
All-to-All Communication on
the Connection Machine CM-200

The Harvard community has made this
article openly available. Please share how
this access benefits you. Your story matters

Citation Mathur, Kapil K. and S. Lennart Johnsson. All-to-All Communication
on the Connection Machine CM-200. Harvard Computer Science
Group Technical Report TR-02-93.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:23518805

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/154869416?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=All-to-All%20Communication%20on%20the%20Connection%20Machine%20CM-200&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23518805
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

All{to{All Communication on the

Connection Machine CM-200

Kapil K. Mathur

S. Lennart Johnsson

TR-02-93

January 1993

Parallel Computing Research Group

Center for Research in Computing Technology

Harvard University

Cambridge, Massachusetts

This work has in part been supported by the Air Force O�ce of Scienti�c Research under

contract AFOSR-89-0382, and in part by NSF and DARPA under contract CCR-8908285.

All{to{All Communication

on the Connection Machine CM{200

Kapil K. Mathur and S. Lennart Johnsson

1

Thinking Machines Corp.

245 First Street

Cambridge, MA 02142

Mathur@think.com, Johnsson@think.com

Abstract

Detailed algorithms for all{to{all broadcast and reduction are given for arrays mapped

by binary or binary{reected Gray code encoding to the processing nodes of binary cube

networks. Algorithms are also given for the local computation of the array indices for

the communicated data, thereby reducing the demand for communications bandwidth.

For the Connection Machine system CM{200, Hamiltonian cycle based all{to{all com-

munication algorithms yield a performance that is a factor of two to ten higher than the

performance o�ered by algorithms based on trees, buttery networks, or the Connection

Machine router. The peak data rate achieved for all{to{all broadcast on a 2048 node

Connection Machine system CM{200 is 5.4 Gbytes/sec when no reordering is required. If

the time for data reordering is included, then the e�ective peak data rate is reduced to

2.5 Gbytes/sec.

1 Introduction

We consider two forms of all{to{all communication in multiprocessor, distributed memory

architectures. In all{to{all broadcast, each processing node broadcasts its content to every

other node in the system. In all{to{all reduction, reduction operations are performed

concurrently on di�erent data sets, each distributed over all nodes such that the results

of the di�erent reductions are evenly distributed over all nodes. We present algorithms

for all{to{all broadcast and reduction based on single and multiple Hamiltonian cycles

in binary d-cubes. We compare the performance of implementations of the Hamiltonian

cycles based algorithms with the performance of all{to{all communication based on edge{

disjoint, multiple spanning trees of minimum height, and the performance of buttery

network based algorithms.

All{to{all broadcast and reduction on distributed memory architectures are fundamental

operations in several important linear algebra computations, such as matrix{vector and

1

Also a�liated with the Division of Applied Sciences, Harvard University

1

P0 P1 P2 P3

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

Before reduction

P0 P1 P2 P3

0 2 4 6

1 3 5 7

After reduction

Figure 1: All{to{all reduction on a four node system.

vector{matrix multiplication, rank{1 updates, and matrix{matrix multiplication. All{to{

all broadcast is also critical for the performance of so called direct N{body algorithms,

where the evaluation of the pairwise interactions between all particles form the computa-

tional kernel.

An all{to{all broadcast can be accomplished by each node sending its data to a dedicated

node, either one source node at a time, or all at once, followed by a broadcast of the data

from the dedicated node to all other nodes. All{to{all communication can also be realized

by shifting data along a Hamiltonian cycle (ring of all nodes). For high degree networks,

like binary cubes, this idea can be extended to the use of multiple Hamiltonian cycles that

balance the communication load and maximize the bandwidth utilization [1, 14]. All{to{

all reduction is, in e�ect, the reverse operation of a broadcast, where combiners such as

+, max, or min replace the copy operation. Figure 1 shows a simple example of all{to{all

reduction. The left part of the �gure shows the initial data distribution. Components with

the same index are added together. The result consists of eight components distributed

evenly across all nodes in a consecutive (block) [11] manner. All nodes contain initial as

well as �nal data.

In Section 2, we discuss the use of all{to{all broadcast and reduction in some matrix

computations. Section 3 presents the relevant aspects of the Connection Machine system

CM{200. Section 4 discusses in detail all{to{all communication based on Hamiltonian

cycles for binary cubes. Section 5 discusses all{to{all communication based on spanning

tree based algorithms and compares the expected performance of the di�erent approaches.

Section 6 gives actual performance data for all{to{all communication on the Connection

Machine system CM{200.

2 Applications of all{to{all communication

An e�cient implementation of all{to{all broadcast is of great importance for the per-

formance of classical, direct N{body algorithms, in which every particle interacts with

2

P3

P2

P1

P0

Y3

Y2

Y1

Y0

X3

X2

X1

X0

X0

X0

X0

X0

X1

X1

X1

X1

X2

X2

X2

X2

X3

X3

X3

X3

= � =)

A X

Figure 2: All{to{all broadcast for matrix{vector multiplication.

every other particle. In a distributed memory architecture, each processing node must

communicate the information about the particles it stores in its memory to all other

nodes. All{to{all communication is also required in iterative solvers for the �nite element

method [16] and in neural network simulations [24]. In both of these cases, the source of

the all{to{all communication requirement is matrix{vector multiplication.

In the case of the direct N{body algorithms for gravitational calculations, the identity of

the particles is not of interest. The coordinate and mass of each particle su�ce, i.e., the

array values su�ce (with the particle coordinates stored in separate arrays). For matrix

operations, the indices of array elements are not stored explicitly but are required for

correct computations. In Section 4, we show how the indices of the array elements can

be computed locally, thus reducing the need for communications bandwidth. Below, we

illustrate the use of all{to{all communication in matrix computations.

The required data motion for matrix{vector and vector{matrix multiplication and for

rank{1 updates (outer products) depends upon the data allocation. As an example,

consider matrix{vector multiplication, y Ax, with the matrix allocated to a one{

dimensional nodal array with partitioning by rows and with the input and output vectors

distributed evenly over all nodes, as shown in Figure 2. An all{to{all broadcast of the

input vector is required in order to carry out the matrix{vector product. No communica-

tion is required for the result vector. The matrix{vector multiplication can be expressed

as:

All{to{all broadcast of the input vector

Local matrix-vector multiplication.

If, instead, the matrix is allocated to a one{dimensional nodal array with partitioning by

columns, as shown in Figure 3, and the input and output vectors are distributed evenly

over the processing nodes, then no communication is required for the input vector, but

an all{to{all reduction is required for the result vector. The matrix{vector multiplication

can be expressed as:

Local matrix{vector multiplication

All{to{all reduction for the output vector.

With the processing nodes con�gured as a two{dimensional nodal array for the matrix,

but as a one{dimensional nodal array for the vectors, both all{to{all broadcast and all{to{

all reduction are required in evaluating the matrix vector product. Figure 4 illustrates the

3

P0 P1 P2 P3

X3

X2

X1

X0

P3

P2

P1

P0 Y0 Y0 Y0 Y0

Y1 Y1 Y1 Y1

Y2 Y2 Y2 Y2

Y3 Y3 Y3 Y3

P0 P1 P2 P3

Y3

Y2

Y1

Y0

P3

P2

P1

P0

� =) =)

A X Y

Figure 3: All{to{all reduction for matrix{vector multiplication.

Column Major

y yx xA A

7

6

5

4

3

2

1

0

=

1

0

3

2

5

4

7

6

�

7

6

5

4

3

2

1

0

Row Major

7

6

5

4

3

2

1

0

=

4

0

5

1

6

2

7

3

�

7

6

5

4

3

2

1

0

Figure 4: Data allocation on a rectangular nodal array.

data allocation for both row major and column major ordering of the matrix allocation.

The data allocation shown in Figure 4 is typical on Connection Machine systems, as

explained in Section 3.

For a matrix of shape P �Q allocated to a two{dimensional nodal array in column major

ordering, an all{to{all broadcast [8, 14, 19, 20] is required within the columns of the nodes

for any shape of the nodal array and for any length of the matrix Q{axis.

After the all{to{all broadcast, each node performs a local matrix{vector multiplication.

After this operation, each node contains a segment of the result vector y. The nodes

in a row contain partial contributions to the same segment of y, while di�erent rows of

nodes contain contributions to di�erent segments of y. No communication between rows

of nodes is required for the computation of y. Communication within the rows of the

nodes su�ces.

The di�erent segments of y can be computed by all{to{all reduction within processor rows,

resulting in a row major ordering of y. But, the node labeling is in column major ordering,

and a reordering from row to column major ordering is required in order to establish the

4

�nal allocation of y. Thus, for a column major ordering of the matrix elements to the

nodes, matrix{vector multiplication can be expressed as:

All{to{all broadcast of the input vector within columns of nodes

Local matrix{vector multiplication

All{to{all reduction within rows of nodes to accumulate

partial contributions to the result vector

Reordering of the result vector from row major to column major order.

The reordering from row major ordering to column major ordering is equivalent to a

shu�e, or matrix transposition.

If the elements of the matrix A had been allocated in row major order instead of column

major order, then a reordering from row major order to column major order must be

performed prior to the all{to{all broadcast of the input vector. No reordering is required

for y. Thus, for a row major ordering of matrix elements to nodes, the sequence of

operations are:

Reordering of the input vector from row major to column major order

All{to{all broadcast of the input vector within columns of nodes

Local matrix{vector multiplication

All{to{all reduction within rows of nodes to accumulate

partial contributions to the result vector.

With the matrix uniformly distributed across all nodes, the arithmetic is load{balanced

for both row major and column major order. The all{to{all broadcasts and all{to{all

reductions are performedwithin the columns of the nodes and within the rows of the nodes,

respectively. The di�erent broadcast operations and the di�erent reduction operations are

completely independent of each other.

The communication requirements for vector{matrix multiplication is very similar to those

for matrix{vector multiplication. For outer products, yx

T

, where y and x are column

vectors, the communication issues for x are the same as in matrix{vector multiplication.

For y, the communication issues are the same as for the input vector in vector{matrix

multiplication. All{to{all broadcast and all{to{all reduction are also required in matrix{

matrix multiplication [2, 6, 13, 17].

3 The Connection Machine system CM{200

The Connection Machine system CM{200 [21] has up to 2048 nodes each consisting of

a oating-point processor, 4 Mbytes of local memory, and communication circuitry. The

nodes are interconnected via a binary d-cube network, with a pair of bidirectional channels

between adjacent nodes. In a binary cube network, each node has a neighbor for each

bit in its binary address. The number of nodes is N = 2

d

. There exist d edge{disjoint

paths between each pair of nodes. Using multiple paths between nodes for maximum

bandwidth utilization is the objective of the algorithms presented here. We then compare

the performance of these algorithms with a few alternative implementations.

5

Each node in a Connection Machine system CM{200 can communicate concurrently on

all its communication channels. The primitive communication operation is an exchange.

The memory accesses in a node for each communication step are serialized. Each node

supports one 4{byte wide access at a time to its local memory. The clock frequency is 10

MHz.

The programming model used for the Connection Machine systems uses a global address

space, and each array is distributed as evenly as possible across all nodes. In a consecutive

data allocation [11], a number of successive data elements along each axes are allocated

to a node. For a one{dimensional data array of M elements allocated to N nodes, d

M

N

e

successive elements (a block) are assigned to the same node. In cyclic data allocation [11]

of a one{dimensional array, elements fjji = j mod N; 0 � j < Mg are allocated instead

to the same node. Cyclic data allocation is currently not supported on the Connection

Machine systems but is included in Fortran D [7], Vienna Fortran [5, 25], and the proposed

High Performance Fortran (HPF) standard. Cyclic allocation may yield improved load{

balance with respect to arithmetic [11] or with respect to communication [15, 23]. In

the case of multidimensional arrays, it is also necessary to determine how many elements

along the di�erent axes shall be allocated to the same processing node, or equivalently,

how the set of processing nodes shall be con�gured. The Connection Machine Run-Time

System determines the nodal array shape based on the data array shape, such that the

local subarrays have axes of lengths as equal as possible. We refer to such a layout as a

canonical layout. In the following, we assume consecutive, canonical layouts. Modifying

the derivations to cyclic allocation is straightforward.

Regular grids are subgraphs of binary d{cubes. A Gray code has the property that

successive integers di�er in the code by a single bit, which, with a suitable labeling of

the nodes in the binary cube, corresponds to the traversal of a single edge. Thus, Gray

codes can be used in preserving adjacency in data arrays when mapped to binary cube

networks. For multidimensional arrays, encoding each axis separately in a Gray code

preserves adjacency. But, such an embedding makes e�cient use of the processing nodes

only when the data array axes have lengths equal to powers of 2. For other axes' lengths,

adjacency cannot be preserved for a node e�cient mapping [3, 4, 10]. On the Connection

Machine system CM{200, the default mapping of data arrays is based upon a binary{

reected Gray code encoding [9, 11, 18] of the index along each axis separately. Only the

part of the index corresponding to the node address is encoded in a binary{reected Gray

code. Binary encoding is always used for local addresses.

A d{bit binary{reected Gray code,

^

G

d

is a sequence of 2

d

nonnegative numbers in the

range f0; 1; : : : ; 2

d

� 1g,

^

G

d

= (G

d

(0); G

d

(1); : : : ; G

d

(2

d

� 1)) de�ned recursively [18] by:

^

G

1

= (G

1

(0); G

1

(1));where G

1

(0) = 0; G

1

(1) = 1:

6

^

G

d+1

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0jjG

d

(0)

0jjG

d

(1)

.

.

.

0jjG

d

(2

d

� 2)

0jjG

d

(2

d

� 1)

1jjG

d

(2

d

� 1)

1jjG

d

(2

d

� 2)

.

.

.

1jjG

d

(1)

1jjG

d

(0)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

In the following, we refer to this binary{reected Gray code simply as Gray code. The

3-bit Gray code given in Table 1 clearly shows the recursive reections in the code. It is

also easily seen that the Gray code de�nes a Hamiltonian cycle.

Integer Gray code

0 000

1 001

2 011

3 010

4 110

5 111

6 101

7 100

Table 1: A binary{reected Gray code on 3-bits.

The sequence of bits that change in traversing the Gray code from beginning to end is

known as the transition sequence. In the example of eight integers, the transition sequence

is 0, 1, 0, 2, 0, 1, 0 and 2, with the least signi�cant bit being bit 0.

4 All{to{all algorithms using Hamiltonian cycles

4.1 A single Hamiltonian cycle

Figure 5 illustrates the idea of all{to{all broadcast using a single cycle, while Figure 6

shows all{to{all reduction. In the �gures, it is implicitly assumed that node addresses are

encoded in Gray code, such that all communications are nearest neighbor. By performing

the cyclic shifts in Figure 5 as left cyclic shifts, all elements arrive in order in node P0.

In this node, local memory address s contains array element s, 0 � s < N for N nodes.

The local memory reordering required for node j is s (s� j) mod N , i.e., a cyclic shift

on the local memory addresses.

7

Step P0 P1 P2 P3

0 X0 X1 X2 X3

1 X0 X1 X2 X3

X1 X2 X3 X0

X0 X1 X2 X3

2 X1 X2 X3 X0

X2 X3 X0 X1

X0 X1 X2 X3

3 X1 X2 X3 X0

X2 X3 X0 X1

X3 X0 X1 X2

Figure 5: All{to{all broadcast through cyclic rotation.

Step P0 P1 P2 P3

Y0 Y0 Y0 Y0

0 Y1 Y1 Y1 Y1

Y2 Y2 Y2 Y2

Y3 Y3 Y3 Y3

Y0 { Y0+Y0 Y0

1 Y1 Y1 { Y1+Y1

Y2+Y2 Y2 Y2 {

{ Y3+Y3 Y3 Y3

Y0 { { Y0+Y0+Y0

2 Y1+Y1+Y1 Y1 { {

{ Y2+Y2+Y2 Y2 {

{ Y3+Y3+Y3 Y3

Y0+Y0+Y0+Y0 { { {

3 { Y1+Y1+Y1+Y1 { {

{ { Y2+Y2+Y2+Y2 {

{ { Y3+Y3+Y3+Y3

Figure 6: All{to{all reduction through cyclic rotation.

8

Node

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

001 011 110 010 000 100 111 101

011 010 111 110 001 000 101 100

010 110 101 111 011 001 100 000

110 111 100 101 010 011 000 001

111 101 000 100 110 010 001 011

101 100 001 000 111 110 011 010

100 000 011 001 101 111 010 110

Figure 7: The index allocation resulting from 2

d

cyclic shifts along a Gray code path for

binary encoded node indices.

If the Gray code path is used for node addresses in binary order, then a local code

conversion is required after the cyclic rotation among nodes has been completed. Figure

7 illustrates this fact. The array index in local memory address s of node 0 is G(s). In

general, let PA be the node address in binary code. Then, local memory address s in

node PA contains the array element with index G((s+G

�1

(PA)) mod N). For instance,

consider PA = 101 and s = 1. The integer with Gray code 101 is 6. The Gray code of

1+6=7 is 100, which is the second entry in the column for node 5.

Note that if each element in the examples in Figures 5 and 7 represents a block of ele-

ments, then moving these blocks as indicated in the Figures results in a �nal distribution

consistent with a consecutive data allocation. Conversely, a block partitioning of the data

in each node prior to all{to{all reduction also yields a �nal data distribution consistent

with a consecutive allocation.

4.2 Multiple Hamiltonian cycles.

4.2.1 Broadcast

Johnsson and Ho [14] show that d Hamiltonian cycles fully exploit the communications

bandwidth in a binary d-cube for all{to{all broadcast and reduction. Figure 8 shows the

2

d

� 1 steps required to perform an all{to{all broadcast using d Hamiltonian cycles on

a binary d-cube. In Figure 8, node addresses are in binary order. Figure 9 shows an

all{to{all broadcast with node addresses in Gray code order. Initially, there are d distinct

elements in each node. After the broadcast, each node has a total of d2

d

elements. With

d channels per node, this operation requires at least 2

d

� 1 communications, since d

elements are already present in each node before the broadcast. The algorithm below

[14] requires precisely that many communications. Figures 10 and 11 show the all{to{all

broadcast when initially there are more than d distinct data elements on each node for

node addresses in binary and Gray code order. The �rst digit enumerates the elements

within a block of d elements, the second digit enumerates the block number, and the last

9

Step Mem P0 P1 P2 P3 P4 P5 P6 P7 Dim

Init. 0 00 01 02 03 04 05 06 07

1 10 11 12 13 14 15 16 17

2 20 21 22 23 24 25 26 27

0 01 00 03 02 05 04 07 06 0

0 1 12 13 10 11 16 17 14 15 1

2 24 25 26 27 20 21 22 23 2

0 03 02 01 00 07 06 05 04 1

1 1 16 17 14 15 12 13 10 11 2

2 25 24 27 26 21 20 23 22 0

0 02 03 00 01 06 07 04 05 0

2 1 14 15 16 17 10 11 12 13 1

2 21 20 23 22 25 24 27 26 2

0 06 07 04 05 02 03 00 01 2

3 1 15 14 17 16 11 10 13 12 0

2 23 22 21 20 27 26 25 24 1

0 07 06 05 04 03 02 01 00 0

4 1 17 16 15 14 13 12 11 10 1

2 27 26 25 24 23 22 21 20 2

0 05 04 07 06 01 00 03 02 1

5 1 13 12 11 10 17 16 15 14 2

2 26 27 24 25 22 23 20 21 0

0 04 05 06 07 00 01 02 03 0

6 1 11 10 13 12 15 14 17 16 1

2 22 23 20 21 26 27 24 25 2

Figure 8: All{to{all broadcast using d channels in a d-cube with nodes labeled in binary

order.

digit is the node number.

For the algorithm using d Hamiltonian cycles, each node exchanges d elements concur-

rently in each step. When there are M

0

> d elements in each node, the local memory

is viewed as d

M

0

d

e blocks, of d elements each. The local memory address s consists of a

block index, k (0 � k < d

M

0

d

e), and an address, i (0 � i < d), within the block. For

d = 3, the exchange sequence for location zero (i = 0) within a block is 0, 1, 0, 2, 0,

1, 0, i.e., the same as the transition sequence in Table 1. The exchange sequence for

location one is 1, 2, 1, 0, 1, 2, 1; for location two, it is 2, 0, 2, 1, 2, 0, 2. In general, if

t

0

; t

1

; : : : ; t

2

d

�2

is the exchange sequence for location zero, then the exchange sequence for

location i is (t

0

+ i) mod d; (t

1

+ i) mod d; (t

2

+ i) mod d; : : : ; (t

2

d

�2

+ i) mod d. Clearly,

no two exchanges use the same dimension in any step.

For node addresses in binary code order, it can be shown that upon completion, the index

in local memory address s = j �M

0

+ k � d + i is: PA � sh

i

(G(j)) �M

0

+ k � d + i, where

PA is the node address in binary code as before, and sh(�) is a left cyclic shift of the

bit string representing the argument, and 0 � j < 2

d

. For node addresses in Gray code

order, the index in memory location zero initially is G

�1

(PA). Upon completion of the

all{to{all broadcast, local memory address s = j �M

0

+ k � d+ i in node PA contains data

with index [G

�1

(PA)�G

�1

(sh

i

(G(j)))] �M

0

+ k � d+ i.

Note that the quantities sh

i

(G(j)) and G

�1

(sh

i

(G(j))) are identical for all nodes. Only

PA, the binary address, and G

�1

(PA), the Gray code address, are unique to each node.

10

Step Mem P0 P1 P2 P3 P4 P5 P6 P7 Dim

Init. 0 00 01 03 02 07 06 04 05

1 10 11 13 12 17 16 14 15

2 20 21 23 22 27 26 24 25

0 01 00 02 03 06 07 05 04 0

0 1 13 12 10 11 14 15 17 16 1

2 27 26 24 25 20 21 23 22 2

0 02 03 01 00 05 04 06 07 1

1 1 14 15 17 16 13 12 10 11 2

2 26 27 25 24 21 20 22 23 0

0 03 02 00 01 04 05 07 06 0

2 1 17 16 14 15 10 11 13 12 1

2 21 20 22 23 26 27 25 24 2

0 04 05 07 06 03 02 00 01 2

3 1 16 17 15 14 11 10 12 13 0

2 22 23 21 20 25 24 26 27 1

0 05 04 06 07 02 03 01 00 0

4 1 15 14 16 17 12 13 11 10 1

2 25 24 26 27 22 23 21 20 2

0 06 07 05 04 01 00 02 03 1

5 1 12 13 11 10 15 14 16 17 2

2 24 25 27 26 23 22 20 21 0

0 07 06 04 05 00 01 03 02 0

6 1 11 10 12 13 16 17 15 14 1

2 23 22 20 21 24 25 27 26 2

Figure 9: All{to{all broadcast using d channels in a d-cube with nodes labeled in Gray

code order.

Note further that the index order for i = 0 in the d cycles algorithm is the same as in the

single Hamiltonian cycle algorithm.

4.2.2 Reduction

The all{to{all broadcast algorithm, using d Hamiltonian cycles in a binary d-cube, can be

adapted to all{to{all reduction. With d �2

d

variables in each node initially, each node in a

2

d

cube accumulates d distributed variables. In each communication step, one exchange

is performed on all d channels in each node, as in the broadcast algorithm.

For the description of the reduction algorithm, we �rst consider the accumulation of a

single set of d distributed variables. Each of the d distributed variables has one element

per node. Each distributed variable is accumulated independently of the others, with the

d results accumulated to node zero. The reduction is illustrated in Figure 12. A �lled

circle denotes a partial sum being sent, + denotes a partial sum being received and added

to a local variable, and an un�lled circle denotes values already added into a partial sum.

Comparing Figure 12 with Figure 8, we notice that the data motion in Figure 12 is simply

the reversed data motion of the elements originally in node zero in Figure 8.

The example in Figure 12 is an all{to{one reduction. An all{to{all reduction is obtained

by considering an initial data set per node of d � 2

d

elements, instead of d elements. Each

block of d variables distributed across all nodes is accumulated to a single node, with

di�erent blocks of d distributed variables accumulated to di�erent nodes. Each block

11

Step Mem P0 P1 P2 P3 P4 P5 P6 P7 Dim

Init. 0 000 001 002 003 004 005 006 007

1 100 101 102 103 104 105 106 107

2 200 201 202 203 204 205 206 207

3 010 011 012 013 014 015 016 017

4 110 111 112 113 114 115 116 117

5 210 211 212 213 214 215 216 217

0 001 000 003 002 005 004 007 006 0

1 102 103 100 101 106 107 104 105 1

0 2 204 205 206 207 200 201 202 203 2

3 011 010 013 012 015 014 017 016 0

4 112 113 110 111 116 117 114 115 1

5 214 215 216 217 210 211 212 213 2

0 003 002 001 000 007 006 005 004 1

1 106 107 104 105 102 103 100 101 2

1 2 205 204 207 206 201 200 203 202 0

3 013 012 011 010 017 016 015 014 1

4 116 117 114 115 112 113 110 111 2

5 215 214 217 216 211 210 213 212 0

0 002 003 000 001 006 007 004 005 0

1 104 105 106 107 100 101 102 103 1

2 2 201 200 203 202 205 204 207 206 2

3 012 013 010 011 016 017 014 015 0

4 114 115 116 117 110 111 112 113 1

5 211 210 213 212 215 214 217 216 2

0 006 007 004 005 002 003 000 001 2

1 105 104 107 106 101 100 103 102 0

3 2 203 202 201 200 207 206 205 204 1

4 016 017 014 015 012 013 010 011 2

5 115 114 117 116 111 110 113 112 0

6 213 212 211 210 217 216 215 214 1

0 007 006 005 004 003 002 001 000 0

1 107 106 105 104 103 102 101 100 1

4 2 207 206 205 204 203 202 201 200 2

3 017 016 015 014 013 012 011 010 0

4 117 116 115 114 113 112 111 110 1

5 217 216 215 214 213 212 211 210 2

0 005 004 007 006 001 000 003 002 1

1 103 102 101 100 107 106 105 104 2

5 2 206 207 204 205 202 203 200 201 0

3 015 014 017 016 011 010 013 012 1

4 113 112 111 110 117 116 115 114 2

5 216 217 214 215 212 213 210 211 0

0 004 005 006 007 000 001 002 003 0

1 101 100 103 102 105 104 107 106 1

6 2 202 203 200 201 206 207 204 205 2

3 014 015 016 017 010 011 012 013 0

4 111 110 113 112 115 114 117 116 1

5 212 213 210 211 216 217 214 215 2

Figure 10: All{to{all broadcast using d channels in a d-cube with nodes labeled in binary

order when there are 2d distinct data elements on each node, initially.

12

Step Mem P0 P1 P2 P3 P4 P5 P6 P7 Dim

Init. 0 000 001 003 002 007 006 004 005

1 100 101 103 102 107 106 104 105

2 200 201 203 202 207 206 204 205

3 010 011 013 012 017 016 014 015

4 110 111 113 112 117 116 114 115

5 210 211 213 212 217 216 214 215

0 001 000 002 003 006 007 005 004 0

1 103 102 100 101 104 105 107 106 1

0 2 207 206 204 205 200 201 203 202 2

3 011 010 012 013 016 017 015 014 0

4 113 112 110 111 114 115 117 116 1

5 217 216 214 215 210 211 213 212 2

0 002 003 001 000 005 004 006 007 1

1 104 105 107 106 103 102 100 101 2

1 2 206 207 205 204 201 200 202 203 0

3 012 013 011 010 015 014 016 017 1

4 114 115 117 116 113 112 110 111 2

5 216 217 215 214 211 210 212 213 0

0 003 002 000 001 004 005 007 006 0

1 107 106 104 105 100 101 103 102 1

2 2 201 200 202 203 206 207 205 204 2

3 013 012 010 011 014 015 017 016 0

4 117 116 114 115 110 111 113 112 1

5 211 210 212 213 216 217 215 214 2

0 04 05 07 06 03 02 00 01 2

1 16 17 15 14 11 10 12 13 0

3 2 22 23 21 20 25 24 26 27 1

3 04 05 07 06 03 02 00 01 2

4 16 17 15 14 11 10 12 13 0

5 22 23 21 20 25 24 26 27 1

0 005 004 006 007 002 003 001 000 0

1 105 104 106 107 102 103 101 100 1

4 2 205 204 206 207 202 203 201 200 2

3 015 014 016 017 012 013 011 010 0

4 115 114 116 117 112 113 111 110 1

5 215 214 216 217 212 213 211 210 2

0 006 007 005 004 001 000 002 003 1

1 102 103 101 100 105 104 106 107 2

5 2 204 205 207 206 203 202 200 201 0

3 016 017 015 014 011 010 012 013 1

4 112 113 111 110 115 114 116 117 2

5 214 215 217 216 213 212 210 211 0

0 007 006 004 005 000 001 003 002 0

1 101 100 102 103 106 107 105 104 1

6 2 203 202 200 201 204 205 207 206 2

3 017 016 014 015 010 011 013 012 0

4 111 110 112 113 116 117 115 114 1

5 213 212 210 211 214 215 217 216 2

Figure 11: All{to{all broadcast using d channels in a d-cube with nodes labeled in Gray

code order when there are 2d distinct data elements per node, initially.

13

Step Mem P0 P1 P2 P3 P4 P5 P6 P7 Dim

0 t + 0

0 1 t + 1

2 t + 2

0 d t + 1

1 1 d t + 2

2 d t + 0

0 d d + t 0

2 1 d d + t 1

2 d + d t 2

0 + d d t d 2

3 1 d d + t d 0

2 + d t d d 1

0 t + d d d d 0

4 1 d d t d + d 1

2 t d d + d d 2

0 + d t d d d d 1

5 1 d + d d d t d 2

2 d d d + t d d 0

0 + t d d d d d d 0

6 1 + d t d d d d d 1

2 + d d d t d d d 2

Figure 12: All{to{all reduction performed on d distributed variables with all d results

resident in node zero upon completion. Local memory addresses and node addresses in

binary order.

is accumulated in a way similar to the single block of d distributed variables in an all{

to{one reduction. By performing an exclusive{or operation with node address j on all

node addresses used in communications for the block with destination node zero, the

destination of the result of the reduction for the block becomes node j instead of node

zero. The e�ect of the exclusive{or operation for each step is shown in Figures 13 through

19. In each step, each node exchanges one element on each of its channels, and performs

one addition for each of d distinct sums. The total number of sums computed in each

step is d � 2

d

.

The blocking used for the all{to{all reduction is identical to the blocking for all{to{all

broadcast. This blocking is consistent with a consecutive data allocation, i.e., d successive

sums are allocated to the same node upon completion. Furthermore, with both memory

addresses and node addresses in binary order, successive blocks have successive nodes in

binary code as their destinations. Thus, the local block index is the address of the node

where the �nal sums shall be allocated.

4.2.3 Data reordering

All addresses in binary code.

The data motion for block zero.

We �rst consider the data motion for block j = 0. The transition sequence for a binary{

reected Gray code is symmetric with respect to its midpoint. Thus, performing the

14

Mem P0 P1 P2 P3 P4 P5 P6 P7 Dim

0 t + 0

1 t + 1

2 t + 2

3 + t 0

4 t + 1

5 t + 2

6 t + 0

7 + t 1

8 t + 2

9 + t 0

10 + t 1

11 t + 2

12 t + 0

13 t + 1

14 + t 2

15 + t 0

16 t + 1

17 + t 2

18 t + 0

19 + t 1

20 + t 2

21 + t 0

22 + t 1

23 + t 2

Figure 13: All{to{all reduction step 0 on a 3-cube. Memory addresses and node addresses

in binary order.

Mem P0 P1 P2 P3 P4 P5 P6 P7 Dim

0 d t + 1

1 d t + 2

2 d t + 0

3 t d + 1

4 d t + 2

5 d + t 0

6 + d t 1

7 t d + 2

8 d t + 0

9 + t d 1

10 t d + 2

11 d + t 0

12 d t + 1

13 + d t 2

14 t + d 0

15 t d + 1

16 + d t 2

17 + t d 0

18 + d t 1

19 + t d 2

20 t + d 0

21 + t d 1

22 + t d 2

23 + t d 0

Figure 14: All{to{all reduction step 1 on a 3-cube. Memory addresses and node addresses

in binary order.

15

Mem P0 P1 P2 P3 P4 P5 P6 P7 Dim

0 d d + t 0

1 d d + t 1

2 d + d t 2

3 d d t + 0

4 d d + t 1

5 + d t d 2

6 + t d d 0

7 d d t + 1

8 d + d t 2

9 t + d d 0

10 d d t + 1

11 + d t d 2

12 d d + t 0

13 + t d d 1

14 d t d + 2

15 d d t + 0

16 + t d d 1

17 t d + d 2

18 + t d d 0

19 t + d d 1

20 d t d + 2

21 t + d d 0

22 t + d d 1

23 t d + d 2

Figure 15: All{to{all reduction step 2 on a 3-cube. Memory addresses and node addresses

in binary order.

Mem P0 P1 P2 P3 P4 P5 P6 P7 Dim

0 + d d t d 2

1 d d + t d 0

2 + d t d d 1

3 + d d d t 2

4 d d t + d 0

5 + t d d d 1

6 + t d d d 2

7 d d d + t 0

8 d t + d d 1

9 + d t d d 2

10 d d d t + 0

11 t d + d d 1

12 d d t d + 2

13 + t d d d 0

14 d d + d t 1

15 d d d t + 2

16 t + d d d 0

17 d d + t d 1

18 t d d d + 2

19 d + t d d 0

20 d d d t + 1

21 d t d d + 2

22 d t + d d 0

23 d d t d + 1

Figure 16: All{to{all reduction step 3 for a 3-cube. Memory addresses and node addresses

in binary order.

16

Mem P0 P1 P2 P3 P4 P5 P6 P7 Dim

0 t + d d d d 0

1 d d t d + d 1

2 t d d + d d 2

3 + t d d d d 0

4 d d d t d + 1

5 t d d + d d 2

6 t + d d d d 0

7 d d + d t d 1

8 d d t d d + 2

9 + t d d d d 0

10 d d d + d t 1

11 d d t d d + 2

12 d d d d t + 0

13 t d + d d d 1

14 + d d t d d 2

15 d d d d + t 0

16 d t d + d d 1

17 + d d t d d 2

18 d d d d t + 0

19 + d t d d d 1

20 d d + d d t 2

21 d d d d + t 0

22 d + d t d d 1

23 d d + d d t 2

Figure 17: All{to{all reduction step 4 on a 3-cube. Memory addresses and node addresses

in binary order.

Mem P0 P1 P2 P3 P4 P5 P6 P7 Dim

0 + d t d d d d 1

1 d + d d d t d 2

2 d d d + t d d 0

3 + t d d d d d 1

4 d d + d d d t 2

5 d d d t + d d 0

6 d t + d d d d 1

7 + d d t d d d 2

8 d d d d d + t 0

9 t d + d d d d 1

10 d + d d t d d 2

11 d d d d d t + 0

12 d d d d + d t 1

13 d d t d d + d 2

14 + t d d d d d 0

15 d d d d + t d 1

16 d d d t d d + 2

17 t + d d d d d 0

18 d d d d d t + 1

19 t d d d + d d 2

20 d d + t d d d 0

21 d d d d t d + 1

22 d t d d d + d 2

23 d d t + d d d 0

Figure 18: All{to{all reduction step 5 on a 3-cube. Memory addresses and node addresses

in binary order.

17

Mem P0 P1 P2 P3 P4 P5 P6 P7 Dim

0 + t d d d d d d 0

1 + d t d d d d d 1

2 + d d d t d d d 2

3 t + d d d d d d 0

4 d + d t d d d d 1

5 d + d d d t d d 2

6 d d + t d d d d 0

7 t d + d d d d d 1

8 d d + d d d t d 2

9 d d t + d d d d 0

10 d t d + d d d d 1

11 d d d + d d d t 2

12 d d d d + t d d 0

13 d d d d + d t d 1

14 t d d d + d d d 2

15 d d d d t + d d 0

16 d d d d d + d t 1

17 d t d d d + d d 2

18 d d d d d d + t 0

19 d d d d t d + d 1

20 d d t d d d + d 2

21 d d d d d d t + 0

22 d d d d d t d + 1

23 d d d t d d d + 2

Figure 19: All{to{all reduction step 6 on a 3-cube. Memory addresses and node addresses

in binary order.

exchanges in reverse order is identical to the original transition sequence. The exchange

sequence for a given local memory location is the same in broadcast and reduction. How-

ever, the starting location for the reduction is the location where the last copy is to be

deposited in the broadcast algorithm.

In the broadcast algorithm, the �nal destination for local memory address zero (j = 0,

i = 0) of node zero is node 2

d�1

, with memory and node addresses in binary code. The

exchange sequence used for this memory location is the same as the transition sequence

in a binary{reected Gray code with the dimensions taken in order. Thus, the �nal

destination is the last address in the Gray code, with dimensions in order, i.e., node 2

d�1

.

The �nal destination of local memory address i of block j = 0 within node zero is node

2

(d�1+i)modd

, since the ith exchange sequence is obtained from the exchange sequence of

local address zero by adding i mod d to the exchange dimension for local address zero.

For instance, for d = 3 the last destination of the content of local memory address zero in

node zero is node four, of location one it is node one, and of location two it is node two,

as seen from Figure 8.

For the all{to{all reduction algorithm with memory and node addresses in binary code,

we have for block j = 0:

1. starting address for local memory address i within block j = 0 is: 2

(d�1+i)modd

,

2. the exchange sequence for local memory address i in block j = 0 is: (t

0

+ i) mod

d; (t

1

+ i) mod d; (t

2

+ i) mod d; : : : ; (t

2

d

�2

+ i) mod d,

18

3. the address of the receiving node for local memory address i in block j = 0 step u

is: 2

(d�1+i)modd

� 2

(t

u

+i)modd

, u = f0; 1; 2; : : : ; 2

d

� 1g,

4. the sending node in step u � 1 is the receiving node in step u� 1.

From item 3, we see that for local memory address zero, the exchanges generate the

binary{reected Gray code addresses in reverse order. The addresses for sequence i is

obtained by an i step cyclic rotation of the addresses of sequence zero. Thus, for block

j = 0 and memory and node addresses in binary code

� the sending node address for local memory address i in block j = 0 in step u is

sh

i

(G(2

d

� 1 � u)),

� the receiving node address for local memory address i in block j = 0 in step u is

sh

i

(G(2

d

� u)).

The data motion for block j.

The destination node for block j is node j. The starting node for block j is obtained by

performing an exclusive{or operation with j (translation) on the starting addresses for

block j = 0. Exchange sequence i is used for all local memory addresses i relative to the

beginning of the blocks, i.e., all local memory addresses such that s mod d = i. Thus,

1. the starting address for local memory address i in block j is: j � 2

(d�1+i)modd

,

2. the exchange sequence for local memory address i in block j is: (t

0

+i) mod d; (t

1

+

i) mod d; (t

2

+ i) mod d; : : : ; (t

2

d

�2

+ i) mod d,

3. the sending node address for local memory address i in block j in step u is: j �

sh

i

(G(2

d

� 1 � u)),

4. the receiving node address for local memory location i in block j in step u is:

j � sh

i

(G(2

d

� u)).

The above formulas give the sending and receiving nodes for a given block j and local

memory address i within the block. However, at every step each node only sends the

contents of d local memory addresses and receives d data elements to be added into the

contents of d local memory addresses. Thus, it is of more direct interest to determine for

each node which local memory address of what blocks is participating in communication

step u. Node PA is sending and receiving data from local memory address i within block

j if PA = j � sh

i

(G(2

d

� 1 � u)) and PA = j � sh

i

(G(2

d

� u)), respectively. Thus, the

block number j for local memory address i within node PA in step u is

� j = PA� sh

i

(G(2

d

� 1 � u)) for sending,

� j = PA� sh

i

(G(2

d

� u)) for receiving.

19

Note that the expressions sh

i

(G(2

d

�1�u)) and sh

i

(G(2

d

�u)) are common to all nodes.

Thus, on the Connection Machine systems, these expressions can be evaluated on the

front{end.

Node addresses in Gray code order.

When the result of the all{to{all reduction is desired in Gray code order, then instead of

selecting block j as described above, the block whose Gray code is j should be selected.

For instance, for d = 3, 7 has the Gray code 100. Thus, in every instance when block 4

is selected for the result in binary order, block 7 is selected for the result in Gray code

order. Then, upon completion, the reduction on block 7 is available in node 4.

Thus, for the result in Gray code order, the block index j chosen for local memory address

and exchange sequence i is

� j = G

�1

(PA�sh

i

(G(2

d

�1�s))) = G

�1

(PA)�G

�1

(sh

i

(G(2

d

�1�s))) for sending,

� j = G

�1

(PA� sh

i

(G(2

d

� s))) = G

�1

(PA)�G

�1

(sh

i

(G(2

d

� s))) for receiving.

The address G

�1

(PA) is the node address in Gray code. Thus, the operations unique to

a node consists in determining its Gray code address, and an exclusive{or operation.

4.2.4 All{to{all reduction on local data sets of arbitrary size

For a local data set of size M , 2

d

blocks are created for all{to{all reduction on a binary

d-cube. When M mod 2

d

6= 0, then not all blocks have the same size. On the Connection

Machine systems any array with a size that is not divisible by the number of nodes

over which it is distributed is allocated such that d

M

2

d

e elements are assigned to the �rst

� = bM=d

M

2

d

ec nodes. The remainingM��d

M

2

d

e2

d

elements are assigned to a single node,

and the remaining 2

d

���1 nodes are assigned no elements. Thus, in blocking a data set

for all{to{all reduction, we �rst create �+1 nonempty blocks, � of which consists of d

M

2

d

e

consecutive memory locations. Each block is further subdivided into 2d subblocks. For

the �rst � subblocks, the maximum number of elements in a subblock is � = d

dM=2

d

e

2d

e.

All elements within a subblock are subject to the same exchange sequence, while di�erent

subblocks are subject to di�erent exchange sequences. The number of subblocks with �

elements each is = dM=2

d

e�d(��1). The memory partitioning is illustrated in Figure

20.

For each exchange step u, a pair of successive elements is transmitted from a subblock

(j; i) selected for transmission in dimension i in that exchange step. The exchange step u

is not completed until all data elements within a subblock selected for transmission has

been transmitted.

The actual transmission can be viewed as consisting of three phases:

1. The movement of data to be transmitted in one exchange to a bu�er area, a departure

lounge.

20

Block sub- subblock Block

block size size

0 �

1 �

2 �

� � dM=2

d

e

� �

0 � 1 �

 � � 1 (� = d

dM=2

d

e

d

e)

 + 1 � � 1

� � � 1

� � � 1

d� 1 � � 1

0 �

1 �

2 �

� � dM=2

d

e

� �

1 � 1 �

 � � 1 (� = d

dM=2

d

e

d

e)

 + 1 � � 1

� � � 1

� � � 1

d� 1 � � 1

� �

� �

� �

� �

0 �

1 �

2 �

� � dM=2

d

e

� �

�� 1 � 1 �

 � � 1 (� = d

dM=2

d

e

d

e)

 + 1 � � 1

� � � 1

� � � 1

d� 1 � � 1

0 �

1 �

2 �

� � M � �dM=2

d

e

� �

� "� 1 �

" � � 1 (� = d

M��dM=2

d

e

d

e)

"+ 1 � � 1

� � � 1

� � � 1

d� 1 � � 1

Figure 20: Memory partitioning.

21

2. An exchange of 2d 32{bit data elements, with the received data being stored in a

bu�er area, an arrival lounge.

3. Reduction on local data, and data in the arrival lounge.

Successive pairs of elements in the departure lounge are taken from subblocks with indices

i = f0; 1; 2; : : : ; d�1g in blocks j determined by the expressions given previously. If there

are no more elements in subblock i to be transmitted, then the bu�er location is empty,

and the corresponding channel not utilized. The number of exchanges for each step u is

d

��S

2

e, where S is the number of 32{bit words required for the data type (S = 2 for real{8

and complex{8 and S = 4 for complex{16). The reduction after each exchange step is

performed by adding the contents of the arrival lounge for step u to the contents of the

departure lounge for step u+1, with the elements for the same exchange sequence i being

added together.

5 Other algorithms

A few alternatives to the Hamiltonian cycle based algorithms for all{to{all communication

are:

1. each node broadcasts the values directly to all other nodes, one source node at a

time, using multiple spanning trees each of which use all the communication channels

of the binary cube (d edge{disjoint spanning trees for a d-cube) [14].

2. each node sends its data to a dedicated node, that broadcasts the data to all other

nodes with an algorithm using all channels of a d{cube.

3. all nodes send their data to a dedicated node concurrently, followed by a broadcast

from the dedicated node to all other nodes.

4. all nodes send their data to all other nodes using minimum height spanning trees,

such as d rotated spanning binomial trees [14]. This algorithm is equivalent to a

buttery network based algorithm.

Alternatives 1 and 2 use multiple spanning trees to maximize the bandwidth utilization in

broadcasting the data from a single node. Nodes are treated sequentially. Alternative 3

combines a gather operation (all{to{one personalized communication [14]) with a broad-

cast as in alternative 1, but there is only a single broadcast of all data to be received by a

node. In all{to{one personalized communication, each node sends data to one node. (In

all-to{all personalized communication, each node sends unique data to every other node.)

Alternatives 1 and 4 both have optimum time complexity, while alternatives 2 and 3 re-

quire extra data motion. Table 2 summarizes the performance estimates for the di�erent

algorithms [14]. For the reduce{and{spread estimate in Table 2, a subselection is assumed

before carrying out the transpose required for data in column major order. The trans-

posed data volume is a factor of 2

d

less than the data volume in the reduce{and{spread

function.

22

Ordering Operation Time

broadcast using single Hamiltonian cycle d

M

2�2

d

e(2

d

� 1)

broadcast, d Hamiltonian cycles d

M

2d�2

d

e(2

d

� 1)

Column major broadcast from one node at a time (alt. 1) (d

M

2d�2

d

e + d)2

d

gather followed by broadcast (alt. 3) d

M

2d

e + d

M

2d

e + d = 2d

M

2d

e + d

broadcast based on rotated binomial trees (alt. 4) d

M

2d�2

d

e(2

d

� 1)

reduce{and{spread, transpose d

M

2d�2

d

ed+ d

M

2�2�2

2d

e

transpose, broadcast using single H. cycle d

M

2�2�2

d

e + d

M

2�2

d

e(2

d

� 1)

transpose, broadcast using d H. cycles d

M

2�2�2

d

e + d

M

2d�2

d

e(2

d

� 1)

Row major transpose, broadcast from one node at a time (alt. 1) d

M

2�2�2

d

e + (d

M

2d�2

d

e + d)2

d

transpose, gather, broadcast (alt. 3) d

M

2�2�2

d

e+d

M

2d

e + d

M

2d

e = 2d

M

2d

e+ d

M

2�2

d

e

reduce{and{spread d

M

2d

ed

Table 2: Estimated number of element transfers in sequence for di�erent broadcast algo-

rithms. M is the total number of 32{bit elements prior to the broadcast (or reduction)

operation.

On the Connection Machine system CM{200 fairly well optimized routines have been

implemented for

� broadcast from a single node.

� shifts along a single Hamiltonian cycle.

� shifts along k � d Hamiltonian cycles for a d{cube.

� reduce{and{spread in d{cubes based on rotated binomial trees.

The broadcast function currently available on the Connection Machine system CM{200

assumes that the source for the broadcast operation is the �rst node in a segment (�rst row

or column). Thus, this function can only be used in alternatives 2 and 3. The overhead in

the spread function is quite signi�cant, as is apparent from the timings shown in Table 3.

This table shows timings for 2 to 32,768 32{bit elements per node on binary cubes with

2 to 2048 nodes. Because of the large overhead, only alternative 3 of the �rst three tree

based algorithms is considered further.

The �rst step in alternative 3 is an all{to{one personalized communication. The optimum

time for this operation is d

M

2d

e [14], where M is the number of elements gathered into

a node. There is currently no optimized routine available on the Connection Machine

systems CM{200 for this communication. The Connection Machine router is used instead.

For matrix{vector multiplication with the matrix allocated to a one{dimensional nodal

array through partitioning by rows, and the vectors distributed evenly across all nodes,

the nodes send their segment of the input vector to node zero, which then broadcasts the

entire input vector to every node. With a two{dimensional nodal array shape in column

major order for the matrix, and a one{dimensional nodal array shape for the vectors,

all nodes within a node column send their segment of the input vector to the �rst node

within the column. Then, this node broadcasts all segments of the input vector within a

23

Number of Number of nodes

elements 2 4 8 16 32 64 128 256 512 1024 2048

2 0.0366 0.383 0.448 0.502 0.573 0.640 0.719 0.789 0.878 0.965 1.036

4 0.0366 0.383 0.448 0.502 0.573 0.640 0.719 0.789 0.878 0.965 1.036

8 0.0623 0.416 0.480 0.505 0.576 0.644 0.722 0.792 0.881 0.968 1.040

16 0.1136 0.470 0.515 0.542 0.615 0.684 0.763 0.798 0.888 0.975 1.046

32 0.2162 0.577 0.598 0.600 0.691 0.730 0.811 0.848 0.939 1.027 1.101

64 0.4214 0.793 0.741 0.720 0.773 0.856 0.907 0.947 1.042 1.133 1.168

128 0.8318 1.223 1.055 0.962 0.963 0.984 1.044 1.045 1.247 1.305 1.344

256 1.6527 2.084 1.654 1.445 1.377 1.352 1.360 1.338 1.410 1.434 1.503

512 3.3139 3.805 2.882 2.410 2.203 2.054 1.990 1.925 1.946 1.953 2.001

1024 6.7319 7.247 5.310 4.342 3.825 3.491 3.287 3.098 3.021 2.991 2.957

2048 13.4530 14.129 10.193 8.204 7.067 6.331 5.844 5.445 5.210 5.028 4.910

4096 26.9059 27.895 19.931 15.929 13.585 12.048 10.960 10.137 9.588 9.102 8.782

8192 53.8115 55.426 39.437 31.379 26.619 23.444 21.226 19.522 18.344 17.288 16.520

16384 107.6210 110.476 78.415 62.279 52.657 46.269 41.721 38.291 35.818 33.662 31.997

32768 215.2400 220.577 156.396 124.070 104.723 91.874 82.711 75.829 70.764 66.366 62.991

Table 3: Time in msec for broadcast of di�erent size 32{bit data sets and Connection

Machine systems CM{200 of various sizes.

node column to all nodes in that node column. In row major ordering, the send operation

must also accomplish a transposition from row to column major order. Although the

transposition is implicit in the send, it has a signi�cant impact on the routing time for

the send, as shown in the performance measurements in Section 6.

The optimal transpose time for a binary cube with two channels between each pair of

nodes is d

M

2�2�2

d

e [12, 14]. The optimal time is proportional to the size of the local data set

but is independent of the partitioning of nodes between rows and columns.

Alternative 4 has been implemented for reduce{and{spread functionality on the Connec-

tion Machine system CM{200. It uses a constant size data set in all stages. Exchanges are

performed between pairs of nodes in d stages, as shown in Figure 21. Each node computes

d partial sums, one for each of d distributed variables. The accumulation and broadcast

of distributed variable zero use the dimensions in increasing order. The accumulation

and broadcast of distributed variable i use dimension (u + i) mod d in step u. With M

elements per node and a double cube, the number of element transfers is d

M

2d

ed, which is

a factor d higher than an all{to{all reduce using d Hamiltonian cycles. The reduce{and{

spread function yields 2

d

times as much local data as is desired for an all{to{all reduction.

The desired data are selected from the result of the reduce{and{spread operation.

With the matrix allocated to a two{dimensional nodal array in row major ordering, the

result of the all{to{all reduction within rows yields the result in the desired order. With a

column major ordering, a reordering from row to column major ordering (transposition)

is required after the all{to{all reduction.

If the node addresses are encoded in a Gray code instead of a binary code, then the

ordering of the elements in local memory is di�erent. But, except for local memory

operations, all other operations are identical.

24

Step P0 P1 P2 P3 P4 P5 P6 P7 Dim.

00 01 02 03 04 05 06 07

Init. 10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

00+01 00+01 02+03 02+03 04+05 04+05 06+07 06+07 0

0 10+12 11+13 10+12 11+13 14+16 15+17 14+16 15+17 1

20+24 21+25 22+26 23+27 20+24 21+25 22+26 23+27 2

00+01+02+03 00+01+02+03 00+01+02+03 00+01+02+03 04+05+06+07 04+05+06+07 04+05+06+07 04+05+06+07 1

1 10+12+14+16 11+13+15+17 10+12+14+16 11+13+15+17 10+12+14+16 11+13+15+17 10+12+14+16 11+13+15+17 2

20+21+24+25 20+21+24+25 22+23+26+27 22+23+26+27 20+21+24+25 20+21+24+25 22+23+26+27 22+23+26+27 0

00 { 07 00 { 07 00 { 07 00 { 07 00 { 07 00 { 07 00 { 07 00 { 07 2

2 10 { 17 10 { 17 10 { 17 10 { 17 10 { 17 10 { 17 10 { 17 10 { 17 0

20 { 27 20 { 27 20 { 27 20 { 27 20 { 27 20 { 27 20 { 27 20 { 27 1

Figure 21: Reduce{and{spread through buttery network emulation.

Words No. All{to{all broadcast

per node of Send and spread Trans- d{cycles One cycle

initially nodes Send Spread Total pose Addr. Indir. AABC Total Indir. AABC Total

4 16 2.20 0.92 3.12 0.90 1.84 0.57 1.00 4.31 1.17 1.00 3.07

8 16 3.82 1.38 5.20 1.13 3.52 0.62 1.10 6.57 1.21 1.66 4.00

16 16 8.00 2.30 10.30 1.68 3.36 0.73 1.85 7.62 1.31 3.03 6.02

32 16 9.59 4.14 13.73 1.80 3.39 0.89 3.35 9.43 1.56 5.76 9.12

64 16 19.19 7.82 27.01 3.34 4.14 1.55 6.41 15.44 2.03 11.21 16.58

128 16 38.60 15.17 53.77 6.55 5.24 2.87 12.55 27.21 2.98 22.13 31.66

256 16 77.74 29.88 107.62 12.90 8.57 5.52 24.82 51.81 4.88 43.97 61.75

512 16 156.70 59.31 216.01 25.66 15.44 10.80 49.43 101.33 8.68 87.63 121.97

1024 16 315.80 118.20 434.00 51.43 29.07 21.38 98.49 200.37 16.27 175.00 242.70

Table 4: Execution times in msec for all{to{all broadcast using three di�erent methods on

the Connection Machine system CM{200. 64{bit precision. Row major ordering. Node

addresses in Gray code.

6 Performance measurements

For all{to{all broadcast, we have implemented algorithms based on a single Hamiltonian

cycle, d Hamiltonian cycles and based on gathering all column data into a single node

followed by broadcast from that node. For all{to{all reduction, we implemented the �rst

two algorithms and compared them with reduce{and{spread. We �rst present the results

for broadcast, then for reduction.

6.1 All{to{all broadcast

Tables 4 and 5 summarize measurements for a 256 node Connection Machine system

CM{200. In Table 4, the nodes are con�gured as a 16 � 16 array. The length of the

local segment of the vector to be broadcast varies. In Table 5, the vector length per node

is �xed, while the number of nodes along an axis is varied. Both tables assume a row

major ordering and node addresses in Gray code. The column marked \total" includes

the transpose time . Thus, all columns marked total correspond to the same functionality.

From Table 5, we �rst note that the transpose time is independent of nodal array shape,

as predicted for an optimal algorithm. The transposition is done by the router, which

25

Words No. All{to{all broadcast

per of Send and spread Trans- d{cycles One cycle

node nodes Send Spread Total pose Addr.+ AABC Total Indir. AABC Total

initially Indir.

256 1 3.28 0.13 3.41 4.93 1.52 0.00 6.45 0.33 0 5.26

256 2 22.41 6.27 28.68 13.59 3.24 5.70 22.53 0.63 2.93 17.15

256 4 35.93 13.46 49.39 12.98 4.69 9.33 27.00 1.24 8.79 23.01

256 8 49.67 18.98 68.65 13.13 8.47 15.16 36.76 2.45 20.51 36.09

256 16 77.74 29.88 107.62 12.90 14.02 24.82 51.74 4.88 43.97 61.75

256 32 100.20 50.14 150.34 12.98 32.35 42.51 87.84 9.75 90.91 112.64

256 64 165.10 87.50 252.60 12.98 63.46 74.38 150.82 19.47 184.80 217.25

256 128 254.20 156.90 411.10 12.91 131.20 131.80 276.91 38.92 372.80 424.63

256 256 457.70 286.70 744.40 4.93 226.10 228.80 459.83 77.80 748.80 831.53

Table 5: Execution times in msec for all{to{all broadcast using three di�erent methods on

the Connection Machine system CM{200. 64{bit precision. Row major ordering. Node

addresses in Gray code.

thus shows a very good performance behavior. The time per 32{bit data element amounts

to about 25:1 �sec.

From the performance measurements, we conclude that both the single cycle and the

d{cycles algorithm are always faster than the send{and{spread algorithm for all{to{all

broadcast. Table 6 summarizes the speedup of the cycle based algorithms over the send{

and{spread algorithm. The improvement is in the range 1.27 { 2.08. The measured data

motion rate for all-to{all broadcast on a 256 node Connection Machine system CM{200

is about 0.3 Gbytes/sec.

In order to compare the single cycle and d{cycles algorithms, we consider the performance

characteristics of the two algorithms in detail. The execution time for all{to{all broadcast

through a single Hamiltonian cycle is expected to behave as

T

B

1�H;c

= (a

1

+ a

2

d

M

0

� S

2

e)(2

d

� 1);

where a

1

is the overhead for each step of the algorithm and a

2

is the exchange time for

two 32{bit data elements. M

0

is the initial number of elements per node and S is the

number of 32{bit words per data element (S = 2 for real{8 and complex{8). From Table

4, we derive a

1

= 24:3 �sec and a

2

= 5:69 �sec.

With a Gray code ordering, the indirect addressing required for the reordering upon

completion, requires a time of

T

B

1�H;l

= a

3

+ (a

B

4

+ a

B

5

M

0

� S)2

d

;

where, from our performance measurements, a

3

= 17:9 �sec, a

4

= 50:33 �sec, and a

5

=

0:5 �sec. Adding T

B

1�H;c

and T

B

1�H;l

we get the total time for the all{to{all broadcast based

on a single Hamiltonian cycle and nodes in Gray code order:

26

All{to{all broadcast

No. Send 256 words/node

of and d One

nodes spread cycles cycle

2 1 1.27 1.67

4 1 1.83 2.15

8 1 1.87 1.90

16 1 2.08 1.74

32 1 1.71 1.33

64 1 1.67 1.16

128 1 1.48 0.97

256 1 1.62 0.90

Table 6: Speedup for three methods of all{to{all broadcast on the Connection machine

system CM{200. 64{bit precision. Row major ordering. Node addresses in Gray code.

T

B

1�H

= �6:38� 5:69 �M

0

� S + 74:6 � 2

d

+ 6:19 �M

0

� S � 2

d

:

In the d{cycles all{to{all broadcast algorithm, the data motion between nodes is expected

to show a performance behavior of the form

T

B

d�H;c

= (b

1

+ (b

2

� 2d + b

3

)d

M

0

� S

2d

e)(2

d

� 1);

where b

1

is the overhead for each step of the algorithm, b

2

is the time for local memory

references for each step, and b

3

the time for exchanging d pairs of 32{bit words between a

node and its d neighbors. From the column labeled d{cycles in Tables 4 and 5, we derive:

b

1

= 41:94 �sec, b

2

= 0:17 �sec and b

3

= 24:18 �sec.

In addition to the data motion time, a signi�cant time is also required for local memory

operations, even when nodes are labeled in Gray code order. For the single cycle algorithm,

a node dependent block cyclic shift is required. In the d{cycles algorithm, the reordering

at the end, as illustrated in Figures 8 and 9, requires full indirect addressing. In addition,

if the array indices are not moved along with the data, index computation according to

the formulas given in Section 4.2.3 is required. For the index computation, there are

2

d

� 1 blocks, one for each remote node, for which index computations are needed. Each

such block consists of 2d subblocks of b

M=2

d

2d

c elements each, with the �nal subarray of

size M (initial subarrays of size M

0

= M=2

d

elements each). Then, there is a remainder

of d

0

= (M=2

d

) mod 2d elements for each of the 2

d

� 1 blocks. Thus, the time for index

computation T

d�H;ic

behaves as

T

B

d�H;ic

= b

4

+ [d(b

5

+ b

6

b

M

0

2d

c) + b

7

M

0

mod 2d](2

d

� 1):

27

From our measurements, we have derived: b

4

= 2056:35, b

5

= 41:08, b

6

= 2:02 and

b

7

= 22:24, all in �sec. The index computation has a faster growth rate in the number of

nodes than the motion of the data. This is clear in Table 7.

The time for local data reordering with indirect addressing is

T

B

d�H;l

= (b

8

+ b

9

�M

0

� S) � 2

d

;

where the constants derived from our measurements are: b

8

= 14:78 �sec and b

9

=

0:645 �sec.

The total time for all{to{all broadcast based on d{cycles and local index computation is

obtained as T

B

d�H

= T

B

d�H;c

+ T

B

d�H;ic

+ T

B

d�H;l

, or

T

B

d�H

= 2071:13 + 0:645 �M

0

� S + (56:72 + 0:645 �M

0

� S + 24:18d(M

0

� S)=(2d)e+

d(41:08 + 0:34d(M

0

� S)=(2d)e+ 2:02dM=(2d)e) + 22:24(M

0

mod 2d))(2

d

� 1):

Since the e�ciency in the index computation on the CM{200 is poor, we have also im-

plemented all{to{all broadcast using a d{cycles algorithm in which the indices are moved

along with the data. The indices are represented as 32-bit integers regardless of the type

of the array values. Local reordering is still required and requires the same time as when

the array indices are computed locally. Table 7 shows the results for a 2048 node CM{

200. As seen in the Table, moving indices is faster than computing indices for 32 or more

nodes. The time for moving indices, T

d�H;im

is

T

d�H;im

= (b

10

+ (b

11

� 2d + b

12

)d

M

0

2d

e)(2

d

� 1) + b

13

where b

10

= 33:61�sec, b

11

= 0:63�sec, and b

12

= 16:98�sec and b

13

= 1834:05�sec and

the total time is T

d�H;c

+ T

d�H;im

+ T

d�H;l

T

B

d�H;m

= 1848:83 + 0:645 �M

0

� S + (90:33 + 0:645 �M

0

� S +

(0:34d + 24:18)d(M

0

� S)=(2d)e+

(1:26d + 16:98)dM

0

=(2d)e)(2

d

� 1):

Comparing the times for all{to{all broadcast based on a single cycle and d{cycles with

either local index computation or index motion, we conclude that the actual communi-

cation time for the d{cycles algorithm is less than that for the single cycle algorithm for

8 or more nodes. The gain is less than a factor of d, because the single cycle algorithm

can use machine instructions that require fewer cycles per word transfer. However, the

performance gain in the communication part of the d{cycles algorithm is largely lost due

to the time required for the index calculations, and the full indirect addressing required

28

Words No. d{cycles all{to{all broadcast

per node of AABC Indir. Comp. index Move index

initially nodes Comp. Total Move Total

128 2 2.95 0.36 1.39 4.70 2.05 5.36

128 4 4.79 0.72 1.85 7.36 2.97 8.48

128 8 7.90 1.44 3.43 12.77 4.56 13.90

128 16 12.64 2.88 5.30 20.82 6.96 22.48

128 32 21.64 5.75 16.83 44.22 11.60 38.99

128 64 37.82 11.50 35.56 84.88 19.93 69.25

128 128 69.90 23.01 60.10 153.01 36.49 129.40

128 256 116.50 46.01 119.50 282.01 60.37 222.88

128 512 232.40 92.05 280.20 604.65 120.80 445.25

128 1024 416.40 184.10 727.80 1328.30 216.90 817.40

128 2048 738.40 370.30 1973.00 3081.70 386.00 1494.70

Table 7: Execution time in msec for d{cycles all{to{all broadcast with index computation

and index motion. 64-bit precision. Node addresses in Gray code.

in the reordering of the data. From the expressions for the total execution time for the

single cycle and d{cycles algorithms, we can derive the size of the local data set as a

function of d for which the d{cycles algorithm yields better performance. The results

are summarized in Table 9. From the table we conclude that, in practice, at least 16

nodes (d � 4) must be assigned to an axis before the d{cycles algorithm performs better

than the single cycle algorithm, largely due to the expense for index calculation. This

expense grows su�ciently rapidly to make moving the data indices more e�cient than

computing them locally for 32 or more nodes, despite the simple operations required for

index computation. Figure 22 shows the execution times for all{to{all broadcast on up

to 512 nodes using either a single cycle algorithm, or the d{cycles algorithm with either

index computation or index motion. Table 8 gives the corresponding measured data.

Remark 1. It is interesting to compare the performance of the spread function with that

of the d{cycles algorithm. Ideally, both should have the same execution time (see Table

2). From Tables 4 and 5, the measured performance is comparable when the address

calculation time is excluded, as expected. The total execution times are compared in

Table 10.

Remark 2. It is also interesting to note that although the optimal time for the send and

the spread is the same (Table 2), the measured time for the send is about 2.7 times higher

than for the spread in the 16 node case. For the 8 node case, the ratio is about 2.6 and for

the 256 node case, the ratio is 1.6. The send (gather) operation uses the router, while the

spread use an optimized algorithm. Table 10 gives a comparison of the execution times

for send and spread.

The sensitivity of the send times to row or columnmajor layout ordering were examined by

measuring the execution times for both orderings. In a column major ordering, the send

is con�ned to within subcubes and no transpose is required for all{to{all communication.

29

- 2

d

0 3264 128 256 512

6

Time (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

c

c

c

c

c

c

c

c

c

s

s

s

s

s

s

s

s

s

�

�

�

�

�

�

�

�

�
One cycle

d{cycles

move index

d{cycles

comp. index

Figure 22: All{to{all broadcast time in seconds for 256 64{bit elements.

Words No. d{cycles One cycle

per node of AABC Indir. Comp. index Move index

initially nodes Comp. Total Move Total AABC Indir. Total

256 2 5.84 0.69 2.54 9.07 3.96 10.49 2.93 0.54 3.47

256 4 9.47 1.38 3.31 14.16 5.79 16.64 8.80 1.09 9.89

256 8 15.31 2.76 5.74 23.81 8.73 26.80 20.54 2.18 22.72

256 16 24.97 5.52 8.59 39.08 13.60 44.09 44.05 4.37 48.42

256 32 42.69 11.06 21.58 75.33 22.60 76.35 91.08 8.75 99.83

256 64 74.59 22.11 41.98 138.68 38.79 135.49 185.10 17.49 202.59

256 128 132.10 44.22 88.37 264.69 68.05 244.37 373.40 34.98 408.38

256 256 229.20 88.41 140.30 457.91 117.10 434.71 750.20 69.98 820.18

256 512 434.00 177.00 369.70 980.70 222.00 833.00 1504.00 140.00 1644.00

Table 8: Execution time in msec for d{cycles all{to{all broadcast with index computation

and index motion and for the one cycle algorithm. 64-bit precision. Node addresses in

Gray code.

30

No. of nodes 2 4 8 16 32 64 128 256 512 1024 2048

d{H, c M

0

� 240 M

0

� 80 M

0

� 60 M

0

� 48 M

0

� 56 M

0

� 48 M

0

� 54 M

0

� 60 M

0

� 66

d{H, m M

0

� 55 M

0

� 14 M

0

� 12 M

0

� 14 M

0

� 16 M

0

� 18 M

0

� 20 M

0

� 22

Table 9: The size of the initial data set (M

0

) per node in 64{bit precision for which the d{

cycles all{to{all broadcast algorithms with index computation (d{H,c) and index motion

(d{H,m), yield better performance than a single cycle algorithm. Row major ordering.

Node addresses in Gray code.

No. d Send

of Spread cycles

nodes AABC (gather)

2 1 3.60 3.57

4 1 2.01 2.67

8 1 1.94 2.62

16 1 1.74 2.60

32 1 1.76 2.00

64 1 1.74 1.89

128 1 1.77 1.62

256 1 1.62 1.60

Table 10: Relative execution times for spread, d{cycles all{to{all broadcast with reorder-

ing and send (gather). 64-bit precision. Row major order. Node addresses in Gray code.

31

Words No. All{to{all broadcast

per of Send and spread d{cycles One cycle

node nodes Send Spread Total Addr. Indir. AABC Total Indir. AABC Total

4 16 1.23 0.92 2.15 1.84 0.57 1.00 3.41 1.17 1.00 2.17

8 16 2.30 1.38 3.68 3.52 0.62 1.10 5.24 1.21 1.66 2.87

16 16 4.79 2.30 7.09 3.36 0.73 1.85 5.94 1.31 3.03 4.34

32 16 5.42 4.14 9.56 3.39 0.89 3.35 7.63 1.56 5.76 7.32

64 16 10.78 7.82 18.60 4.14 1.55 6.41 12.10 2.03 11.21 13.24

128 16 21.59 15.17 36.76 5.24 2.87 12.55 20.66 2.98 22.13 25.11

256 16 43.42 29.88 73.30 8.57 5.52 24.82 38.91 4.88 43.97 48.85

512 16 87.41 59.31 146.72 15.44 10.80 49.43 75.67 8.68 87.63 96.31

1024 16 176.10 118.20 294.30 29.07 21.38 98.49 148.94 16.27 175.00 191.27

Table 11: Execution times in msec for all{to{all broadcast using three di�erent methods

on the Connection Machine system CM{200. 64{bit precision. Column major ordering.

Node addresses in Gray code.

Tables 11 and 12 summarize the results. The send is faster by close to a factor of two

for the column major ordering, but the cycles based algorithms are also faster for this

ordering. However, the speed advantage is not as large as for row major ordering.

Finally, we also measured the performance for all{to{all communication with node ad-

dresses in binary code. The execution times for the d{cycles algorithm were almost

identical to the times for node addresses in Gray code order. The single cycles algorithm

would require a di�erent implementation on the Connection Machine system CM{200,

since the CSHIFT intrinsic function used in our implementation uses the general router

for node addresses in binary code. A special implementation of our single cycle algorithm

should yield comparable performance for node addresses in binary code and Gray code.

6.2 Reduction

Tables 13 and 14 give the measured execution times for all{to{all reduction based on

reduce{and{spread, and the single cycle and d{cycles algorithms.

The reduce{and{spread alternative for all{to{all reduction results in an excessive amount

of data in each node, and a subselection is required to arrive at the �nal result. This

subselection is performed by a call to the Connection Machine router, even though no

communication is required. The router is the only general mechanism currently available

on the Connection Machine system CM{200 for this subselection. Performing the all{

to{all reduction in this manner is always less e�cient than using either a single cycle

algorithm or the d{cycles algorithm.

For a 16 � 16 nodal array, the single cycle algorithm is more e�cient than the d{cycles

algorithm for a �nal data set per node of at most 64 elements. The single cycle all{

to{all reduction is about 6% slower than the corresponding broadcast operation, while

the d{cycles all{to{all reduction is about 12% slower than the corresponding all{to{all

broadcast. (In these percentage calculations, we excluded the time for the transpose

32

Words No. All{to{all broadcast

per of Send and spread d{cycles One cycle

node nodes Send Spread Total Addr.+ AABC Total Indir. AABC Total

Indir.

256 1 3.30 0.13 3.45 1.52 0.00 1.52 0.33 0 0.33

256 2 11.97 6.27 18.38 3.24 5.70 8.94 0.63 2.93 3.56

256 4 17.69 13.46 31.88 4.69 9.33 14.02 1.24 8.79 10.03

256 8 26.67 18.98 46.54 8.47 15.16 23.63 2.45 20.51 22.96

256 16 43.42 29.88 74.63 14.02 24.82 38.84 4.88 43.97 49.85

256 32 69.46 50.14 121.82 32.35 42.51 74.86 9.75 90.91 100.66

256 64 114.66 87.50 206.33 63.46 74.38 137.84 19.47 184.80 204.27

256 128 225.43 156.90 388.90 131.20 131.80 263.00 38.92 372.80 411.72

256 256 | 286.70 | 226.10 228.80 454.90 77.80 748.80 826.60

Table 12: Execution times in msec data for all{to{all broadcast using three di�erent

methods on the Connection Machine system CM{200. 64{bit precision. Column major

ordering. Node addresses in Gray code.

Words No. All{to{all reduction

per of Reduce and spread d{cycles One cycle

node nodes Red. & Send Total Indir. Arit. Comm. Total Indir. Arit. Comm. Total

spread

4 16 1.71 1.62 3.33 2.43 0.26 1.11 3.80 0.59 0.26 1.07 1.92

8 16 3.36 3.57 6.93 4.20 0.30 1.22 5.72 0.64 0.30 1.74 2.68

16 16 6.70 8.11 14.81 4.26 0.38 2.03 6.67 0.73 0.38 3.10 4.21

32 16 13.39 15.32 28.71 4.32 0.51 3.61 8.44 0.98 0.51 5.83 7.32

64 16 26.77 32.74 59.51 5.68 0.87 6.88 13.43 1.45 0.87 11.29 13.61

128 16 53.54 67.81 121.30 8.16 1.61 13.48 23.25 2.40 1.60 22.20 26.20

256 16 107.10 138.50 245.60 14.26 3.06 26.66 43.98 4.30 3.04 44.03 51.37

512 16 214.10 281.10 495.20 26.29 5.97 53.04 85.30 8.09 5.96 87.70 101.75

1024 16 428.20 568.30 996.50 50.55 11.78 105.70 168.03 15.69 11.74 175.00 202.43

Table 13: Execution times in msec for all{to{all reduction using reduce{and{spread, d{

cycles, and one cycle on the Connection Machine system CM{200. 64{bit precision. Row

major order. Node addresses in Gray code.

required in all{to{all broadcast for row major ordering, in order to highlight the di�erence

between broadcast and reduction.) The performance trade-o� between the single cycle

and the d{cycles algorithms is approximately the same as for the broadcast.

Table 15 gives a comparison of the total execution times for the three di�erent all{to{

all reduction methods: Reduce{and{spread followed by a subselection, a single cycle

algorithm, a d{cycles algorithm. The cycle based algorithms yield a speedup of a factor

of �ve or better over the reduce{and{spread function.

Remark. Note that the send (scatter) that follows the reduce{and{spread may require

more time than the reduce{and{spread function itself. Since all nodes have all the results

after the reduce{and{spread, the desired result can be obtained either as a local subse-

lection, or as a one{to{all personalized communication from the �rst node in a row. On

the Connection Machine system CM{200, both methods require approximately the same

33

All{to{all reduction

Words No. Reduce and spread d{cycles One cycle

per of Reduce Indir.+

node nodes and Send Total Addr.+ Comm. Total Indir. Arithm. Comm. Total

spread Arithm.

256 2 12.73 22.68 35.41 1.17 11.30 12.47 0.95 0.20 2.93 4.08

256 4 26.88 44.77 71.65 2.51 12.81 15.32 1.49 0.61 8.80 10.90

256 8 53.30 80.32 133.62 7.15 17.55 24.70 2.57 1.43 20.54 24.54

256 16 107.00 138.60 245.60 12.74 26.63 39.37 4.73 3.07 44.05 51.85

256 32 215.90 237.60 453.50 38.68 44.00 82.68 9.04 6.33 91.08 106.45

256 64 436.20 410.90 847.10 78.99 75.65 154.64 17.67 12.87 185.10 215.64

256 128 882.90 722.00 1604.90 172.54 133.00 305.54 34.92 25.94 373.40 434.26

256 256 1786.00 1293.00 3079.00 298.95 229.70 528.65 69.42 52.10 750.20 871.72

256 512 |- |- |- |- |- |- 138.50 104.40 1504.00 1746.90

Table 14: Execution times in msec data for all{to{all reduction using reduce{and{spread,

d{cycles, and one cycle on the Connection Machine system CM{200. 64{bit precision.

Row major order. Node addresses in Gray code.

Words No. All{to{all reduction

per of Reduce d{cycles One cycle

node nodes and send Time Speedup Time Speedup

256 2 35.41 12.47 2.84 4.08 8.68

256 4 71.65 15.32 4.68 10.90 6.57

256 8 133.62 24.70 5.41 24.54 5.44

256 16 245.60 39.37 6.24 51.85 4.74

256 32 453.50 82.68 5.48 106.45 4.26

256 64 847.10 154.64 5.48 215.64 3.93

256 128 1604.90 305.54 5.25 434.26 3.70

256 256 3079.00 528.65 5.82 871.72 3.53

256 512 |- |- |- 1746.90 |-

Table 15: Execution times in msec and speedups for three methods of performing an

all{to{all reduction on the Connection Machine system CM{200. 64{bit precision. Row

major ordering. Node addresses in Gray code.

34

Words No. All One

per of to to gather

node nodes one all scatter

(gather) (scatter)

256 2 22.41 22.68 0.99

256 4 35.93 44.77 0.80

256 8 49.67 80.32 0.62

256 16 77.74 138.60 0.56

256 32 100.20 237.60 0.42

256 64 165.10 410.90 0.40

256 128 254.20 722.00 0.35

256 256 457.70 1293.00 0.35

Table 16: Execution time in msec and relative speeds of all{to{one personalized commu-

nication (gather) and one{to{all personalized communication (scatter) by the Connection

Machine system CM-200 router. 64-bit precision. Row major ordering. Node addresses

in Gray code.

time. The latter operation is like a vector transpose, with the vector initially stored in

the �rst node of a row, and stored uniformly across all nodes in a row after the transpose.

This operation is the reverse communication of the send that gathers data to a single

node before the broadcast in the send{and{broadcast algorithm for all{to{all broadcast.

However, the one{to{all personalized communication performed by the router requires

considerably more time than the all{to{one personalized communication. Table 16 com-

pares the timings for all{to{one and one{to{all personalized communication. Table 17

compares the times for all{to{all reduction using the d{cycles algorithms with local index

computation and index motion. Moving indices is faster than computing them locally for

64 or more nodes.

7 Summary

We have presented detailed schedules for all{to{all communication algorithms for broad-

cast and reduction based on Hamiltonian cycles. The cycle based algorithms perform the

all{to{all broadcast in 2

d

� 1 steps. In each step, a pair of successive memory locations

are transmitted in the same cube dimension, thereby exploiting the fact that there are

two channels between each pair of Connection Machine system CM{200 processing nodes.

For broadcast, both the single cycle and the d{cycles algorithms always yield better

performance than an algorithm using the router for gathering all data into a node, followed

by a spread. The speedup is in the range 1.5 { 3.2 for four or more nodes along an axis.

The measured peak data motion rate for the d{cycles algorithm with indices moved along

with the data is 2.54 Gbytes/s on a 2048 node Connection Machine system CM{200.

Without the index computations and corresponding local data reordering, the measured

35

Words No. d{cycles all{to{all broadcast

per node of AABC Indir. Arith. Comp. index Move index

initially nodes Comp. Total Move Total

256 2 11.41 0.82 0.22 0.13 12.58 3.97 16.42

256 4 12.93 1.51 0.61 0.39 15.44 5.79 20.84

256 8 17.70 2.89 1.43 2.83 24.85 8.74 30.76

256 16 26.79 5.63 3.07 4.04 39.53 13.60 49.09

256 32 44.20 11.12 6.35 20.90 82.88 22.60 84.27

256 64 75.91 22.12 12.91 44.00 154.90 38.80 149.70

256 128 133.20 44.10 26.03 102.40 305.70 68.10 271.40

256 256 230.30 88.08 52.27 158.60 529.30 117.10 487.80

256 512 435.00 176.00 104.70 222.00 937.70

Table 17: Execution time in msec for d{cycles all{to{all reduction with index computation

and index motion. 64-bit precision. Node addresses in Gray code.

all{to{all broadcast peak rate is 5.4 Gbytes/sec. The measured peak data motion rates

for all{to{all broadcast are summarized in Table 18. The data motion rate for spread

is included for comparison but does not represent the time for all{to{all broadcast using

spreads.

For all{to{all reduction, the speedup of our Hamiltonian cycle based algorithms is even

greater than for broadcast, with the range being 5 { 8.

The performance for the cycles based algorithms is fairly independent of whether the data

allocation is in row or column major ordering, and whether the nodal addresses are in

binary code or Gray code. However, the router performance depends signi�cantly upon

whether the data allocation is in row or column major ordering.

The d{cycles algorithm o�ers a good improvement in performance over the single cycle

algorithm with respect to data motion. However, the local computation of indices is quite

ine�cient. This o�set of the gain in communication time makes the single cycle algorithm

preferable for moderate size initial data sets, and few nodes assigned to the axis. For 64

or more nodes assigned to an axis, it is more e�cient in the d{cycles algorithm to move

the indices along with the data than to compute the indices locally for both all{to{all

broadcast and all{to{all reduction.

We have incorporated the Hamiltonian cycle based all{to{all communication routines in

the matrix{vector and vector{matrix multiplication and rank{1 update routines of the

Connection Machine Scienti�c Software Library, CMSSL [22], Version 3.0. A summary of

the performance of the matrix{vector (M-V) and vector{matrix (V-M) routines are given

in Table 19 and in Figure 23.

36

Number Spread All{to{all broadcast

of No index and reorder Index and reorder

nodes one cycle d cycles one cycle d cycles move index

2 0.65 0.66 0.33 0.52 0.20 0.18

4 0.61 0.66 0.61 0.57 0.39 0.34

8 0.87 0.66 0.86 0.59 0.52 0.48

16 1.10 0.66 1.16 0.60 0.68 0.63

32 1.31 0.66 1.40 0.60 0.66 0.75

64 1.50 0.66 1.62 0.60 0.70 0.85

128 1.67 0.66 1.77 0.60 0.78 0.92

256 1.87 0.66 2.13 0.60 0.85 1.07

512 0.66 2.14 0.60 0.79 1.07

1024 0.66 2.40 0.60 0.73 1.16

2048 0.66 2.70 0.60 0.63 1.27

Table 18: Data motion rates in Mbytes s

�1

per node on CM-200. All{to{all times com-

puted from 128 elements per node prior to broadcast. The data motion rate for spread

is included for comparison, but does not represent the time for all{to{all broadcast using

the spread algorithm.

Matrix Mops/s Time (millisec)

shape Number of nodes Number of nodes

P � P 256 512 1024 2048 256 512 1024 2048

Matrix{vector multiplication

512 | | | | | | | |

1024 304 | | | 6.90 | | |

2048 723 898 | | 11.6 9.34 | |

4096 1190 1834 2486 | 28.2 18.3 13.5 |

8192 1382 2621 4358 6101 97.1 51.2 30.8 22.0

12288 | 2796 4992 | | | 60.5 |

16384 | | 5162 9833 | | 104.0

24576 | | | 10785 | | | 112.0

Vector{matrix multiplication

512 | | | | | | | |

1024 344 | | | 6.09 | | |

2048 799 1037 | | 10.5 8.09 | |

4096 1370 2059 2844 | 24.5 16.3 11.8 |

8192 1846 3093 5103 6991 72.7 43.4 26.3 19.2

12288 | 3553 6252 | | 85.0 48.3 |

16384 | | 6918 11621 | | 77.6 46.2

24576 | | | 13742 | | | 87.9

Table 19: Performance data for matrix{vector and vector{matrix multiplication on dif-

ferent Connection Machine system CM{200 con�gurations. 64{bit precision.

37

- P

0 2K 4K 6K 8K 10K 12K 14K 16K 18K 20K 22K 24K

6

Gop/s

0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

b

b

b

b

r

r

r

r

�

�

�

�

2048 nodes

1024 nodes

512 nodes

256 nodes

Figure 23: Execution rate in Gop/s for multiplication of a P �P matrix by a vector on

Connection Machine system CM{200. 64{bit precision.

38

References

[1] Jean-Philippe Brunet and S. Lennart Johnsson. All-to-all broadcast with applications

on the Connection Machine. International Journal of Supercomputer Applications,

6(3):241{256, 1992.

[2] L.E. Cannon. A Cellular Computer to Implement the Kalman Filter Algorithm. PhD

thesis, Montana State Univ., 1969.

[3] M.Y. Chan. Embeddings of 3-dimensional grids into optimal hypercubes. In Pro-

ceedings of the Fourth Conference on Hypercubes, Concurrent Computers, and Ap-

plications, Vol. I, pages 297{299, 1990.

[4] M.Y. Chan. Embedding of grids into optimal hypercubes. SIAM J. Computing,

20(5):834{864, 1991.

[5] Barbara Chapman, Piyush Mehrotra, and Hans Zima. Programming in vienna for-

tran. Scienti�c Programming, 1(1):31{50, 1992.

[6] Eliezer Dekel, David Nassimi, and Sartaj Sahni. Parallel matrix and graph algo-

rithms. SIAM J. Computing, 10:657{673, 1981.

[7] Geo�rey Fox, S. Hiranandani, Kenneth Kennedy, Charles Koelbel, U. Kremer,

C. Tseng, and M. Wu. Fortran D language speci�cation. Technical Report TR90-141,

Department of Computer Science, Rice University, December 1990.

[8] Geo�rey C. Fox, Mark A. Johnson, Gregory A. Lyzenga, Steve W. Otto, John K.

Salmon, and DavidW.Walker. Solving Problems on Concurrent Processors. Prentice-

Hall, 1988.

[9] E.N. Gilbert. Gray codes and paths on the n-cube. Bell Systems Technical Journal,

37:815{826, 1958.

[10] Ching-Tien Ho and S. Lennart Johnsson. Embedding meshes in Boolean cubes by

graph decomposition. J. of Parallel and Distributed Computing, 8(4):325{339, April

1990.

[11] S. Lennart Johnsson. Communication e�cient basic linear algebra computations

on hypercube architectures. J. Parallel Distributed Computing, 4(2):133{172, April

1987.

[12] S. Lennart Johnsson and Ching-Tien Ho. Matrix transposition on Boolean n-cube

con�gured ensemble architectures. SIAM J. Matrix Anal. Appl., 9(3):419{454, July

1988.

[13] S. Lennart Johnsson and Ching-Tien Ho. Matrix multiplication on Boolean cubes

using generic communication primitives. In Parallel Processing and Medium Scale

Multiprocessors, pages 108{156. SIAM, 1989.

39

[14] S. Lennart Johnsson and Ching-Tien Ho. Spanning graphs for optimum broad-

casting and personalized communication in hypercubes. IEEE Trans. Computers,

38(9):1249{1268, September 1989.

[15] S. Lennart Johnsson, Ching-Tien Ho, Michel Jacquemin, and Alan Ruttenberg. Com-

puting fast Fourier transforms on Boolean cubes and related networks. In Advanced

Algorithms and Architectures for Signal Processing II, volume 826, pages 223{231.

Society of Photo-Optical Instrumentation Engineers, 1987.

[16] S. Lennart Johnsson and Kapil K. Mathur. Data structures and algorithms for the

�nite element method on a data parallel supercomputer. International Journal of

Numerical Methods in Engineering, 29(4):881{908, 1990.

[17] Kapil K. Mathur and S. Lennart Johnsson. Multiplication of matrices of arbitrary

shape on a Data Parallel Computer. Parallel Computing, 20(7):919{951, July 1994.

[18] E.M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms. Prentice-Hall,

Englewood Cli�s. NJ, 1977.

[19] Quentin F. Stout and Bruce Wagar. Intensive hypercube communication I: pre-

arranged communication in link-bound machines. Technical Report CRL-TR-9-87,

Computing Research Lab., Univ. of Michigan, Ann Arbor, MI, 1987.

[20] Quentin F. Stout and Bruce Wagar. Passing messages in link-bound hypercubes. In

Michael T. Heath, editor, Hypercube Multiprocessors 1987. Society for Industrial and

Applied Mathematics, Philadelphia, PA, 1987.

[21] Thinking Machines Corp. CM{200 Technical Summary, 1991.

[22] Thinking Machines Corp. CMSSL for CM Fortran, Version 3.1, 1993.

[23] Charles Tong and Paul N. Swarztrauber. Ordered Fast Fourier transforms on a ma-

sively parallel hypercube multiprocessor. Journal of Parallel and Distributed Com-

puting, 12(1):50{59, May 1991.

[24] Xiru Zhang. An e�cient implementation of the backpropagation algorithm on the

Connection Machine CM{2. Advances in Neural Information Processing Systems,

2:801{809, 1989.

[25] Hans Zima, Peter Brezany, Barbara Chapman, Piyush Mehrotra, and Andreas

Schwald. Vienna Fortran { A language speci�cation version 1.1. Technical report,

ICASE, Interim Report 21, March 1992.

40

