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Abstract Root systems develop different root types that individually sense cues from their local

environment and integrate this information with systemic signals. This complex multi-dimensional

amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic

activity that define a dynamic physical network. Current methods for analyzing root biology balance

physiological relevance with imaging capability. To bridge this divide, we developed an integrated-

imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses

luminescence-based reporters to enable studies of root architecture and gene expression patterns in

soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial

integration of soil properties, gene expression, and root system architecture traits. We propose

GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that

evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of

such processes.

DOI: 10.7554/eLife.07597.001

Introduction
Plant roots are three-dimensional assemblies of cells that coordinately monitor and acclimate to soil

environmental change by altering physiological and developmental processes through cell-type and

organ-specific regulatory mechanisms (Dinneny et al., 2008; Duan et al., 2013). Soil comprises a

complex distribution of particles of different size, composition and physical properties, airspaces, variation

in nutrient availability and microbial diversity (Brady and Weil, 2009; Lynch and Wojciechowski, 2015).

These physical, chemical, and biological properties of soil can vary on spatial scales of meters to microns,

and on temporal scales ranging from seasonal change to seconds. Root tips monitor this environment

through locally and systemically acting sensory mechanisms (Bao et al., 2014; Tabata et al., 2014).

The architecture of the root system determines the volume of soil where resources can be accessed

by the plant (rhizosphere) and is under both environmental and genetic control. Plasticity in growth

parameters allows the plant to adjust its form to suit a particular soil. Lateral roots, which usually make
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up the majority of the total root system, often grow at an angle divergent from the gravity vector.

This gravity set-point angle is controlled by auxin biosynthesis and signaling and can be regulated by

developmental age and root type (Rosquete et al., 2013). Recent cloning of the DRO1 quantitative

trait locus demonstrates that natural genetic variation is a powerful tool for uncovering such control

mechanisms (Uga et al., 2013).

Specific root ideotypes (idealized phenotypes) have been proposed to be optimal for acquisition of

water and nitrogen, which are distinct from ideotypes for low phosphorus. Based on computational

modeling and field studies, the ‘steep, deep, and cheap’ ideotype proposed by Lynch and colleagues

may provide advantages to the plant for capturing water and elements like nitrogen that are water

soluble and therefore tend to move in the soil column with water. This ideotype consists of highly

gravitropic, vertically oriented roots that grow deep in the soil column and develop large amounts of

aerenchyma, which reduces the overall metabolic cost of the root system (Lynch and Wojciechowski,

2015). Other nutrients, like phosphorus, which have limited water solubility and are tightly bound to

soil particles, usually accumulate in the top layers of soil and favor root systems that are more highly

branched and shallow. The low-phosphorus ideotype effectively increases root exploration at the top

layers of soil (Lynch and Wojciechowski, 2015). Modeling of root system variables shows that

optimum architecture for nitrogen and phosphorus uptake is not the same (Postma and Lynch, 2014)

and suggests tradeoffs that may affect the evolution of root architecture as a population adapts to

a particular environmental niche (Laliberté et al., 2013).

Clearly, understanding the architecture of root systems and how environmental conditions alter

root developmental programs is important for understanding adaptive mechanisms of plants and

for identifying the molecular-genetic basis for different response programs. In addition, root

systems have complexity beyond their architecture that needs to be incorporated into our

understanding of plant–environment interactions. Primary and lateral roots exhibit different stress

response programs in Arabidopsis (Duan et al., 2013; Tian et al., 2014) and may play specialized

eLife digest Most plants absorb water and nutrients from the soil via structures called roots. The

shape, size, and structure of a plant’s root system can change over its lifetime as the plant responds

to changes in their local environment. For example, if water is scarce, a plant may develop a very

deep root system that is more efficient at capturing water. Understanding how root systems respond

to environmental cues may help us to identify the genes and processes involved.

In this study, Rellán-Álvarez et al. report a new live-imaging platform for analyzing root

architecture and its regulation. This platform is called Growth and Luminescence Observatory for

Roots (or GLO-Roots for short) and uses ‘luminescent’ markers that allow growing roots to be

visualized when plants are grown in thin, soil-filled, transparent pots. GLO-Roots can track the

growth of the plant roots as well as the activity of genes that respond to environmental stress.

Rellán-Álvarez et al. developed a software tool called GLO-RIA (GLO-Roots Image Analysis) to

analyze the resulting images. GLO-RIA performs several different types of image analysis, including

one that detects the position, length, and direction of roots, as well as their shape and depth.

Rellán-Álvarez et al. tested the GLO-Roots techniques in various ways, for example, by analyzing

the effects that different conditions have on the growth of the roots of the model plant known as

Arabidopsis thaliana. Depriving the plants of a nutrient called phosphorous caused the roots to grow

more horizontally than when phosphorus is plentiful, presumably to allow the plants to expand their

search for phosphate in the upper layers of the soil, where this nutrient is usually more abundant. On

the other hand, a shortage of water caused the roots to grow more vertically to access water stored

deeper in the soil. GLO-Roots can also be used to measure the water content of soil at different

depths and how this influences the architecture of the root.

Further experiments on tomato plants and a grass species called Brachypodium distachyon

revealed the different architectures of their root systems. Rellán-Álvarez et al. propose that this

system could be used to study the roots of other plant species in a variety of environmental

conditions. This will provide a more detailed understanding of the ways that different plants adapt in

response to changes in their environment.

DOI: 10.7554/eLife.07597.002
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roles in water and nutrient uptake. Thus, it is important to develop methods that allow for a

multidimensional characterization of the root system that includes growth, signaling, and interactions

with other organisms. Furthermore, physiological parameters that affect whole-plant responses to the

environment, such as transpiration, are likely integrated into such processes, thus, requiring a more

holistic approach to studies of root function.

Based on these considerations, we have developed a new root imaging platform, Growth and

Luminescence Observatory for Roots (GLO-Roots), which allows root architecture and gene expression

to be studied in soil-grown plants. GLO-Roots is an integrated system composed of custom growth

vessels, luminescent reporters, and imaging systems. We use rhizotrons that have soil volumes equivalent

to small pots and support growth of Arabidopsis from germination to senescence. To visualize

roots, we designed plant–codon-optimized luciferase reporters that emit light of different wavelengths.

To visualize reporter expression, plants are watered with a dilute luciferin solution and imaged

afterwards. We have built a custom luminescence-imaging system that automatically captures

images of rhizotrons held vertically. The signal from each reporter is distinguished using band-pass

filters held in a motorized filter wheel, which enables automated acquisition of images from plants

expressing both structural and environmentally or developmentally responsive reporters. We have

also developed GLO-RIA (Growth and Luminescence Observatory Root Image Analysis), an ImageJ

(Schneider et al., 2012) plugin that allows for automated determination of (among other traits) root

system area, convex hull, depth, width, and directionality, a metric which quantifies the angle of root

segments with respect to gravity. GLO-RIA is also able to relate root system parameters to local

root-associated variables such as reporter expression intensity and soil-moisture content.

Overall GLO-Roots has great utility in presenting environmental stimuli to roots in physiologically

relevant ways and provides tools for characterizing responses to such stimuli at the molecular level in

whole-adult root systems over broad time scales.

Results
We have developed an integrated platform for growing, imaging, and analyzing root growth that

provides advances in physiological relevance and retains the ability to visualize aspects of root biology

beyond structure (Box 1).

The GLO-Roots platform
GLO-Roots is comprised of four parts: (i) growth vessels called rhizotrons that allow plant growth in

soil and root imaging; (ii) luminescent reporters that allow various aspects of root biology to be

tracked in living plants; (iii) GLO1 (Growth and Luminescence Observatory 1) luminescence-imaging

system designed to automatically image rhizotrons; (iv) GLO-RIA, an image analysis suite designed to

quantify root systems imaged using GLO-Roots.

Plant growth system
GLO-Roots utilizes custom-designed growth vessels classically known as rhizotrons, which hold a thin

volume of soil between two sheets of polycarbonate plastic. Acrylic spacers provide a 2-mm space in

which standard peat-based potting mix is added. Black vinyl sheets protect roots from light and rubber

U-channels clamp the rhizotron materials together. Plastic racks hold the rhizotrons vertically and further

protect the roots from light. Rhizotrons and rack are placed in a black tub and water is added, to a depth

of about 2 cm, at the bottom to maintain moisture in the rhizotrons during plant growth. The volume of

soil in the rhizotrons (100 cm3) is similar to small pots commonly used forArabidopsis and supports growth

throughout the entire life cycle (Figure 1A–C and Figure 1—figure supplement 1).

Box 1.

All resources for GLO-Roots, including the original raw data used in the manuscript, sample

images, GLO-RIA user manual, the latest software updates, and the source code, can be found

at: https://dinnenylab.wordpress.com/glo-roots/.

DOI: 10.7554/eLife.07597.003
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Figure 1. GLO-Roots growth and imaging system. (A) 3D representation of the different physical components of the rhizotron: plastic covers,

polycarbonate sheets, spacers, and rubber U-channels. Blueprints are provided in Supplementary file 1. In brown, soil layer. (B) A 35-day-old plant in

rhizotron with black covers removed. (C) Top view of holding box with eleven rhizotrons. (D) In vivo emission spectra of different luciferases used in this

study. Transgenic homozygous lines expressing the indicated transgenes were grown on agar media for 8 days. Luciferin (300 μM) was sprayed on the

seedlings and plates were kept in the dark and then imaged for 2 s at wavelengths ranging from 500 to 700 nm. Five intensity values were taken from

different parts of the roots of different seedlings and averaged. Relative maximum intensity values are indicated in the lower right graph. (E) GLO1

(Growth and Luminescence Observatory 1)-imaging system. The system is composed of two back illuminated CCD cameras (a) cooled down to −55˚C.
A filter wheel (b) allows for spectral separation of the different luciferases. On the right, a rhizotron holder (c) is used to position the rhizotrons in front of

the cameras. A stepper motor (d) rotates the rhizotron 180˚ to image both sides. (F) A 21 DAS plant expressing ProUBQ10:LUC2o was imaged on each of

two sides of the rhizotron; luminescence signal is colorized in green or magenta to indicate side. In the middle of the panel, a combined image of the two

sides is shown. The inset shows a magnified part of the root system.

DOI: 10.7554/eLife.07597.004

The following source data and figure supplements are available for figure 1:

Source data 1. Two way ANOVA p-values comparing plants grown in MS media vs plants grown in soil (pots or rhizotrons) and plants collected at day or night.

DOI: 10.7554/eLife.07597.005

Source data 2. Luminescence intensity values of the different luciferase isoforms across the emission spectrum.

DOI: 10.7554/eLife.07597.006

Figure 1. continued on next page
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To determine how the biology of plants grown in rhizotrons compares to other standard growth

systems, we utilized high-throughput qRT-PCR to study how these conditions affect expression of

77 marker genes in root and shoot samples. These genes were curated from the literature and belong

to a wide array of biological pathways including nutrient acquisition, hormone and light response and

abiotic stress. Whole root and shoot samples were collected at the end of the light and dark periods

(long-day conditions: 16-hr light, 8-hr dark) from plants grown in rhizotrons, pots, and petri dishes with

two different media compositions: 1x Murashige and Skoog basal salts (ms) 1% sucrose or 0.25x ms,

no sucrose (ms25). Principal component analysis (PCA) of the gene expression values showed a

separation of soil- and gel-grown root systems in the first principal components (Figure 1—figure

supplement 1A, Figure 1—source data 3). In roots grown on gel-based media, we observed

enhanced expression of genes associated with light-regulated pathways (flavonoid biosynthesis:

FLAVONOL SYNTHASE1, FLS1, CHALCONE SYNTHASE, CHS and photosynthesis: RUBISCO

SUBUNIT 1A, RBCS1A, CYCLOPHILIN 38, CYP38), which is expected due to the exposure of gel-

grown roots to light. In addition, genes associated with phosphorus nutrition (LOW PHOSPHATE

RESPONSE1, LPR1, PHOSPHATE STARVATION RESPONSE1, PHR1) were less expressed in soil-

grown roots (Figure 1—figure supplement 1), suggesting differences in nutrient availability

between the different growth systems. Interestingly, shoot samples where not as clearly separated

by growth media, and instead, time of day had a greater effect (Figure 1—figure supplement 2,

Figure 1—source data 4). These data suggest root systems may be particularly sensitive to media

conditions and indicate that rhizotron-grown root systems more closely approximate the biology of pot-

grown plants than standard gel-based media. Shoot weight and primary root length were significantly

reduced for gel-grown plants compared to rhizotron- or pot-grown plants suggesting significant

differences in the biology of plants grown under these conditions (Figure 1—figure supplement 1B,C).

While the 2-mm depth of the soil sheet is 10–20 times the average diameter of an Arabidopsis

root (between 100 and 200 microns [Meijon et al., 2013]), we evaluated whether rhizotron-

grown plants exhibited any obvious stress as a consequence of physical constriction. We

compared traits of plants growing in vessels that hold similar volumes of soil but in different

volumetric shapes (Figure 1—figure supplement 1). The number of lateral roots was

significantly lower in pot- and cylinder-grown plants compared to rhizotron-grown plants

(Figure 1—figure supplement 1D), whereas primary root length of rhizotron and cylinder-

grown plants was significantly greater than pot-grown plants (Figure 1—figure supplement 1E).

No significant differences in shoot area were observed between the three systems

(Figure 1—source data 1). Thus, these data do not support the hypothesis that rhizotron-grown

plants experience physical constriction greater than other vessels holding the same volume of soil.

Figure 1. Continued

Source data 3. Gene expression values used to construct the PCA of root samples.

DOI: 10.7554/eLife.07597.007

Source data 4. Gene expression values used to construct the PCA of shoot samples.

DOI: 10.7554/eLife.07597.008

Source data 5. Shoot Fresh Weight (FW) and primary root length of plants grown with or without luciferin.

DOI: 10.7554/eLife.07597.009

Source data 6. Ground truth and GLO-RIA measured values of directionality, depth and width use for validation.

DOI: 10.7554/eLife.07597.060

Figure supplement 1. Effect of different growth systems on gene expression and growth.

DOI: 10.7554/eLife.07597.010

Figure supplement 2. PCA plot of shoots of the same samples analyzed in Figure 1.

DOI: 10.7554/eLife.07597.011

Figure supplement 3. Image of an Arabidopsis root in soil imaged with white light (brightfield) or epifluorescence.

DOI: 10.7554/eLife.07597.012

Figure supplement 4. Effect of luciferin addition on primary root length and shoot size of 14 DAS seedlings that were either continuously exposed to 300

μM luciferin from 9 DAS after sowing or not (n = 6-7 plants).

DOI: 10.7554/eLife.07597.013

Figure supplement 5. GLO-RIA ground truth comparison.

DOI: 10.7554/eLife.07597.014
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Generation of transgenic plants expressing different luciferases
Arabidopsis roots cannot easily be distinguished from soil using brightfield imaging due to their

thinness and translucency (Figure 1—figure supplement 3); thus, reporter genes are needed to

enhance the contrast between the root and its environment. Luciferase (LUC) is an ideal reporter to

visualize roots: (1) unlike fluorescent reporters, luciferase does not require high-intensity excitation

light, which could influence root growth, (2) peat-based soil (a type of histosol) exhibits no

autoluminescence but does autofluoresce at certain excitation wavelengths similar to GFP

(Figure 1—figure supplement 3), (3) while GFP is very stable, and thus not well suited for imaging

dynamic transcriptional events, the luciferase enzyme is inactivated after catabolism of luciferin,

making it ideal for studying dynamic processes such as environmental responses. A considerable

number of luciferases have been developed that emit light spanning different regions of the visible

spectrum, but their utilization has been limited to studies in animals (Table 1).

To determine the efficacy of using luciferase to visualize roots in soil, we codon-optimized

sequences of PpyRE8, CBGRed, LUC2, and CBG99 for Arabidopsis expression. In addition, nanoLUC

(Hall et al., 2012) and venus-LUC2 (Hara-Miyauchi et al., 2012) were utilized. Constitutive luciferase

expression was driven in plants using the UBIQUITIN 10 (UBQ10) or ACTIN2 (ACT2) promoters using

vectors assembled through a Golden Gate cloning system (Emami et al., 2013). Plants homozygous for

a single locus T-DNA insertion were evaluated for in vivo emission spectra and luminescence intensity

(Figure 1D, Figure 1—source data 2). All the evaluated luciferases use D-luciferin as a substrate

facilitating the simultaneous imaging of different luciferases except nanoLUC, which uses

a proprietary substrate furimazine (Hall et al., 2012). Luciferases with red-shifted emission

spectra were less intense than the green-shifted luciferases (Figure 1D). LUC2o showed an

emission maximum at 580 nm and a minor peak at 620 nm while CBG99o lacks the minor peak.

Continuous addition of luciferin did not have a significant effect on shoot weight or primary

root length (Figure 1—figure supplement 4, Figure 1—source data 5). After luciferin addition,

luminescence signal could be reliably detected in root systems for up to 10 days, depending on

the developmental state of the plant.

GLO1: a semi-automated luminescence-imaging system for rhizotrons
Luminescence-imaging systems commercially available for biomedical research are usually optimized

for imaging horizontally held specimens or samples in microtiter plates. Placing rhizotrons in this

position would induce a gravitropic response in plants. Working with Bioimaging Solutions

(San Diego, CA), we designed and built a luminescence-imaging system optimized for rhizotron-grown

plants. GLO1 uses two PIXIS back-illuminated CCD cameras (Princeton Instruments, Trenton, NJ) to

capture partially overlapping images of rhizotrons while a motorized stage automatically rotates the

rhizotron to capture images of both sides (Figure 1E). A composite image is generated from the images

captured of each side; Figure 1F shows that approximately half of the root system is revealed on each

side with few roots being visible on both sides. Apparently, the soil sheet is thick enough to block light

from portions of the root system but thin enough to ensure its continuous structure can be compiled

from opposite face views. We tested the ability of GLO1-generated images to reveal complete root

systems by manually quantifying the number of lateral roots in excavated root systems of eight different

Table 1. Luciferases used in this study

Luciferase Origin Maximum wavelength Substrate

PpyRE8 Firefly 618 D-luciferin

CBGRed Click beetle 615 D-luciferin

Venus-LUC2 FP + firefly 580 D-luciferin

LUC(+) Firefly 578 D-luciferin

CBG99 Click beetle 537 D-luciferin

Lux operon A. fischeri 490 Biosynthesis pathway
encoded within operon

NanoLUC Deep sea shrimp 470 Furimazine

DOI: 10.7554/eLife.07597.015

Rellán-Álvarez et al. eLife 2015;4:e07597. DOI: 10.7554/eLife.07597 6 of 26

Tools and resources Plant biology

http://dx.doi.org/10.7554/eLife.07597.015
http://dx.doi.org/10.7554/eLife.07597


plants and testing these results against estimates of lateral root number from images of the same plants

visually inspected by four different persons. These comparisons revealed good correlation (R2 = 0.974)

between actual lateral root counts and image-based estimation, indicating GLO1-generated root

images provide an accurate representation of the in soil root system.

GLO-RIA: GLO-Roots Image Analysis
We developed a set of image analysis algorithms that were well suited for the complex root systems

that GLO-Roots is able to capture. GLO-RIA is an ImageJ plugin divided in two modules.

The first module (RootSystem) performs four different types of analysis: (i) a local analysis that

detects all root particles in the image and computes their position, length, and direction; (ii) the global

analysis performs a root system level analysis and computes the total visible surface, convex hull,

width, and depth; (iii) the shape analysis uses elliptic Fourier descriptors or pseudo-landmarks similarly

to RootScape (Ristova et al., 2013) to perform a shape analysis on the root system; (iv) the

directionality analysis computes the mean direction of root particles in a root system (either on the

full image or by a user-defined region of interest in the image). These four analysis methods are fully

automated by default, but can be manually adjusted if needed.

The second module of GLO-RIA (RootReporter) was specifically designed for the analysis of

multi-layered images such as combinations of gene reporter, root structure, and soil moisture.

Shortly, the plugin works as follows: (i) detection of the gene reporters and the structure reporters in

their respective images; (ii) if needed, a manual correction can be performed to correct the automated

detection; (iii) gene reporters are linked with the soil water content and the structure reporters, based

on their proximity; (iv) gene reporter intensity (either absolute or normalized using the structural

reporter) is computed; (v) all data are exported and saved to a Root System Markup Language datafile

(Lobet et al., 2015). Gene and structure reporters can be followed across different time and space

points. Using an object-oriented approach, great care has been taken to facilitate the user interactions

on the different images to streamline the analysis process. Table 2 shows a list of root system features

extracted using GLO-RIA. GLO-RIA does not currently have the ability to reconstruct the root

architecture in itself (topological links between roots). This is a challenge for analyzing images

captured by GLO-Roots since soil particles cause disruption of root segments.

We tested the accuracy of the measurements obtained from GLO-RIA using two different

ground-truthed data sets. Manual measurement of root system width, depth, and average lateral

root angle was determined by hand using ImageJ from an independent set of images

corresponding to roots of several Arabidopsis

accessions growing in control conditions.

We also used ArchiSimple (Pagès et al., 2014)

to generate 1240 images of root system models

with contrasting sizes and lateral root angles.

Since these images are computationally generated,

exact determination of root system parameters

was possible. For both ground truth data sets,

GLO-RIA quantification provided measurements

that were well correlated for all three measured

parameters (Figure 1—figure supplement 5D–F,

Figure 1—source data 6). Sample images of real

and ArchiSimple generated root images are shown

with GLO-RIA-defined directionality color-coding

(Figure 1—figure supplement 5G–I).

Continuous imaging of root
growth
The size of our rhizotrons enables undisturbed

root system development (before roots reach

the sides or the bottom of the rhizotron) for

about 21–23 days for the Col-0 accession

growing under long-day conditions (Figure 2,

Figure 2—source data 1); however, root traits

Table 2. List of root system features extracted

using GLO-RIA

Variable Unit

Projected area cm2

Number of visible roots –

Depth cm

Width cm

Convex hull area cm2

Width cm

Feret cm

Feret angle ˚

Circularity –

Roundness –

Solidity –

Center of mass cm

Directionality ˚

Euclidean Fourier descriptors –

Pseudo landmarks –

DOI: 10.7554/eLife.07597.016
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such as directionality can be observed through later stages of plant development. See 35 DAS root

system and directionality in Figure 2A,B. An example of a time series spanning 11 to 21 days after

sowing (DAS) of Col-0 roots expressing ProUBQ10:LUC2o is shown in Figure 2A and Video 1 with

a color-coded time projection shown in Figure 2C. Directionality analysis (Figure 2B) shows

a progressive change in root system angles from 0˚ (vertical) to 55˚ as lateral roots take over as the

predominant root type. Figure 2D shows the evolution over time of several root traits that can be

automatically captured by GLO-RIA (depth, width, area) and others that were manually quantified

(primary root growth rate or number of lateral roots per primary root).

Root system architecture of different Arabidopsis accessions
As a proof of concept to estimate the utility of our root-imaging system to phenotype adult root

system traits, we transformed a small set of accessions (Bay-0, Col-0, and Sha) with the ProUBQ10:

LUC2o reporter and quantified root system architecture at 22 DAS (Figure 3A–C, Figure 3—source

data 1). GLO-RIA analysis of these root systems identified several root traits that distinguish Col-0,

Bay-0, and Sha. Directionality analysis revealed an abundance of steep-angle regions in the root

Figure 2. Time-lapse imaging of Arabidopsis root systems and quantification using GLO-RIA. (A) Typical daily time-lapse image series from 11 to 35 DAS

of a ProUBQ10:LUC2o Col-0 plant. (B) Average directionality of three root systems imaged in time series as in panel A calculated using the directionality

plugin implemented in GLO-RIA. See the GLO-RIA ‘Materials and methods’ section for information of how the directionality is calculated. (C) Color-coded

projection of root growth using the images in panel A. (D) Root system depth, width, root system area are automatically calculated from the convex hull,

which is semi-automatically determined with GLO-RIA (n = 3). Primary root length, lateral root number and number of lateral roots divided by the primary

root length were quantified manually. A local polynomial regression fitting with 95% confidence interval (gray) was used to represent the directionality

distribution curve. 0˚ is the direction of the gravity vector.

DOI: 10.7554/eLife.07597.017

The following source data is available for figure 2:

Source data 1. Directionality and whole root system architecture trait values from the time series.

DOI: 10.7554/eLife.07597.018
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system of Bay-0, while Sha showed an abundance

of shallow-angled regions and Col-0 was in-

termediate (Figure 3D). Bay-0 shows the deepest

and narrowest root system leading to the highest

depth/width ratio, while Sha has the widest root

system (Figure 3E). Other root traits such as root

system area and the vertical center of mass also

showed significant differences (Figure 3—figure

supplement 1B). Broad-sense heritability values

for depth (96.3), area (92.0), depth/width (97.8),

width (95.7), and vertical center of mass (95.0)

were all higher than 90%.

To capture the richness of root architecture

shape, we used GLO-RIA to extract pseudo-

landmarks describing the shape of the root system

(see ‘Materials and methods’ for more details) and

performed PCA analysis (Figure 3—source data 2).

The first principal component captures differences

in the distribution of widths along the vertical axis

and separates Col-0 and Sha from Bay-0 root

systems (Figure 3F). Bay-0 shows a homogenous

distribution of widths along the vertical axis, while

Sha and Col-0 are much wider at the top than

bottom. PC2 seems to be capturing a relationship

between width at the top and total depth and

separates Sha root systems, which are wide at the

top and deep from Col-0 root systems, which are

wide but not as deep as Sha. Shape information

extracted from pseudo-landmarks can distinguish

the three different accession using PCA analysis

(Figure 3G, Figure 3—source data 3).

Spectrally distinct luciferases
enable gene expression patterns,
characterization of root system
interactions, and microbial
colonization
We tested whether spectrally distinct luciferase

reporters would enable additional information

besides root architecture to be captured from root systems. Luciferase reporters have been commonly

used to study gene expression and these resources can potentially be utilized to study such regulatory

events in soil-grown roots. We transformed ProACT2:PpyRE8o into two well-studied LUC reporter

lines: the reactive oxygen species response reporter ProZAT12:LUC (Miller et al., 2009) (Figure 4A,B)

and the auxin response reporter line ProDR5:LUC+ (Moreno-Risueno et al., 2010) (Figure 4C,D).

We implemented in GLO-RIA an algorithm that semi-automatically identifies gene reporter signal

and associates this object to the corresponding root structure segment. A graphical representation

of the results obtained with RootReporter can be observed in Figure 4—figure supplement 1

(Figure 4—source data 1). Reporter intensity values along the first 5 mm of root tips can also be

observed in Figure 4—figure supplement 2 (Figure 4—source data 2).

We then took advantage of our ability to constitutively express two spectrally different luciferases

and imaged the overlapping root systems (one expressing ProUBQ10:LUC2o and the other ProACT2:

PPyRE8o). While two root systems were distinguishable using this system (Figure 4—figure

supplement 3); measurements of root system area did not reveal a significant effect on root growth

when two plants were grown in the same rhizotron, compared to one; however, further studies are

warranted (Figure 4—figure supplement 3, Figure 4—source data 3).

Video 1. Time lapse from 11 to 21 DAS of a Col-0 plant

expressing ProUBQ10:LUC2o grown in control

conditions.

DOI: 10.7554/eLife.07597.019
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The GLO-Roots system uses non-sterile growth conditions, which allows complex biotic

interactions that may affect responses to the environment. Bacteria themselves can be engineered

to express luminescent reporters through integration of the LUX operon, which results in

luminescence in the blue region of the spectrum and is thus compatible with the plant-expressed

luciferase isoforms we have tested. Pseudomonas fluorescens CH267 (Haney et al., 2015),

a natural Arabidopsis root commensal, was transformed with the bacterial LUX operon and used

to inoculate plants. 13 days after inoculation, we were able to observe bacterial luminescence

Figure 3. Variation in root architecture between accessions of Arabidopsis. Representative root and shoot images of (A) Bay-0, (B) Col-0, and

(C) Sha accessions transformed with ProUBQ10:LUC2o and imaged after 22 DAS. (D) Directionality of the root systems, (E) depth/width ratio,

(F) pseudo-landmarks describing shape variation in root system architecture. Eigenvalues derived from the analysis of 9–12 plants per

accession are shown. The first two principal components explaining 38% (PC1) and 22% (PC2) of the shape variation are plotted. PC1 captures

homogeneity of root system width along the vertical axis and PC2 a combination of depth and width in top parts of the root system. Red and

green lines indicate −3SD and +3SD (Standard Deviations), respectively. (G) PC separation of the different ecotypes using the PCs described in

(F). A local polynomial regression fitting with 95% confidence interval (gray) was used to represent the directionality distribution curve. 0˚ is

the direction of the gravity vector. Kolmogorov-Smirnov test at p < 0.001 showed significant differences in directionality distributions

between all three accessions. Wilcoxon test analysis with p < 0.01 was used to test significant differences between the different accessions

(n = 9–12 plants).

DOI: 10.7554/eLife.07597.020

The following source data and figure supplement are available for figure 3:

Source data 1. Directionality, whole root system architectural trait values and shape predictors from Bay-0, Col-0 and Sha.

DOI: 10.7554/eLife.07597.021

Source data 2. Shape predictor values (TPS format) from Bay-0, Col-0 and Sha used to perform PCA.

DOI: 10.7554/eLife.07597.022

Source data 3. Whole root system architecture trait values from Bay-0, Col-0 and Sha.

DOI: 10.7554/eLife.07597.023

Figure supplement 1. (A) Root area, (B) vertical center of mass of Bay-0, Col-0, and Sha accessions.

DOI: 10.7554/eLife.07597.024
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Figure 4. Dual-color reporter visualization of root structure and gene expression. Images of whole-root

systems (A, D) or magnified portion of roots (C, F) at 22 DAS expressing ProACT2:PPYRE8o and ProZAT12:LUC

(green, A, B, C) or ProDR5rev:LUC+ (green, D, E, F). Luminescence from PPyRE8 and LUC reporters visualized

together using an open filter setting (visualized in grey-scale) while LUC signal is distinguished using a band-pass

filter (517 to 567 nm, visualized as green).

DOI: 10.7554/eLife.07597.025

The following source data and figure supplements are available for figure 4:

Source data 1. Data for ProZAT12:LUC reporter gene expression in root segments extracted from a whole root system.

DOI: 10.7554/eLife.07597.026

Source data 2. Luciferase intensity values from the root tip to maturation zone of ProUBQ10:LUC2o, ProZAT12:LUC

and ProDR5:LUC+.
DOI: 10.7554/eLife.07597.027

Source data 3. Distances to boundary between plants.

DOI: 10.7554/eLife.07597.028

Figure supplement 1. ProZAT12:LUC intensity and root segments automatically identified with GLO-RIA.

DOI: 10.7554/eLife.07597.029

Figure supplement 2. ProDR5rev:LUC+, ProUBQ10:LUC2o, and ProZAT12:LUC intensity values along the root tip.

DOI: 10.7554/eLife.07597.030

Figure supplement 3. Images of plants at 22 DAS growing in the same rhizotron and expressing different luciferases.

DOI: 10.7554/eLife.07597.031

Figure supplement 4. Three reporter-based analysis of root–root–microbe interactions.

DOI: 10.7554/eLife.07597.032
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colocalizing with plant roots. P. fluorescens did not show an obvious pattern of colonization at the

root system scale level (Figure 4—figure supplement 4). As a proof-of-principle test of the multi-

dimensional capabilities of the GLO-Roots system, we visualized both LUC2o and PPyRE8o

reporters in plants and the LUX reporter in bacteria in the same rhizotron (Figure 4—figure

supplement 4).

Adaptive changes in root system architecture under water deficit, phos-
phorus deficiency, and light
To test the utility of the GLO-Roots system to understand response of root systems to environmental

stimuli, we tested the effects of light and conditions that mimic drought and nutritional deficiency. To

examine the effects of light exposure on the root architecture, the black shields, which normally protect

the soil and roots from light, were removed from the top half of the rhizotrons 10 DAS. Using

directionality analysis, we detected a significant increase in the steepness of roots only in the light-

exposed region of the rhizotron, while the lower shielded region showed no difference

(Figure 6—figure supplement 3A,B and Figure 6—figure supplements 4, 5). Light can penetrate

the top layers of soil (Mandoli et al., 1990) and it has been proposed to have a role in directing root

growth especially in dry soils (Galen et al., 2007) through the blue light receptor phot1. Root

directionality was not significantly different between light- and dark-treated roots of the phot1/2 double

mutant (Figure 6—figure supplement 3B, lower panel, Figure 6—source data 3). suggesting that blue

light perception is indeed necessary for this response (Galen et al., 2007;Moni et al., 2014). These data

highlight the strong effects of light on root system architecture (Yokawa et al., 2013), which GLO-Roots

rhizotrons are able to mitigate.

Plants grown in low-P soil showed a significant increase in the width–depth ratio of the root system

compared to plants grown in P-replete soil, as determined using the automated root system area

finder in GLO-RIA (Figure 6—figure supplement 2A,B, Figure 6—source data 2). Plants under P

deficiency showed an increase in the ratio between root–shoot area (Figure 6—figure supplement 2C),

which indicates a higher investment of resources in the development of the root system at the

expense of shoot growth (Figure 6—figure supplement 2D). Root systems of control and P-deficient

plants showed no significant differences in directionality at 22 DAS but at 27 DAS, roots were more

horizontally oriented in P-deficient plants (Figure 6—figure supplement 2E). The observed changes

in root architecture are consistent with root system ideotypes that improve phosphorus uptake

efficiency.

GLO-Roots is especially well suited for studying water-deficit (WD) responses. First, shoots are

exposed to the atmosphere and vapor pressure deficit is maintained at levels that allow for

transpiration of water from the shoot. Second, soil in rhizotrons is exposed to air at the top and dries

from the top-down; drying soil increases the volume occupied by air and reduces contact of root with

liquid water, all of which are similar to changes in soil expected in the field during WD. Finally, as peat-

based soil dries, its optical properties change, allowing moisture content to be approximated from

brightfield images. We took advantage of the change in gray-scale pixel intensity to construct a

calibration curve (Figure 5—figure supplement 1, Figure 5—source data 1) that quantitatively

relates gray-scale pixel intensity to moisture content (Figure 5A); water content can be color

coded in images with appropriate look-up tables (Figure 5B). Soil color was not affected by the

presence or absence of roots (Figure 5—figure supplement 2). Using this approach, water

content in a rhizotron can be mapped and visualized in 2D (Figure 5C,D). In the example shown,

we can observe that a 22 DAS Bay-0 plant-depleted soil-moisture content locally around the root

system (Figure 5E).

We performed several trials to simulate WD in our growth system. Plants were germinated, grown

under control conditions then transferred to 29˚C, and standing water was removed from the

container holding the rhizotrons starting at 9 DAS or 13 DAS. Elevated temperature combined with

water deficit is a common stress that modern crop varieties are poorly adapted to, thus, highlighting

the importance of examining this combined treatment (Lobell et al., 2014; Ort and Long, 2014).

Plants were maintained in this WD regime until 22 DAS when luciferin solution was added and the

plants imaged. At 13 DAS, lateral roots near the soil surface are already emerged (Video 1, Figures 2A)

and 9 days of subsequent WD treatment caused lateral roots to show an increase in gravitropism

leading to the development of a root system that was deeper and more vertically oriented

(Figure 6A). Roots of Bay-0 plants showed similar responses, though the extent of change was less
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pronounced since Bay-0 roots are normally more vertically oriented (Figure 6B). Plants transferred at

9 DAS and grown for 13 days under WD showed less lateral root development in the top layer of soil

(Figure 6E). At this time point, lateral roots start to emerge (Video 1) and early drought may lead to

growth quiescence or senescence. Careful examination of roots in these regions showed evidence of

small lateral root primordia populating the primary root (Figure 6F). After 24 hr of re-watering

(Figure 6G), these lateral root primordia reinitiated growth (Figure 6H).

Time-lapse imaging of the water-deficit response showed that changes in root growth direction occurred

ahead of the dry soil front (Video 2). Using GLO-RIA, we were able to correlate local water-moisture

contents with the orientation of root segments. With this approach, we observed that root segments in

dryer areas of the rhizotron grew at steeper root angles (Figure 7, Figure 7—source data 1) than

roots in wetter regions, though lateral root angle in these regions was also affected. These data

suggest that both local and systemic signaling are likely involved in redirecting lateral roots deeper

during the simulated drought treatments tested here.

We also grew plants under WD at control temperatures or under WW conditions at elevated

temperature to test the effects of these individual stresses on root architecture. We observed that

both conditions were sufficient to induce a change in root directionality indicating that the plant uses

similar mechanisms to avoid heat and water-deficit-associated stresses (Figure 6—figure supplement 1).

We next asked which regulatory pathways controlled the observed changes in lateral root

Figure 5. Soil moisture and root architecture mapping in rhizotrons. (A) Composite image showing regions of

soil taken from rhizotrons prepared with different moisture levels. (B) Differences in gray-scale intensity values

were enhanced using a 16-color look-up table (LUT). Brightfield image of soil in rhizotron (C) and converted

using 16-color LUT to enhance visualization of distribution of moisture (D). (E) Root system of a Bay-0 22 DAS

subjected to WD since 13 DAS. Root system visualized using luminescence and overlaid on brightfield image of

soil in (C).

DOI: 10.7554/eLife.07597.033

The following source data and figure supplements are available for figure 5:

Source data 1. Pixel intensity and water content values used to construct calibration curve.

DOI: 10.7554/eLife.07597.034

Figure supplement 1. Moisture calibration curve.

DOI: 10.7554/eLife.07597.035

Figure supplement 2. Comparison of soil intensity values between areas of the rhizotron with or without the

presence of roots, determined based on luminescence data.

DOI: 10.7554/eLife.07597.036
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Figure 6. Study of effect of water deficit on root system architecture. (A–D) Root systems 22 DAS and exposed to water deficit 13 DAS onwards (n = 8-9

plants). Sample images of WW (upper panels) and WD (lower panels) root systems treated from 13 DAS and directionality (line graphs to left of

images) for (A) Col-0 (B) Bay-0 (C) miz1 and (D) tir1-1. (E) Root system of a 22 DAS plant exposed to water deficit from 9 DAS onwards with magnified

view of lateral root primordia (F). (G) The same root as in (E) 24 hr after re-watering and magnified view of lateral roots (H). Kolmogorov–Smirnov test

at p < 0.001 showed significant differences in directionality distributions between the WW and WD conditions for all genotypes except miz1. A local

polynomial regression fitting with 95% confidence interval (gray) was used to represent the directionality distribution curve. 0˚ is the direction of the

gravity vector.

DOI: 10.7554/eLife.07597.037

The following source data and figure supplements are available for figure 6:

Source data 1. Directionality values of Bay-0, Col-0, miz1, tir1-1 grown under WW, WD and high and control temperature conditions.

DOI: 10.7554/eLife.07597.038

Source data 2. Directionality, root system architecture traits and shoot area values of Col-0 plants grown under different phosphorus concentrations.

DOI: 10.7554/eLife.07597.039

Source data 3. Directionality values of Col-0 and phot1/2 plants grown with the root system in the dark or exposed to light in the top third of the

rhizotron.

DOI: 10.7554/eLife.07597.040

Source data 4. Directionality values at different depths of the rhizotron for Col-0 plants exposed to light in the top third of the rhizotron.

DOI: 10.7554/eLife.07597.041

Source data 5. Relative water content of leaves from plants grown under WW and WD conditions and high or control temperatures.

DOI: 10.7554/eLife.07597.042

Figure supplement 1. Directionality analysis of roots of plants transferred to WD conditions after 9 DAS and kept 22˚C (control temperature) or 29˚C (high

temperature) until 22 DAS.

DOI: 10.7554/eLife.07597.043

Figure 6. continued on next page
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directionality during simulated drought. Hydrotropism is a known environmental response that

directs root growth towards wet regions of soil. MIZ1 is an essential regulator of hydrotropism

(Kobayashi et al., 2007); however, miz1 mutants had no significant effect on WD-induced changes in

root directionality, compared to wild type (Figure 6C, Figure 6—source data 1), indicating that this

response was distinct from hydrotropism. Auxin is an important mediator of gravitropism and auxin

treatment causes lateral roots to grow more vertically (Rosquete et al., 2013). Consistent with this

role for auxin, mutant plants with loss of function in the auxin receptor TIR1 (Dharmasiri et al., 2005,

Kepinski and Leyser, 2005) showed a near-random distribution of root angles and did not show

changes in the root system directionality between WW and WD conditions (Figure 6D).

GLO-Roots for Brachypodium and tomato
To examine the general applicability of the GLO-Roots system for other species, we introduced

LUC2o-expressing reporters into the model grass Brachypodium distachyon and the crop plant

Lycopersicon esculentum (tomato). Brachypodium is well suited to the GLO-Root system because,

like Arabidopsis, its small size allows mature root systems to be studied in relatively small soil

volumes (Watt et al., 2009; Pacheco-Villalobos and Hardtke, 2012). LUC2o driven by the ZmUb1

promoter was introduced into Brachypodium using the pANIC vector (Mann et al., 2012).

Brachypodium roots showed a distinct architecture from Arabidopsis marked by prolific develop-

ment of secondary and tertiary lateral roots

(Figure 8A). This is consistent with other studies

that show that Brachypodium has a typical grass

root system (Watt et al., 2009). Comparison of

root system development in rhizotrons with gel-

based media showed that root growth is higher

in soil than in plates (Figure 8—figure

supplement 1, Figure 8—source data 1). Pre-

vious work has suggested that auxin levels in

Brachypodium roots are sub-optimal for growth

(Pacheco-Villalobos et al., 2013). Pacheco-

Villalobos and colleagues suggest that, in

Brachypodium, and contrary to what happens

in Arabidopsis, ethylene represses YUCCA re-

ducing the synthesis of auxin. The reduced

growth that we observe in plates and the high

levels of ethylene that build up in sealed plates

(Buer et al., 2003) would support this

mechanism.

Tomato plants were transformed with

Pro35S:PPyRE8o and ProeDR5rev:LUC2 report-

ers. The plants showed more rapid growth than

Arabidopsis or Brachypodium and required

fertilizer to prevent obvious signs of stress

(reduced growth, anthocyanin accumulation).

Figure 6. Continued

Figure supplement 2. Phosphorus deficiency response of root systems.

DOI: 10.7554/eLife.07597.044

Figure supplement 3. Effect of light on root directionality.

DOI: 10.7554/eLife.07597.045

Figure supplement 4. Plots showing output of directionality analysis performed at different depths (0–5, 5–10, 10–15 cm) in rhizotrons exposed to light or

kept in the dark (n = 4-6 plants).

DOI: 10.7554/eLife.07597.046

Figure supplement 5. Leaf relative water content of 23 DAS plants that were subjected to WD after 9 or 13 DAS or kept under WW conditions.

DOI: 10.7554/eLife.07597.047

Video 2. Time lapse from 16 to 24 DAS of Col-0 plants

expressing ProUBQ10:LUC2o growing in water-deficient

(left) and control (right) conditions. Plants were sown

under control conditions and water-deficit treatment

started 11 DAS. Images were taken every day.

DOI: 10.7554/eLife.07597.048
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Root systems were imaged from 17 DAS plants. Roots showed presumptive lateral root

primordia marked by DR5-expression (Figure 8C,D). These results show that the GLO-Roots

method can be applied to study root systems of different plant species and will likely be useful for

studying root systems of other small- to medium-sized model plants and for early stages of larger

crop plants.

Discussion

GLO-Roots enables a multi-dimensional understanding of root biology
Recent studies of root systems has emphasized structural attributes as important contributors of root

system function. Indeed, studies examining the role of genetic variants in tolerating abiotic stress have

demonstrated the importance of such characteristics (Uga et al., 2013). Roots, however, are highly

diverse in the biology they perform and a multi-dimensional understanding of root systems, which

incorporates differences in signaling, metabolism, and microbial association as well as structure, may

provide a clearer understanding of the degree to which sub-functionalization of the root system plays

a role in important processes such as acclimation and efficient resource acquisition.

Figure 7. Relationship between local soil moisture content and root growth direction. Data quantified from the

time-lapse series are shown in Video 2. Density plots shown at periphery of graph for root direction (x-axis) and soil

moisture (y-axis). 0˚ is the direction of the gravity vector. Data represent 2535 root tips measured in a series

encompassing 10 time points.

DOI: 10.7554/eLife.07597.049

The following source data is available for figure 7:

Source data 1. Individual root segment traits of plants growing under WW and WD conditions.

DOI: 10.7554/eLife.07597.050
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Figure 8. Roots of Brachypodium distachyon transformed with ProZmUB1:LUC2o and imaged at 15 (A) and 24

(B) DAS grown in control conditions. (C) Open channel of 17 DAS tomato plant transformed with ProeDR5rev:LUC2o

and Pro35S:PPyRE8o. (D) Green channel showing only ProeDR5rev:LUC2o. (E) Amplification of the open and green

channel showing increased expression of ProeDR5rev:LUC2o reporter in early-stage lateral roots.

DOI: 10.7554/eLife.07597.051

The following source data and figure supplement are available for figure 8:

Source data 1. Depth of Brachypodium primary roots grown in petri plates and rhizotrons.

DOI: 10.7554/eLife.07597.052

Figure supplement 1. Depth of the primary root of Brachypodium plants grown in rhizotrons or on gel-based media

(n = 8–11).

DOI: 10.7554/eLife.07597.053
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We have developed tools in GLO-Roots that allow for tracking multiple aspects of soil

physicochemical properties and root biology simultaneously. Using GLO-Roots, we are able to

map in 2D coordinates the soil physical properties such as soil moisture together with root

architecture traits such as directionality, growth rates, and gene expression levels. All this

information is aggregated in layers for each x, y coordinate. Using GLO-RIA, we integrate this

multilayer information, leveraging our ability to simultaneously and seamlessly investigate root

responses to environmental stimuli such as soil-moisture content. Luciferases that emit light at

different wavelengths allow for constitutive and regulated promoters to be studied together.

Introduction of luciferase reporters into microbes provides an additional layer of information that

is a readout of the association between organisms and how this might be affected by

environmental conditions. The flexibility of the GLO-Roots system may enable additional

dimensionality to our understanding of root biology. Other physical properties such as CO2 or

pH mapping in rhizotrons have already been enabled by using planar optodes (Blossfeld et al.,

2013). It may be possible to engineer LUX-based reporters in microbes that are responsive to

extracellular metabolites, creating microbial biosensors, and integration of such tools may enable

root-exudation and nutrition to be analyzed in soil. Split-luciferase reporters have been

engineered that allow bi-molecular interactions to be studied. Finally, molecular sensors

analogous to Förster resonance energy transfer (FRET) sensors, termed bioluminescence

resonance energy transfer (BRET)-sensors (Shaw and Ehrhardt, 2013), may allow metabolite

tracking dynamically through the root system. With additional innovation in the development of

luciferase reporters, the GLO-Roots system will likely expand the repertoire of biological

processes that can be studied over an expanded range of developmental time points and

environmental conditions.

Enhanced root growth and gravitropism may constitute an avoidance
mechanism used during water-deficit stress
It has been proposed that plants with steep root systems will be better able to tap into deep water

resources and thus perform better under water deficit. For example in rice, the IR64 paddy cultivar

shows shallow root systems in upland fields, whereas Kinandang Patong, an upland cultivar, is deeper

rooting (Uga et al., 2013). Plants maintain a number of regulatory pathways that mediate changes in

physiology during WD. Enhanced growth of root systems has been well characterized in field-grown

plants; however, this has not been recapitulated in studies of gel-grown Arabidopsis plants. Thus, it has

been unclear whether Arabidopsis simply responds to WD differently. Our results here show that

Arabidopsis does indeed maintain a classical WD response that expands the root system and directs

growth downward. Interestingly, under our stress regime, we did not observe a significant decrease in

the relative water content of shoot tissues (Figure 6—figure supplement 5, Figure 6—source data 5),

suggesting that the changes in root architecture were sufficient to provide access to deep water and

prevent dehydration. Such changes in root growth are likely regulated through systemic and local

signaling that involve auxin signaling but acts independently of known pathways that control moisture-

directed root growth.

Perspectives and conclusions
Understanding plant biology requires a sophisticated understanding of how environmental stimuli

affect the form and function of plants as well as an understanding of how physiological context

informs such responses. Environmental conditions are at least as complex as the plants they affect.

Plant roots are exposed to a variety of environmental signals that change in time and space at very

different scales that are integrated at the whole-plant system. It is an important challenge in biology

to develop methods of growing and studying plants that present such stimuli in a manner that the

plant is likely to encounter in nature. After all, the plants we study have evolved to survive through

mechanisms that have been selected, over evolutionary time, in nature. It will be interesting for future

studies to determine how other environmental stimuli affect root growth using GLO-Roots and

whether these responses differ between accessions of Arabidopsis. Identification of the genetic loci

responsible for phenotypic variation in adult root phenotypes may identify the molecular basis for

adaptive variation that exists in this species and potentially identify loci that are useful for breeding

efforts needed for the next green revolution.
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Materials and methods

Growth system

Rhizotrons and growth system fabrication
Rhizotrons are composed of two sheets of 1/8′′ abrasion resistant polycarbonate plastic (Makrolon AR

(R)) cut to size using a water jet (AquaJet LLC, Salem, OR), two acrylic spacers cut using a laser

(Stanford Product Realization Lab), two rubber U-channels cut to strips 30-cm long (McMaster Carr

Elmhurst, IL, part # 8507K33), and two sheets of black 0.030′′-thick polypropylene sheets (McMaster

Carr part # 1451T21) cut with a straight-edge razor blade. Rhizotron designs were drafted in Adobe

Illustrator (Adobe, San José, CA). The blueprints of all the parts are provided in Supplementary file 1.

The top edge of each polycarbonate sheet was painted with black 270 Stiletto nail polish (Revlon,

New York, NY).

Boxes and holders
Rhizotrons are held vertical during plant growth in a custom rack system composed of two sheets of

1/4′′ black acrylic plastic cut with slots for eleven rhizotrons using a laser, four 3/8′′-poly(vinyl chloride)
(PVC) rods (McMaster Carr part # 98,871a041) secured with PVC nuts (McMaster Carr part #

94,806a031) to hold the acrylic sheets horizontal. The rack is placed inside a 12′′ × 12′′ × 12′′ black
polyethylene tank (Plastic Mart part # R121212A).

Rhizotron preparation
The procedure to construct a rhizotron with soil is as follows: two pieces of polycarbonate plastic

are laid flat on a table with the spacers inserted. Using an electric paint gun, a fine mist of water

is applied to the bare polycarbonate sheets. Then, using a 2-mm sieve (US Standard Sieve Series

N˚ 10) a fine layer of PRO-MIX(r) PGX soil (Premier Tech, Canada) is applied. Excess soil is

discarded by gently tapping the plastic against the table in a vertical position. Water is sprayed

again onto the soil, then a second layer of Pro-MIX is applied as before. For P deficiency

experiments, soil supplemented with 1 ml of 100 μM P-Alumina (control) and 0-P-Alumina

(P deficient) was used. To prevent the soil from falling out of the bottom opening, a 3 × 6 cm

piece of nylon mesh or paper towel is rolled into a 1-cm wide tube and placed at the bottom side

of the rhizotron. The spacers are removed and replaced by clean spacers. The two faces of the

rhizotron are carefully joined together and two rubber U-channels slipped on to clamp all pieces

together. Assembled rhizotrons are placed into the rack inside the box and 500 ml of water is

added to the box.

Plant growth
Arabidopsis thaliana seeds were stratified for 2 day at 4˚C in Eppendorf tubes with distilled water.

Seeds were suspended in 0.1% agar and 5 to 10 were sown using a transfer pipette in the rhizotron.

A transparent acrylic sheet was mounted on top of the box and sealed with tape to ensure high

humidity conditions that enable Arabidopsis germination. 3 days after sowing, the cover was unsealed

to decrease humidity and allow the seedlings to acclimate to a dryer environment. From 3 days after

sowing (DAS) to the time the first true leaves emerged, it was critical to ensure that the top part of the

rhizotron remained humid for proper germination of the plants. Between three and five DAS, the

rhizotrons were thinned leaving only the number plants required for that experiment, typically one,

except for experiments examining root–root interactions. Unless otherwise stated, all the experiments

presented here, treatments were started 10 DAS. Plants were grown under long-day conditions (16-hr

light/8-hr dark) using 20–22˚C (day/night) and 150 μE m−1 s−1. Two types of growth environments were

used for experiments: a walk-in growth chamber with fluorescent lightning and a growth cabinet with

white LED lights. Relative water content measurements were done as previously described (Barr and

Weatherley, 1962). Tomato seeds were germinated on filter paper and placed in rhizotrons. Peters

fertilizer was added to tomato plants during normal watering.

qRT-PCR analysis
Seeds were surface sterilized as described before (Duan et al., 2013) and grown in rhizotrons, 100 cm3 pots,

or on two types of 1% agar (Difco, Becton, Dickinson and Company, Franklin Lakes, NJ) media containing

either 1× MS nutrients (Caisson Labs, Smithfield, UT) and 1% Sucrose, (termed ms media) or ¼× MS
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nutrients only (termed ms25 media). Both media were buffered using 0.5 g/l MES and pH was adjusted to

5.7 with KOH. All plants were grown together in a growth cabinet with LED lights under long-day conditions

(16-hr day/8-hr night). Root and shoot tissue was collected separately from individual plants at the end of the

day (1 hr before the lights shut off) and at the end of the night (1 hr before lights came on). Three biological

replicates were collected for each condition. RNA was extracted using the Plant RNA MiniPrepTM kit

(ZYMO Research, Irvine, CA) according to manufacturer’s instructions with on-column DNase treatment

(Qiagen). cDNA was made using the iScript Advanced cDNA Synthesis for RT-qPCR kit (Bio-Rad) from

200 ng of total RNA. qRT-PCR was performed using a Fluidigm BioMarkTM 96.96 Dynamic Array IFC with

the EvaGreen (Bio-Rad) fluorescence probe according to the Fluidigm Advanced Development Protocol

number 37. For the analysis, all the reactions with no amplification (Ct = 999) were set to the maximal Ct for

that assay type. The two technical replicates were then averaged and dCt values calculated using

AT3G07480, AT4G37830, At1g13320, and At1g13440 as reference internal controls. PCA plots were

generated with Devium Web (Dmitry Grapov, 2014) using dCt values. dCT values were calculated as dCT

= CT∼gene interest∼ − mean(CT∼reference gene∼). Primers used are listed in Supplementary file 2.

Biological components

Codon optimization of luciferases
The following luciferases that emit light at different wavelengths were codon optimized for

Arabidopsis (Genscript, Piscataway, NJ): LUC2: a yellow improved version (Promega, Madison, WI) of

the original Photinus pyralis (firefly) LUC.

c PpyRE8: a red variant (Branchini et al., 2010) of the P. pyralis thermostable variant Ppy RE-TS
(Branchini et al., 2007).

c CBG99: a green variant (Promega, Madison, WI) from yellow click beetle (Pyrophorus
plagiophthalamus) luciferases.

c CBR: a red variant (Promega, Madison, WI) from yellow click beetle.

Non-optimized luciferases
We also used the following non-optimized luciferases:

c nanoLUC: a blue luciferase isolated from a deep sea shrimp (Hall et al., 2012).
c venusLUC2: a venus-LUC2 fusion reported to show higher luminescence output than LUC2
(Hara-Miyauchi et al., 2012).

c A transposon containing the bacterial luciferase-containing LUX operon was integrated into the
P. fluorescens CH267 (Haney et al., 2015) genome by conjugation with Escherichia coli SM10pir
containing pUT-EM7-LUX (Lane et al., 2007) and used to track root microbe colonization. For
inoculation, 9 DAS plants were inoculated with 2 ml of an overnight bacterial culture resuspended in
10 mM MgSO4 and diluted to 0.01 OD.

Generation of single-reporter transgenic plants
We generated transcriptional fusions of all luciferases to constitutive promoters to examine the

activity level and emission spectrum of each isoform. The attL1-attL2 entry clones containing

plant–codon-optimized coding sequence of LUC2, PpyRe8, CBG99, and CBR were synthesized by

Genscript. A DNA fragment including the UBQ10 promoter region and first intron was amplified from

Col–0 genomic DNA with primers incorporating the attB1, attB4 combination sites at the 5′ and 3′,
respectively. The PCR product was then introduced into pDONR P4-P1R (Invitrogen, Grand Island,

NY) through a classic Gateway BP-reaction. The resulting plasmid, the attL1-attL2 entry clones with

luciferase sequences, an empty attR2-attL3* entry clone and the destination vector dpGreenmCherry

(Duan et al., 2013) were used to construct ProUBQ10:LUC2o, ProUBQ10:PpyRE8o, ProUBQ10:

CBG99o, and ProUBQ10:CBRo through Gateway LR reactions. The destination vector dpGreenm-

Cherry contains a plasma membrane-localized mCherry coding sequence driven by the 35S promoter

and is used as a selectable marker of transformation at the mature seed stage (Duan et al., 2013). We

used Golden Gate cloning and the destination vectors that we had generated before (Emami et al.,

2013) for the following fusions: ProUBQ10:nanoLUC2, ProUBQ10:venusLUC, ProACT2:PpyRE8o.

Briefly, the different components of each construct were PCR amplified with complementary BsaI or

SapI cutting sites, mixed with the destination vector in a single tube, digested with either BsaI or SapI,

ligated with T4 DNA ligase, then transformed into E. coli Top10 cells and plated on LB antibiotic
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plates containing X-gal as previously described (Emami et al., 2013). Junction sites were confirmed by

sequencing. We used pSE7 (Addgene ID #: pGoldenGate-SE7: 47676) as the destination vector of the

ProUBQ10:nanoLUC2, ProUBQ10:venusLUC constructs and pMYC2 (Addgene ID #: pGoldenGate-

MCY2: 47679) as the destination vector for ProACT2:PpyRE8o. Maps of all the vectors can be found in

Supplementary file 3. ProUBQ10:LUC2o was transformed into Col-0, Bay, and Sha accessions, the

tir1-1 (Ruegger et al, 1998) mutant and the miz1 (Moriwaki et al., 2011) T-DNA insertion line

(SALK_126928).

B. distachyon
The Arabidopsis plant–codon-optimized Luciferase gene, LUC2o, was inserted into the monocot

vector pANIC10 via Gateway cloning (Mann et al., 2012). B. distachyon plants were transformed

using the method of Vogel and Hill (Vogel and Hill, 2008).

Tomato
The transcriptional fusion ProeDR5:LUC2was generated by cloning the ProeDR5:LUC2DNA fragment into

the pBIB expression vector via restriction sites SalI and Acc65I. The eDR5 promoter is an enhanced version

of DR5 containing 13 repeats of the 11-nucleotide core DR5 element (Covington and Harmer, 2007) and

the pBIB expression vector contains an NPTII resistance gene under the control of the NOS promoter for

use as a selectable marker during transformation into cultivar M82, accession LA3475. All tomato

transformations were performed by the Ralph M. Parsons Foundation Plant Transformation Facility

(University of California, Davis).

Generation of dual-reporter plants
To generate dual-reporter plants expressing luciferase isoforms that emit light with divergent

emission spectra, we used ProACT2:PpyRE8o as the root structural marker and ProZAT12:LUC (Miller

et al., 2009) and ProDR5:LUC+ (Moreno-Risueno et al., 2010) lines that were transformed with the

ProACT2:PpyRE8o construct. All constructs were transformed using a modified floral dip method

as described in Duan et al. (2013).

To make the dual color tomato plants, the Pro35S:PpyRE8o transcriptional fusion was

generated by putting the plant–codon-optimized coding sequence described above into the

pMDC32 expression vector through a Gateway LR reaction. The pMDC32 vector contains

a hygromycin resistance gene under the control of the 35S promoter for use as a selectable

marker during transformation. This construct was transformed into the transgenic ProeDR5:

LUC2 tomato line.

In vivo emission spectra of plants constitutively expressing luciferase
isoforms
To generate in vivo emission spectra of all constitutively expressed luciferases, seeds were

sterilized and sown on MS plates as described before (Duan et al., 2013). After 8 days, seedlings

were treated with a 100 μM luciferin solution, incubated at room temperature for 3 hr, and imaged

using an IVIS Spectrum imaging system (Perkin Elmer, Waltham, MA) using 20-nm band-pass

emission filters at the following wavelengths (in nm: 490–510, 510–530, 530–550, 550–570,

570–590, 590–610, 610–630, 630–650, 650–670, 670–690, 690–710). Raw images were analyzed

using Fiji and in vivo emission spectra were constructed. The full emission spectra of LUX and

nanoLUC could not be constructed since the maximum of these two luciferases is below the lower

band-pass filter that was available.

Imaging system
We designed a custom-imaging system (GLO1) optimized for imaging dual-reporter luciferase

expression in our custom rhizotrons. The design was a joint effort with Bioimaging Solutions (San Diego,

CA), which also built the system and wrote the acquisition software that drives all the mechanical parts of

the system. The system is composed by two 2048 × 2048 PIXIS-XB cameras (Princeton Instruments,

Trenton, NJ) mounted on top of each other to capture two fields of view encompassing approximately

two 15 × 15-cm areas corresponding to the top or bottom of the rhizotron. The cameras are fitted with

a Carl-Zeiss macro lens. A filter wheel with space for four, 76.2-mm filters is positioned in front of the

cameras and controlled by a stepper motor allowing for automated changing of the filter wheel position.

We used two 542/50 and 450/70 custom cut Brightline(R) band-pass filters (Semrock, Rochester, NY). In

single color imaging mode, the filter wheel is operated without filters. Positioned in front of the filter
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wheel is a removable rhizotron holder mounted on a stepper motor. This stepper motor is also

controlled by the GLO-1 software allowing automatic acquisition of images from both sides of the

rhizotron sequentially. The whole-imaging system is enclosed in a light-tight black box with a door

that allows loading and un-loading of rhizotrons.

Plant imaging
Around 50 ml of 300 μM D-luciferin (Biosynth, Itasca, IL) was added to soil at the top of the rhizotron.

In general, 5-min exposures were taken per rhizotron, per side, per channel. For daily imaging

experiments, plants were imaged at dawn (±1 hr) to reduce possible effects on diurnal rhythms of

keeping plants in the dark during imaging. Shoot images were taken using a Nikon D3100 camera.

Image preparation
Four individual images are collected: top front, bottom front, top back, and bottom back. Using an

automated ImageJ macro, a composite image is generated as follows: (1) to correct for differences in

background values between the two cameras, the mean background value of each image is

subtracted from 200; (2) images are rotated and translated to control for small misalignments

between the two cameras; (3) the top and bottom images of each side are merged; (4) the back image

is flipped horizontally; (5) the front and back images are combined using the maximum values. When

dual color images are acquired, this operation is repeated for each channel. The final images

produced are 16-bit in depth and 4096 × 2048 pixels. The scale of the images is 138.6 pixels per cm.

Considering that an Arabidopsis root tip is 100 μm, this results in 1.39 pixels across an Arabidopsis

root.

GLO-RIA ImageJ plug-in
GLO-RIA uses a combination of existing tools to extract relevant root architecture features.

Directionality is acquired using the directionality plugin from ImageJ (http://fiji.sc/Directionality).

After the number of direction bins (we usually use bins of 2˚) is defined by the user, a 5 × 5 Sobel

operator is used to derive the local gradient orientation. This orientation is then used to build

a distribution of directions by assigning the square of the orientation into the appropriate bin. Instead

of representing the total counts at each orientation, a relative value is calculated by dividing

the individual values at each bin by the total sum of the histogram (and multiplying by 100).

Similar algorithms have been used to quantify dynamic changes in the plant cytoskeleton (Lindeboom

et al., 2013).

The elliptic Fourier descriptors are aquired using the Fourier Shape Analysis plugin (http://

imagejdocu.tudor.lu/doku.php?id=plugin:analysis:fourier_shape_analysis:start) on the convex hull

shape of the root system. Elliptic Fourier descriptors have been used in numerous studies to analyze

variations in shapes, notably in leaves (e.g., Chitwood et al., 2014, Iwata and Ukai, 2002).

The shape analysis is inspired by RootScape (Ristova et al., 2013). Due to the absence of

fixed, recognizable structures in root system (that are required for the position of true

landmarks), pseudo-landmarks are automatically extracted from the root systems. Shortly, the

image is divided vertically at equidistant positions (with the number defined by the user) and for

each of the image stripes, the minimum and maximum × coordinates are computed. The shape

analysis is therefore able to discriminate root system with different vertical root distributions or

global root system orientation (e.g., chemotropism). The code source for the plugin, manual, and

sample images can be found in the GitHub repository of the project (https://github.com/rr-lab/

GLO-Roots/tree/master/gloria).

Statistical analysis was performed in R Developement Core Team (2014). The tidyr

(Wickham, 2014), dplyr (Wickham, 2014), gridExtra (Auguie, 2012), shapes (Dryden, 2013),

geomorph (Adams and Otarola-Castillo, 2013), ggplot2 (Wickham, 2009), and cowplot (Wilke,

2015) packages were used for data preparation, analysis, and plotting. Final figure preparation

was done in Inkscape (https://inkscape.org/en/).

Data availability
All the scripts and original data used to analyze and produce the images can be accessed in the

GitHub repository of the project: github.com/rr-lab/GLO-Roots. Raw files of all the images used in the

paper are available in Dryad (Rellán-Álvarez et al., 2015), http://dx.doi.org/10.5061/dryad.7tk51

(Rellán-Álvarez et al., 2015).
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