown in main text. Fig. S11 shows the

vibrational amplitude, for V
g

= 7.5 V, obtained from resonance fitting with Lorentzian line-shape.

The minimum of vibration amplitudes correlate with the maximum of the resonant frequencies,

consistent with our explanation. The smallest detectable amplitude is about 20% of the largest
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value, indicating the geometric capacitance is reduced to about 44% of the parallel plate approxi-

mation. It is expected that the geometric capacitance will further decrease as the system approaches

the center of the quantum Hall plateaus (middle of adjacent LLs), where current detection mecha-

nism fails.
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Figure S10 Capacitance and capacitive force with different lateral dimension, using

both parallel plate formula and narrow ribbon over infinite plate approximation17.
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Figure S11 Resonant frequencies (top) and vibrational amplitudes (bottom) for V
g

= -7.5

V.

The vanishing longitudinal conductivity �

xx

, will also decrease the RC charging rate. Al-

though the two-terminal configuration prevents us from direct measurement of �
xx

, we estimate

an lower bond for �
xx

of 10 nS, from measurements carried out in similar conditions18. It gives

a worst-case-scenario estimation for RC charging rate of ⇠ 10 MHz, well below the mechanical

resonance ⇠ 100 MHz. Therefore we cannot rule out effect from slow RC charging time, which

will further contribute to the loss of signal.
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