
Communication and I/O Libraries
The Harvard community has made this

article openly available. Please share how
this access benefits you. Your story matters

Citation Johnsson, S. Lennart and Patrick Worley. Communication and I/O
Libraries. 1991. Harvard Computer Science Group Technical Report
TR-02-91.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:23518807

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/154869414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Communication%20and%20I/O%20Libraries&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23518807
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Communication and I/O Libraries

Chair: S. Lennart Johnsson

Scribe: Patrick Worley

TR-02-91

February 1991

Parallel Computing Research Group

Center for Research in Computing Technology

Harvard University

Cambridge, Massachusetts

Air Force O�ce of Scienti�c Research grant: 44-752-9000-2.

National Science Foundation grant: 44-752-9705-2.

Workshop summary from the DARPA Workshop on Scalable Libraries, Oakridge National

Laboratories, September 1990.

1

Communication and I/O Libraries

Chair: Lennart Johnsson

Scribe: Patrick Worley

October 16, 1990

Introduction

Standardized communication and I/O libraries are necessary tools in developing and

maintaining scalable libraries. Scalable libraries must perform correctly and e�ciently for

a large range of problem sizes and for a diverse set of computer architectures. High per-

formance architectures of the future will be characterized by a large number of processors

and a physically distributed memory. High performance on computers with large numbers

of processors requires e�cient communication and I/O algorithms, which are necessarily ar-

chitecture dependent. Communication libraries serve to shelter both users and developers of

numerical libraries from data motion through the communication system without sacri�cing

performance. Libraries also enhance programming e�ciency by reuse of tested and debugged

code.

One of the most important purposes of a library is to enable programs to be written

that are both portable and e�cient across a range of architectures. But the number of

processors and the nature of the interconnection network a�ect the choice of data structure

that application programs use, and the data structures determine both the syntax and

semantics of communication functions that deal with the data. Therefore, any standardized

communication library must support a rich assortment of data structures and must represent

a consistent design to which it is simple to add new data structures and communication

functions.

Most programming languages are designed for a shared, global address space. It is

generally agreed that such a treatment of memory is preferred whenever performance is

not an issue. But, in distributed-memory machines, data allocation and data movement

between processors are critical factors in determining performance. Some programming

languages o�er higher-level data manipulation functions that can be implemented e�ciently

2

even when the data structures are distributed across processors. Examples of such operations

are reduction, copy, and reshaping. Inclusion of such functions in a communication library

provides portability even between shared- and distributed-memory computers, and provides

a simple programming environment that still supports e�cient implementations for many

applications.

In order to produce and maintain a communication library with the attributes discussed

so far, it is important that a layered approach be used. The top layer should be independent

of the computer architecture, but the lower level(s) may have a dependence upon the archi-

tecture and upon the programmingmodel. Experience with current multiprocessors indicates

that a relatively small set of low-level primitives may su�ce. Higher-level communication

functions can be created through composition of low-level functions.

I/O and secondary storage systems for multiprocessors are currently undergoing very

rapid development, and little experience with such systems is available. While it is clear that

I/O libraries are crucial to the e�cient use of large multiprocessor systems, the speci�cation

of such libraries are premature at this time.

Speci�cation of a Communication Library.

The purpose of a communication library is to allow application codes to be portable

without sacri�cing performance. The functions included in the library form an extension to

the programming language being used to express the computations, and must be capable

of dealing with the data structures provided by the language. The de�nition of a commu-

nication function is often partially determined by the structure of the data on which it is

operating, especially when the data object is distributed across the multiprocessor. Some of

the characteristics that a�ect the speci�cation of a communication function are

� the data structures (array, linked list, tree, etc.) supported by the function. Note that

the global and local data structures may have di�erent properties.

� how the data structure is partitioned across the memory heirarchy. For example, if an

instance of a data structure has several elements per processor or memorymodule, then

common allocation schems are cyclic/wrap/scatter, consecutive/block, and random.

3

This characteristic is also often refered to as data layout, or data geometry.

� subselection/context (as in gather/scatter).

� reshape/equivalence. Data structures often need to be dynamic, but even when a static

data structure is su�cient, programming convenience and memory requirements may

require that a given data structure be viewed in several di�erent ways. Reshaping

serves this purpose. Communication functions must use this information for a correct

result.

� the size of the data structures relative to the machine size.

The functions that need to be included in a communication library initially are a function

of the needs of the important application codes. Some of the functions that frequently occur

in application codes include

� remote assignment and references

� broadcast,

� global exchange,

� transposition,

� bit-reversal,

� vector-reversal,

� arbitrary permutations,

� random permutations,

� reduction with various operators (add, and, or, ...),

� scatter,

� shift,

4

� convolution,

� butter
y network emulation, and

� PM2I network emulation (cyclic reduction, divide-and-conquer, ...),

all of which must be quali�ed by each of the �ve characteristics described previously. The

functionality of the lowest level of primitives will also depend upon the capabilities of the

underlying hardware and system software. For example, the in
uence of the native mode

of the communication system, such as packet or circuit switched, pipelined or not, blocking

scheme, operating system overhead, etc., are likely to be important at the lower levels of

the library. The implementations of the higher-level functions may also need to be machine

speci�c when e�ciency is required.

Missing Science

Communication libraries can be, and have been, designed and implemented for dis-

tributed memory architectures. There is no missing hardware technology preventing the

design or implementation of such libraries. However, the following unresolved issues make

the design of communication libraries di�cult.

The lack of standards in any form has hindered codes that use libraries from being

portable. Existing communication libraries are often speci�c to particular brands of dis-

tributed memory architectures, and portability of libraries across machines is often limited.

De�ciencies in existing compiler technologies increase the number of functions required

in a communications library. This leads to the risk of a \combinatorial explosion" in the size

of communication libraries that are designed to assure high system utilization for the data

motion patterns used in application programs.

Limited understanding of e�cient data motion in arbitrary networks may force a redesign

of communication libraries should networks other than meshes, Boolean cubes, and butter
y

networks be used in the future. The search for \universal" networks with good properties

under a variety of conditions is still an active area of research.

The lack of language standards makes any design much more complicated. While there is

little hope for a resolution of this issue in the near future, a decision on a reasonable subset

5

of languages to support must be made at the outset of any design e�ort.

Studies are needed of the communication needs of existing large-scale applications and

algorithms. If the design is done right, adding new functions to the library will be straight-

forward, but prioritizing the design of the functions to be included initially will help promote

the utility of the library and encourage vendors to adopt it.

Finally, experience with I/O systems and display storage for large multiprocessor systems

is sorely lacking. Until more is known on what is possible and how these systems will and

should be used, design of the I/O component of any communication library will necessarily

be signi�cantly delayed.

Research Issues

Application codes designed for scalable high-performance computers must be investigated

to determine what high-level functions are most important to implement initially, and what

data structures, selection mechanisms, etc. must be supported. The library designers must

worry about how to layer the primitives to build a library with a consistent design that is

still easily extensible. Algorithm research is necessary to indicate how to implement most

e�ciently both the low-level and high-level functions. Research is also needed into how best

to encapsulate machine parameters for the high-level routines, that is, how to guarantee

e�cient implementations while incurring as little machine dependence as possible. Research

is required into the incorporation of instrumentation and debugging hooks, and into what

level of error checking should be supported. Once a generally accepted form of the library

is available, research can begin on what hardware and operating system support is most

suitable of the agreed-upon functions.

Expectations

At the end of two years, we would like to see the speci�cation of a nontrivial set of

procedural communication primitives that are suitable for FORTRAN90 and programs in

some equivalent C dialect, such as C++ or C*. Moreover, it is important that a prioritized

list of high-level communication functions be compiled, with the design and implementation

of the most important ones already begun.

6

As part of the research e�orts during the �rst two years, case studies of existing appli-

cation codes should be used to identify a signi�cant number of high-level functions that are

to be included in the library, and a consistent user interface should be designed. Moreover,

e�cient implementations of all primitives should be established, as well as for many of the

important high-level routines. Research should identify how to layer the library to permit

extensibility, and initial attempts to provide instrumentation and debugging hooks should

be made.

At the end of �ve years, we hope that a vendor-independent standard communication

library will have been established by consensus within the user community, with vendor

support for the standard being vigorously lobbied for. By this time, research should have

indicated what sort of hardware and/or operating system support is most appropriate for

the library, and what tradeo�s must be taken into account. The library should continue to

grow throughout these next three years as more high-level routines are included to take into

account the results of further case studies, as well as feedback from the user community.

New functions should also have been included to support communication functions across

networks of heterogeneous machines. We also expect functions supporting I/O to have been

identi�ed as more experience with such peripherals becomes available.

Conclusions

A communication library is a necessary component of any scalable library. A standard

set of interfaces is critical to enable high performance computing technology to evolve in-

dependent of the evolution in applications. A good design and e�cient implementation of

communication libraries is necessary for high performance computing technology to become

accessible to scientists and engineers requiring large scale computation. The speci�cation,

design, and implementation of standard communication libraries is urgently needed, and

should commence immediately.

