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In recent years, the gut microbiome has emerged as an im-
portant player in human health.1,2 Gut microbiota comprise 

thousands of microbial species that are involved in host metabo-
lism by regulating energy extraction, activation of the immune 
system, drug metabolism, and other processes.3,4 Association of 
bacterial composition with many diseases has been observed, 
including immune, inflammatory, and metabolic phenotypes.5–7 
Several mechanisms for the downstream effect of microbiota 
were discovered which also suggest that they play a role in car-
diovascular disease (CVD). The microbiota play an important 
role in choline diet–induced trimethylamine N-oxide production, 

which has been implicated in CVD.8 A further mouse study has 
demonstrated that atherosclerosis susceptibility can be trans-
mitted via gut microbiota transplantation.9 Furthermore, dysbi-
osis in the gut has been shown to induce increased permeability 
of the intestine, leading to increased systemic levels of bacterial 
products causing low-grade chronic inflammation.10 This in-
flammation may directly affect atherogenesis and has also been 
hypothesized to lead to the development of insulin resistance 
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Rationale: Evidence suggests that the gut microbiome is involved in the development of cardiovascular disease, 
with the host–microbe interaction regulating immune and metabolic pathways. However, there was no firm 
evidence for associations between microbiota and metabolic risk factors for cardiovascular disease from large-
scale studies in humans. In particular, there was no strong evidence for association between cardiovascular disease 
and aberrant blood lipid levels.

Objectives: To identify intestinal bacteria taxa, whose proportions correlate with body mass index and lipid levels, 
and to determine whether lipid variance can be explained by microbiota relative to age, sex, and host genetics.

Methods and Results: We studied 893 subjects from the LifeLines-DEEP population cohort. After correcting for age 
and sex, we identified 34 bacterial taxa associated with body mass index and blood lipids; most are novel associations. 
Cross-validation analysis revealed that microbiota explain 4.5% of the variance in body mass index, 6% in triglycerides, 
and 4% in high-density lipoproteins, independent of age, sex, and genetic risk factors. A novel risk model, including 
the gut microbiome explained ≤25.9% of high-density lipoprotein variance, significantly outperforming the risk model 
without microbiome. Strikingly, the microbiome had little effect on low-density lipoproteins or total cholesterol.

Conclusions: Our studies suggest that the gut microbiome may play an important role in the variation in body 
mass index and blood lipid levels, independent of age, sex, and host genetics. Our findings support the potential 
of therapies altering the gut microbiome to control body mass, triglycerides, and high-density lipoproteins.    
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with concomitant effects on plasma lipids.11 Gut microbiota 
have also been linked with lipid metabolism through their role 
in bile acid metabolism. They can also influence the efficiency 
of energy harvest from ingested food12,13 and play a crucial role 
in the metabolic processes and development of obesity.

In line with these observations, altering the gut microbi-
ome in humans and mice has shown improvement in metabolic 
syndrome.13–15 However, the evidence for a causal relationship 
between the gut microbiome and the development of CVD has 
not been firmly established for lack of large-scale human stud-
ies. Atherosclerosis, a lipid-driven disease, is the main under-
lying cause of CVD. However, to date, no studies of sufficient 
size have been done to assess the association between lipids and 
microbiota. In this study, we performed a systematic analysis 
of host genome, gut microbiome, body mass index (BMI), and 
blood lipids in 893 human subjects from the Dutch LifeLines-
DEEP cohort.16 We investigated that which gut bacteria were 
associated with BMI and blood lipids, and how much of the 
variation in blood lipids could be explained by the gut microbi-
ome, relative to age, sex, BMI, and host genetics.

Methods
Population Cohort
The LifeLines-DEEP cohort is a subcohort of the LifeLines cohort 
(167 729 subjects),17 which uses a broad range of investigative proce-
dures in assessing the biomedical, sociodemographic, behavioral, physi-
cal, and psychological factors that contribute to the health and disease of 
the general population. A subset of ≈1500 participants also took part in 
LifeLines-DEEP: for these participants, additional biological materials 
were collected, including genome-wide genotyping and analysis of the 
gut microbiome composition. A full description of the LifeLines-DEEP 
data set is given in the article describing the study design.16

Lipid Measurements
We had lipid measurements available for all 1500 LifeLines-DEEP 
samples. Total cholesterol (TC) was measured with an enzymatic col-
orimetric method, high-density lipoprotein (HDL) cholesterol with a 
colorimetric method, and triglycerides with a colorimetric UV meth-
od (Modular P analyzer, Roche Diagnostics, Burgdorf, Switzerland). 
The low-density lipoprotein (LDL) cholesterol concentration was 
calculated using the Friedewald equation. More details were reported 
previously.18 The triglyceride level was further log

2
 transformed.

Genotype Information
All LifeLines-DEEP samples were genotyped using the 
HumanCytoSNP-12 BeadChip and ImmunoChip, a customized 
Illumina Infinium array. The data were harmonized,19 merged, and 
subsequently imputed using the Genome of the Netherlands (GoNL) 
data set.20,21 Further details and information on the quality control are 
described by Tigchelaar et al.16 We removed ethnic outliers and ge-
netically related participants from our study.

Microbiome Data Generation

Sequencing
Microbiome data were generated for 1180 LifeLines-DEEP samples. 
Fecal samples were collected at home within 2 weeks after collection 
of blood samples and stored immediately at −20°C. After transport on 
dry ice, all samples were stored at −80°C. Aliquots were made, and 
DNA was isolated with the AllPrep DNA/RNA Mini Kit (Qiagen; cat. 
#80204). Isolated DNA was sequenced at the Broad Institute, Boston, 
using Illumina MiSeq paired-ends. Hypervariable region V4 was se-
lected using forward primer 515F [GTGCCAGCMGCCGCGGTAA] 
and reverse primer 806R [GGACTACHVGGGTWTCTAAT]. We 
used custom scripts to remove the primer sequences and align the 
paired-end reads. Details are given in the study by Gevers et al.22

OTU Picking
Selection of unique bacterial sequences, so-called operational taxo-
nomic unit (OTU) picking, was performed using the QIIME (the 
toolbox for Quantitative Insights Into Microbial Ecology) refer-
ence optimal picking, which uses UCLUST (an algorithm to cluster 
sequence reads based on similarity)23 (version 1.2.22q) to perform 
the clustering. Matching OTUs to bacteria was done using a primer-
specific version of the GreenGenes 13.5 reference database.24 Using 
TaxMan,25 we created the primer-specific reference database contain-
ing only reference entries that matched the selected primers. During 
this process, we restricted probe-reference mismatches to a maximum 
of 25%. The 16S regions that were captured by our primers, including 
the primer sequences, were extracted from the full 16S sequences. 
For each of the reference sequences, we determined the overlapping 
part of the taxonomy of each of the reference reads in the clusters and 
used this overlap as the taxonomic label for the cluster. This process is 
based on, and similar to, the work described by Bonder et al,26 Brandt 
et al,25 May et al,27 and Ding et al.28 We used QIIME29 for exploratory 
analysis and for gathering basic statistics on the microbiome data set.

Quality Control
Overall, for 1021 samples, we had lipid measurements, genotype, and 
microbiome information. We excluded 99 samples from participants 
who were taking antibiotic or other potential microbiome-modifying 
drugs or who were on lipid-lowering medication. The library size of 
microbial sequencing varied greatly among samples, ranging from 
3969 to 336 900 reads. The sequence depth can significantly bias 
the measures of microbial composition, and rarefication was widely 
used to make the library sizes equal by randomly selecting the same 
number of reads per sample.30,31 We compared the number of samples 
at different sequence depths and determined the rarefication depth 
based on criteria to obtain both the number of reads and the number 
of samples as high as possible. We rarefied the library size to 15 000 
read-depth using the rarefy function in R package vegan (version 2.3-
0). At this depth, we only excluded 29 subjects. After these exclusion 
steps, we had 893 samples (380 men and 513 women) for final analy-
sis. Their characteristics are summarized in Table.

Furthermore, we filtered on the OTU abundance and confined our 
analysis to 645 OTUs, each of which comprised ≥0.05% of reads and 
was present in at least 1% of the population. These OTUs accounted 
for an average of 99% of total reads per sample. The OTUs were as-
signed to 173 taxonomies that were further truncated to 136 taxono-
mies after removing identical or highly similar information between 
different clade levels.

Statistical Analysis

Analysis of Microbial Diversity
The microbial Shannon diversity index was calculated using the 
diversity function in R package vegan (version 2.3-0).

Two-Part Model for Association Analysis
We observed that the distribution of the abundance of OTUs or tax-
onomies departed significantly from a normal distribution because of 
the fact that bacteria were not presented in many samples. Only 50 
of 645 OTUs (7.7%) were presented in >90% of samples, whereas 

Nonstandard Abbreviations and Acronyms

BMI	 body mass index

CVD	 cardiovascular disease

FDR	 false discovery rate

HDL	 high-density lipoprotein

LDL	 low-density lipoprotein

OTU	 operational taxonomy unit

SNP	 single nucleotide polymorphism

TC	 total cholesterol
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448 OTUs (69.5%) were detected in <50% of samples. At the taxo-
nomic level, 32 of 136 (9.5%) taxonomies were detected in >90% of 
samples, whereas 60 taxonomies (44.1%) were detected in <50% of 
samples. There are different explanations for the detection rate: (1) 
the bacteria are really absent in the samples; (2) the abundance levels 
of bacteria are lower and not to be detected at the current sequencing 
and rarefication depth; (3) the abundance levels are similar and it is a 
random effect because of the sequencing or rarefication procedure. We 
therefore adopted a novel, 2-part model that was developed to account 
for both binary (detected/undetected) and quantitative features.32 This 
approach overcomes the problem of a non-normal distribution, which 
is a feature of the majority of gut bacteria OTUs or taxa.

The 2-part model is illustrated in Online Figure I. The first part de-
scribes a binomial analysis that tests for association of detecting a microbe 
(represented by an OTU or taxonomy) with a trait. The binary feature (b) 
of a microbe under study was coded as 0 for undetected or 1 for detected 
for each sample. The binary model is described as: y b e= +β1 , where y 
refers to the trait level (BMI or lipid level) per individual after adjust-
ing for age and sex, b is a binary feature, β1  is the estimated effect 
for the binary effect, and e represents the residuals.

The second part of the quantitative analysis tests for association 
between the lipid level and the abundance of bacteria, but only for 
the subjects where that microbe is present. The abundance level (q) 
of a microbe was the log

10
 transformed read count per individual. The 

quantitative model is written as: y q e= +β2 , where q is the abun-
dance of a microbe, β2  is the estimated effect for the abundance, and 
e represents the residuals.

To further combine the effect of both binary and quantitative 
analysis, a meta P value was derived using an unweighted Z method. 
Then, a final association P value per microbe-trait pair was assigned 
from the minimum of P values from the binary analysis, quantitative 
analysis, and meta-analysis. The association Z score was calculated 
based on the Z distribution. If the association direction was negative, 
the Z score was assigned a negative value. If the association direction 
is positive, the Z score was assigned a positive value.

The association P value was set as the minimum value of 3 P val-
ues and the distribution of the association P values could be skewed, 
so we therefore performed 1000× permutation tests to control the 
false discovery rate (FDR). For each permutation, we randomized 
the gut microbial composition across individuals and performed the 
2-part analysis on permuted data. At a certain P cutoff, the average 
number of the detected significance (N

0
) in 1000× permutations was 

defined as the false positive, and its ratio to the detected positive (N
1
) 

in the real analysis was the FDR. We controlled the FDR at 0.05.
This method accounts for the complicated features of the micro-

bial data and maximizes the power. If the association P value comes 
from the binary model, indicating the effect is only because of the 
presence/absence of the microbe, the abundance of the microbe in 
the samples does not matter. If the association P value comes from 
the quantitative model, this indicates the abundance level of the mi-
crobe associates with the trait, and the absence of the microbe has no 
influence. The explanation would be another microbe takes its place 
and has a similar function. If the association P value comes from the 
meta-analysis, indicates that both the presence/absence and the abun-
dance of microbes can influence the trait.

Estimating the Variance Explained by the Gut 
Microbiome
To estimate the proportion of variation in BMI and lipids that could 
be explained by the gut microbiome, we performed a 100× cross vali-
dation. Each time we split the data randomly into an 80% discovery 
set and a 20% validation set. In the discovery set, a total of n number 
of significantly associated OTUs was identified at a certain P value, 
and the effect sizes of binary and quantitative features of each OTU 
(β1  and β2 ) were estimated. Then, the risk of the gut microbiome on 
BMI or lipids (r

m
) for each individual in the validation set was calcu-

lated using an additive model: 

r b qj j j
j

n

m = + +
=
∑ ( )β β1 2

1

.

The variation in BMI and blood lipids explained by the gut  
microbiome was represented as the squared correlation coefficient (R2) 
between the traits and r

m
, after correcting for age and sex. To ensure 

the robustness of our estimation, we repeated the cross-validation 100× 
and calculated the average value of the explained variation. We hypoth-
esized that many microbes may contribute a small effect but may not be 
confidently detected at an FDR of 0.05. Therefore, we did this analysis 
at different significant P levels ranging from 1×10−5 to 0.1.

Genetic Risk Score Calculation
A total of 157 lipid-associated single nucleotide polymorphisms 
(SNPs)33 and 97 BMI-associated SNPs34 were extracted from the lit-
erature. The risk alleles and their effect sizes were extracted for each 
SNP and each lipid type. We excluded 3 SNPs for which genotypes 
could not be successfully imputed in the LifeLines cohort: rs9411489 
at the ABO locus, rs3177928 at the HLA locus, and rs12016871 at 
the MTIF3 locus. Thus, our final study included genetic information 
for 96 BMI-associated SNPs and 155 lipid-associated SNPs, includ-
ing 71 for HDL, 56 for LDL, 40 for triglycerides, and 72 for TC. We 
then computed weighted genetic risk scores (r

g
) for BMI and lipids, 

as described previously.18

The association analysis between individual SNPs and the gut 
microbiome was performed using the analysis pipeline developed in 
house for quantitative trait loci analysis.35 We further tested whether 
the explained variation in the gut microbiome was independent of 
genetic factors by testing the association between the gut microbiome 
and genetic risk scores.36 The associations between microbes and the 
genetic risk score of BMI and lipid levels were assessed using our 
2-part model. The significance was controlled at FDR<0.05 by 1000× 
permutation tests.

Significance of the Microbial Contribution
To test whether  the gut microbiome contributes significantly to varia-
tion in BMI and blood lipids, we compared the performance of 3 
different risk models, in particular the risk models with and without 
microbial risk:

r1= age+gender;

r r2 g= age+gender+ ;  and

r r r3 g m= age+gender+ + ,

Table.   Summary of Physical Characteristics of 893 LifeLines-DEEP Subjects

Mean±SD Range

Men Women Total Men Women Total

n=380 n=513 n=893 n=380 n=513 n=893

Age, y 44.7±12.9 44.6±12.9 44.6±12.9 18 to 78 18 to 80     18 to 80

BMI 25.4±3.3 25.1±4.6 25.2±4.1 16.9 to 39.3 16.9 to 44.9  16.9 to 44.9

HDL-C, mmol/L 1.35±0.32 1.69±0.43 1.54±0.42 0.6 to 2.5 0.7 to 3.3    0.6 to 3.3

LDL-C, mmol/L 3.36±0.89 3.07±0.93 3.19±0.93 1.0 to 6.5 0.8 to 7.5    0.8 to 7.5

TC, mmol/L 5.13±1.00 5.04±1.01 5.08±1.01 2.5 to 8.7 2.4 to 9.7    2.4 to 9.7

TG, mmol/L 1.39±1.23 0.97±0.53 1.15±0.92  0.22 to 14.05 0.29 to 4.06  0.22 to 14.05

Log2-TG 0.20±0.81 −0.21±0.67 −0.04±0.76   -2.2 to 3.8 −1.79 to 2.02 −2.2 to 3.81

BMI indicates body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; and TG, triglycerides.
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where r
g
 is the calculated genetic risk and r

m
 is the highest mi-

crobial risk we determined. The variation explained by each risk 
model was calculated in 100× cross validation, as described above. 
To evaluate the significance of microbial contribution, the ANOVA 
test was used to compare the performance of the risk models r

3
 and 

r
2
: the average of F values of the ANOVA test from 100× cross vali-

dation was calculated, and the P value was determined based on the 
F-distribution. As BMI and lipids are highly correlated, we also in-
vestigated whether the gut microbiome can contribute to lipid levels 
independent of BMI. To do so, we tested 4 risk models of lipids, in-
cluding BMI as a risk factor:

r1=age+gender;

r2 = age+gender+BMI;

r r3 = +age+gender+BMI g;  and

r r r4 = + +age+gender+BMI g m.

Results
Microbial Diversity in the LifeLines-DEEP Cohort
After quality control, our study included 893 human subjects. 
The study cohort had a wide range of age, BMI, and blood 
lipids levels (Table). We assessed how variable the gut micro-
bial composition was in the cohort in terms of microbial rich-
ness and diversity. The microbial richness reflects the number 
of OTUs per individual. The cohort had on average 238 OTUs 
per individual, ranging from 44 to 355. When individuals were 
grouped into different bins based on their richness, we observed 
that age and the proportion of women were higher in the rich-
er OTU groups (Figure 1). The Spearman correlation showed 
that the richness was significantly higher in women (P=0.0055) 
and increased with age (P=5.87×10−12; Online Table I). Given 
the abundance of OTUs, we computed the microbial diversity 
(Shannon’s diversity index) and observed similar significant 
correlations for age and sex (Online Table I). We then investi-
gated whether bacterial richness and diversity were correlated 
with BMI and lipid levels. After correcting for age and sex, OTU 
richness was negatively correlated with BMI (P=3.8×10−4) and 
triglycerides (P=1.37×10−4), but positively correlated with HDL 
(P=8.3×10−4). We did not observe significant correlations be-
tween microbial richness and LDL or TC levels (Online Table I).

Association of Bacteria With Lipid Metabolites
We next tested for association between the individual bacterial 
OTU, BMI, and blood lipid levels. After adjusting for age and 
sex, we identified 148 associated OTUs at FDR=0.05: 66 OTUs 
were associated with BMI, 114 with triglycerides, and 34 with 
HDL (Online Tables II–IV). We did not detect any significant 
association at OTU level for LDL or TC. Of the 148 associated 
OTUs, 12 were shared by all 3 traits (BMI, triglyceride, and 
HDL), 29 OTUs were shared by BMI and triglycerides, and 4 
by BMI and HDL, whereas 21, 64, and 9 OTUs were specifi-
cally associated with BMI, triglyceride, and HDL, respectively 
(Online Figure II). At the taxonomic level, we identified 50 sig-
nificant associations for 34 unique taxonomies at FDR=0.05: 22 
were associated with BMI, 23 with triglycerides, 4 with HDL, 
and 1 with LDL (Figure 2; Online Table V). We found that 18 
associations (36%) were detected by binary analysis (presence/
absence); 4 associations (8%) were detected by the quantita-
tive model; and 28 associations (56%) were detected by the 

meta-analysis of binary and quantitative analyses (Online Table 
V). Although most of the associated taxonomies were shared 
across lipid metabolites and BMI, several microbes were pre-
dominantly linked to lipids rather than BMI. For example, the 
family Clostridiaceae/Lachnospiracease (N16 in Figure 2) was 
specially associated with LDL (P=9.1×10−5; Online Table V) 
and not detected for BMI nor other lipids. Furthermore, the fam-
ily Pasteurellaceae (N32; Proteobacteria), genus Coprococcus 
(N24; Firmicutes), and genus Collinsella species Stercoris (N2) 
showed strong association with triglyceride levels (P=6.2×10−5, 
P=4.6×10−5, and P=0.0006, respectively), a nominal significance 
to other lipids, and no association with BMI (P>0.1).

We confirmed several previously described bacterial as-
sociations with obesity. An increased abundance of genus 
Akkermansia (N34) has been associated with a decrease in 
BMI (P=0.0005).37 We also confirmed the association of 
both the family Christensenellaceae (phylum Firmicutes; 
N18) and the phylum Tenericutes (mainly represented by or-
der RF-39; N33) with low BMI (P=9.8×10−7 and P=0.0002, 
respectively), as reported in the TwinsUK cohort.38 In ad-
dition, we identified a novel and strong association of 
these particular bacteria with lower levels of triglyceride 
(P=2.1×10−5 and P=2.7×10−7, respectively) and higher lev-
els of HDL (P=0.0047 and P=0.0006, respectively). We also 
observed several new associations with BMI and levels of 
triglyceride and HDL, such as genus Eggerthella (N3) with 
increased triglyceride (P=4.1×10−5) and decreased HDL 
(P=6.3×10−5), and family Pasteurellaceae (N32) with de-
creased triglyceride (P=6.2×10−5). The genus Butyricimonas 
(N9) was previously linked to a lean phenotype in mice after 
fecal transplantation from twins discordant for obesity.14 
Our study shows that this genus is strongly associated with 
decreased triglyceride (P=4.7×10−6) and nominally associated 
with BMI and HDL in humans.

Figure 1. The richness of the gut microbiome. The microbial 
richness associated with age and sex. The bar plot shows the 
distribution of individuals binned to different groups of richness. 
The black and gray colors indicate the proportion of men and 
women in each group, and the dark gray line indicates the 
correlation between the average age and richness, whereas the 
light gray shadow indicates the SD of the age per richness bin. 
OTU indicates operational taxonomy unit.
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Variance of Blood Lipid Explained by Microbiota 
Composition
To anticipate how much BMI and blood lipids can be modulated 
by the gut microbiome, it is important to estimate what propor-
tion of variation in these metabolic traits can be explained by the 
microbiome. To do so, we performed a 100× cross-validation 
analysis by splitting the data set randomly into an 80% discovery 
set and a 20% validation set. The OTUs identified at P=1×10−5 

level in the discovery set explained 2.74% variation in BMI in 
the validation set, 3.83% in triglycerides, 2.46% in HDL, 0.01% 
variation in LDL, and 0.01% in TC. When the association sig-
nificance decreased and the risk model included more (but less-
significant) OTUs, the explained variation increased to 4.57% in 
BMI, 6.0% in triglycerides, 4.0% in HDL, but was only 1.5% in 
LDL and 0.7% in TC (Figure 3A). To test the robustness of our 
estimation, we rerarefied the OTU library 100× and repeated the 

Figure 2. The effect of taxonomies on body mass index (BMI) and lipids. The effects of 34 taxonomies associated with BMI, 
triglycerides (TG), and high-density lipoprotein (HDL) are shown as Z scores. Red sectors indicate positive associations and blue negative 
associations. Brighter colors indicate that the association was significant at false discovery rate (FDR) 0.05 level. Dashed circles indicate 
the scale of Z values from 1 to 5.

Figure 3. The contribution of the gut microbiome to body mass index (BMI) and lipids. A, The variation explained by gut microbes at 
different levels of significance. B, The variation explained by different risk models, including age, sex, genetic risk, and microbial risk. The 
significance of microbial contribution is indicated as the P value of the ANOVA test that compared the performance of the risk models r2 
and r3. HDL indicates high-density lipoprotein; LDL, low-density lipoprotein; TC, total cholesterol; and TG, triglycerides.
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whole analysis. This approach yielded similar results, thereby 
confirming the robustness of our estimation (Online Figure III).

Microbiota Contribute Significantly to Lipid 
Variation, Independently of Age, Sex, and Genetics
Evidence has already shown that the gut microbiome can be 
shaped by host genetics.38 We further tested whether the ex-
plained variation in the gut microbiome was independent of 
genetic factors by testing the association between the gut mi-
crobiome and genetic risk scores.36 To date, 157 genetic loci 
have been reported to be associated with blood lipid levels,33 
and 97 loci have been associated with BMI.34 In our cohort, 
these SNPs collectively explained 2.1% variation in BMI 
(P=1.66×10−5), 3.4% in triglycerides (P=3.22×10−8), 7.5% in 
HDL (P<2.2×10−16), 4.6% in LDL (P=8.0×10−11), and 5.6% in 
TC (P=7.7×10−13), after correcting for age and sex. However, 
we did not observe any significant association between the mi-
crobiome and the genetic risk at FDR=0.05. We did not find 
a significant association for either single SNPs (Online Table 
VI) or for the combined lipid and BMI genetic risk scores 
(Online Table VII). Our results indicated that the proportion 
of variation in BMI and lipid levels explained by the gut mi-
crobiome was different from that explained by genetic varia-
tion. Therefore, we further assessed whether the microbiome 
could make a significant contribution to the explained variation 
beyond age, sex, and genetic factors. Our analysis unambigu-
ously showed that age, sex, genetics, and the gut microbiome 
collectively explained 11.3% of the variation in BMI, 17.1% 
in triglycerides, and 25.9% in HDL cholesterol, with the mi-
crobiome making a significant contribution to the explained 
variation in BMI (P=4.1×10−3), triglycerides (P=4.5×10−4), and 
HDL (P=2.7×10−3; Figure 3B). When we included BMI as a 
risk factor, the total explained variation in lipids increased to 
25% in triglycerides, 37.4% in HDL, 22.3% in LDL, and 22.3% 
in TC (Online Figure IV). The microbiome made a lesser, but 
still significant, contribution to triglycerides (P=4×10−3) and 
HDL (P=0.026). Our study therefore indicates that the gut mi-
crobiome can explain a substantial proportion of the variation, 
independent of age, sex, BMI, and genetics.

Discussion
Obesity and aberrant levels of blood lipids are associated with 
a high risk of CVD. Studying the effect of the gut microbiome 
on BMI and blood lipid levels yields insight into the role of the 
microbiome in the development of CVD. Although animal stud-
ies have shown that microbiota can influence lipid metabolism,39 
no large-scale studies have been performed in humans thus far. 
Here, we investigated the impact of the gut microbiome on BMI 
and blood lipid levels in 893 human subjects from the LifeLines-
Deep cohort. The power of our study is reflected by 3 factors. 
First, to our knowledge, it is the largest association study linking 
the gut microbiome to blood lipids in humans to date. Second, 
our cohort represented a wide range of ages, BMI, and blood 
lipids, as well as microbial composition. We also had detailed 
medication information per individual and could exclude those 
taking lipid-lowering or antibiotic medication. Moreover, we 
adopted a novel and powerful 2-part model to account for both 
the binary and quantitative features of microbial data. We estab-
lished associations for 34 taxonomies with BMI and blood lipid 

levels, and we estimated that gut microbiota composition can 
explain ≤6% of the variation in lipid levels and that this effect is 
independent of age, sex, and host genetics.

Our results for the microbiota associated with BMI are in 
line with a recent study of 416 twin-pairs from the TwinsUK 
population38; in particular, we confirmed that lower abun-
dances of families Christensenellaceae, Rikenellaceae, class 
Mollicutes, genus Dehalobacterium, and kingdom Archaea 
were associated with a high BMI. Of 22 independent taxa as-
sociated with BMI by our study, 16 were also accessed in the 
TwinsUK study: 11 (68.8%) showed significant association 
with BMI (P<0.05) with the same direction of effect as we 
found (Online Table V). We also identified a correlation of 
decreased bacterial diversity with increased BMI, which is in 
line with previous observations.40

However, many of the taxonomies we identified are 
novel findings. Several of the identified bacteria are known 
to be involved in the bile acid metabolic pathway. In particu-
lar, order Bacteroidales (phylum Bacteroidetes) and family 
Clostridiaceae (phylum Firmicutes) are both negatively corre-
lated with BMI and triglycerides and known to be involved in 
bile acid metabolism.41 Bile acid activity of commensal bacteria 
is involved in a complex interplay with host hepatic enzymes, 
and together they promote digestion and absorption of dietary 
lipids.42 Interestingly, several small-scale studies reported low-
ered cholesterol on using probiotics with bile salt hydrolytic ac-
tivity.43,44 Our study found support for the role of bacterial bile 
acids in lipid metabolism. Another pathway enriched in several 
associated bacteria is short chain fatty acid metabolism. Both or-
ders Bacteroidales and Clostridiales, identified in our study, are 
involved in short chain fatty acid metabolism.41 Short chain fatty 
acids are produced by microbiota from dietary fibers, effect host 
body energy homeostasis, and are protective against metabolic 
syndrome, type 2 diabetes mellitus, and atherosclerosis.15,45–47

To firmly establish the gut microbiome as a risk factor for 
obesity and aberrant levels of blood lipids, we have been able 
to estimate that the microbiome could explain 4.57% to 6% of 
the variation in BMI, triglyceride and HDL, respectively. We 
did not detect any significant association between the gut mi-
crobiome and genetic predisposition to obesity and aberrant 
levels of blood lipids, suggesting the variation explained by the 
microbiome is independent of that explained by genetic vari-
ants. It should be noted, however, that the genetic risk score 
was limited to our established 157 lipid-associated SNPs33 and 
97 BMI-associated SNPs,34 which together only explain a small 
proportion of the heritability of lipid levels. We might have 
missed the effect of other, not yet discovered SNPs. Our risk 
model included age, sex, genetic variation, and gut microbiome 
and explained 11.3% of the variation in BMI, 17.1% in triglyc-
erides, and 25.9% in HDL, significantly outperforming the risk 
model without the microbiome. Because blood lipids and BMI 
are highly correlated with each other and many associated bac-
teria were shared, we investigated whether the observed effect 
of the gut microbiome on lipids might just be the confounded 
effect of BMI. We showed that by including BMI in the risk 
model, the gut microbiome made a smaller, but significant, con-
tribution to the variation in triglycerides and HDL, suggesting 
that the microbiome affects blood lipids partly independently 
of BMI. Our results therefore indicate that the gut microbiome 
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is a potentially important player in blood lipid metabolism. In 
contrast to genetics, sex, and age (all fixed characteristics), an 
individual’s microbiota composition can be modified by diet, 
prebiotics and probiotics, and fecal transplantation. Studies 
have shown that diet can alter the gut microbiome.48 Our study 
has not addressed how much of the association we observed be-
tween gut microbiome and blood lipids might be explained by 
diet. A better understanding of this could provide more insights 
into the role of diet in microbiome and lipid metabolism.

Our study supports the potential of microbiota-modifying 
intervention to correct lipid disbalance and thereby help pre-
vent CVD. From potential to action, the next steps are to vali-
date the associations we report in independent cohorts and to 
prove there is a causal axis of gut microbiome–lipids–CVD 
in functional studies. It is essential to gain more mechanistic 
insight into the functioning of the gut microbiome, although 
research in humans is still in its infancy.

The gut microbiomes in our study were profiled by 16s 
ribosomal RNA gene sequencing. This technology can iden-
tify microbial taxonomies and composition, but has limita-
tions in identifying genetically specific species and strains. 
Furthermore, 16s ribosomal RNA gene sequencing provides 
little information on bacterial genes and their functions. With 
the decreasing cost of metagenome sequencing and develop-
ment of techniques for culturing and for functional studies of 
gut bacteria, we expect to learn more about the levels of bacte-
rial genes, metabolic pathways, and their functions in the future.

In conclusion, we have observed a strong association be-
tween the gut microbial composition and the variation in BMI 
and blood lipid levels, which is independent of age, sex, and host 
genetics. This observation provides insight into the microbiome’s 
role in regulating metabolic processes during the development 
of CVD. We established associations for a total of 34 intestinal 
bacteria taxonomies with BMI and blood lipids. We observed 
that the gut microbiome makes a significant contribution, be-
yond that of clinical risk factors and genetics, to the individual 
variance seen in BMI and to the blood levels of triglycerides and 
HDL, but that it has little effect on LDL or TC levels. Our results 
highlight the potential of therapies that alter the gut microbiome 
to control body mass, triglycerides, and HDL in CVD preven-
tion. In moving from potential to action, it will be essential to 
identify the causal axis of microbiome–lipids–CVD and to gain 
more mechanistic insight into the gut bacteria functions.
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What Is Known?

•	 The human gut holds about 100 trillion bacteria, which together can 
weigh several pounds.

•	 This ecosystem (the microbiome) is shaped by early life events, the 
host genome, diet, and other lifestyle factors.

•	 This bacterial community is associated with an individual’s suscepti-
bility to many diseases, including cardiovascular diseases.

What New Information Does This Article Contribute?

•	 Healthy lipid levels are associated with increased microbial diversity.
•	 Body mass index and blood lipids are associated with 34 different 

microbial taxonomies.
•	 A risk model including age, sex, genetic factors, and gut microbiome 

explains a large part of the variation seen in body mass index, triglyc-
erides, and high-density lipoprotein cholesterol.

The bacterial community in the human gut (known as the microbi-
ome) has been referred to as an extra organ, or the second human 
genome, because of its important role in an individual’s health. As 
most of these bacteria cannot be cultured, we knew little about 
their diversity and function until the recent development of inno-
vative DNA sequencing technology. In our study, we defined the 
microbial composition found in 893 human subjects by sequencing 
bacteria-specific 16s ribosomal RNA genes; we observed a large 
interindividual variation in gut bacteria composition. We show that 
the bacterial diversity is associated with the lipid blood levels at 
human population level, especially with the levels of triglycerides 
and high-density lipoprotein cholesterol, and we report significant 
associations for 34 bacteria taxonomies. Our findings suggest that 
microbial intervention therapy will have the potential to help control 
blood lipid levels and prevent disease.

Novelty and Significance


