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Abstract
Colorectal Cancer (CRC) is one of the late complications observed in patients suffering

from inflammatory bowel diseases (IBD). Carcinogenesis is promoted by persistent chronic

inflammation occurring in IBD. Understanding the mechanisms involved is essential in

order to ameliorate inflammation and prevent CRC. Thrombospondin 1 (TSP-1) is a multido-

main glycoprotein with important roles in angiogenesis. The effects of TSP-1 in colonic

tumor formation and growth were analyzed in a model of inflammation-induced carcinogen-

esis. WT and TSP-1 deficient mice (TSP-1-/-) of the C57BL/6 strain received a single injec-

tion of azoxymethane (AOM) and multiple cycles of dextran sodium sulfate (DSS) to induce

chronic inflammation-related cancers. Proliferation and angiogenesis were histologically

analyzed in tumors. The intestinal transcriptome was also analyzed using a gene microar-

ray approach. When the area containing tumors was compared with the entire colonic area

of each mouse, the tumor burden was decreased in AOM/DSS-treated TSP-1-/- versus wild

type (WT) mice. However, these lesions displayed more angiogenesis and proliferation

rates when compared with the WT tumors. AOM-DSS treatment of TSP-1-/- mice resulted in

significant deregulation of genes involved in transcription, canonical Wnt signaling, trans-

port, defense response, regulation of epithelial cell proliferation and metabolism. Microarray

analyses of these tumors showed down-regulation of 18 microRNAs in TSP-1-/- tumors.

These results contribute new insights on the controversial role of TSP-1 in cancer and offer

a better understanding of the genetics and pathogenesis of CRC.

Introduction
Thrombospondins (TSP-1 through -5) are multimodular glycoproteins secreted into the extra-
cellular matrix. TSP-1 (also called THBS1) is a 450 kDA protein recognized as an inhibitor of
angiogenesis. It plays a vital role in development, inflammation and cancer as well. Studies
have shown that TSP-1 inhibits cell proliferation and induces apoptosis. It is well known that
some of the anti-angiogenic functions of TSP-1 are carried out by its interaction with the
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receptor CD36. By this mechanism, TSP-1 is able to inhibit VEGF-A and down regulate
VEGFR2 phosphorylation [1,2]. The suppression of VEGFR2 phosphorylation is accomplished
by the binding of SHP-1 (SRC homology 2 domain containing protein tyrosine phosphatase 1)
with the VEGFR2/CD36 signaling complex [3]. TSP-1 also inhibits angiogenesis by interacting
with nitric oxide in endothelial and vascular smooth muscle cells [4]. The inhibition of angio-
genesis is just one of the mechanisms by which TSP-1 may suppress tumorigenesis [5]. It has
been reported that Kras can interact with TSP-1 in lung cancers in a p53-dependent manner.
TSP-1 can stabilize p53 by interacting directly with ERK [6]. TSP-1 binds and activates TGFβ1,
regulating cytokine response and secretion of other growth factors [7].

Several studies, however, have shown that TSP-1 promotes angiogenesis [8] and favors can-
cer progression [9]. These contradictory results suggest that the biological activities of TSP-1
could depend on the conformation and concentration of TSP-1, which may be dependent on
the tumor-type [10].

The expression of TSP-1 in CRC seems to be ambiguous. TSP-1 expression in human CRC
was not different than the observed in normal colons in one study [11]. In contrast with these
results, its expression was found correlated with decreased angiogenesis and good prognosis in
CRC [12]. TSP-1 expression could be regulated in a post-transcriptional manner by micro-
RNAs (miRNAs). As an example, inhibition of TSP-1 by miR-194 promoted angiogenesis and
tumor growth of colonic carcinoma xenografts [13].

ApcMin mice with a deficiency of TSP-1 showed an increase in adenoma numbers and devel-
oped earlier carcinomas when compared with ApcMin mice controls. Interestingly, no differ-
ences in tumor vascular density were found between these mice and their control littermates
[14]. The sequence adenoma-carcinoma on sporadic human CRC differs greatly from cancers
originated from the transition from chronic inflammation to dysplasia-carcinoma.

Elevated levels of TSP-1 have been detected in experimental models of colitis and patients
affected with inflammatory bowel disease (IBD) [15], [16]. IBD includes ulcerative colitis and
Crohn’s disease [17]. These idiopathic diseases seriously diminish the quality of life of afflicted
individuals and significantly increase the risk for colorectal cancer.

The treatment with azoxymethane (AOM) combined with DSS is a well-established model
for the study of colorectal carcinogenesis resulting from chronic inflammation as it occurs in
IBD [18]. DSS causes inflammation and induces colitis while the carcinogen AOM increases
the probability that the inflammation will progress into cancer [19]. The gene expression pro-
file [20] and the protein profile [21] of AOM-DSS treated WTmice have been reported. In
addition, a reference gene expression dataset for normal human colonic epithelium is available
for use in comparisons of diseased or neoplastic tissues in colon-related studies [22]. Results of
a previous study using TSP-1-/- mice treated with DSS showed changes suggestive of a more
intense colitis. TSP-1-/- mice displayed severe signs of rectal bleeding, a higher level of crypt
damage, deeper lesions, as well as enhanced inflammation and angiogenesis compared to the
WT controls [23,24]. Peptides derived from the type 1 repeats of TSP-1 have been used as treat-
ment for abating the inflammatory response in mice with induced colitis [25]. These results
indicated that particular sequences of TSP-1 might have specific effects in the inflammatory
response and angiogenesis in the DSS model.

The present study aims to better elucidate the role of TSP-1 in carcinogenesis induced by
inflammation. Tumor burden in AOM/DSS treated mice was analyzed. The morphological fea-
tures of TSP-1-/- tumors as well as their proliferation status and angiogenic potential were
examined. In addition, a gene microarray approach was used to analyze the transcriptional
profile of TSP-1-/- tumors and compared with the transcriptional profile of TSP-1-/- normal
untreated colons. The results herein indicate that the lack of TSP-1 actually reduced the tumor
burden but TSP-1-/- tumors showed more angiogenesis and higher proliferation rates. Gene
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transcripts that might contribute to these results are discussed as well. The results shown herein
indicate that TSP-1 could significantly regulate tumorigenesis in a temporal-spatial manner,
promoting angiogenesis and proliferation once tumors are fully developed.

Materials and Methods

Animals and treatments
All the animal procedures were performed following the U.S. National Institutes of Health
(NIH) guidelines and with the approval of the Wilkes University Institutional Animal Care
and Use Committee (Wilkes IACUC protocol # 189).

Seven week-old male WT and TSP-1-/- mice of the C57BL/6 strain (purchased from The
Jackson Laboratory, Bar Harbor, ME) were used in this study. DSS with a molecular weight of
36,000–50,000, (MP Biomedical, LLC, Aurora, OH) was dissolved in the drinking water (dis-
tilled) of WT (n = 46) and TSP-1-/- (n = 56) mice at a dilution of 1.5% (wt/vol) and adminis-
tered to 7-week old mice for four cycles, each lasting 7 days, to induce colitis. Mice were given
plain water for two weeks between each DSS cycle. A single intraperitoneal injection (10 mg/
kg) of the carcinogen AOM was given to the same mice one week before the first DSS cycle. To
evaluate only tumors and not inflammatory pseudopolyps, mice were sacrificed 4 weeks after
the last DSS treatment. All the treated mice were sacrificed 15 weeks after the AOM injection.
AOM/DSS treated mice, as well as WT (n = 7) and TSP-1-/- (n = 7) untreated control mice
were sacrificed by CO2 asphyxiation.

Tumor and dysplasia quantification
Intestines were removed, opened longitudinally and rinsed with ice-cold phosphate buffer
solution (PBS) then fixed overnight in Histochoice MB (Electron Microscopy Sciences, Hat-
field, PA). Tissues were transferred to 15 ml tubes and coded. Grossly visible tumors were
counted and diameters measured with a caliper. Tumor area and total colon area were mea-
sured and the percentage of tumor area per total colon area was calculated. Evaluations were
performed without any knowledge of the genotype of the mice or type of treatment. Colonic
tissues were processed, sectioned and stained with hematoxylin and eosin (H&E) for histologi-
cal evaluations.

Histology and inflammation grade analyses
Sections were stained with H&E for histopathological analysis. The entire colon was analyzed
for dysplasia; the presence of dysplasia was confirmed under high-power magnification, ×400.
The number of fields of vision was counted, and the percentage with dysplasia was calculated
as the number of dysplastic segments per field. Inflammation was graded as follows: 0, no
inflammation; 1, modest numbers of infiltrating leukocytes in the lamina propria; 2, infiltration
of leukocytes leading to separation of crypts and mild mucosal hyperplasia; 3, massive infiltra-
tion of inflammatory cells accompanied by disrupted mucosal architecture and complete loss
of goblet cells. Slides were double-coded before pictures were taken and frames blindly ana-
lyzed in a monitor.

Immunohistochemistry (IHC)
Colon tissue sections were deparaffinized by using xylene series and hydrated through graded
ethanol series (100%, 95%, 70%). After rinsing in tap water, tissue sections were incubated in a
hydrogen peroxide blocking solution for 10 minutes. The sections were then washed with PBS
and incubated for 1 hour in a working solution of anti M.O.M.TM Mouse Ig Blocking Reagent
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(Vector Laboratories, Burlingame, Calif., USA). Tissue sections were again washed in PBS and
then incubated in ready-to-use 2.5% normal horse or goat serum (Vector Laboratories) for 30
minutes. Sections were then incubated overnight with the following primary antibodies: WIF-
1, SSTR-1 (somatostatin receptor 1), group II PLA2g2 (phospholipase A2) and CD31 (Santa
Cruz Biotechnologies, Santa Cruz, Calif., USA), neurotensin (Novus Biologicals, Littleton,
CO), PCNA (proliferating cell nuclear antigen) and MECA-32 (Biolegend, San Diego, CA).
Sections were then washed with PBS the next day and incubated for 30 minutes in the anti-rab-
bit, anti-rat or anti-mouse M.O.M.TM ImmPRESSTM Reagent (Vector Laboratories). Tissues
were again washed in PBS and then incubated in a peroxidase substrate solution, ImmPACTTM

DAB (Vector Laboratories) as chromogen.

Angiogenesis and proliferation analyses
Colonic sections stained with antibodies against MECA-32 and CD31 were first scanned at low
magnification to identify tumors. Multiple pictures were taken covering the entire area of the
tumors at x400 magnification. Pictures were coded and counting of blood vessels was per-
formed by multiple observers using the Leica application suite (LAS) V3.7 system. Sections
stained with PCNA were also screened for tumors and each tumor area photographed and
coded for further analyses. Pictures were blindly analyzed and the rate of PCNA positive cells
was calculated as the number of positive PCNA nuclei over the total number of cells in each
picture.

Microarray experiments
Total RNA isolation and processing for microarray hybridization were as previously described
[25]. RNA from normal and diseased colonic tissues of at least three mice from the AOM-DSS
treated (TSP-1-/- and WT) and three mice each from untreated TSP-1-/- and WT were submit-
ted to the Center for Functional Genomics, University of Albany, Rensselaer, New York, for
microarray processing and statistical analysis. The MIAME guidelines for microarray experi-
ments were followed.

Microarray Data Analysis
The signals were quantile normalized using PLIER16 algorithm and baseline transformed to
the median of all 12 samples. The log2 normalized signal values were then filtered to remove
entities that showed signal in the bottom 20th percentile across all samples. The list was further
filtered to only include entities in which at least one out of four conditions had a coefficient of
variation CV< 25.0 percent (i.e., to remove probes that are highly variable across replicates in
a condition). The list was then subjected to ANOVA (p<0.05) with Benjamini Hochberg False
Discovery Rate correction (p<0.05) applied. A two-fold filter was applied to identify genes that
are differentially expressed between any two specific conditions. Microarray data have been
deposited in the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/
geo/) under accession number GSE60805.

Statistical Analysis
Data were analyzed for significance by a one-way analysis of variance (ANOVA). Calculations
were performed using the Stat-View system for Macintosh (Abacus Concepts, Berkeley, CA,
USA). A p value<0.05 was considered significant.
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Results

Colons of mice deficient in TSP-1 showed fewer AOM/DSS induced
tumors
Lesions in the WTmice were characterized by multiple coalesced tumors flanked by small
areas of intervening normal mucosa. However, grossly detected tumors in TSP-1-/- colons con-
sisted of isolated polyp-like lesions separated by wide areas of normal mucosa, (Fig 1A and
1B). When the area containing tumors was compared with the entire colonic area of each
mouse, the tumor burden was decreased in AOM/DSS-treated TSP-1-/- versus WT mice
(p = 0.0060), (Fig 1C). Tumor areas developed in TSP-1-/- mice showed an average area size of
1.71 mm2, whereas coalesced WT tumor areas measured an average of 3.45 mm2. However, no
significant differences were detected when the diameters of each tumor were compared
between the two groups (p = 0.9602). Microscopic dysplastic foci were analyzed in TSP-1-/-

and WT colons (Fig 1D and 1E, respectively). No significant differences were observed in the
number of dysplastic lesions per field when the entire colon was evaluated by histology
(p = 0.1486, Fig 1F). In addition, the inflammation grades in the colons were not significantly
different between the two genotypes by the end of the study (p = 0.4092). These results suggest
that endogenous TSP-1 does not protect against the initial mutational effects of AOM.

Tumors of TSP-1 deficient mice had higher proliferation rates and more
microvessels
Blood vessels were blindly evaluated in each tumor section stained with MECA and CD31 anti-
bodies in TSP-1 deficient (Fig 2A) andWT colons (Fig 2B). Tumors lacking TSP-1 showed sig-
nificantly higher number of microvessels as compared to the WT mice (Fig 2C) (p = 0.0159).
IHC for PCNA was performed and positive nuclei were counted in the tumor sections of TSP-
1-deficient mice (Fig 2D) and WTmice (Fig 2E). PCNA rates were significantly higher in
tumors of TSP-1-/- mice compared to WT tumors (p<.0001), (Fig 2F). Proliferation and vascu-
lar density were analyzed only in fully developed polypoid tumors.

A set of novel genes were deregulated in the AOM/DSS treated TSP-1
deficient mice
The treatment of TSP-1-/- mice with AOM-DSS resulted in significant deregulation of genes
involved in cell transcription, canonical Wnt signaling, transport, defense response, regulation
of epithelial cell proliferation and metabolism (Table 1). A fold-change cutoff of> = 2.0 was
used and 342 differentially expressed genes in the treated vs. untreated TSP-1-/- were detected.
In comparing treated TSP-1-/- to treated WT, 183 genes were differentially expressed. At a
fold-change cutoff of> = 5.0, for the four pairwise comparison, 42 genes showed increased
expression and 19 showed lowered transcript levels (p-value< 0.05), as shown in the heatmap
(Fig 3). Rfx4 (regulatory factor X, 4) and Osr2 (odd-skipped related 2) showed the highest dif-
ferential expression in the treated groups, TSP-1-/- vs. WT, with Rfx4 expression enhanced by
FC = 83.3 and Osr2 expression reduced by FC = 13.3 (S1 Table). In addition, two down-regu-
lated genes were uniquely found in the TSP-1-/-mice when compared to WT (in both treated
and untreated pairs): Somatostatin receptor 1 (Sstr1) and Predicted gene 14207 (Gm14207)
(Table 1).

AOM-DSS treatment did not affect the expression of the tumor suppressor p53 and onco-
genes associated with CRC such as Jun and c-Myc. It is worth noting that TSP-1 was differen-
tially expressed in TSP-1 deficient mice; these mice still have the gene but it contains a targeted
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mutation in exons 2–3 and intron 3. They are not strictly knockout mice but the protein-prod-
uct is not produced.

Two members of the Ras oncogene family, Rab18 and Rab39b, were slightly up regulated
(fold change of 2.1 and 2.2, respectively) in the AOM-DSS-TSP-1-/- vs. water-TSP-1-/- pair (S1
Table). RAS protein activator like 2 (Rasal2) and ras homolog gene family, member J (RhoJ)
showed a two-fold increase in expression in the pairwise comparisons of AOM-DSS-TSP-1-/-

Fig 1. Gross andmicroscopic features of AOM/DSS tumors originated in WT and TSP-1-/- colons.
Tumors in TSP-1-/- colons (A, asterisks) consisted of well-delimited polypoid lesions separated by wide areas
of normal mucosa. WT tumors (B, asterisks) were grossly characterized by multiple coalescing tumors
delimited by little intervening normal mucosaWhen the area containing tumors was compared with the entire
colonic area of each mouse, the tumor burden was decreased in AOM/DSS-treated TSP-1-/- versusWTmice
(p = 0.0060), (C). All the microscopic dysplastic foci were analyzed in TSP-1-/- (D) andWT colonic sections
(E). No significant differences were observed in the number of dysplasic lesions detected by microscopic field
(p = 0.14) (F).

doi:10.1371/journal.pone.0139918.g001
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vs. water-TSP-1-/- and AOM-DSS-TSP-1-/- vs. AOM-DSS-WT (S1 Table).A comparison of the
gene expression profiles of the WT mice, treated vs water, is presented in S2 Table.

The expression of microRNAs was also analyzed in this study (S3 Table). 10 miRNAs were
significantly down-regulated in all AOM-DSS treated mice, both TSP-1-/- and WT. The differ-
entially regulated miRNAs include Mir1-1, Mir125b-2 and Mir141, which have well-known
roles in cancer development.

Fig 2. Analysis of microvascular density (MVD) and proliferation in TSP-1-/- andWT tumors. Blood
vessels were blindly evaluated in each tumor section stained with MECA and CD31 antibodies in TSP-1-/- (A)
andWT colons (B). Tumors lacking TSP-1 showed significantly higher MVD as compared to the MVD in the
WT tumors (p = 0.0159), (C). IHC for PCNA was performed and positive nuclei were counted in the tumor
sections of TSP-1 deficient mice (D) andWTmice (E). PCNA rates were significantly higher in tumors of TSP-
1-/- mice compared to WT tumors (p<.0001), (F).

doi:10.1371/journal.pone.0139918.g002
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Validation of transcripts involved in key pathways of inflammation and
cancer
The expression of the proteins from some transcripts involved in mechanisms related with
inflammation and cancer was examined using IHC. One of the proteins analyzed was PLA2g2.
This protein has a critical role in inflammation and oxidative stress. PLA2g2 immunostaining
of these tumors showed a differential localization in glands of WT tumors (Fig 4A). However
this protein seemed to be more diffusely expressed in the glands and stroma of TSP-1-/- tumors
(Fig 4B).

SSTR2, a G-protein coupled receptor for somatostatin is an inhibitory hormone produced
by immune and neuroendocrine cells [26] It is also expressed in several types of cancers,
including prostate cancer and leukemia [27], [28]. SSTR2 was intensely expressed in WT

Table 1. The highly deregulated genes, up-regulated (left column) and down-regulated (right column),
in the TSP-1 deficient mice after AOM-DSS treatment are categorized according to molecular func-
tion/ontology, below. Numbers in brackets represent fold-change: first value refers to fold-change in
the comparison between treated TSP-1-/- vs water-TSP-1-/-; second value refers to fold-change com-
paring treated TSP-1-/- vs treatedWT, p<0.05).

Up-regulated genes Down-regulated genes

Integral to membrane Integral to membrane

• Tacstd2 [96.0] [29.5] • Tmigd1 [-6.9] [5.1]

Transcription regulation Transcription regulation

• Rfx4 [77.1] [83.3] • Hoxb7 [-5.8] [-4.2]

• Isx [-5.0] [-4.3]

Transport // receptor activity Transporter activity

• Atp6v0d2 [6.1] [7.6] • Osta [-22.0] [10.7]

• Slc7a11 [5.1] [8.2] Neuropeptide hormone activity//blood vessel size
regulation

• Stra6 [10.8] [8.3] • Nts [-10.5] [-7.8]

Defense response to bacterium Glycolysis // hexokinase / phosphotransferase activity

• Defa17 [53.1] [42.4] • Ugt2b5 [-13.4] [-9.4]

• Defa25 [37.3] [19.1] • Hkdc1 [-8.0] [-8.2]

• Lyz1 [21.7] [8.9] cAMP-dependent protein kinase regulator activity

Proteolysis • 2310007A19Rik [-6.2] [-4.1]

• Mcpt1 [49.2] [9.5] Transaminase activity // pyridoxal phosphate binding

• Mcpt2 [45.1] [9.2] • Gpt [-5.3] [-4.6]

• Cma2 [35.8] [9.1] Extracellular component

• Mmp7 [29.7] [10.0] • Prap1 [-8.2] [-4.9]

Negative regulation of epithelial cell
proliferation

Positive regulation of cell proliferation

• Pla2g2a [14.3] [10.8] • Osr2 [-25.4] [-13.3]

• H19 [10.9] [6.3] Hydrolase activity

G-protein coupled signaling • Ces1 [-5.2] [-6.2]

• Cxcr2 [10.3] [23.9] Signal transduction

Apoptosis • Sstr1 [–––] [-6.6]

• Khdc1a [5.8] [8.3] Protection from natural killer cell mediated cytoxicity

Negative regulation of Wnt signaling • H2-Bl [-6.8] [-3.6]

• Wif1 [14.4] [6.3] (No biological data available)

• Dkk2 [12.0] [7.8] • Gm14207 [–––] [-10.7]

• Nkd1 [11.5] [5.8] • 1700011H14Rik [-10.3] [-6.7]

doi:10.1371/journal.pone.0139918.t001
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Fig 3. Heatmap of the 61 highly deregulated genes in the AOM-DSS treatedmice. A fold-change cutoff of > = 2.0 was used and 342 differentially
expressed genes in the treated (tumors) vs. untreated TSP-1-/- (colonic tissue) were detected. In comparing TSP-1-/- to WT tumors, 183 genes were
differentially expressed. At a fold-change cutoff of > = 5.0, for the four pairwise comparison, 42 genes showed increased expression and 19 showed lowered
transcript levels (p-value < 0.05). Rfx4 (regulatory factor X, 4) and Osr2 (odd-skipped related 2) showed the highest differential expression in the treated
groups, TSP-1-/- vs. WT, with Rfx4 expression enhanced by FC = 83.3 and Osr2 expression reduced by FC = 13.3. Transcripts from inhibitors of the Wnt
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tumors (Fig 4C) while the staining in TSP-1-/- tumors was low or negative (Fig 4D). WIF1 is a
protein encoded by the Wif gene that contains a WNT inhibitory factor. WIF1 was focally
located in the lamina propria of WT cancers (Fig 4E). Cytoplasmic staining was detected in iso-
lated malignant cells in TSP-1-/- tumors (Fig 4F). Neurotensin (NTS) is a protein present in the
central nervous system and intestine. High expression of neurotensin and its receptor has been
detected in human and mouse colitic tissues [29]. NTS activates the growth of colon cancers
and it has an important role in inflammation [30] [31] [32]. Though this transcript was signifi-
cantly downregulated in TSP-1 deficient tumors (Fig 3), still these same lesions displayed
increased proliferation. However, high proliferation in tumors could be solely promoted by a
vigorous angiogenic response [33]. NTS expression in TSP-1 deficient tumors was

signaling pathway such asWIF1 and Apcdd1 were upregulated in TSP-1-/- tumors. Conversely, transcripts with known neuroendocrine-related functions
such as SSTR2 and NST were downregulated in TSP-1-/- tumors.

doi:10.1371/journal.pone.0139918.g003

Fig 4. Validation of transcripts involved in inflammation and cancer by IHC. The expression of some
transcripts involved in epithelial proliferation and the immune response was examined by IHC. PLA2g2
immunostaining of these tumors showed a focal localization in glands of WT tumors (A). This same protein
was diffusely expressed in the glands and stroma of TSP-1-/- tumors (B). SSTR2 was intensely expressed in
WT tumors (C) while the staining in TSP-1-/- lesions was rather light or even negative (D). WIF1 was focally
located in the lamina propria of WT cancers (E). Cytoplasmic staining was detected in isolated foci of cells in
malignant glands in TSP-1-/- tumors (F). Neurotensin (NTS) was predominantly localized in the malignant
epithelial cells. While WT tumors showed intense and diffuse staining (G), some of the tumors developed in
TSP-1-/- showed focal areas lacking NTS staining (H).

doi:10.1371/journal.pone.0139918.g004
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predominantly localized in the malignant epithelial cells (Fig 4G). While WT tumors displayed
intense and diffuse staining (Fig 4G), tumors developed in TSP-1-/- colons showed focal areas
negative for NTS staining (Fig 4H).

Discussion
Numerous studies have emphasized the role of TSP-1 in cancer and metastasis. TSP-1 has anti-
angiogenic properties by inducing apoptosis in endothelial cells [34]. By activating TGFß1,
TSP-1 has key functions in inflammation and consequently in carcinogenesis [35]. However,
TSP-1 might promote the attachment of cells to the extracellular matrix, favoring the migration
of cancer cells [36]. These functions would explain the pro-tumor effects in some human can-
cers and animal models [37].

TSP-1 might act in different ways by interacting with multiple proteins through its several
domains, thus activating different signaling pathways. Our results in this study indicate that
overall tumor burden induced by the mutational action of the carcinogen AOM is significantly
diminished in TSP-1 deficient colons. Areas of coalescent tumors were observed in WT colons.
It has been reported that the knockdown of B-RafV600E, a mutant form of the gene BRAF,
resulted in TSP-1 down-regulation in human thyroid cancer cells with a significant reduction
of adhesion and migration/invasion of these cells in tumors [9].

We reported that ApcMin mice with a deficiency in TSP-1 had higher numbers of polyps
than controls [14]. However, ApcMin mice have a mutation in the APC gene, which is rarely
seen in dysplastic mucosa and neoplasias developed due colitis [38].In addition, early genomic
damage by AOM in the colonic mucosa seems to be mediated through the p53 pathway [39].
Studies in the AOM/DSS model indicate that p53 is not actually mutated in these tumors but
unable to activate or repress transcription [40]. Loss of p53 has been correlated to TSP-1 silenc-
ing in ovarian carcinoma, bladder cancer, glioma, prostate cancer, and renal cell carcinoma but
not in gastric carcinoma [41]. In colon cancers, p53 seems to regulate TSP-1 by a posttranscrip-
tional mechanism that involves miRNA-194 [13]. Conversely, the p53 tumor suppressor gene
activates the promoter of TSP-1 [42]. TSP-1 might have a role in the nongenetic inhibition of
p53 in the AOM/DSS model. Studies using mice with a deficiency in both p53 and TSP-1,
resulted in fewer osteosarcomas, suggesting a strong association between these genes [5]. TSP-
1 might facilitate the evasion of the pro-apoptotic mechanisms mediated by p53 in colonic
cells.

The results shown herein are quite different from those observed in previous studies evalu-
ating the roles of TSP-1 in experimental colitis. TSP-1-deficient mice displayed increased dys-
plasia and early cancers after multiple cycles of DSS only without AOM treatment [24]. The
mutagenic effects of AOMmight work by different mechanisms from the ones induced by DSS
alone. As an example, mutations within codons 33 and 34 of the ß catenin gene are induced by
AOM, while the mutagenic effects of DSS target codon 32 [43]. Alterations in iNOS have been
detected in the AOM/DSS model, but they seem to be most likely a consequence of DSS expo-
sure [43]. TGFß1 inhibitory mechanisms may fully function in a normal colon exposed to DSS
only. AOM tumors have been reported to have defective TGFß1 activation [44]. We hypothe-
size that the lack of TSP-1, a major activator of this growth factor, could deplete even more the
pool of active TGFß1, thus favoring AOM-induced carcinogenesis.

As tumors continue growing, the angiogenic switch is turned on inducing the formation of
new blood vessels for the surveillance of proliferating malignant cells. In this study, AOM/DSS
induced tumors developed in TSP-1-/- colons showed higher numbers of blood microvessels
and proliferation indexes despite the overall decrease in tumor burden. Similar paradoxical
results showing enhanced angiogenesis with decreased tumor load have been previously
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reported [45]. In xenografted prostatic tumors, TSP-1 inhibited angiogenesis but it was a
potent stimulator of prostate tumor cell migration [46]. In addition, the angiogenic switch
might occur at later stages during the carcinogenesis process. Our results indicate that TSP-1
does not prevent AOM-tumor initiation but it could significantly delay the angiogenic switch
that will promote further proliferation and metastasis. AOM tumors displayed higher numbers
of PCNA positive cells in the absence of TSP-1, suggesting higher rates of proliferation. There-
fore, bigger tumors would be expected. In fact, TSP-1-/- tumors were usually polypoid lesions
while WT displayed small and flat growing lesions. TSP-1 might enhance the migration of
tumor cells and favor tumor expansion in WT tumors. As a result, WT tumors would coalesce
as they grow and expand, explaining the highest tumor/colonic area index in WT colons.
Spreading and migration of tumor cells could actually occur even if they display a low to mod-
erate mitotic index. However, tumors that develop in the TSP-1 deficient colons could poten-
tially be more malignant. In this study’s results, TSP-1 does not protect against AOM
mutagenesis but it could considerably delay the angiogenic switch and further proliferation. It
is possible that these AOM-induced tumors could become actual cancers at a more late stage.
Further studies evaluating this model at different time points might better elucidate these para-
doxical findings.

A novel contribution of this study is the detection of transcripts dysregulated by the lack of
TSP-1 in the AOM/DSS model. Transcripts such as WIF1 and phospholipase A2 have been
detected in gene microarray studies using this same model, validating the data herein [20].
WIF1 is increased 14.4 fold in TSP-1-/- tumors compared with TSP-1-/- normal colonic tissue
and 6.3 times when compared with the WT tumors. In addition, a strong correlation has been
found between the expression of this protein and the severity of the inflammation in biopsies
from patients suffering from ulcerative colitis (manuscript in preparation). The transcription
factor Rfx4, a highly upregulated transcript in TSP-1 deficient tumors, is believed to affect criti-
cal pathways in cancer such as WNT signaling [47].

TSP-1 interacts with a variety of growth factors and tumor suppressor genes such as p53,
proteoglycans and TGFß signaling pathways. One of the transcripts dysregulated in our study,
is Osr2, known to be a regulator of epithelial-mesenchymal interactions, tissue development
and proliferation [48]. By interacting with TGFß, Osr2 reduces cell migration while stimulating
cell-cycle progression. Osr2/TGFß axis induces these effects by activating the Smad3-ATF2
transcriptional complex [49].

In colonic samples from patients with IBD-related CRC, neurotensin (NTS) and its receptor
NTSR1 were found to be significantly higher in epithelial cells when compared to cells of
healthy tissues [50] [51]. The NTS/NTSR1 signaling pathway is involved in regulating tumori-
genesis in colitis-associated dysplasia [31}{51][32]. The fact that this transcript is downregu-
lated in TSP-1 deficient colons, which showed fewer tumors, seems to validate NTS as an
important regulator of colonic carcinogenesis. However, the axis NTS/NTSR1 is a promoter of
proliferation. Our studies show that these same tumors displayed higher PCNA indexes. Early
in vitro and in vivo studies with squamous cell carcinomas demonstrated that TSP-1 certainly
reduces proliferation and tumor growth, but these effects are indirect and a consequence of the
inhibition of angiogenesis [33]. Without the inhibition of TSP-1, expression of angiogenic
growth factors such as VEGF will induce a vigorous angiogenic response, promoting tumor
proliferation. Another transcript significantly downregulated was PLA2G2. Plasma levels of
this phospholipase are increased in several malignancies [52]. Furthermore, decreased plasma
levels of PLA2G2 are correlated with longer survival in patients with cancers. The reduced
tumor burden in TSP-1-/- mice might be partly due to the deregulation of these transcripts.

TSP-1 interacts with proteins implicated in proliferation, DNA repair and transcriptional
regulation such as PRMT6 (protein arginine methyltransferase 6). This protein associates with
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the TSP-1 promoter and represses the transcription of TSP-1 by regulating the methylation of
histones [53]. Oncogenes such as Myc down-regulate TSP-1 [54] [55]. A Myc-activated micro-
RNA cluster has been reported as one of the mechanisms by which this oncogene represses
TSP-1 expression [56]. Src [57] and Jun [58] have also been shown to repress the transcription
of TSP-1. TSP-1 gene is hypermethylated in several cancers [59] and aberrant methylation of
several tumor suppressor genes has been detected in the AOMmodel [60].

Increasing evidence indicates that TSP-1 functions are closely regulated by miRNAs [61].
This study shows significant changes in 18 miRNAs. These RNAs are quite important in regu-
lating transcription and posttranscriptional mechanisms. One of these miRNAs is miR-141,
which is downregulated in AOM/DSS treated TSP-1-/-. This miRNA has been found up-regu-
lated in nasopharyngeal and ovarian carcinomas [62] [63]. The presence of miR141 in prostate
and colorectal cancers has also been correlated with metastasis and poor prognosis. Another
down-regulated miRNA detected by the gene microarray analyses is miR-1. miR-1 is upregu-
lated in human rabdomyosarcomas but downregulated in colorectal cancer [64], [63]. Long
non-coded RNAs (lncRNAs) seem to play an important role in cancer as clinical studies show
that they are indicators of poor prognosis and metastasis in several human cancers [65]. The
lncRNA H19 is induced by c-Myc favoring the development of breast and lung cancers [66]. In
addition, lncRNA H19 inhibits RB in human colorectal cancers [64].

In conclusion, this study describes for the first time the growth pattern, morphological
changes, angiogenesis and proliferation status of tumors lacking TSP-1. Furthermore, the tran-
script profile of these tumors reveals the deregulated expression of novel genes that could
explain the controversial roles of TSP-1 in cancers and inflammation.
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