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SUMMARY

RIPK2 mediates pro-inflammatory signaling from
the bacterial sensors NOD1 and NOD2, and is an
emerging therapeutic target in autoimmune and
inflammatory diseases. We observed that cellular
RIPK2 can be potently inhibited by type II inhibitors
that displace the kinase activation segment, whereas
ATP-competitive type I inhibition was only poorly
effective. The most potent RIPK2 inhibitors were
the US Food and Drug Administration-approved
drugs ponatinib and regorafenib. Their mechanism
of action was independent of NOD2 interaction and
involved loss of downstream kinase activation as
evidenced by lack of RIPK2 autophosphorylation.
Notably, these molecules also blocked RIPK2 ubi-
quitination and, consequently, inflammatory nuclear
factor kB signaling. In monocytes, the inhibitors
selectively blocked NOD-dependent tumor necrosis
factor production without affecting lipopolysaccha-
ride-dependent pathways. We also determined the
first crystal structure of RIPK2 bound to ponatinib,
and identified an allosteric site for inhibitor develop-
ment. These results highlight the potential for type II
inhibitors to treat indications of RIPK2 activation as
well as inflammation-associated cancers.

INTRODUCTION

The nucleotide-binding oligomerization domain-containing pro-

teinsNOD1andNOD2are cytosolicNod-like receptor (NLR) fam-

ily proteins that function in the innate immune system to detect

pathogenic bacteria (Philpott et al., 2014). NOD1 is activated

upon binding to bacterial peptidoglycan fragments containing

diaminopimelic acid (DAP), whereas NOD2 recognizes muramyl

dipeptide (MDP) constituents (Chamaillard et al., 2003; Girardin

et al., 2003a, 2003b; Inohara et al., 2003). NODactivation induces

pro-inflammatory signaling by receptor-interacting protein ki-

nase 2 (RIPK2, also known as RIP2 or RICK), which plays an

obligatory and specific role in activation of NOD-dependent,

but not Toll-like receptor responses (Park et al., 2007).

Signaling by RIPK2 is dependent on an N-terminal kinase

domain with dual Ser/Thr and Tyr kinase activities (Dorsch et al.,

2006; Tigno-Aranjuez et al., 2010), as well as a C-terminal cas-

pase activation and recruitment domain (CARD) that mediates

CARD-CARD domain assembly with activated NODs (Inohara

et al., 1999; Ogura et al., 2001b). Once engaged, RIPK2 is acti-

vated by autophosphorylation (Dorsch et al., 2006) and further

targeted by XIAP (X-linked inhibitor of apoptosis) and other E3

ligases for non-degradative polyubiquitination (Bertrand et al.,

2011; Damgaard et al., 2012; Tao et al., 2009; Tigno-Aranjuez

et al., 2013; Yang et al., 2007, 2013). The ubiquitin-conjugated

protein subsequently activates theTAK1and IKKkinases, leading

to upregulation of both the mitogen-activated protein kinase and

nuclear factor kB (NF-kB) signaling pathways (Kim et al., 2008;

Park et al., 2007). In addition, RIPK2 induces an antibacterial au-

tophagic response by signaling between NODs and the auto-

phagy factor ATG16L1 (Cooney et al., 2010; Homer et al., 2012).

The NOD2-RIPK2 pathway has attracted special interest due

to the role of this signaling node in granulomatous inflammatory

diseases, including inflammatory bowel disease (IBD). Such pa-

thologies can arise from either positive or negative dysregulation

of the pathway (Caruso et al., 2014; Jostins et al., 2012; Philpott

et al., 2014). Genetic variants in NOD2 are the strongest suscep-

tibility factor to Crohn’s disease (Hugot et al., 2001; Jostins et al.,
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2012; Ogura et al., 2001a). Crohn’s disease-associated muta-

tions that abrogate NOD2 binding to MDPmay induce excessive

inflammatory signaling from other pattern recognition receptors,

including NOD1 (Couturier-Maillard et al., 2013; Inohara et al.,

2003). In contrast, mutations in the second major Crohn’s dis-

ease susceptibility factor, ATG16L1, disrupt an inhibitory inter-

action with NOD2 and consequently increase the activation of

RIPK2 (Sorbara et al., 2013). Excessive RIPK2 activation has

also been reported in pediatric Crohn’s disease (Negroni et al.,

2009). In addition, gain of function in the NOD2-RIPK2 pathway

has been linked to Blau syndrome, early-onset sarcoidosis,

allergic airway inflammation, and multiple sclerosis (Goh et al.,

2013; Jun et al., 2013; Shaw et al., 2011). Overall, these data

establish RIPK2 as a key molecule for the understanding of

IBD pathogenesis as well as a potential therapeutic target in a

wide spectrum of inflammatory and autoimmune diseases.

Importantly, the kinase activity of RIPK2 is essential for its

stability and function, offering a promising rationale for small-

molecule intervention (Nembrini et al., 2009; Tigno-Aranjuez

et al., 2010). To date, all studies of RIPK2 have focused on small

molecules of the type I inhibitor class, which bind to the kinase

ATP pocket and are ATP competitive. This approach was first

validated using SB203580, a pyridinyl imidazole inhibitor of

p38, which showed additional inhibition of RIPK2 in vitro and

was efficacious in a Crohn’s disease model in mice (Argast

et al., 2005; Hollenbach et al., 2005). Further proof of concept

was subsequently attained using the clinical epidermal growth

factor receptor inhibitor, gefitinib, which also inhibited RIPK2

and improved disease burden in a spontaneous model of

Crohn’s disease-like ileitis (Tigno-Aranjuez et al., 2010, 2014).

Finally, a new class of macrocyclic RIPK2 inhibitors has recently

been described as capable of inhibiting cellular NOD-dependent

inflammatory responses at 200–500 nM (Tigno-Aranjuez et al.,

2014). These molecules also displayed promising in vivo activity

in models of Crohn’s ileitis as well as NOD-driven peritonitis

(Tigno-Aranjuez et al., 2014).

Here, we show that the inhibition of RIPK2 signaling can be

improved by two orders of magnitude by using type II inhibitors

that alternatively target the inactive ‘‘DFG-out’’ conformation of

the kinase domain, including the US Food and Drug Administra-

tion (FDA)-approved drugs ponatinib, sorafenib, and regorafe-

nib. Type II binding is confirmed by the first crystal structure of

RIPK2 solved in complex with ponatinib, which reveals an allo-

steric site suitable for the rational design of RIPK2-selective

small molecules. The identified clinical inhibitors disrupt RIPK2

activation in monocytes and macrophages to selectively reduce

inflammatory signaling from NOD1 and NOD2, but not tumor ne-

crosis factor (TNF) induction from Toll-like receptors. Overall,

this work identifies the structural basis to investigate the thera-

peutic potential of RIPK2 inhibition in inflammatory diseases by

defining clinically relevant scaffolds for the development of se-

lective RIPK2 inhibitors.

RESULTS

Identification of Ponatinib as a Potent Inhibitor of RIPK2
To identify inhibitors of human RIPK2, we purified the recombi-

nant kinase domain from Sf9 insect cells and screened it against

a library of small-molecule kinase inhibitors using a fluores-

cence-based thermal shift assay (Niesen et al., 2007). In this

assay, the previously reported type I inhibitors gefitinib and

LDN-193189 yielded large thermal shift (DTm) values of 9.5�C
and 12.1�C, consistent with their respective IC50 values of

49 nM (Tigno-Aranjuez et al., 2014) and 25 nM (Vogt et al.,

2011). By comparison, the type II inhibitor ponatinib yielded

a remarkable DTm of 23.1�C and was identified as the most

potent hit (Table S1). To further explore type II inhibitors as puta-

tive preferred scaffolds for RIPK2, we set out to solve the co-

crystal structure of RIPK2 with ponatinib. Protein crystallization

was hindered initially by heterogeneous phosphorylation, but

was enabled following treatment with lambda phosphatase.

Viable crystals were grown in space group P212121 with two

molecules in the asymmetric unit. The structure was solved by

molecular replacement and refined at 2.75 Å resolution. Crystal-

lographic data collection and refinement statistics are presented

in Table S2.

Structural Features of RIPK2
The structure of RIPK2 exhibits the canonical bilobal kinase fold

followed by a 16-residue aJ helix that packs alongside the loop

connecting the aD and aE helices (Figure 1A). This C-terminal

structural element is common in STE family kinases, but is pre-

sent additionally in RIPK1-3 (Figure 1B). The bound ponatinib

inhibitor occupies the ATP pocket established between the N-

and C-terminal lobes of the kinase. As a result, RIPK2 displays

an inactive conformation of the catalytic domain characterized

by a ‘‘DFG-Asp out, aC-Glu in’’ configuration. The b3 lysine

(Lys47) and aC glutamine (Glu66) establish the catalytically

relevant salt bridge, whereas the DFG aspartate (Asp164) is

flipped away from the active site, rendering the enzyme inactive.

Of note, the activation segment helix found in the crystal struc-

tures of the two homologous kinases, RIPK1 and RIPK3, is

not present in RIPK2, although a significant portion of the

activation loop was not visible in the electron density map and

not modeled (Figure 1B). Residues from this helix, in particular

Ser161, are known to contribute to the binding of RIPK1 to

selective small-molecule inhibitors, necrostatins (Xie et al.,

2013a). Interestingly, RIPK2 also contains several unusual

sequence changes in its catalytic motifs that are not conserved

in other RIPKs. The typical HRD triad in the catalytic loop is

changed to HHD, while the activation loop APEmotif is changed

to PPE (Figure 1C). Moreover, the kinase domain of RIPK2 as a

whole displays only 33% sequence identity with other proteins

in the PDB (namely RIPK1 and RIPK3), indicating its broader

diversity.

Oligomerization intomulti-protein signaling complexes is a key

part of the activation mechanism in the RIPK family. The RIPK2

structure reveals a homodimeric packing arrangement similar

to that of RIPK3 (Xie et al., 2013b) and consistent with the dimeric

state observed in solution by analytical gel filtration (Figure S1).

The protein interface is highly symmetrical, with the two active

sites facing in opposite directions and rotated approximately

90� relative to one another (Figure 2). Binding is supported by

the aJ helices, which pack against each other in an antiparallel

fashion, and form both hydrophobic interactions and a symmet-

rical pattern of hydrogen bonding between the side chains of

Lys310 and Glu299 and the side chains of His159 and Glu157

(Figure 2). Additional contacts are made between the b2-b3
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loop of one subunit and the aE and aI helices of the other

(Figure 2).

The Binding Mode of Ponatinib and Other Clinically
Relevant Type II Inhibitors
Ponatinib (Figure 3A) has been crystallized previously only in

complex with tyrosine kinases. The binding mode in RIPK2 re-

sembles that of DDR1 and KIT with an intact conformation of

the b1-b2 hairpin, rather than the collapsed loop of Abl (Fig-

ure 3B). The imidazo[1,2-b]pyridazine head group establishes a

single hydrogen bond to the hinge residue Met98 as well as hy-

drophobic interactions with Tyr97 and Leu24. The central linker

forms two additional hydrogen bonds with the side chain of

Glu66 and the main-chain nitrogen of Asp164. The trifluoro-

methyl group occupies the hydrophobic pocket vacated by the

inverted DFG motif, while the protonated methylpiperazine

forms an ionic-dipole interaction with the main-chain oxygen

atoms of Leu143 and His144, positioned within the aD-b6 loop

(Figure 3B). Importantly, the structure also reveals opportunities

for the development of RIPK2-selective molecules. In particular,

the allosteric hydrophobic pocket occupied by the trifluoro-

methyl group is greatly enlarged in RIPK2 due to the presence

of Ala73 in the aC helix (Figure 3C). Nearly all kinases contain a

bulky side chain at this position, such as Leu70 in RIPK1.

Thus, larger chemical groups at this site will not only increase po-

tency for RIPK2, but will also sterically restrict inhibitor binding to

the wider kinome.

Regorafenib and sorafenib are two other multi-targeted clin-

ical type II inhibitors that share a phenyl-urea-trifluoromethyl-

phenyl core (Figure 3A). Docking studies suggested that these

Figure 1. Structural Features of the RIPK2 Kinase Domain

(A) Crystal structure of the kinase domain of human RIPK2 showing the bound ponatinib molecule. See also Tables S1 and S2.

(B) Superposition of the kinase domains of RIPK1 (pink, PDB: 4NEU), RIPK2 (white), and RIPK3 (blue, PDB: 4M69). The activation segment helix present in the

structures of RIPK1 and RIPK3 is marked.

(C) Sequence alignment of the kinase domains of human RIPK1–3. Residue numbers refer to the RIPK2 sequence, and secondary structure elements labeled in

(A) are marked.
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molecules can assume a binding pose similar to that of ponatinib

in RIPK2, including a total of five hydrogen bonds formed with

Met98, Glu66, and Asp164 (Figures 3D and S2). To test these

predictions, we performed in vitro kinase assays using the

ADP-Glo assay. Ponatinib inhibited the activity of recombinant

RIPK2 with an IC50 value of 6.7 nM, demonstrating inhibition

comparable with that of Abl (IC50 = 1.6 nM, Figure 3E). By com-

parison, the inhibition of RIPK2 by regorafenib and sorafenib was

an order of magnitude weaker (IC50 values of 41 and 75 nM,

respectively), but similar to the activity of the previously reported

type I inhibitor gefitinib (IC50 = 51 nM, Figure 3F). This likely re-

flects the loss of the ionic-dipole interactions formed by the distal

piperazine of ponatinib with the main-chain oxygen atoms of

Leu143 and His144. Consistently, changes to this moiety, which

is present in ponatinib but not sorafenib or regorafenib, were re-

ported to partially attenuate inhibition of Abl kinase (Huang et al.,

2010).

Inhibition of Cellular RIPK2 Activation
The kinase activity of RIPK2 has been shown to mediate the

activation of inflammatory signaling by the NOD1/2 family

of peptidoglycan receptors. Autophosphorylation of Ser176

in the kinase activation segment has been identified as a spe-

cific marker of RIPK2 activation (Dorsch et al., 2006; Nachbur

et al., 2015). To confirm inhibition of cellular RIPK2 activation

by the inhibitors, we therefore analyzed changes in phospho-

Ser176-RIPK2 (p-RIPK2) following stimulation of NOD2-ex-

pressing HEK293 cells with L18-MDP ligand (a lipidated form

of MDP with enhanced potency). L18-MDP caused a rapid

increase in endogenous p-RIPK2 that was inhibited by low

nanomolar concentrations of ponatinib, sorafenib, and regora-

fenib (Figure 4A). Ponatinib displayed the highest activity,

completely blocking RIPK2 phosphorylation at 10 nM, followed

by regorafenib and sorafenib. This was consistent with the or-

der of activities observed in the in vitro kinase assays. Further-

more, by blocking RIPK2 activation the inhibitors prevented

the phosphorylation and subsequent degradation of IkBa (Fig-

ures 4A and S3), which is required for activation of NF-kB and

induction of inflammatory gene expression (Cramer and Muller,

1999). Surprisingly, the type I inhibitor gefitinib showed much

lower activity in cells relative to the in vitro assays (Figure 4A).

This may partly reflect its ATP-competitive mode of action,

with potential loss of activity due to the high concentrations

of ATP in cells. None of the molecules significantly inhibited

phosphorylation of ERK1/2 or global levels of phosphotyrosine

proteins, which served as negative controls (Figure 4A).

In addition, none of the inhibitors affected the viability or

morphological appearance of HEKBlue or RAW264.7 macro-

phage cells, except for 100 nM ponatinib, which caused

rounding of RAW cells and likely reflects off-target activity at

the highest concentration (Figure S4).

To further quantify cellular RIPK2 inhibition, we measured the

downstream activation of NF-kB in the same HEKBlue cells,

which were also stably transfected with an NF-kB-SEAP re-

porter. Ponatinib again displayed the most potent, low nanomo-

lar activity (EC50 = 0.8 nM), followed by regorafenib and sorafenib

(Figure 4B). By comparison, gefitinib inhibited NF-kB activity

with an EC50 value of 7.8 mM, consistent with the p-RIPK2

data. Overall, these data identified ponatinib, sorafenib, and re-

gorafenib as a new class of low nanomolar inhibitors of RIPK2

activation in cells.

Since ponatinib is a potent inhibitor of Abl, we further exam-

ined whether Abl may contribute to the inhibition of the NOD2

responses in HEK cells in addition to RIPK2. We found that a

different type II inhibitor of Abl, nilotinib, did not inhibit either

RIPK2 in vitro (Figure S5A) or the NOD2 response in HEKBlue

cells (Figure S5B). Because ponatinib is a large lipophilic

molecule, which may cause non-specific effects, we also

sought to identify close analogs that would lack activity

against RIPK2. We noticed that methyl of the central phenyl

ring of ponatinib inserts into the shallow lipophilic pocket

formed by aliphatic side chains of Val32, Lys47, Ile93, and

Thr95. A bulkier tert-butyl side chain (CS6, Figure 3A) was de-

signed based on this hypothesis and synthesized using previ-

ously reported methods (Huang et al., 2010; Najjar et al.,

2015). Introduction of the tert-butyl led to the loss of inhibition

of both RIPK2 and Abl kinase activity (Figure S5A), providing

us with a bulky and lipophilic control molecule. Importantly,

CS6 did not inhibit the MDP response in HEKBlue cells (Fig-

ure S5B). These data and the lack of cellular activity of niloti-

nib further confirmed the specific role of RIPK2 inhibition in

these assays.

To explore the mechanism of RIPK2 inhibition, we tested

the effects of ponatinib on the required interaction with

NOD2. For this, we used U2OS cells that inducibly expressed

HA-tagged NOD2 and performed HA-immunoprecipitation to

recover bound RIPK2. As expected, HA-NOD2 expression

was detected only in the presence of doxycycline, and induced

Figure 2. The RIPK2 Kinase Domain Is Dimeric

The main panel shows the overall arrangement of the two monomers, and the

inset panels show selected residues in the dimer interface. See also Figure S1.
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a robust interaction with RIPK2 (Figure 4C) as well as down-

stream NF-kB activation (Figure 4D). Interestingly, the NOD2-

RIPK2 interaction was stably maintained in the presence of

100 nM ponatinib (Figure 4C), whereas NF-kB activation was

completely disabled (Figure 4D). These results indicated that

ponatinib acts to inhibit the activation of the kinase domain of

RIPK2 but does not interfere with the C-terminal CARD domain,

which recognizes NOD2.

Ponatinib Potently Abrogates RIPK2 Ubiquitination and
Induction of Inflammatory Cytokines
To examine inhibition of RIPK2-induced inflammation in a

more physiological context, we analyzed the receptor sig-

naling pathway in human monocytic THP-1 cells and in mouse

macrophage RAW264.7 cells in response to different PRR

(pattern recognition receptor) ligands and cytokines. Stimula-

tion of NOD2 by MDP leads to rapid ubiquitination of RIPK2

by XIAP and other ubiquitin ligases, a process required

for downstream signaling and transcription of NF-kB target

genes (Damgaard et al., 2012, 2013; Fiil et al., 2013; Yang

et al., 2013). Consistent with the relative potency of the kinase

inhibitors against RIPK2 activity, pre-treatment of THP-1 cells

with 100 nM ponatinib completely blocked L18-MDP-induced

RIPK2 ubiquitination, whereas regorafenib and gefitinib at

the same concentration had less robust inhibitory effects

(Figures 5A and S6). Ponatinib also blocked the downstream

degradation of IkBa, whereas the other inhibitors had little

Figure 3. Inhibition of Abl and RIPK2 Ki-

nases In Vitro

(A) Chemical structures of inhibitors used in this

study.

(B) Binding mode of ponatinib to RIPK2.

(C) The DFG-out hydrophobic pocket in RIPK2 is

almost uniquely large due to the small Ala73, which

replaces the Ile/Leu residues of Abl/DDR2. A

dashed line highlights the expanded pocket area

in RIPK2, which may accommodate larger sub-

stitutions of the trifluoromethyl group for improved

selectivity.

(D) Predicted binding mode of regorafenib. Dock-

ing was performed with ICM-Pro (Molsoft). See

also Figure S2.

(E) Dose-response curves showing ponatinib inhi-

bition of RIPK2 and Abl.

(F) Dose-response curves for RIPK2 inhibition by

sorefanib, regorafenib, and gefitinib. In (E) and (F),

experiments were performed in duplicate; error

bars indicate SD values. Kinase activity was

measured using the ADPGlo assay. Non-linear

curve fitting to calculate IC50 values was per-

formed using Prism software. See also Figure S5.

or no detectable effect (Figure 5A).

Importantly, ponatinib interfered with

RIPK2 ubiquitination in a dose-depen-

dent manner. Concentrations as low as

5–10 nM reduced the extent and length

of ubiquitin-modified RIPK2, while

RIPK2 ubiquitination was completely

blocked at concentrations of 25 nM or

higher (Figure 5B). By contrast, ponatinib had no obvious

effects on ubiquitination of the related kinase RIPK1 or IkBa

degradation following treatment of THP-1 cells with TNF

(Figure 5C).

We next analyzed the pattern of inflammatory gene expression

in RAW264.7 macrophage cells. Consistent with the results ob-

tained in THP-1 cells, MDP stimulation led to robust increases in

CCL4,CXCL2, andRANTESmRNA levels that were efficiently in-

hibited by low nanomolar (1–10 nM) concentrations of ponatinib

(Figure 6A). Regorafenib was similarly active at 10–100 nM while

sorafenib was slightly less effective (Figure 6A). Comparable re-

sults were observed following RIPK2 stimulation with the NOD1

agonist, Tri-DAP (Figure 6B). In contrast, ponatinib and the other

inhibitors did not block the mRNA induction by a different class

of PAMPs (pathogen-associated molecular patterns), such as

agonists of Toll-like receptors 2 and 4 (Pam3CSK4 and lipopoly-

saccharide [LPS], respectively) (Figures 6C and 6D). The only

exception was 100 nM ponatinib, which partially attenuated

both the LPS and Pam3CSK4 responses, likely reflecting non-

specific activity of this inhibitor at higher concentrations. Overall,

we were able to observe selective and efficient inhibition

of RIPK2-dependent NOD1/2 responses by both ponatinib and

regorafenib at low nanomolar concentrations and by sorafenib

at %100 nM.

Modulation of NOD1/2-RIPK2-XIAP-mediated signaling has

been proposed as a therapeutic approach for inflammatory

disorders (Jun et al., 2013). Therefore, we investigated whether
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NOD2 receptor activation in primary human monocytes can be

inhibited to an extent similar to that observed for the described

epithelial and leukocyte cell lines. Ponatinib, regorafenib, and

gefitinib inhibited the production of TNF in peripheral blood-

derived monocytes after L18-MDP stimulation (Figure 7A).

The most potent inhibition was observed with ponatinib, which

completely abrogated NOD2-dependent TNF production at

low nanomolar concentrations down to 10 nM (Figure 7B). Re-

gorafenib was similarly effective at 100 nM, whereas a much

higher concentration of gefitinib (10 mM) was required for com-

plete inhibition (Figure 7B). TNF production by LPS stimulation

was not affected at these inhibitor concentrations (Figures 7A

and 7B), and was attenuated only by ponatinib at the much

higher concentration of 1 mM (Figure 7B). Similar inhibitor effi-

cacies were observed in the human monocytic cell line THP-1,

although baseline response in these cells was low and 10 mM

gefitinib also inhibited the LPS pathway (Figure S7).

Overall, the results on primary human monocytes are fully

consistent with the earlier data obtained in laboratory cell lines,

suggesting that the tested cell lines provide an accurate tool to

assess the potency of RIPK2 inhibition. Furthermore, they sup-

port the hypothesis that tyrosine kinase inhibitors can be used

in primary human cells to selectively target RIPK2.

DISCUSSION

To date, all reported RIPK2 inhibitors have been ATP-competi-

tive type I molecules, such as the clinical drug gefitinib. Impor-

tantly, we observed that the cellular activity of this type I inhibitor

was vastly outperformed by the identified type II inhibitors,

despite their comparable potencies in the in vitro kinase assay

(e.g., comparing regorafenib and gefitinib). Multiple factors could

contribute to these differences. For example, the endogenous

full-length RIPK2 may display a higher affinity for ATP than the

isolated kinase domain, resulting in greater competition for

type I binders. Alternatively, the DFG-out conformation might

represent a preferred conformation in cells, or perhaps form a

dominant-negative species. Indeed, activation loop phosphory-

lation in JAK2 is incompatible with the binding of type II inhibi-

tors, but permissible with inhibitors of the type I class (Andraos

et al., 2012).While themechanistic basis for these differences re-

mains to be further elucidated, these data clearly identify type II

inhibitors as the most efficacious molecular class for targeting

RIPK2.

The potency of the type II inhibitors also affords new tools

with which to investigate the molecular mechanisms of

RIPK2 signaling and the effects of kinase inhibition. We found

that ponatinib blocked the activation of the kinase domain of

RIPK2 without affecting the C-terminal CARD domain and its

engagement of NOD2. A similar breakdown in RIPK2 activation

has been reported for a NOD1 variant containing the rare

Asn43Ser polymorphism (Mayle et al., 2014). However, in the

absence of structural information there is little understanding

of how the CARD domain status of RIPK2 is communicated

to the kinase domain. Potentially, new stimulatory interactions

could be formed or inhibitory interactions broken. All the

tested inhibitors were able to block the phosphorylation of

the kinase activation loop (Ser176), which is a known marker

for RIPK2 activation. Activated RIPK2 is also targeted by mul-

tiple E3 ligases for polyubiquitination by mechanisms that are

Figure 4. Inhibition of RIPK2 Activation in

HEKBlue and U2OS Cells

(A) Phosphorylation changes inHEKBlue cells. Cells

were treated with indicated concentrations of in-

hibitors, followed 30 min later by stimulation with

1 mg/ml L18-MDP. Cells were harvested after

30 min, and changes in protein phosphorylation

were analyzed by western blotting. Levels of tubulin

and total RIPK2 were used as loading controls.

(B) Inhibition of NF-kB activation in HEKBlue cells.

HEKBlue reporter cells, expressing NOD2 and NF-

kB-SEAP reporter, were treated with 6–8 concen-

trations of each inhibitor in triplicate followed by

stimulation with 1 mg/ml L18-MDP for 8 hr. SEAP

activity was detected using HEKBlue media with

detection of absorbance at 620 nM in a Wallac3V

plate reader. Non-linear curve fitting to calculate

EC50 values was performed using Prism software.

Experiments were performed in triplicate, error bars

indicate SD values. See also Figure S5.

(C) Interaction of RIPK2 with inducibly overex-

pressed HA-NOD2 in U2OS cells in the presence

of ponatinib. The immunoprecipitation was per-

formed using anti-HA agarose after 24 hr of HA-

NOD2 induction and ponatinib treatment. Dox,

doxycycline. Representative result of the experi-

ment performed three times.

(D) NF-kB dual luciferase reporter assay in U2OS

cells induciblyoverexpressingHA-NOD2and treated

with ponatinib for 24 hr. Dox, doxycycline. Experi-

ment performed three times in three technical repli-

cates. Error bars represent ±SEM. ****p < 0.0001.
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yet to be structurally characterized. Unexpectedly, we found

that ponatinib could inhibit this modification completely,

whereas type I inhibitors have previously only caused a delay

in ubiquitination (Nachbur et al., 2015). This result suggests

that RIPK2 binding to E3 ligases is more strictly regulated

than previously imagined. Thus, it will be interesting to deci-

pher the precise mechanism of E3 recruitment in future

work. We also observed excellent selectivity of the inhibitors

toward MDP-dependent signaling relative to LPS-dependent

pathways. This result is noteworthy given the known promiscu-

ity of ponatinib within the kinome (Zhao et al., 2014). It also

further supports the specificity of RIPK2 for NOD-dependent

signaling (Park et al., 2007).

In a separate study, we have found that ponatinib is also an

efficient inhibitor of RIPK1 and RIPK3 kinase activity in necrop-

tosis (Najjar et al., 2015), making this molecule the only known

pan-RIPK inhibitor. The current work using ponatinib and TNF

stimulation, in line with previous reports, shows that RIPK1 ki-

nase activity is dispensable for its ubiquitination as well as for

the downstream degradation of IkBa (Lee et al., 2004). Thus,

the experiments with ponatinib reveal important differences in

the mechanisms of RIPK1 and RIPK2. Nonetheless, the ability

of ponatinib to simultaneously target multiple RIPKs may be of

Figure 5. Inhibition of NOD2-Dependent

Ubiquitination and Signaling

(A–C) THP-1 cells were pre-treated with kinase

inhibitors or DMSO for 30 min and stimulated with

200 ng/ml L18-MDP (A, B) or TNF (C) as indicated.

At the indicated time points, cells were lysed and

ubiquitinated proteins were isolated using TUBE

reagent. The isolated ubiquitinated proteins and

input material were analyzed by immunoblotting.

See also Figure S6.

interest for investigating inflammatory

disorders. By contrast, inhibition of

RIPK1/RIPK3 was not observed with sor-

afenib or regorafenib (data not shown).

These two inhibitors lack the methylpi-

perazine group that is present in ponati-

nib. The activation segments in RIPK1/

RIPK3 also show a high propensity to

form a short a helix that is not observed

in the RIPK2 structure. Additional co-

structures and SAR may be required to

understand the selectivity differences

that must exist between the DFG-out

(DLG in RIPK1) pockets of these kinases.

Importantly, ponatinib, regorafenib,

and sorafenib are FDA-approved medica-

tions that are used clinically against

various forms of cancer. Inhibition of

RIPK2 represents a novel off-target activ-

ity, although microbiota-driven inflamma-

tion has emerged as a potentially impor-

tant player in tumorigenesis (Elinav et al.,

2013; Saxena and Yeretssian, 2014). IBD

is also a known risk factor for colorectal

cancer (Sebastian et al., 2014). Nonetheless, the broad kinase

selectivity of these drugs currently prohibits their use in chronic

inflammatory conditions. In particular, ponatinib can cause

serious adverse events including vascular thrombosis (Cortes

et al., 2013). Sorafenib and regorafenib are better tolerated and

are used clinically at low-micromolar doses that are higher

than those used in our study (Moore et al., 2005; Mross et al.,

2012). Thesemolecules are therefore potentially interesting tools

with which to further explore RIPK2 function in pre-clinical

models of colitis and other inflammatory conditions.

Finally, this work also suggests that more selective com-

pounds may be derived by targeting the expanded allosteric

pocket identified in the RIPK2 structure. For example, the tri-

fluoromethyl group could be replaced with a larger substitute,

such as methoxymethyl, isopropyl, or isopropoxy. All of these

groups have the potential to extend further into the RIPK2 pocket

without dramatic changes in hydrogen bonding or lipophilicity. In

addition, changes to the hinge-binding ‘‘head’’ group could be

considered by comparison with RIPK2-selective type I inhibitors

such as WEHI-345 (Nachbur et al., 2015). The recently identified

macrocycles OD36 and OD38 would, however, form steric

clashes in a type II binding mode (Tigno-Aranjuez et al., 2014).

The toolbox of new compounds will form valuable reagents for
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further investigation of the complexity of RIPK2 regulation in both

normal signaling and pathobiology.

SIGNIFICANCE

Clinical kinase inhibitors have been utilized almost exclu-

sively in oncology. The recent approval of JAK inhibitors for

the treatment of inflammatory conditions, in particular rheu-

matoid arthritis, has demonstrated the potential of this drug

class to target other indications. RIPK2 is oneemerging ther-

apeutic target in inflammation strongly supported by genetic

evidence of activating NOD2 mutations in the monogenic

autoinflammatory disease Blau syndrome, characterized by

early-onset granulomatous arthritis, uveitis, and dermatitis.

To date, pre-clinical validation studies for inflammatory con-

ditions have largely focused on the clinical inhibitor gefitinib,

which binds to kinases in their active conformation. Here, we

show that RIPK2 is highly amenable to type II inhibition,

which affords dramatic improvements in cellular potency.

Furthermore, the most potent molecules, ponatinib, regora-

fenib, and sorafenib, extend the available inhibitor activities

from micromolar to subnanomolar, allowing fine-tuning in-

Figure 6. Inhibition of NOD-Dependent In-

flammatory Gene Expression in RAW264.7

Cells

(A and B) Cells were pre-treated with 1, 10, or

100 nM inhibitors for 30 min and stimulated with

10 mg/ml MDP (A) or Tri-DAP (B) for 18–24 hr in

triplicate. RNA sampleswere isolated and changes

in gene expression were analyzed using gene-

specific primers using SYBR qRT-PCR. All values

were normalized to the levels of GAPDH.

(C and D) Lack of inhibition of Toll-like receptor-

dependent inflammatory gene expression in

RAW264.7 cells. Experiments were performed as

described above, except cells were stimulated

with 10 ng/ml E. coli LPS (C) or 500 ng/ml

Pam3CSK4 (D).

All experiments were performed in triplicate; error

bars indicate SD values.

sights into RIPK2 regulation. In partic-

ular, binding of ponatinib to the kinase

domain is sufficient to block all ubiqui-

tination on RIPK2, and demonstrates

the requirement for this modification

for the downstream destruction of

IkBa, in contrast to the requirements

ofRIPK1. Inaddition, regorafeniboffers

selectivity for RIPK2 over RIPK1/3 as

well as low nanomolar potency to alle-

viate some ‘‘off-target’’ effects. Further

scaffold improvements to overcome

such liabilities are also suggested by

the presentedRIPK2 structure. Overall,

this work identifies advanced tools

to investigate the functional role of

RIPK2 in control of the intestinalmicro-

biota as well as clinically relevant scaf-

folds to explore the therapeutic potential of RIPK2 inhibition

in inflammatory diseases.

EXPERIMENTAL PROCEDURES

Cells and Reagents

Detailed information on reagents, qPCR, and immunoblotting is provided in the

Supplemental Experimental Procedures.

Purification of RIPK2

Human RIPK2 (Uniprot: O43353, residues 8–317) was expressed in Sf9

insect cells, and purified by nickel affinity and size-exclusion chromato-

graphy. Detailed information is provided in the Supplemental Experimental

Procedures.

Crystallization and Structure Determination

RIPK2 was concentrated to 3.7 mg/ml. Crystals with ponatinib were grown in

sitting drops using a reservoir solution containing 0.1 M ammonium citrate and

16% (w/v) polyethylene glycol 3350. Diffraction data were collected on Dia-

mond Light Source beamline I04. Detailed information on structure determina-

tion is provided in the Supplemental Experimental Procedures.

Thermal Shift Assay

RIPK2 protein at 2 mM concentration was mixed with inhibitor compounds at

10 mM and a 1:1,000 dilution of SyproOrange fluorescent dye (Invitrogen).

Chemistry & Biology 22, 1174–1184, September 17, 2015 ª2015 The Authors 1181



Fluorescence-based thermal shift assays were performed in anMx3005p real-

time PCR machine (Agilent) as described by Niesen et al. (2007).

ADPGlo In Vitro Kinase Assays

For ADPGlo (Promega) assays, 1 ng of Abl or 10 ng of RIPK2 was diluted in

reaction buffer (40 mM Tris-HCl [pH 7.5], 20 mM MgCl2, 0.5 mM DTT, and

0.01% BSA) supplemented with 50 mM ATP and a 10-point dose range of in-

hibitors. Detailed information is provided in the Supplemental Experimental

Procedures.

HEKBlue Activation Assay

HEKBlue cells (1 3 105 cells/ml) were resuspended in QUIATI-Blue detection

medium and seeded into 96-well plates (100 ml/well). Cells were treated with

small-molecule inhibitors and 1 mg/ml L18-MDP for 8–10 hr. Absorbance at

620 nM was determined at the end of the incubation using a Victor3V

plate reader (PerkinElmer). Values of empty media were subtracted from all

experimental samples. Resulting specific signal values were used to calculate

inhibition: % = (1 � [control (DMSO, L18-MDP) � sample (compound, L18-

MDP)]/[control (DMSO, L18-MDP) � control (DMSO)]) 3 100. EC50 values

were determined using non-linear regression in the Prism software package

(GraphPad).

Purification of Ubiquitin Conjugates

The ubiquitin conjugates were purified using GST-Tandem Ubiquitin Binding

Entities (TUBE; Fiil et al., 2013). In brief, treated THP-1 cells (6–10 3 106)

were washed with PBS and lysed in 400 ml of ice-cold lysis buffer containing

TUBE on ice for 30 min. Cleared lysates were incubated with Glutathione Se-

pharose 4B resin (Amersham) with agitation at 4�C overnight. The beads were

washed four times with PBS-Tween (0.1%) and the bound proteins were

released by heating the beads in reducing SDS sample buffer. The samples

were resolved on pre-cast gradient gels (NuPage; Life Technologies) in

MOPS running buffer and subjected to immunoblotting.

Flow Cytometry Analysis

Human blood primary immune cells were obtained from healthy donors.

Ethical approval was obtained from the Oxfordshire Research Ethics Commit-

tee (Reference 09/H0606/5), and informedwritten consent was given by all do-

nors. L18-MDP stimulation assaywas performed as previously described (Am-

mann et al., 2014). In brief, healthy donor peripheral blood mononuclear cells

(PBMC) were isolated by gradient centrifugation and cultured in RPMI1640

supplemented with 10% fetal calf serum. To enrich for monocytes, PBMC

(2.5 3 106 cells) were plated in six-well plates and rested overnight. The

following day, cells were gently washed with PBS and pre-incubated for

60 min with indicated concentrations of inhibitors followed by receptor activa-

tion with 200 ng/ml L18-MDP (InvivoGen) or 200 ng/ml LPS (Enzo Life

Sciences) in the presence of Golgiplug (BD Biosciences). After 2.5 hr of stim-

ulation, cells were harvested by scraping, put on ice, and stained with fixable

viability dye (eBioscience) and surface monocyte markers. Following fixation

and cell permeabilization (Cytofix/Cytoperm Kit; BD Biosciences) cells were

stained for intracellular production of TNF. The following antibodies were

used: anti-TNF-a (clone MAb11; eBioscience), anti-CD14 (clone M5E2; Bio-

Legend), and anti-HLA-DR (clone L243; BioLegend). Results were acquired

by flow cytometry (LSRFortessa; BD Biosciences) and data were analyzed us-

ing FlowJo software (version 10.0.6; Treestar).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and two tables and can be found with this article online at

http://dx.doi.org/10.1016/j.chembiol.2015.07.017.
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Figure 7. Dose-Dependent Inhibitory Effect

of Ponatinib, Regorafenib, and Gefitinib on

MDP-Induced TNF in Primary Human Mono-

cytes

Intracellular TNF production was determined by

flow cytometry in rested monocytes of healthy

blood donors cultured in the presence or absence

of L18-MDP (200 ng/ml) or LPS (200 ng/ml). Cells

were pre-treated with the indicated concentrations

of inhibitors for 60 min before receptor activation.

(A) Representative fluorescence-activated cell

sorting density blots of TNF-positive monocytes

among all single, live, HLA-DR+, and CD14+ cells.

(B) Induction of TNF in monocytes after L18-MDP

or LPS stimulation is calculated as DTNF,

subtracting the frequency of TNF-producing

monocytes cultured in medium alone from the

percentage of TNF-positive monocytes following

activation. Experimental conditions are measured

in 4–5 healthy donors. Individual replicates and the

mean connected by a line are shown. Gray back-

ground indicates range without inhibitors.

See also Figure S7.
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