
A Data Parallel Finite Element Method
for Computational Fluid Dynamics
on the Connection Machine System

The Harvard community has made this
article openly available. Please share how
this access benefits you. Your story matters

Citation Johan, Zdenek, Thomas J.R. Hughes, Kapil K. Mathur, and S.
Lennart Johnsson. 1992. A Data Parallel Finite Element Method for
Computational Fluid Dynamics on the Connection Machine System.
Harvard Computer Science Group Technical Report TR-02-92.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:23518806

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/154869415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=A%20Data%20Parallel%20Finite%20Element%20Method%20for%20Computational%20Fluid%20Dynamics%20on%20the%20Connection%20Machine%20System&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23518806
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

A Data Parallel Finite Element Method

for Computational Fluid Dynamics on the

Connection Machine System

Zden�ek Johan

Thomas J.R. Hughes

Kapil K. Mathur

S. Lennart Johnsson

TR-02-92

January 1992

Parallel Computing Research Group

Center for Research in Computing Technology

Harvard University

Cambridge, Massachusetts

A Data Parallel Finite Element Method for

Computational Fluid Dynamics on

the Connection Machine System

by

Zden�ek Johan

Thomas J.R. Hughes

*

Division of Applied Mechanics

Durand Building

Stanford University

Stanford, CA 94305{4040, USA

and

Kapil K. Mathur

S. Lennart Johnsson

**

Thinking Machines Corporation

245 First Street

Cambridge, MA 02142{1264, USA

Thinking Machines Technical Report TMC{212 1991

To appear in:

Computer Methods in Applied Mechanics and Engineering

September 8, 1994

*

Also a�liated with CENTRIC Engineering Systems, Inc., 3801 East Bayshore Road,

Palo Alto, CA 94303, USA.

**

Also a�liated with the Division of Applied Sciences, Harvard University, Cambridge,

MA 02138, USA.

Abstract

A �nite element method for computational
uid dynamics has been implemented on

the Connection Machine systems CM-2 and CM-200. An implicit iterative solution strate-

gy, based on the preconditioned matrix-free GMRES algorithm, is employed. Parallel data

structures built on both nodal and elemental sets are used to achieve maximum paral-

lelization. Communication primitives provided through the Connection Machine Scienti�c

Software Library substantially improved the overall performance of the program. Com-

putations of three-dimensional compressible
ows using unstructured meshes having close

to one million elements, such as a complete airplane, demonstrate that the Connection

Machine systems are suitable for these applications. Performance comparisons are also

carried out with the vector computers Cray Y-MP and Convex C-1.

ii

Contents

Abstract . ii

1. Introduction . 1

2. The Connection Machine systems CM-2 and CM-200 2

2.1. Hardware description . 2

2.2. Fortran 90 . 4

3. Implicit iterative �nite element solver 5

3.1. Implicit time-marching algorithm 6

3.2. Preconditioned matrix-free GMRES algorithm 7

4. Implementational aspects . 11

4.1. Parallel data structures . 11

4.2. Fortran 77 to Fortran 90 conversion 12

5. Communication issues . 14

5.1. Gather operation . 14

5.2. Scatter operation . 16

5.3. Mapping . 17

5.4. Comparison of various communication algorithms 18

6. Numerical examples and benchmarks 20

6.1. Three-dimensional blunt body 21

6.2. Falcon Jet at level cruise . 22

6.3. Falcon Jet in a crosswind . 27

7. Conclusions . 30

Acknowledgements . 31

References . 32

iii

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 1

1. Introduction

Engineers have always been looking for techniques to improve the design of products.

This has led to the development of complex models to represent more closely the physics

of designs. For example, an aerodynamicist may consider viscous e�ects, turbulence and

combustion, among others. At the same time, the engineer wants to improve the accuracy

of calculations by re�ning the discretization of the computational domain and by modeling

more complicated geometries. Unfortunately, all these e�orts increase the need for memory

and computation time required to obtain a solution. Classical vector supercomputers have

been shown to be close to their performance limits, and it appears that they will not be able

to keep up with the computing power required by the scienti�c community in the future.

On the other hand, massively parallel computers have already shown great promise and

are expected to be the ones which will solve the Grand Challenges of the 1990's [1].

The �nite element method has taken the lead as an industrial numerical tool because

of its ability to handle complex con�gurations through the use of unstructured meshes.

However, there has been some scepticism in the community about how well �nite ele-

ment methodologies would perform on massively parallel computers. Our objective is to

demonstrate that such computers are suitable for �nite element techniques in large-scale

computational
uid dynamics. We have chosen to work on the Connection Machine sys-

tems CM-2 and CM-200 built by Thinking Machines Corporation because they appeared

as the most mature massively parallel computers both in terms of hardware and software.

Finite element methods for structural analysis have been implemented on the Connection

Machine system CM-2 by Johnsson and Mathur [2, 3], Belytschko, et al. [4] and Farhat,

et al. [5], among others. Two-dimensional CFD codes using �nite element (see [6]) and

�nite volume techniques (see [7] and references therein) have also been implemented on

the Connection Machine system CM-2. These investigations demonstrated the potential

of the CM-2 for �nite element applications.

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 2

An outline of this paper follows: Brief descriptions of the Connection Machine sys-

tems CM-2 and CM-200 hardware and of Fortran 90 constructs are given in Section 2.

The solution strategy is presented in Section 3. Implementation and communication issues

are discussed in Sections 4 and 5, respectively. Numerical examples in Section 6 illustrate

the techniques we have used on the Connection Machine systems. Finally, conclusions are

drawn in Section 7.

2. The Connection Machine systems CM-2 and CM-200

2.1. Hardware description

The Connection Machine systems CM-2 and CM-200 are single instruction-multiple

data (SIMD) massively parallel computers (see [8] and [9] for technical references). These

systems can be viewed as supercomputers having up to 2;048
oating-point units (also

called processing nodes) arranged in an eleven-dimensional binary cube topology (2;048 =

2

11

since each axis is of length two in a binary cube.) Each processing node is composed

of 32 one-bit processors and one 64-bit
oating-point accelerator, a routing chip and some

auxiliary hardware, and up to 4 Mbytes of memory. There is a 32-bit wide data path

between each processing unit and its local memory. Each pair of neighboring processing

nodes are connected by two bidirectional channels for data transfer. Figure 1 presents a 16-

processing node con�guration. The Connection Machine system CM-2 operates at a clock

frequency of 7 MHz, and the system CM-200 at 10 MHz. There are some minor di�erences

in the hardware to accommodate the di�erence in clock frequency. User programs can

execute on either system without change.

The Connection Machine systems supports two modes of communication. Nearest-

neighbor communication is supported by the \NEWS grid" (North-East-West-South). It

consists of an array mapping procedure to the memory of the processing nodes such that

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 3

adjacency is preserved [10], and of communication routines for accessing data in adjacent

processing nodes. This mapping and communication strategy is very e�cient for structured

grid applications. The mapping is controlled by compiler directives. For Connection

Machine Fortran, a dialect of Fortran 90 as described brie
y below, \NEWS grid" is the

default mapping. The alternative mapping use the standard binary encoding of array

indices.

Nearest neighbor communication as de�ned by a \NEWS grid" is not feasible for

unstructured meshes, like those used in many �nite element applications. Communica-

tion between arbitrary memory locations in the distributed memory is required. On the

Connection Machine systems, such communication is handled by the routing hardware.

Communication issues for �nite element methods are detailed in Section 4.

processing node

Figure 1. Connection Machine systems CM-2 and CM-200

binary cube topology (16 processing nodes).

The Connection Machine system CM-2 or CM-200 is connected to a front-end com-

puter (a Sun SPARC workstation in our case) running an extended version of UNIX that

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 4

allows for the control of the Connection Machine system. The user edits and compiles the

code on the front-end computer before attaching to the Connection Machine system for

execution. A high-speed input/output system, with up to eight 40 Mbytes/s channels and

100 Mbytes/s HIPPI channels, is available for parallel mass storage and graphics.

2.2 Fortran 90

The Fortran 90 programming language is a new standard derived from Fortran 77. It

is a superset of the latter to ensure compatibility and includes a new set of programming

features such as:

1. Array operations with array control statements. The following Fortran 90 example,

with its Fortran 77 equivalent, illustrates these new capabilities. It represents a

conditional summation of two arrays of size N:

Fortran 90 Fortran 77

WHERE (A > 0.0)

C = A + B

END WHERE

DO 10 I = 1, N

IF (A(I) .GT. 0.0) THEN

C(I) = A(I) + B(I)

END IF

10 CONTINUE

Note the conciseness of the Fortran 90 constructs. The programming style is there-

fore much closer to the formulas used in mathematical modeling of scienti�c and

engineering problems.

2. Many new intrinsic procedures that include mathematical expressions and array ma-

nipulation functions. All these procedures make Fortran 90 a complete programming

language for scienti�c applications.

3. Dynamic memory allocation. This feature is absent in Fortran 77. The lack of dynam-

ic memory allocation often lead to complex programming constructs for applications

where storage is a crucial issue. Dynamic allocation now allows the programmer to

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 5

de�ne arrays where needed, and storage to be discarded when the execution exits the

subroutine.

4. First signs of an object-oriented style of programming with tools such as pointers,

modules and new control constructs.

For an in-depth description of Fortran 90, the reader should consult Metcalf and Reid [11].

The Connection Machine Fortran [12] (abbreviated as CMF in the remainder of this

paper) includes all the Fortran 90 syntax necessary to write data parallel �nite element

applications, though it does not yet contain all the features of the new Fortran standard.

CMF also has a few non-Fortran 90 extensions, some of which were included in proposals

for the new language but excluded from the �nal de�nition of the language. One of

these extensions is the FORALL statement, used in Section 5.2, which acts like a parallel

DO loop. We have refrained from using nonstandard features in our code to simplify its

port to other platforms in the future. Compiler directives, known as LAYOUT directives, are

available to control the allocation of array elements to the memory of the processing nodes.

The \NEWS grid" allocation is enforced through the :NEWS directive, and the allocation

through the conventional binary encoding through the :SEND directive. An array axis can

also be made local to the memory of a processing node though the :SERIAL directive. In

addition, the length of the segment of an array axis mapped to a processor can be changed

through the use of axis weights. These compiler directives a�ect the data allocation of a

single data array. The layout of di�erent arrays can be made to conform with each other

through the :ALIGN directive (by default, the CMF compiler allocates all arrays of the

same shape in the same way). The application of LAYOUT directives to the �nite element

data structures we use, is described in Section 4.1.

3. Implicit iterative �nite element solver

The time-dependent compressible Navier-Stokes equations are discretized using a

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 6

space-time Galerkin/least-squares variational formulation. This �nite element method has

been introduced and analyzed by Hughes and Johnson and their respective co-workers.

The reader is referred to [13] and references therein for a description of the formulation

implemented in our �nite element program.

3.1. Implicit time-marching algorithm

At each discrete time t

n

, �nite element discretization of the compressible Navier-

Stokes equations leads to the following nonlinear problem:

Given the solution vector
e
v

(n�1)

at time t

n�1

, and a time increment �t, �nd the

solution vector
e
v at time t

n

, which satis�es the nonlinear system of equations

e

G(
e
v;
e
v

(n�1)

;�t) = 0 (1)

e

G is a system of nonlinear functionals of
e
v and of parameters

e
v

(n�1)

and �t. This system

is solved for
e
v by performing a succession of linearizations through a truncated Taylor

series expansion of

e

G. This leads to a set of linear systems of equations of the form

e

J

(i)

e
p

(i)

= �

e

R

(i)

(2)

where

e

J

(i)

=

@

e

G

@
e
v

(
e
v

(i)

;
e
v

(n�1)

;�t) (3)

e
p

(i)

def

=
e
v

(i+1)

�
e
v

(i)

(4)

e

R

(i)

=

e

G(
e
v

(i)

;
e
v

(n�1)

;�t) (5)

e
v

(i)

and
e
v

(i+1)

being the approximations of
e
v at iterations i and i + 1, respectively.

e

R

is the residual of the nonlinear problem and

e

J is the consistent Jacobian associated with

e

R. The consistent Jacobian is often replaced by a Jacobian-like matrix

e

J leading to a

more stable time-marching algorithm (see Johan, et al. [14]). A residual-like vector

e

R

associated with

e

J can be de�ned as

e

J

def

=

@

e

R

@
e
v

(6)

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 7

The complete algorithm is summarized in Box 1. In this algorithm, N

max

is the

maximum number of time steps; i

max

is the maximum number of Newton iterations; and

e
v

(0)

is the initial guess of the problem. For steady-state computations, it is su�cient to

set i

max

= 1. A detailed study of time-marching schemes for space-time �nite element

methods has been carried out by Shakib, et al. [13].

Box 1 - Implicit Time-marching Solution Algorithm.

Given N

max

, i

max

and
e
v

(0)

, proceed as follows:

(Loop over time)

For n = 1; 2; . . . ;N

max

(Newton-type algorithm)

e
v

(0)

e
v

(n�1)

For i = 0; 1; . . . ; i

max

� 1

Solve

e

J

(i)

e
p

(i)

= �

e

R

(i)

for
e
p

(i)

e
v

(i+1)

e
v

(i)

+
e
p

(i)

e
v

(n)

e
v

(i

max

)

3.2. Preconditioned matrix-free GMRES algorithm

A scaling (or preconditioning) transformation is �rst applied to the system of equa-

tions

e

J
e
p = �

e

R to nondimensionalize it and improve its conditioning. We have used a

block-diagonal preconditioner as it has been shown to be both inexpensive and e�cient

(see Shakib, et al. [15]). The size of the blocks equals the number of degrees of freedom

per node. Let

f

W be the nodal diagonal blocks of the left-hand-side matrix

e

J . Since our

�nite element formulation generates symmetric positive-de�nite nodal diagonal blocks,

f

W

accommodates a Cholesky factorization

f

W =

e

U

T

e

U (7)

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 8

A two-sided preconditioning step is then applied to

e

J
e
p = �

e

R, leading to the scaled

system of equations J p = �R with

J =

e

U

�T

e

J

e

U

�1

(8)

p =

e

U
e
p (9)

R =

e

U

�T

e

R (10)

This preconditioned system of equations is solved using the Generalized Minimal

RESidual (GMRES) algorithm. This algorithm was introduced by Saad and Schultz [16].

Its e�ectiveness for computational
uid dynamics problems has been demonstrated by sev-

eral research groups (see, for example, [14, 15, 17, 18]). The GMRES algorithm computes

an approximate solution p

0

+ z, where p

0

is an initial guess (usually taken to be 0) and z

is in the Krylov space K

def

= fr

0

;J r

0

; . . . ;J

k�1

r

0

g. r

0

= �R�J p

0

is the residual and

k is the dimension of K. The vector z is solution of the least-squares problem

min

z2K

k �R �J (p

0

+ z)k (11)

An orthonormal basis of K, U

k

= [u

1

;u

2

; . . . ;u

k

], is constructed using the modi�ed Gram-

Schmidt algorithm. In turn, a (k + 1)� k upper Hessenberg matrix H

k

satisfying

J U

k

= U

k+1

H

k

(12)

is generated. Let z =

P

k

i=1

y

i

u

i

and e = fkr

0

k; 0; . . . ; 0g

T

. The relation (12) is used to

reduce the minimization problem (11) to

min

y2R

ke�H

k

yk (13)

The minimizer of (13) is obtained using the Q-R algorithm. The complete GMRES

algorithm is presented in Box 2. "

tol

is the nondimensional convergence tolerance of the

algorithm; and l

max

is the maximum number of GMRES cycles. It is possible to perform

the Q-R factorization during the generation of the basis U

k

, and to stop the formation of

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 9

the vectors when the convergence check is satis�ed. This more e�cient GMRES algorithm

is described by Shakib, et al. [15]. The implementation of the GMRES algorithm on the

Connection Machine systems CM-2 and CM-200 is described in Section 4.2.

Box 2 - GMRES Algorithm.

Given J , R, k, "

tol

and l

max

, proceed as follows:

(Initialization)

" "

tol

kRk

p = 0

(GMRES Cycles)

For n = 1; 2; . . . ; l

max

u

1

 �R�J p

e fku

1

k; 0; . . . ; 0g

T

u

1

u

1

ku

1

k

(GMRES Iteration)

For i = 1; 2; . . . ; k

(Matrix-Vector Product)

u

i+1

 J u

i

(Modi�ed Gram-Schmidt Procedure)

For j = 1; . . . ; i

�

i+1;j

 (u

i+1

;u

j

)

u

i+1

 u

i+1

� �

i+1;j

u

j

(End Modi�ed Gram-Schmidt Procedure)

h

i

 f�

i+1;1

; . . . ; �

i+1;j

; ku

i+1

kg

T

u

i+1

u

i+1

ku

i+1

k

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 10

(End GMRES Iteration)

H

k

 [h

1

; . . . ;h

k

]

Solve minke�H

k

yk for y using the Q-R algorithm

(Solution Update)

p p+

k

X

j=1

y

j

u

j

(Convergence Check)

If ke�H

k

yk � ", Exit l loop

(End GMRES Cycles)

Return

Since the matrix J is a Jacobian-like matrix, the matrix-vector products J u

i

of the

GMRES algorithm can be replaced by the one-sided �nite di�erence stencil

J u

i

�

R(v + �u

i

) �R(v)

�

(14)

where v is the current solution and � is a small scalar. This approximation circumvents

the need for computing and storing the left-hand-side matrix J , thus saving a substan-

tial amount of storage. Matrix-free techniques for �nite element applications have been

analyzed by Johan, et al. [14].

Note that this implicit iterative scheme reduces to computing a succession of block-

diagonal preconditioners

f

W and residual vectors

e

R, or residual-like vectors

e

R. The classi-

cal technique for evaluating

f

W and

e

R is �rst to compute the element arraysw

e

and r

e

and

then obtain the global preconditioner and residual by performing an assembly operation,

i.e.,

f

W =

n

el

A

e=1

w

e

and

e

R =

n

el

A

e=1

r

e

where n

el

is the number of elements. The basics of �nite element programming can be

found in [19]. A description of the parallel implementation of the above techniques are

presented in the following section.

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 11

4. Implementational aspects

Our Fortran 90 �nite element program for the Connection Machine systems was de-

rived from a highly vectorized Fortran 77 program written by Shakib and Johan [20]. The

conversion to the new Fortran standard was necessary to achieve parallel execution on the

Connection Machine systems, since the CMF compiler does not recognize Fortran 77 con-

structs as parallel instructions. The parallel data structures chosen for the implementation

and the work required for the conversion process are described in the following sections.

4.1. Parallel data structures

Appropriate data structures are essential to achieve good performance on a massively

parallel computer. A description of possible data structures for �nite element methods

and a detailed analysis of their storage and arithmetic requirements can be found in [21].

Di�erent data structures have also been analyzed by Farhat, et al. [7] for �nite volume

and �nite element applications in computational
uid dynamics. A reduced number of

data structures will limit the amount of communication required between the di�erent

data sets. Some authors have proposed a single data structure. However, having only one

data set seemed cumbersome in our implementation, with a possible loss of �nite element

generality. Therefore, we have adopted the following two data structures:

1. At the element level, i.e., during the computation of the element arrays w

e

and r

e

,

the elements are assigned to the processing nodes of the Connection Machine systems.

It is possible to have several elements per processing node, leading to the notion of

virtual processing: Each processing node performs operations on a certain number

of elements in a sequential fashion. The allocation of multiple elements to a node is

handled by the CMF compiler, and the scheduling of the execution by the Connection

Machine Run-Time System.

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 12

2. At the GMRES algorithm level, we assign the nodes of the mesh to the processing

nodes with possible virtual processing. All the dot product and DAXPY operations

[22] of the GMRES algorithm (as described in Box 2) are then executed in parallel

over the nodes (with an additional global sum for the dot product operation).

Note that these data structures are both the most \natural" and the simplest to use in a

general �nite element program. Experience has shown that simplicity and e�ciency are

tightly coupled in data parallel programming.

All the arrays of the two data structures are allocated in the distributed memory

of the Connection Machine systems through the dynamic allocation capability of Fortran

90, brie
y described in Section 2.2. The mapping of array elements to the memory of the

processing nodes is controlled by the LAYOUT directives in order to minimize communication

needs. No communication is necessary in referencing array elements to the same node. As

an example of the use of LAYOUT directives, consider the array RES(NDOF,NUMNP) containing

the global residual. NDOF and NUMNP are the number of degrees of freedom per node and

the number of nodes, respectively. The directive RES(:SERIAL,:NEWS) for the layout will

ensure that the �nite element nodes are spread as evenly as possible across the processing

nodes (the :NEWS directive), while the degrees of freedom of each node are stored on the

same processing node (the :SERIAL directive).

4.2. Fortran 77 to Fortran 90 conversion

The absence of dynamic memory allocation in Fortran 77 has led programmers to

simulate their own dynamic allocation. This is usually done by de�ning a large one-

dimensional array and then storing all the data in it. This feature had to be eliminated

during the conversion to Fortran 90 to achieve the proper layout of the data structures

described above. Each array is dimensioned in the routine where it is needed and then

passed to subsequent subroutines.

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 13

The CMF compiler parallelizes only Fortran 90 array operations. Therefore, all the

DO loops enumerating the nodes and the elements and the operations thereupon had to be

replaced by array operations. This change involved merely editing work on the vectorized

code. The simplicity of the conversion showed us that vectorization and data parallelism

are actually two almost identical notions, both based on the concept of nonrecurrence in

the operations. An operation which can be vectorized can also be parallelized.

The GMRES algorithm presented in Box 2 is implemented by distributing the work-

load between the Connection Machine system CM-2 or CM-200 and the front-end comput-

er: All matrix-vector products and DAXPY operations are performed on the Connection

Machine systems. However, the entries of the Hessenberg matrix, resulting from dot prod-

uct operations, are stored in the memory of the front-end computer. The minimization

problem solved using the Q-R algorithm is then performed on the front-end computer.

This strategy is without any measurable loss in e�ciency because the size of the least-

squares problem is small (the dimension of the Krylov space has been in the range 5 to 15

for all the
uid
ow problems we have solved). Timings have shown that the matrix-vector

products account for almost all the computing cost of the GMRES algorithm, the other

operations having a negligible impact.

The overall structure of the program remained identical throughout the conversion

process, implying that the initial phase of the port was a fairly trivial operation. However,

rewriting some parts of the code to take advantage of the Fortran 90 constructs and

to optimize memory usage and execution rate [23] was a more lengthy process. The �nal

version of the parallel code has several advantages over the Fortran 77 version: it is shorter

by about 30% and easier to read due to the array syntax, promising simpli�ed maintenance

of the program. Adding new features to the program is now an easier task. We hope other

hardware vendors will provide Fortran 90 compilers, and C compilers possessing similar

attributes, on their computers in the near future.

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 14

5. Communication issues

Inter-processing node communication on parallel computers is often viewed as the

major di�culty for programmers. Communication can represent a substantial part of the

total run-time, thus a�ecting the overall e�ciency of the program. The current CMF com-

piler does not recognize special forms of communication to translate them into optimal

code. Optimizing communication is indeed a nontrivial task, and the subject of leading-

edge compiler research [24]. Meanwhile optimizing routing of data between processing

nodes requires specialized routines written in a low-level language. But, many commu-

nication operations are generic, and communication libraries have emerged as means of

providing both e�ciency and portability.

The following sections describe the gather and scatter operations, which are the

only two types of communications performed by our �nite element program. The issue

of mapping the data onto the processing nodes is also discussed. Finally, a performance

comparison of the possible options for the gather/scatter operations on the Connection

Machine system CM-2 is presented.

5.1. Gather operation

The computation of the element data w

e

and r

e

presented in Section 3.2 requires the

knowledge of the current solution at the element nodes v

e

. The vector v

e

is obtained by

gathering the values from the nodal solution vector
e
v. This simply consists of an indirect

addressing via the mesh connectivity array. The gather operation is sometimes referred to

as localization, or accumulation. In Fortran 90, this operation can be written

DO I = 1, NEN

DO N = 1, NDOF

VL(I,N,:) = V(N,IEN(I,:))

END DO

END DO

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 15

where VL(NEN,NDOF,NUMEL) is the array containing v

e

; V(NDOF,NUMNP) contains
e
v and

IEN(NEN,NUMEL) is the mesh connectivity array (see Hughes [19]). The scalar NUMEL is the

number of elements; and NEN is the number of element nodes, e.g., NEN = 4 for a linear

tetrahedron.

The above code fragment is recognized for parallel execution over the elements by the

CMF compiler. However, the executable code generated by the compiler will call for the

router to compute the addresses of the data to be gathered each time such an operation is

required. The trace of the routing activity, i.e., the paths of all elements being moved, is the

same for every gather operation as long as the connectivity and its layout do not change.

Hence, the addresses and the routing information only need to be computed once for a

given connectivity, and the information stored and reused for subsequent gather operations.

The time expended in computing the routing information amounts to a couple of gather

operations. Hence, saving the routing information also yields a performance improvement

for slowly changing connectivities. The saving in communication time is achieved at the

expense of some additional storage required to save the trace.

The CMSSL (Connection Machine Scienti�c Software Library) [25] primitives

sparse util gather setup and sparse util gather are used to compute and save the

trace, and to perform the actual communication. The performance of these routines for

general �nite element applications is given in [26] along with a description of the method-

ology implemented in the primitives. The gather algorithm used in this implementation

is a two-step process: First, the nodal data are duplicated as many times as there are ele-

ments connected to each node. Then, these duplicated data are sent through a one-to-one

mapping to the corresponding elements. The preprocessing step computes this one-to-one

communication pattern. In our �nite element program we use a slightly modi�ed version

of the CMSSL sparse util gather routine. The modi�cation facilitates the simultaneous

handling of several degrees of freedom per node.

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 16

5.2. Scatter operation

Once the element data w

e

and r

e

are computed using a so-called \embarrassingly

parallel algorithm" (i.e., one for which no communication is required), their components

are scattered to the nodes (also said to be \assembled at the nodes") to evaluate the global

preconditioner

f

W and residual

e

R. The scatter operation is a send operation with addition

of the colliding data at the nodes. The assembly of the residual can be written

DO I = 1, NEN

DO N = 1, NDOF

FORALL (NEL = 1:NUMEL) RES(N,IEN(I,NEL)) = RES(N,IEN(I,NEL))

& + RL(I,N,NEL)

END DO

END DO

where RL(NEN,NDOF,NUMEL) is the element residual array.

The scatter operation presented above is not parallelized by the current CMF com-

piler. However, several alternatives are available to the programmer:

1. A coloring technique often used on vector computers to implement the scatter oper-

ation can also be used here. Such techniques are described in [15] and [27]. The idea

is to decompose the mesh into blocks of disjoint elements. It can be easily shown

that the number of blocks equals the maximum number of elements connected to a

node. Consequently, this method is not suitable on the Connection Machine systems

when the number of blocks becomes large (large tetrahedral meshes often require

up to 100 blocks), because the routing activity corresponding to each block is not

load-balanced. It will therefore not be analyzed in the remainder of this paper.

2. The CMF utility library provides a CMF send add routine. This routine uses the

combining facility of the communication hardware, allowing all data to be scattered in

parallel while the required additions are being performed in parallel. It is considered

as the reference case for assembly operations in our performance benchmarks.

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 17

3. As with the gather operation, the routing activity corresponding to the nodal con-

nectivity can be precomputed and the information used subsequently. The CMSSL

routines sparse util scatter setup and sparse util scatter [25] perform the

preprocessing and the assembly, respectively. The scatter operation is done in a

fashion similar to the gather operation: First, the element data are sent to the nodes

using a one-to-one mapping, i.e., two or more data values arriving in the same node at

the same time are stored in di�erent memory locations on the same processing node.

Then, all the values at a node are added up. For some �nite element application-

s, this two-step procedure has been shown to be more e�cient than the combining

feature of the Connection Machine systems CM-2 and CM-200 router. The CMSSL

sparse util scatter routine was modi�ed in a way similar to the gather routine to

simultaneously handle multiple degrees of freedom.

These gather/scatter communication procedures are very general and can be used for

any �nite element application. The e�ciency of the di�erent options described above are

presented in Section 5.4.

5.3. Mapping

\Mapping" the elements and the nodes onto the distributed memory of the Con-

nection Machine systems is the procedure that determines on which processing node the

element- or node-based data will be stored. The mapping of the data can a�ect the per-

formance of the communication routines presented in the previous sections by reducing

communication channel and router contentions. Our objective is to �nd a suitable map-

ping procedure for unstructured �nite element problems.

The LAYOUT directives provide some means for controlling the mapping at compile-

time. The user can also control the data mapping by renumbering the nodes and the

elements of the �nite element mesh. Mapping techniques attempting to preserve locality

for the Connection Machine systems, i.e, attempting to map interconnected nodes and

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 18

elements to processing nodes close to each other, have been developed by Farhat, et al. [5]

and Hammond and Schreiber [28]. These techniques are deterministic. Stochastic tech-

niques are often used for very complex optimization problems. Simulated annealing is one

such technique [29], which has been applied to data mapping on the Connection Machine

systems CM-2 and CM-200 by Dahl [30]. Although these methods can generate very ef-

�cient mappings, the computation time required to compute a mapping may represent a

substantial part of the total processing time. This fact makes them unsuitable for the

types of applications we consider, since adaptive remeshing may be necessary.

Another approach to reduce the contention and minimize the communication time is

to use randomized routing as proposed by Valiant, et al. [31, 32], or a random mapping

as proposed by Ranade, et al. [33, 34]. In randomized routing, data is sent to a random

location before being sent to the �nal destination. It can be shown that the risk of severe

contention is extremely small for such a routing [31]. In [33], it is shown that a random

allocation achieves the same goal for any deterministic, direct routing scheme between

source and destination. The randomized allocation is an option in the CMSSL arbitrary

sparse BLAS functions. Similar utility functions were used for the �nite element applica-

tion reported in [26]. The short preprocessing time for the randomized mapping makes it

suitable for a wide range of computational
uid dynamics applications, from steady com-

putations to arbitrary Lagrangian-Eulerian calculations. However, randomized mappings

are not necessarily optimal for �nite element problems, and the search for other mappings

will be the subject of future research.

5.4. Comparison of various communication algorithms

A simple
uid
ow example was chosen to illustrate the performance of the di�erent

communication strategies presented in the previous sections. It consists of a Mach 2

inviscid
ow over a wedge. The problem is described by Figure 2. The computational

domain (x; y; z) was discretized using 32 � 2 � 96 trilinear bricks. A 2 � 2 � 2 Gaussian

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 19

integration rule was used on each element. Ten time steps at a CFL number of 10 were

performed using the matrix-free GMRES algorithm to obtain convergence to steady-state.

This test case was solved in double precision on a 128-processing node Connection Machine

system CM-2 running CMSS version 6.0 (Connection Machine System Software) and CMF

version 1.0.

x

z

M = 2

M = 1:64

10

�

29

�

Shock

Figure 2. Mach 2 oblique shock. Problem schematics.

Computation and communication times are reported in Table 1. The �rst row cor-

responds to a calculation using the Fortran 90 code segment presented in Section 5.1 for

the gather operation and the CMF send add utility routine for the scatter operation. The

CMSSL communication routines were used in the computation whose timings are present-

ed in the second row of the table. In row 3, a randomized mapping was used together

with the CMSSL routines. Speedups of factors of 2 for the gather operation and 5 for

the scatter operation were obtained using the CMSSL routines without randomization of

the data allocation, increasing substantially the overall e�ciency of the �nite element pro-

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 20

gram. Applying the random mapping to the data improved the communication times by

an additional 20 to 25%. The good performance of the CMSSL primitives led us to solve

the more complex
ows presented in the next sections.

Table 1. Mach 2 oblique shock. Computation and communication elapsed

times on a 128-processing node Connection Machine system CM-2

using an 8-point integration rule.

Gather Computation Scatter

indirect addr. / CMF send add 127 s 237 s 209 s

CMSSL (no randomization) 62 s 237 s 42 s

CMSSL (random mapping) 46 s 237 s 33 s

6. Numerical examples and benchmarks

Three-dimensional compressible
ow problems were solved using the techniques pre-

sented in the previous sections to further evaluate their performance. A random mapping

was used for all cases, as well as a local time-stepping strategy associated with the matrix-

free GMRES algorithm. The dimension of the Krylov space was set to 5 and the tolerance

"

tol

equaled 0.1. All examples were computed in double precision. A comparison with the

Fortran 77 version of the code running on vector computers was made when possible. All

computations were initiated with the free stream
ow. No attempt was made to project

coarse mesh solutions on re�ned meshes. It is believed that this approach would have con-

siderably shortened the solution times. In addition, it is believed that multigrid methods

are capable of dramatically reducing solution times. These will be studied in future work.

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 21

6.1. Three-dimensional blunt body

Figure 3. 3-D blunt body.

Surface mesh of body

and plane of symmetry.

Figure 4. 3-D blunt body.

Mach number contours

in the plane of symmetry.

This example consists of a Mach 3 viscous
ow around a blunt body made of a

half-sphere extended by a cylinder. The angle of attack is 0 degree and the Reynolds

number is 1;000 based on the radius of the sphere. The computation was only performed

for half the body since the
ow is symmetric. The mesh contains 3;566 nodes and 13;280

tetrahedra. A 4-point integration rule was used in the elements. A view of the symmetry

plane and half-body is shown in Figure 3. This problem was solved on a 128-processing

node Connection Machine system CM-2 running CMSS version 6.0 and CMF version 1.0.

The Mach number contours in the symmetry plane after 250 time steps are depicted in

Figure 4. One can note the bow shock and the development of the boundary layer on the

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 22

body. Timings for the �rst 20 time steps are presented in Table 2. The same problem was

also solved on a Convex C-1 using the vectorized version of the �nite element program. No

timings are reported for the gather/scatter on the Convex C-1, because their vectorization

has made them a negligible part of the total time. Several remarks can be made:

1. The 128-processing node Connection Machine system CM-2 is about 12 times faster

than the Convex C-1, bringing this Connection Machine system con�guration to the

performance level of a one-CPU Cray 2.

2. The computation time accounts for two-thirds of the total time. The ratio between

computation and communication times is a function of the number of integration

points in the elements. If 1-point element quadrature had been used, the computation

time would have been substantially smaller. However, the communication time would

have remained the same since it is only a function of the number of nodes and

elements. This fact is evident in some of the following performance results.

Table 2. 3-D blunt body. Computation, communication and total elapsed

times on a 128-processing node Connection Machine system CM-2

and a Convex C-1 using a 4-point integration rule.

Gather Computation Scatter Total

CM-2 (CMSS 6.0) 39 s 170 s 44 s 253 s

Convex C-1 | | | 3003 s

6.2. Falcon Jet at level cruise

A transonic inviscid
ow at Mach 0.85 was computed around a generic Falcon Jet at

a 1 degree angle of attack. The Falcon Jet airplanes are designed and built by Dassault

Aviation. The calculation was only done on half the airplane since the
ow is symmetric.

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 23

Figure 5. Falcon Jet. Coarse surface mesh.

The �rst mesh used had 10;202 nodes and 54;957 tetrahedra. The surface mesh for the

whole jet can be seen in Figure 5. A 4-point integration rule was used on the elements. A

converged solution was obtained after 50 time steps at a CFL number of 10. This problem

was solved on a 512-processing node Connection Machine system CM-2 as well as on a

one-CPU Cray Y-MP and a Convex C-1. The timings are presented in Table 3. First, a

comparison was made between versions 6.0 and 6.1 of CMSS, showing a 15% speedup of

the total execution time when upgrading the software. Most of the gain is due to faster

communication. CMSS 6.1 yielded a 19-minute run time on the Connection Machine

system CM-2 versus 39 minutes on the one-CPU Cray Y-MP. The execution rate on the

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 24

Cray Y-MP, measured using the hardware performance monitor, is 178 MFlops/s. Hence,

an e�ective performance of 370 MFlops/s is achieved on a 512-processing node Connection

Machine system CM-2 running CMSS version 6.1. A mini-supercomputer like the Convex

C-1 is not an option for these types of computations.

Table 3. Falcon Jet at level cruise (coarse mesh). Computation, communi-

cation and total elapsed times on a 512-processing node Connection

Machine system CM-2, a one-CPU Cray Y-MP and a Convex C-1

using a 4-point integration rule.

Gather Computation Scatter Total

CM-2 (CMSS 6.0) 236 s 897 s 234 s 22 min 47 s

CM-2 (CMSS 6.1) 148 s 833 s 150 s 18 min 51 s

Cray Y-MP | | | 39 min 26 s

Convex C-1 | | | 20 h 42 min

The same problem was solved on a 2;048-processing node Connection Machine system

CM-2 running CMSS 6.0 using a �ner mesh. It has about 8 times more data than the

previous mesh, with 77;279 nodes and 439;272 elements (see the surface mesh for the

complete airplane in Figure 6). The number of equations equals 386;395. The Mach

number contours are shown in Figures 7 and 8. Note the supersonic pockets on the outward

part of the wings followed by recovery shocks (adaptive mesh re�nement is necessary to

better resolve the latter). The quality of the calculation can also be deduced from the Mach

number contours at the top of the cockpit. For well-designed airplanes cruising at transonic

speeds (the Falcon Jet family of airplanes falls in that category), the Mach number on the

cockpit remains just below the sonic point during cruise. Supersonic pockets would be

followed by recovery shock waves, generating additional unwanted drag. The computation,

done under the same conditions as the one on the coarse mesh, took 47 minutes and 50 s,

indicating that scalability is achieved since the ratio (elapsed time)�(number of processing

nodes)/(number of elements) is very close to that for the previous case.

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 25

Figure 6. Falcon Jet. Fine surface mesh.

Finally, the �ne mesh was used to compare the performances of a 2;048-processing

node Connection Machine system CM-2 running CMSS version 6.0 and a system CM-

200 running CMSS version 6.1. A 1-point element integration rule was used and 60 time

steps at a CFL number of 20 were calculated. The timings are reported in Table 4. The

CM-200 running CMSS version 6.1 o�ered a performance about twice that of the CM-2

running CMSS version 6.0. Note that the ratio between computation and communication

has decreased compared to previous computations. This decrease is due to the reduction

in the number of integration points per element, as described in Section 6.1.

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 26

Figure 7. Falcon Jet at level cruise. Mach number contours.

Figure 8. Falcon Jet at level cruise. Mach number contours.

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 27

Table 4. Falcon Jet at level cruise (�ne mesh). Computation, communication

and total elapsed times on 2;048-processing node Connection Machine

system CM-2 and CM-200 using a 1-point integration rule.

Gather Computation Scatter Total

CM-2 (CMSS 6.0) 1051 s 1326 s 967 s 55 min 44 s

CM-200 (CMSS 6.1) 453 s 800 s 415 s 27 min 48 s

6.3. Falcon Jet in a crosswind

This last example is an excellent illustration of how the Connection Machine systems

can be used as a design tool by the aerodynamicist. The complex
ow around the Falcon

Jet in a 120-knot approach con�guration with a 15-knot crosswind component was solved

on a 2;048-processing node Connection Machine system CM-200 running CMSS version

6.1 and CMF version 1.1. The airplane is approaching on a 3-degree glide slope with a

3-degree nose-up attitude, generating an angle of attack of 6 degrees. A 7.2-degree yaw

angle is applied to allow the airplane to remain on the localizer. The outside temperature

is 15

�

C, yielding a Mach number of 0.18. The descent pro�le and the airplane attitude

are shown in Figure 9. Note that the wind sock in Figure 9 indicates a right crosswind.

Therefore, the
ow comes from the left in a reference frame attached to the airplane. The

mesh generated for this calculation has 150;724 nodes and 878;544 tetrahedra (see Figure

6 for the surface mesh). The number of equations equals 753;620. The
ow �eld had to be

computed around the complete airplane since it is nonsymmetric. A 1-point integration

rule was used and 250 time steps were performed at a CFL number of 5. The timings can

be found in Table 5. The Mach number contours on the jet are presented in Figures 10

and 11.

Valuable information can be deduced from such a computation. For example, an

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 28

Side view

Top view

7:2

�

6

�

15-knot

wind

Figure 9. Descent pro�le of the Falcon Jet in a crosswind. The wind direction

is indicated by the wind sock on the top view.

approximation of the aerodynamic forces and moments can be calculated for a study of

the
ight stability in that con�guration. The air mass
ux in the engine intakes can also

be computed, allowing the aerodynamicist to determine how the engines will perform in

a strong crosswind, especially the leeward side engine. Most important of all is that such

computations can be done in 1 to 2 hours on a 2;048-processing node Connection Machine

system CM-200. Several con�gurations can therefore be evaluated per day, accelerating

considerably the design of the aircraft. The next generation of massively parallel super-

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 29

Figure 10. Falcon Jet during a crosswind approach. Mach number contours.

Figure 11. Falcon Jet during a crosswind approach. Mach number contours

viewed from the free stream direction.

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 30

computers should accommodate data parallel computational aerodynamics codes capable

of automated optimal design, as computation time for full airplane con�gurations promises

to be reduced to at most a few minutes.

Table 5. Falcon Jet during approach. Computation, communication and total

elapsed times on a 2;048-processing node Connection Machine system

CM-200 using a 1-point integration rule.

Gather Computation Scatter Total

CM-200 (CMSS 6.1) 1331 s 2055 s 1490 s 1 h 21 min

7. Conclusions

An implicit iterative �nite element solver for computational
uid dynamics has been

ported to the Connection Machine systems CM-2 and CM-200 using a data parallel style

of programming. The use of Fortran 90 constructs simpli�ed the implementation process,

leading to a clearer and better structured program. Communication routines provided

through the Connection Machine Scienti�c Software Library improved substantially the

overall e�ciency. Performance benchmarks on industrial examples having close to one

million degrees of freedom are the �nal proof that data parallel programming on the Con-

nection Machine systems is suitable for solving CFD problems on unstructured meshes.

All techniques presented in this paper are open for considerable improvement. Dur-

ing the course of the implementation and benchmarking of our �nite element code, the

performance of some of the system software functions improved by 50% or more. More-

over, improved CMF compilers will appear in the near future, generating faster code at

the processing node level. Improvements in mapping and communication procedures are

also possible. It is the current thrust of our research. Last, but not least, is the evolution

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 31

in hardware technology. A recent example is the announcement of the massively parallel

Connection Machine system CM-5, which is expected to give an order of magnitude im-

provement in performance over the CM-2. Initial work on this system has shown great

promise for our methodology. In the coming years, we anticipate developments in massive-

ly parallel supercomputing to completely revolutionize computational engineering analysis

and design.

Acknowledgments

The authors would like to express their appreciation to Steve Daly, John Kennedy and

Arthur Raefsky for their interest in this work and their helpful comments. This research

was supported by the NASA Langley Research Center under Grant NASA-NAG-1-361

and Dassault Aviation, Saint Cloud, France. The blunt body and Falcon Jet meshes were

generated by Dassault Aviation. Access to Connection Machine systems was provided

by Thinking Machines Corporation, the Los Alamos Advanced Computing Laboratory

and the Department of Geophysics at Stanford University. Access to a Cray Y-MP was

provided by the San Diego Supercomputer Center.

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 32

References

[1] \Grand Challenges: High performance computing and communications. The FY 1992

US research and development program," Report by the Committee on Physical, Math-

ematical, and Engineering Sciences; Federal Coordinating Council for Science, Engi-

neering and Technology; O�ce of Science and Technology Policy.

[2] K.K. Mathur and S.L. Johnsson, \The �nite element method on a data parallel com-

puting system," International Journal of High Speed Computing, 1 (1989) 29{44.

[3] S.L. Johnsson and K.K. Mathur, \Experience with the conjugate gradient method for

stress analysis on a data parallel supercomputer," International Journal for Numerical

Methods in Engineering, 27 (1989) 523{546.

[4] T. Belytschko, E.J. Plaskacz, J.M. Kennedy and D.L. Greenwell, \Finite element anal-

ysis on the Connection Machine," Computer Methods in Applied Mechanics and En-

gineering, 81 (1990) 229{254.

[5] C. Farhat, N. Sobh and K.C. Park, \Transient �nite element computations on 65;536

processors: The Connection Machine," International Journal for Numerical Methods

in Engineering, 30 (1990) 27{55.

[6] R.A. Shapiro, \Implementation of an Euler/Navier-Stokes �nite element algorithm

on the Connection Machine," AIAA 29th Aerospace Sciences Meeting, AIAA-91-0438,

1991.

[7] C. Farhat, L. F�ezoui and S. Lant�eri, \Computational
uid dynamics with irregular

grids on the Connection Machine," Computer Methods in Applied Mechanics and En-

gineering, to appear.

[8] Connection Machine model CM-2 technical summary, Version 6.0, Thinking Machines

Corporation, Cambridge, MA, 1990.

[9] The Connection Machine CM-200 series technical summary, Thinking Machines Cor-

poration, Cambridge, MA, 1991.

[10] S.L. Johnsson, \Communication E�cient Basic Linear Algebra Computations on Hy-

percube Architectures," Journal of Parallel and Distributed Computing, 4 (1987) 133{

172.

[11] M. Metcalf and J. Reid, Fortran 90 explained, Oxford University Press, Oxford, Great

Britain, 1990.

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 33

[12] CM Fortran reference manual, Versions 1.0 and 1.1, Thinking Machines Corporation,

Cambridge, MA, 1991.

[13] F. Shakib, T.J.R. Hughes and Z. Johan, \A new �nite element formulation for com-

putational
uid dynamics: X. The compressible Euler and Navier-Stokes equations,"

Computer Methods in Applied Mechanics and Engineering, 89 (1991) 141{219.

[14] Z. Johan, T.J.R. Hughes and F. Shakib, \A globally convergent matrix-free algorithm

for implicit time-marching schemes arising in �nite element analysis in
uids," Com-

puter Methods in Applied Mechanics and Engineering, 87 (1991) 281{304.

[15] F. Shakib, T.J.R. Hughes and Z. Johan, \A multi-element group preconditioned GM-

RES algorithm for nonsymmetric systems arising in �nite element analysis," Computer

Methods in Applied Mechanics and Engineering, 75 (1989) 415{456.

[16] Y. Saad and M.H. Schultz, \GMRES: A generalized minimal residual algorithm for

solving nonsymmetric linear systems," SIAM Journal of Scienti�c and Statistical Com-

puting, 7 (1986) 856{869.

[17] L.B. Wigton, N.J. Yu and D.P. Young, \GMRES acceleration of computational
uid

dynamics codes," AIAA 7th Computational Fluid Dynamics Conference, AIAA CP854,

1985.

[18] M. Mallet, J. P�eriaux and B. Stou�et, \Convergence acceleration of �nite element

methods for the solution of the Euler and Navier-Stokes equations of compressible

ow," Notes on Numerical Fluid Mechanics, Vieweg, 20 (1988) 199{210.

[19] T.J.R. Hughes, The �nite element method: Linear static and dynamic �nite element

analysis, Prentice-Hall, Englewoods Cli�s, NJ, 1987.

[20] F. Shakib, Z. Johan and T.J.R. Hughes, \ENSA-3C: A space-time Galerkin/least-

squares �nite element program to analyze the compressible Euler and Navier-Stokes

equations for general divariant gases," User's Manual, Stanford University, Stanford,

CA, 1990.

[21] S.L. Johnsson and K.K. Mathur, \Data structures and algorithms for the �nite ele-

ment method on a data parallel supercomputer," International Journal for Numerical

Methods in Engineering, 29 (1990) 881{908.

[22] C.L. Lawson, R.J. Hanson, D.R. Kincaid and F.T. Krogh, \Basic Linear Algebra

Subprograms for Fortran Usage," ACM TOMS, 5 (1979) 308{323.

Z.Johan, T.J.R.Hughes, K.K.Mathur and S.L.Johnsson preprint 34

[23] G. Sabot, J. Marantz and D. Gingold, \CM Fortran optimization notes: Slicewise

model," Technical Report, TMC-166, Thinking Machines Corporation, Cambridge,

MA, 1991.

[24] M. Chen, Y.-I. Choo and S.L. Johnsson, Compiler Technology for Massively Parallel

Architectures, DARPA Contract to Yale University and Thinking Machines Corpora-

tion, 1991.

[25] CMSSL for CM Fortran, Version 2.2, Thinking Machines Corporation, Cambridge,

MA, 1991.

[26] K.K. Mathur, \On the use of randomized address maps in unstructured three-

dimensional �nite element simulations," Technical Report, TMC-37/CS90-4, Thinking

Machines Corporation, Cambridge, MA, 1990.

[27] R.M. Ferencz, \Element-by-element preconditioning techniques for large-scale, vector-

ized �nite element analysis in nonlinear solid and structural mechanics," Ph.D. Thesis,

Stanford University, Stanford, CA, 1989.

[28] R. Schreiber and S. Hammond, \Mapping unstructured grid problems to the Connec-

tion Machine," RIACS Technical Report, 90.22, 1990.

[29] S. Kirkpatrick, C.D. Gellatt, Jr., and M.P. Vecchi, \Optimization by simulated an-

nealing," Science, 220 (1983) 671{680.

[30] E.D. Dahl, \Mapping and compiled communication on the Connection Machine Sys-

tem," Proceedings of the 5th Distributed Memory Computing Conference, IEEE Com-

puter Society Press, Los Alamitos, CA, 1990.

[31] L. Valiant, \A scheme for fast parallel communication," SIAM Journal of Computing,

11 (1982) 350{361.

[32] L. Valiant and G.J. Brebner, \Universal schemes for parallel communication," Pro-

ceedings of the 13th ACM Symposium on the Theory of Computation, ACM, (1981)

263{277.

[33] A.G. Ranade, \How to emulate shared memory," Proceedings of the 28th Annual Sym-

posium on the Foundations of Computer Science, IEEE Computer Society Press, Los

Alamitos, CA, (1987) 185{194.

[34] A.G. Ranade, S.N. Bhatt and S.L. Johnsson, \The
uent abstract machine," Ad-

vanced Research in VLSI, Proceedings of the 5th MIT VLSI Conference, MIT Press,

Cambridge, MA, (1988) 71{93.

