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Abstract 

 The cell surface of Gram-negative bacteria contains lipopolysaccharides (LPS), 

which provide a barrier against the entry of many antibiotics. LPS assembly involves a 

multi-protein Lpt complex that spans from the cytoplasm to the outer membrane. In this 

complex, an unusual ATP-binding cassette (ABC) transporter is thought to power the 

extraction of LPS from the outer leaflet of the cytoplasmic membrane and its transport 

across the cell envelope. We introduce changes into the nucleotide-binding domain, 

LptB, that inactivate transporter function in vivo. We characterize these residues using 

biochemical experiments combined with high-resolution crystal structures of LptB pre- 

and post-ATP hydrolysis and suggest a role for an active site residue in phosphate exit. 

We also identify a conserved residue that retains ATPase activity but is essential for 

interaction with the transmembrane components. Our studies establish the essentiality of 

ATP hydrolysis by LptB to power LPS transport in cells and suggest strategies to inhibit 

transporter function away from the LptB active site.  

 

Significance Statement 

 Gram-negative bacteria contain an unusual outer membrane that prevents the 

entry of most currently available antibiotics. This membrane contains a complex 

glycolipid, lipopolysaccharide (LPS), on the exterior. It is not understood how such a 

large molecule, which can contain hundreds of sugars and six fatty acyl chains, is 

transported across the cell envelope from its site of synthesis in the cytoplasmic 
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membrane to the cell surface. Using a combination of genetics, biochemistry, and 

structural biology, we characterized residues in the protein that powers LPS transport to 

gain mechanistic insights into how ATP hydrolysis is coupled to the biological function 

of the transporter. These tools help us understand how to design antibiotics targeting this 

essential pathway. 

/body 

Introduction 

 ATP-binding cassette (ABC) systems represent one of the largest protein 

superfamilies across all domains of life (1, 2). Many of these systems are transporters that 

share a common architecture of two transmembrane domains (TMDs) and two 

cytoplasmic nucleotide-binding domains (NBDs), which bind and hydrolyze ATP. They 

couple the energy of ATP binding and hydrolysis to the transport of a variety of 

substrates against a concentration gradient. Although eukaryotic ABC transporters 

involved in human diseases have received much attention (3), the canonical ABC systems 

that have been most extensively studied are Gram-negative bacterial importers (2). 

 Gram-negative bacteria such as Escherichia coli have a unique double-membrane 

architecture that allows for them to colonize harsh environments. The inner membrane 

(IM) contains phospholipids, while the outer membrane (OM) is an asymmetric lipid 

bilayer composed of phospholipids in the inner leaflet and lipopolysaccharides (LPS) in 

the outer leaflet (5). These two membranes are separated by an aqueous periplasmic 

compartment. LPS is a complex glycolipid composed of hundreds of sugars attached to a 

core containing fatty acyl chains (Fig. 1). Millions of LPS molecules must be properly 

assembled each division cycle (4) on the cell surface to establish a permeability barrier 
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that prevents the entry of hydrophobic molecules, including antibiotics (5). Therefore, 

understanding how LPS is assembled at the OM could lead to the development of better 

strategies to target Gram-negative infections. In 1972, it was established that the 

biosynthesis of LPS is completed on the outer leaflet of the IM. Because LPS cannot 

move passively across the aqueous periplasm and through the OM, it was recognized that 

there must be machinery to transport LPS across the cell envelope (6, 7). 

In the last decade, all of the components essential for the transport and assembly 

of LPS have been identified (8-14). These lipopolysaccharide transport (Lpt) proteins 

comprise a complex that spans all compartments in the cell, from the cytoplasm to the 

OM (Fig. 1) (15, 16). E. coli has seven different Lpt proteins that are essential for LPS 

transport and cell viability (17, 18). Three of these Lpt proteins form an ABC system 

composed of a heteromeric TMD complex (LptF and LptG) and a homodimeric NBD 

complex (LptB). LptB, both alone and in a complex with LptF and LptG, has ATPase 

activity in vitro (19-21). In addition, the LptB2FG complex is closely associated with the 

bitopic IM protein LptC, which binds LPS (20-23) and is also part of the trans-envelope 

bridge (15, 16). Based on these findings, the current model is that LptB2FG extracts LPS 

from the outer leaflet of the IM and is the sole energy input responsible for the entire 

process of transport and assembly of LPS on the cell surface against a concentration 

gradient (22). Coupling this ABC transporter with the Lpt periplasmic bridge and OM 

translocon enables cytoplasmic ATP to drive periplasmic transit. Although its 

heteromeric architecture with separate NBDs and TMDs resembles that of bacterial 

importers, LptB2FG has to perform a unique function that places it in a class distinct from 
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traditional importers and exporters; LptB, the cytoplasmic ATPase, must power the 

extraction of a glycolipid from the periplasmic face of the IM. 

To understand how the LptB2FG transporter works, we changed three residues 

implicated in important activities of LptB and showed that they are essential for in vivo 

function. One residue is the proposed essential active site glutamate, but the other two 

residues are not essential for the catalytic activity of purified LptB. We show that one of 

these residues affects the ATPase activity of the intact Lpt IM complex, while the other is 

an essential site for binding the TMDs. Based on high-resolution crystal structures of 

LptB pre- and post-hydrolysis, we propose that the former residue facilitates phosphate 

exit from the active site. These studies highlight the importance of combining structural 

studies with genetics and biochemistry on full complexes as well as individual 

components to understand how this unique ABC transporter functions. 

 

Results 

Identification of LptB residues required for cell viability  

 Using sequence homology to other NBDs, we identified conserved residues 

located in three different regions of LptB. E163 is at the end of the Walker B motif and is 

essential for catalysis in other ABC transporters. It is the proposed general base that 

deprotonates the nucleophilic water molecule that attacks the γ-phosphate of ATP (2, 24, 

25). H195 is located in the conserved switch region adjacent to the active site of NBDs 

and has been implicated in catalytic activity, but its specific function is debated (2, 25-

27). Lastly, F90 is located in the Q-loop, which is proposed to link the ATP-binding site 

to the structurally diverse region that interacts with the coupling helices of the TMDs of 
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ABC transporters (2, 25, 28, 29). LptB has been shown to be required for LPS transport 

and, consequently, cell viability in E. coli (11, 12). Therefore, we mutated lptB to 

determine the importance of each of these residues for LPS biogenesis. Because defects 

in LPS assembly result in phenotypes that range from increased OM permeability to cell 

death (10, 17, 30), we assessed both susceptibility to OM-impermeant antibiotics and cell 

viability.   

 Plasmid-encoded LptB-His8 (used for purification, below) or untagged LptB (to 

assess the effect of the His8 tag) variants were classified as non-functional if they could 

not support cell viability in the absence of a wild-type lptB allele. To assess this type of 

complementation, we first constructed a strain in which the only source of wild-type 

LptB is encoded by pRC7KanLptB, an unstable, segregation-defective plasmid that is 

rapidly lost in a population, thereby causing cell death (see SI Text for details). When a 

plasmid encoding a functional LptB or LptB-His8 variant was introduced into this strain, 

cells that lost pRC7KanLptB were viable; in contrast, when a plasmid encoding a non-

functional LptB or LptB-His8 variant was introduced into this strain, cells that lost 

pRC7KanLptB died. With this approach, we found that unlike wild-type LptB-His8 and 

LptB, the E163Q, H195A, and F90A variants are all non-functional (Fig. 2). This loss of 

function is not a result of reduced protein levels (Fig. S1A). We also tested an F90Y 

variant because an aromatic residue is typically found at this position in other NBDs. We 

found that the LptB and LptB-His8 F90Y variants are functional in vivo. 

 We also found that introduction of plasmid-encoded LptB-E163Q-His8 or LptB-

H195A-His8 variants into the wild-type strain resulted in increased OM permeability 

(Fig. S1B). The simplest explanation for this dominant-negative effect is that the non-
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functional variants can substitute for wild-type LptB in Lpt IM complexes, thereby 

reducing the number of viable transporters and compromising LPS transport. In contrast, 

the merodiploid strain harboring the LptB-F90A-His8 variant did not display increased 

OM permeability (Fig. S1B), suggesting that it cannot replace wild-type LptB in the IM 

complex.  

 

Residue F90 is essential for proper formation of the Lpt IM Complex 

 We next assessed whether the LptB variants produced in the merodiploid strains 

interact with other Lpt IM components. Wild-type LptB-His8 interacts with the Lpt IM 

complex in cells, as it co-purifies with endogenous LptF and LptC (Fig. 3A). A lack of 

LptG antiserum prevented us from monitoring LptG, but it is likely that both LptF and 

LptG are required for the formation of a stable complex with LptB and LptC (20). The 

E163Q and H195A variants also pull down these Lpt components, but the F90A variant 

does not. These results are consistent with our interpretation of the dominant-negative 

phenotypes exerted by the E163Q and H195A variants. They also show that the F90A 

variant cannot form a stable complex with the Lpt IM components and thus does not 

confer a dominant phenotype in a merodiploid strain. 

 The His-tagged F90Y variant pulls down a lesser amount of IM Lpt components 

compared to the wild-type, E163Q, and H195A variants (Fig. 3A), showing that it does 

not associate as well with the IM components as the wild-type variant. This defective 

interaction has functional consequences because a haploid strain producing LptB-F90Y-

His8 shows increased OM permeability compared to the wild-type strain (Fig. S1C). 

Taken together, these results implicate F90 in the association of LptB with LptF/G/C. 
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They also show that the essential role of E163 and H195 in LptB function is unrelated to 

Lpt complex formation. 

  

Nonfunctional LptB variants show variable catalytic activity 

 We next tested the ATPase activity of the different LptB variants to gain more 

insight into the nature of their functional defects. We overexpressed and purified all 

variants as stable proteins. As expected (19), LptB-E163Q-His8 is catalytically inactive 

(Fig. 3B). Because this variant forms a stable IM complex, its inability to support cell 

viability can be attributed to this defective catalytic activity. Therefore, ATP hydrolysis 

by LptB is required for LPS transport in the cell. We found that LptB-F90A-His8 and 

LptB-F90Y-His8 show wild-type levels of ATPase activity. Even though these 

substitutions do not affect protein folding or catalytic activity, both affect LptB function 

in vivo. Finally, the LptB-H195A-His8 variant shows a ~ 60% reduction in ATPase 

activity even though it does not support cell viability. This activity is somewhat 

surprising because changing this conserved histidine in other ABC transporter systems 

results in nearly complete loss of ATPase activity (26, 31-34). 

 

Crystal structures of LptB bound to ADP and ATP 

 To better understand the roles of F90 and H195, we obtained crystal structures of 

LptB before and after ATP hydrolysis. We overexpressed and purified functional LptB-

His8 and obtained crystals with both the native protein and a selenomethionine derivative 

following incubation with ATP/MgCl2 (Fig. S2A, Tables S4 and S5). There was 

unambiguous density for ADP-Mg2+, indicating ATP hydrolysis had occurred during 
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crystallization (Fig. S2B). This 1.55 Å structure will hereafter be referred to as LptB-

ADP. 

 To obtain a pre-hydrolysis LptB-ATP complex, we purified the catalytically-

inactive variant LptB-E163Q (Fig. 3B) and obtained crystals after pre-incubation with 

ATP. The resulting 1.65 Å LptB-E163Q-ATP structure will hereafter be referred to as 

LptB-ATP (Figs. 4A, S2C). Examination of the active site demonstrated clear electron 

density for intact ATP (Fig. 4C). Additionally, unlike the LptB-ADP structure, the pre-

hydrolysis form crystallized as a canonical nucleotide-sandwich dimer (Fig. S2D). 

Secondary sequence matching alignments (35) of the LptB-ATP sandwich dimer with 

those of ATP-bound E. coli MalK (PDB 1q12) and M. jannaschii MJ0796 (a LolD 

homolog, PDB 1l2t) have RMSD values less than 1.75 Å. In all cases, ATP is 

sandwiched between the Walker A motif of one subunit and the signature motif of the 

opposing unit (Fig. S2E). 

 LptB possesses an overall fold resembling that of NBD structures (Fig. 4A). It 

contains the canonical L-shaped architecture (36) composed of a RecA-like α/β ATPase 

domain and a structurally-diverse α-helical domain. The RecA-like domain contains the 

Walker A and Walker B motifs present in many nucleoside triphosphate-binding proteins 

(Fig. 4A) (37). This domain also furnishes Mg2+- and nucleotide-binding motifs specific 

to ABC proteins, namely the Q-loop, which links the more highly conserved α/β ATPase 

domain to the α-helical domain, and the switch region, which contains the conserved 

H195. As observed in other NBD structures, the LSSG(E/Q) signature motif is found in 

the helical domain (Fig. 4A) (25, 38). Additionally, both LptB structures reveal an 

interface where we predict LptB interacts with TMDs LptF/G, based on comparisons 
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with the structures of other NBDs and those of full ABC transporters (Fig. S2F). This 

interface contains grooves (Fig. 5) that could accommodate coupling helices of TMDs, 

which in other ABC transporters are involved in communication between the NBDs and 

TMDs (39, 40). 

 

ATP hydrolysis induces conformational changes 

 Comparison of the pre- and post-hydrolysis complexes of LptB demonstrates 

considerable movement in a number of regions associated with binding and/or hydrolysis 

of the γ-phosphate (Fig. 4B). Conformational changes in the switch region, containing 

H195, and the region surrounding the Walker B motif, containing E163, are apparently 

driven by reorganization of the active site following ATP hydrolysis. This reorganization 

is coupled to changes in the signature motif and the Q-loop, which contains F90 (Figs. 

4A and 4B). 

A closer view of the LptB-ATP active site reveals that key residues that orient and 

stabilize the γ-phosphate must reorganize during the catalytic cycle to maintain contact 

with ADP following phosphate-bond cleavage (Figs. 4C and 4D). Residue 163 (Q163 in 

LptB-ATP and E163 in the native LptB-ADP structure), located at the end of the Walker 

B motif, and H195 in the switch region, make contacts with a bridging water molecule 

and the γ-phosphate, respectively, in the LptB-ATP structure (Fig. 4E). Glutamine-85, 

which is at the start of the Q-loop (giving it its name), forms part of the octahedral 

coordination sphere surrounding the metal ion associated with the nucleotide (Fig. 4E). 

E163 is essential for catalysis (Fig. 3B). A closer look at the carbonyl oxygen in 

the side chain of residue 163 reveals that it is approximately 2.2 Å closer to the 
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nucleotide in the post-hydrolysis structure based on a structural alignment of the Walker 

A motifs (36-GPNGAGKT-43). Through a bridging water molecule, this glutamate 

contacts the β-phosphate of the nucleotide (Fig. 4E). In LptB-ATP, Q163 is oriented 

slightly farther from the nucleotide because it is separated by both a bridging water 

molecule and the γ-phosphate (Fig. 4E). Based on structural alignments with E. coli 

MalK bound to transition-state mimics (ADP-vanadate and ADP-aluminum fluoride) 

(41), and by comparison with the ATP-bound MJ0796 structure (42), we believe this 

water is well positioned to be the nucleophilic water in the hydrolysis reaction. Consistent 

with this hypothesis, this water molecule is not present in the LptB-ADP structure (Fig. 

4E). 

Comparison of the pre- and post-hydrolysis structures also shows that H195 in the 

switch region undergoes a major conformational change (Fig. 4D). The side chain of 

H195 makes direct contact with the γ-phosphate in the ATP-bound structure. However, 

its Cα shifts by ~ 4 Å in the ADP-bound structure. Not only does the switch region move, 

but the side chain of H195 flips. One important unanswered question is how inorganic 

phosphate (Pi) exits the active sites of NBDs. There is no clear electron density for a Pi 

group in the post-hydrolysis crystal structure (Fig. S2B), which is consistent with claims 

that Pi leaves the active site before ADP is released (42-44). Based on an electrostatic 

potential surface of LptB, the H195 side chain flips to face a negatively-charged part of 

the protein (Fig. S3). It is possible that the γ-phosphate remains bound to H195, and that 

the movement of the switch region forces out the Pi by electrostatic repulsion in this 

negatively-charged area. It is also possible that the dramatic movement of the switch 
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region observed during ATP hydrolysis plays a critical role in communicating changes in 

the active site to changes in the TMDs.  

Because H195 is essential in vivo and the LptB-ATP structure shows that the 

imidazole side chain directly interacts with the γ-phosphate of ATP, we suspected that the 

ATPase activity observed for the isolated NBD (Fig. 3B) reported inaccurately on the 

activity of the full complex (21). Therefore, we overexpressed and purified LptB2FGC in 

detergent and measured the ATPase activity of the wild-type complex and complexes 

containing LptB-E163Q and LptB-H195A (Fig. S4A). The complex containing LptB-

E163Q is catalytically inactive, and the complex containing LptB-H195A has ~ 10% the 

ATPase activity of the wild-type complex. This confirms our hypothesis that, though 

H195 is not the sole catalytic residue, its positioning is important for some step of the 

catalytic cycle, as suggested by the crystal structures. 

 

The groove region of LptB is essential for interaction with IM partners 

Taken together, ATP hydrolysis initiates global movement in LptB that couples 

changes in regions surrounding the active site (the switch and the Walker B domains) to 

changes in the structurally-diverse helical domain (the signature motif and the Q-loop). 

These changes near the helical domain result in a shift in the groove located adjacent to 

the Q-loop (Fig. S4B and Fig. 5). This coupling of ATP hydrolysis with movement in the 

groove region could be important for communicating with the TMDs, thereby affecting 

LPS transport. Therefore, we were interested in the positioning of F90 in the Q-loop, 

since we have interpreted in vivo and biochemical results described above to mean that 



13 

F90 is important for binding to putative coupling helices of the TMDs of this ABC 

system. 

 The side chain of F90 in the Q-loop faces the interior of the groove opening in 

both the ATP- and ADP-bound structures (Fig. 5), suggesting this residue might be 

functionally important for interacting with the TMDs during part or all of the catalytic 

cycle. Indeed, this would explain why the lptB-F90A allele is nonfunctional. To test 

whether positions with side chains facing away from the groove interior are as important 

as residues pointing into the groove, we assessed the importance of LptB-R91A, which 

has a side chain facing away from the interior of the groove in both crystallographic 

snapshots (Fig. 5). We found that the LptB-R91A variant is functionally similar to wild-

type LptB (Fig. S1A and C). 

Taken together, these results support the hypothesis that residues in the Q-loop of 

LptB that face the interior of the groove are important for assembly of the complex, for 

its function, or for both. The high conservation of F90 in LptB orthologs (Fig. S4C) 

combined with the fact that the lptB-F90Y allele confers mild OM permeability defects in 

haploid strains (Fig. S1C) suggest that a conservative change from a phenylalanine to a 

tyrosine is tolerated, but not optimal, as LptB evolved to have a phenylalanine at this 

position. These experiments lead us to conclude that F90 forms a critical part of the 

binding site for LptF/G.  

 

Discussion 

 We describe the crystal structures of a catalytically inactive variant of LptB bound 

to ATP and wild-type LptB bound to ADP. By combining biochemistry with a genetic 



14 

analysis of LptB variants, we have identified residues in LptB that are important for ATP 

hydrolysis (E163), assembly with LptF/G (F90), and the function of the complex (H195). 

Structural studies reveal that residues involved in binding ATP and catalyzing γ-

phosphate hydrolysis reorganize to stabilize the product, ADP. Our crystallographic 

snapshots suggest that movement of residues around the LptB active site is coupled to 

movement of regions at the interface with LptF/G that might be essential for LPS 

transport. In addition, using a catalytically-inactive LptB-E163Q variant, we have 

demonstrated that ATP hydrolysis by LptB is essential for cell viability; in contrast, ATP 

hydrolysis is not required for the formation of the Lpt IM complex.  

 With respect to the mode of catalysis, our observations are consistent with the 

prevailing general base catalysis model, in which a carboxylate side chain at the end of 

the Walker B motif (in residue E163) deprotonates a water molecule so that it can serve 

as a nucleophile in the hydrolysis reaction. The locations of the general base and potential 

nucleophile are also consistent with structures of the transition state of the E. coli maltose 

importer (41). The pre- and post-catalysis structures reveal that ATP hydrolysis induces 

conformational changes in LptB. The most dramatic conformational change in our 

structural snapshots is in the switch region. Not only does the switch loop move, but the 

imidazole side chain of the conserved H195 flips away from the active site towards a 

negatively-charged channel. This movement, combined with the observation that H195 

coordinates the γ-phosphate in the pre-hydrolysis complex, leads us to speculate that this 

residue helps move the γ-phosphate from the active site into the acidic channel, from 

which it is ejected by electrostatic repulsion (Fig. S3). This shift of the conserved 

histidine near a negatively charged surface is also observed in a structure of MJ0796, a 
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homolog of LolD, which powers lipoprotein extraction from the IM (42). Such a role is 

consistent with the low-level ATPase activity observed for LptB-H195A in complex with 

the other Lpt IM components.  

Our crystal structures reveal a groove in LptB that undergoes movement upon 

ATP hydrolysis. We hypothesize this groove is involved in the interaction with its TMD 

partners, LptF/G, and that its movement is essential for connecting ATP hydrolysis by 

LptB with LPS extraction by LptF/G. Our genetic and biochemical studies implicate 

groove residue F90 as an important binding site for LptF/G. The crystal structures 

suggest that this residue is critical because its aromatic side chain faces the inside of the 

groove that likely interacts with the coupling helices of the TMDs. Structural alignments 

with other NBDs, both in isolation and in complex with their TMDs, reveal that, despite 

being part of a structurally diverse region, there is often an aromatic residue at the same 

location as F90 in LptB. For example, F90 in LptB aligns with F429 in S. typhimurium 

MsbA (PDB 3b60), with Y87 in MalK (PDB 2r6g), and with Y94 in S. solfataricus GlcV 

(PDB 1oxx). In the structure of Sav1866 bound to AMP-PNP (PDB 2onj), the 

guanidinium group of R206 in the TMD is in close enough proximity to make a π-cation 

interaction with the aromatic ring of F427 in the NBD, which aligns with F90 in LptB 

(Fig. S4D), suggesting that this residue is critical for interaction with the TMDs. For 

LptB, we have established the importance of F90 by genetic analysis and affinity 

purifications: the F90A mutant fails to complement and results in destabilization of the 

ABC transporter. The aromatic character of this residue is critical for mediating the 

interaction of LptB with LptF/G since the F90Y substitution only results in a partial loss 

of function in vivo, suggesting that the interaction is specific. Further studies are 
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underway to examine how this key interaction with the TMDs might be important for 

linking ATP hydrolysis to the extraction of LPS from the opposite side of the membrane 

via the conformational changes in the groove region.  

We have done a comprehensive analysis of selected residues in the ATPase 

component of the Lpt IM complex that combines genetic studies of essentiality, 

biochemical studies of catalytic activity and protein-protein interaction, and 

crystallographic analysis of pre- and post-hydrolysis complexes. Our results highlight the 

importance of combining multiple techniques to understand the roles of individual 

residues in the process of transporting LPS from the IM to the cell surface. Neither 

catalytic activity nor cell viability alone can illuminate the functions of certain residues. 

Clearly, interfering with catalytic activity and coupling with other Lpt components are 

viable strategies for the development of new antibiotics targeting LPS biogenesis. 

 

Materials & Methods 

In vivo Experiments 

 Strains, growth conditions, and construction of plasmids and a ΔlptB allele are 

described in the SI Text. Functionality of mutant lptB alleles was assessed by two 

complementary methods also described in the SI Text. When necessary, the chromosomal 

ΔlptB allele was transferred by P1 transduction (45). 

 OM permeability tests were performed using disc diffusion assays (46). LptB 

protein levels were monitored by immunoblotting using anti-LptB antisera raised in a 

rabbit using the LptB peptide DDLSAEQREDRANE as immunogen (ProSci Inc.).  

Affinity Purifications and ATPase Assays 
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 Modifications to affinity purifications (15) are explained in SI Text. ATPase 

assays were conducted as described with 5 mM ATP/MgCl2 for both LptB and 

LptB2FGC variants (21). 

Protein Overexpression and Purification 

LptB-His8 and the catalytically inactive E163Q variant were overexpressed in E. 

coli and purified by nickel-affinity chromatography and gel filtration chromatography as 

described (19), with notable changes described in SI Text. Overexpression of a 

selenomethionine-containing derivative of LptB (SeMet-LptB-His8) is described in SI 

Text. 

 LptB2FGC complexes (wild-type, E163Q, and H195A variants) containing His6-

LptB were overexpressed in E. coli and purified as described in SI Text. 

Protein Crystallization, Data Collection, and Structure Determination 

 A detailed description of the structure determination is in SI Text. Briefly, all 

protein crystals were grown by vapor diffusion in hanging drops. Experimental phasing 

was obtained by MIRAS using a selenomethionine derivative crystal and a tantalum 

derivative crystal. X-ray diffraction data were collected at the National Synchrotron Light 

Source beamlines X29 or X25 at Brookhaven National Laboratory, except for the SeMet 

dataset, which was collected at 24-ID-E of the Advanced Photon Light Source at 

Argonne National Laboratory. 
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Figure Legends 
 
Figure 1. LPS is transported to the cell surface of Escherichia coli by essential 
lipopolysaccharide transport (Lpt) proteins. The E. coli LPS structure (right) is 
composed of lipid A (endotoxin), a core region, and the O-antigen. The Lpt proteins form 
a transenvelope complex that transports LPS from its site of synthesis (IM), across the 
aqueous periplasm, to the cell surface (left). LPS transport and assembly is believed to be 
powered by the ABC transporter LptB2FG in the IM (yellow), as there is no ATP in the 
periplasm. Kdo, 3-deoxy-D-manno-octo-2-ulosonic acid; Hep, L-glycero-D-manno-
heptose; EtN, ethanolamine; Glu, D-glucose; Gal, D-galactose; P, phosphate. 
 
Figure 2. Genetic studies indicate residues essential for LptB functionality. 
Functionality of untagged and His8-tagged LptB variants with alterations in the active site 
and Q-loop was determined by their ability to complement a chromosomal ΔlptB allele. 
Anti-LptB western blots show that residue changes (above lanes) do not alter LptB-His8 
levels. WT refers to wild-type LptB-His8. Chromosomal lptB alleles of strains are shown 
below LptB-His8 bands. Cross-reacting OmpA is shown as a loading control. 
 
Figure 3. Biochemical studies indicate residues in LptB essential for catalysis and 
proper coupling with other Lpt components. (A) Western blots showing affinity 
purifications of LptB variants expressed in merodipoloid strains harboring plasmids 
expressing LptB variants. All plasmids express LptB-His8, except for the untagged 
variant (labeled “No tag”). Levels of LptF and LptC that co-purify with LptB are shown. 
Levels of BamA, an outer-membrane protein that nonspecifically interacts with the 
purification resin, are shown as a sample preparation and loading control. (B) LptB-His8 
variants were overexpressed and purified, and their ATPase activity was measured. Data 
represent the average and standard deviations of three experiments.  
 
Figure 4. Conformational changes upon ATP hydrolysis show how reorganization of 
the active site causes changes in the region of LptB believed to interact with LptF/G. 
(A) Cartoon rendering of LptB-ATP (pre-hydrolysis), with conserved ATPase and ABC 
motifs indicated (Walker A, yellow; Walker B, orange; signature motif, blue; Q-loop, 
cyan; switch region, red). We assigned the active-site metal of the LptB-ATP structure to 
a Na+ ion. The distances between the metal and the coordinating water molecules 
correspond more to those characteristic of Na+ (~ 2.4 Å) than of Mg2+ (≤ 2.1 Å), which 
were observed in the LptB-ADP structure. In addition, LptB-ATP crystallized in 
magnesium-free buffer in a condition containing sodium chloride. (B) Structural overlay 
of the LptB-ATP (red) and LptB-ADP (blue) structures shows conformational changes 
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upon ATP hydrolysis. The product (ADP) is shown in the active site. (C) Close-up view 
of the ATP-bound active site with the side chains of conserved residues in the Walker B, 
switch, and Q-loop regions shown. The Fo-Fc omit map is contoured at 3σ and shows 
clear electron density for a γ-phosphate. (D) Structural overlay, as in (B), of the pre- and 
post-hydrolysis structures with arrows indicating movement of side chains upon 
hydrolysis. Coloring of conserved regions is the same as in (A). (E) Rearrangement of 
active site residues upon ATP hydrolysis to stabilize ADP is shown. The octahedral 
coordination sphere of the active-site cation is shown, and the putative hydrolytic water is 
indicated in the ATP-bound active site. 
 
Figure 5. Structural observations of LptB implicate a key binding site for TMDs. 
Surface renderings of a monomer of LptB-ATP (front face and top views) showing 
residues Q163 and H195 near ATP, residue F90 facing the interior of the groove, and 
residue R91 facing away from the groove. 
	  
	  
	  
	  


