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Figure 1: From a set of discretized functions (a), we compute their Radon transform (b) and perform 1D mass transportation problems (c).
We perform an inverse Radon transform on the result (d) to obtain the desired interpolated function (e).

Abstract

The optimal mass transportation problem provides a framework for
interpolating between different probability density functions (pdfs),
warping one function toward another. Interpolating between two
arbitrary pdfs can be challenging, but interpolating between more
than two pdfs just remains untractable. We propose an approxi-
mation of such interpolations based on 1D projections, that is ef-
ficiently solved via Radon transforms. We observe the expected
translational behavior of this interpolation on smooth 2D functions,
and prove that it corresponds to the exact interpolant in a few par-
ticular cases.

1 Introduction

Mass transportation consists in moving a probability density func-
tion (pdf) f0 toward a pdf f1 in a way that minimizes the effort
needed to perform this motion [Villani 2003]. The effort is ex-
pressed as the cost it would require to move a pile of sand rep-
resenting f0 toward a hole made of f1, by summing the cost
(typically a squared distance) for each particle of sand to reach
its destination in the hole (see Fig. 2). The mass transporta-
tion problem leads to an interpolation, called displacement in-
terpolation, that consists in moving the function f0 partway to-
ward f1, leading to an interpolated pdf ft (t ∈ [0, 1]). This has
shown to have a wide range of applications, from computer graph-
ics [Bonneel et al. 2011, Rabin et al. 2011, Matusik et al. 2005] to
image processing [Pitié et al. 2005, Haker et al. 2004], due to
the characteristic advection produced during the interpolation.

While this interpolation can be very efficiently performed in
one dimension, extending it to multiple dimensions is much
more challenging and leads to computationally expensive solu-
tions [Bonneel et al. 2011]. In addition, further extending the ap-
proach to an interpolation between more than two pdfs remains un-
tractable.

We propose an approximation of the displacement interpolation
based on 1D projections, efficiently performed with a Radon trans-
form. A benefit of this approach is the handling of a displace-
ment interpolation between any number of pdfs. This interpolant
is called a Wasserstein barycenter, and the above approximation,
the sliced Wasserstein barycenter. We evaluate our algorithm on
smooth pdfs and images, and show that the expected translational
behavior is obtained for smooth pdfs. While we show results in
two dimensions, generalizing the method to higher dimensions is

f0

f1

ft

Figure 2: The mass transportation problem consists in optimally
moving a pile of sand represented by the function f0 toward a hole
made by the function f1. This problem is also known as the Monge
problem. During the motion, at an intermediate time t, an inter-
polated function ft is obtained. This is called the displacement
interpolation, and is generalized as a Wasserstein barycenter when
considering more than N = 2 functions as input.
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straightforward. We demonstrate that our procedure also produces
the exact Wasserstein barycenter in the case of translated and scaled
functions, as well as isotropic Gaussians. We typically obtain the
sliced Wasserstein barycenter of three functions more than four or-
ders of magnitude faster than state of the art approaches for the ex-
act Wasserstein barycenter of two functions [Papadakis et al. 2013].
We finally show how an existing formula used in computer graph-
ics [Matusik et al. 2005] relates to the Wasserstein barycenter.

2 Previous work

2.1 Discrete Mass Transportation

Given a pdf f0(xi) whose values are known at locations xi ∈ Rn,
and f1(xj), xj ∈ Rn, the mass transportation problem with
quadratic cost consists in solving for a transport plan ti,j describing
the amount of mass at location xi in f0(xi) that should move to-
ward xj so as to minimize a transportation cost. This is performed
by solving:

argminti,j ||xi − xj ||
2 ti,j (1)

subject to ti,j ≥ 0 (2)∑
i

ti,j = f1(xj) (3)∑
j

ti,j = f0(xi) (4)

where Eq. 1 is the cost of moving all the mass, Eq. 2 enforces
the positivity of the transported mass ti,j , and Eqs. 3 and 4 indi-
cate that the entire mass going to xj (resp. coming from xi) is
equal to f1(xj) (resp. f0(xi)). Solving for ti,j and moving the
mass only partway between xi and xj defines the displacement
interpolation formulated in a discrete way. This problem can di-
rectly be solved via linear programming [Bonneel et al. 2011], or
rather formulated in a continuous fashion by accounting for the
particular structure of the quadratic cost problem. For instance, a
fluid dynamic interpretation has been exploited by Benamou and
Brenier [2000] which requires solving for a space-time Laplace
equation. Haker et al. uses Brenier’s polar factorization theorem
to build a curl-free velocity field solving the transportation prob-
lem [Haker et al. 2004]. Proximal splitting has shown to improve
performances [Papadakis et al. 2013] as well as geometric meth-
ods [Mérigot 2011]. These approaches however remain complex,
and limited to the interpolation between two pdfs.

Despite this complexity in the general case, a few particular cases
remain tractable, even for interpolating between multiple pdfs. A
first instance is the interpolation between multiple n-dimensional
Gaussian densities that can be performed with a fixed-point method
(or with a closed-form solution in the case of two n-dimensional
Gaussians only) [Ferradans et al. 2013]. A second instance is the
interpolation between arbitrary one-dimensional pdfs, as explained
next.

2.2 Sliced approximations

Computing an optimal Wasserstein barycenter on the real line –
i.e., a displacement interpolation between multiple 1D pdfs fi
weighted by ωi with

∑N
i=1 ωi = 1 – is a straightforward pro-

cess [Agueh and Carlier 2011]. Benefitting from the monotonous

t
s

θ
f(x,y)

f(θ,s)^

Figure 3: The 2D Radon transform projects a function f(x, y) onto
a 1D slice perpendicular to θ. Using different values of θ, we obtain
the transformed function f̂(θ, s).

transport plan, Rabin et al. [Rabin et al. 2011] hence perform a
stochastic gradient descent to compute an approximate Wasserstein
barycenter of point distributions that sample several pdfs. This ap-
proximation is called the Sliced Wasserstein Barycenter, and con-
sists in projecting and ordering these points on random 1D lines,
ultimately solving for a set of 1D mass transportation problems.
The main difference with our method is that we are directly inter-
ested in the interpolated pdf rather than a set of points that samples
it. Pitié et al. [2005] use a similar projection-based approach to
transfer colors in images.

3 Sliced Wasserstein barycenter

Relying on 1D projections, we first describe how we simplify the
exact Wasserstein barycenter on the real line. We then describe how
these projections are used to build an approximate n-dimensional
interpolation.

3.1 Multi-marginal interpolation on the real line

Agueh and Carlier [2011] introduced the notion of barycenter in the
Wasserstein space as a way to characterize a weighted average of
probability distributions, and provided a practical method to com-
pute it on the real line. We further simplify the expression of this
Wasserstein barycenter, and show that it can simply be computed
as the derivative of the inverse of a weighted sum of inverse cumu-
lative density functions, as has been intuitively used by Matusik et
al. [2005] in the context of texture interpolation.

Assuming that fi (for i = 1 . . . N ) has no atom and has finite sec-
ond moments, the barycenter f̄ = bar(fi, ωi) can be computed as
follows. Let Fi be the cumulative density function (cdf) of fi:

Fi(t) =

∫ t

0

fi(x) dx (5)

Let F−1
i denote the generalized inverse:

F−1
i (t) = inf{x ∈ R;Fi(x) > t} (6)
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And let ] denote the push-forward operator for densities, that is, in
our case and for a nondecreasing function T ,

f̄ = T]f1 ⇐⇒ f1(x) = f̄(T (x))T ′(x)

Finally, let Ti = F−1
i ◦ F1. Then, the barycenter can be computed

as [Agueh and Carlier 2011]:

f̄ = bar(fi, ωi) =

(
N∑
i=1

ωiTi

)
]f1

We now show how this can be further simplified. We have,

f1(x) = f̄(T (x))T ′(x) ⇐⇒ F1 = F̄ ◦ T

with F̄ the cdf of f̄ . It follows that

F̄−1 =

(
N∑
i=1

ωiTi

)
◦ F−1

1

Using the expression of Ti, we obtain the inverse cumulative den-
sity function of the barycenter as:

F̄−1 =
N∑
i=1

ωiF
−1
i (7)

The resulting 1D function can finally be inverted using Eq.6 and
differentiated to obtain the barycenter f̄ . This corresponds to the
formula used by Matusik et al. [2005].

3.2 Interpolation in R2

We build upon the Sliced Wasserstein Barycenter but directly per-
form our computations with pdfs rather than a sampling of the pdfs.
We rely on the Radon transform [Deans 2007], typically used in
medical imaging for the tomography problem, to represent a pdf in
Rn in the space of its projections on (n − 1)-D hyperplanes. To
make the implementation simpler, we will focus on the case n = 2
for which the Radon transform consists in projecting a 2D image
on 1D lines.

In 2D, the Radon transform is expressed as:

f̂(θ, s) = R(f(x, y))(θ, s) (8)

=

∫ +∞

−∞
f(t sin θ + s cos θ,−t cos θ + s sin θ) dt (9)

and intuitively represents the sum of the function f(x, y) accumu-
lated in the direction (sin θ, cos θ) (see Fig.3). The inverse Radon
transform is expressed as:

f(x, y) =

∫ 2π

0

f̂(θ, x cos θ + y sin θ) dθ

and can be regarded as the inverse operation, bringing back the
transformed function f̂ back into its original domain. Fortunately,
both the Radon transform and its inverse can be efficiently com-
puted via fast Fourier transforms, thanks to the Fourier Slice theo-
rem [Deans 2007].

To compute the Sliced Wasserstein Barycenter of f1, f2, . . . , fN
with weights ω1, ω2, . . . , ωN , we first Radon transform each
fi(x, y) to obtain f̂i(θ, s). We then consider each f̂i(θ, ·) as a set of
1-D functions (or slices) parameterized by θ. For each slice θ, we
compute a barycenter ˆ̄f(θ, ·) = bar(f̂i(θ, ·), ωi) using Eq. 7. We
finally compute the inverse Radon transform of ˆ̄f(θ, s) to obtain
the sliced Wasserstein barycenter f̄(x, y) (see Alg. 1 and Fig.1).

Algorithm 1 Compute f̄ = bar(fi, ωi)

f̂i(θ, s)← radon(fi(x, y))
for all angle θj , j = 1 . . .K do
F̂i ← cdf(f̂i(θj , .)), ∀i, using Eq. 5
F̂i
−1

is obtained from F̂i, ∀i, with Eq. 6
ˆ̄F−1(θj , ·)←

∑N
i=1 ωiF̂i

−1

ˆ̄F (θj , ·) is obtained from ˆ̄F−1(θj , ·) using Eq. 6
ˆ̄f(θj , ·) is obtained from ˆ̄F (θj , ·) by numerical differentiation

end for
return f̄(x, y)← inverse radon( ˆ̄f(θ, s))

3.3 Properties

From properties of the Radon transform and displacement interpo-
lation on the real line, we show through the following three theo-
rems that the sliced Wasserstein barycenter recovers certain desir-
able properties of the exact Wasserstein barycenter.

Theorem 1. The sliced Wasserstein barycenter of multiple trans-
lated copies of a probability distribution with density h is another
translated copy of h, and is equal to the exact Wasserstein barycen-
ter.

Proof. Let fi(x, y) = h(x− xi, y − yi). The Radon transform of
fi is given by f̂i(θ, s − xi cos θ − yi sin θ). For a given slice, the
1D Wasserstein barycenter ˆ̄f(θ, ·) is given by ˆ̄f(θ, s) = ĥ(θ, s −∑
i ωi(xi cos θ + yi sin θ)). This corresponds to the Radon trans-

form of f̄(x, y) = h(x−
∑
ωixi, y −

∑
ωiyi), as can be seen by

the change of variable t′ → t+
∑
ωi(xi cos θ− yi sin θ) in Eq. 9,

similarly to the exact Wasserstein barycenter [McCann 1997].

Theorem 2. The sliced Wasserstein barycenter of multiple uni-
formly scaled copies of a probability distribution with density h
is another uniformly scaled copy of h, and is equal to the exact
Wasserstein barycenter.

Proof. Let fi(x, y) = h(λix, λiy). The Radon transform of fi
is given by 1

λi
f̂i(θ, λis). For a given slice, the 1D Wasserstein

barycenter ˆ̄f(θ, ·) is given by ˆ̄f(θ, s) = ĥ(θ, s
∑
i ωiλi), up to

a constant scaling. This corresponds to the Radon transform of
f̄(x, y) = h(x

∑
ωiλi, y

∑
ωiλi), similarly to the exact Wasser-

stein barycenter [McCann 1997].

Theorem 3. The sliced Wasserstein barycenter of isotropic Gaus-
sians is equal to the exact Wasserstein barycenter.

Proof. The Radon transform of an isotropic 2D Gaussian
distribution N ((µx, µy), σ) is given by (formula adapted
from [Deans 2007] to non-centered Gaussians) :

f̂(θ, s) =
1√
2π

exp(−(s− µx cos θ − µy sin θ)2/(2σ2))

For a fixed θ, and up to a normalization constant, this is a 1D Gaus-
sian N (µx cos θ + µy sin θ, σ). The exact Wasserstein barycen-
ter of a set of 1D Gaussians bar(N (µi, σi), ωi) is a 1D Gaussian
N (
∑
ωiµi,

∑
ωiσi). It follows that the 1D Wasserstein barycen-

ter of each slice in the Radon domain is a Gaussian with averaged
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mean and standard deviation. We hence recognize the Radon trans-
form of a 2D Gaussian with averaged mean and standard devia-
tion. This coincides with the exact 2D Wasserstein barycenter of
isotropic Gaussians, and can also be seen as a corollary of theo-
rems 1 and 2.

However, the sliced barycenter of anisotropic Gaussians might not
remain Gaussian as in the exact case. This can be easily seen when
these Gaussians degenerate and become rank deficient1 (see Fig. 7,
top row). The sliced approximation is in general not equal to the
original problem. We evaluate the differences in Sec. 4.2.

4 Results and discussion

In this section, we provide implementation details and discuss our
results.

4.1 Implementation

We implemented our approach in Matlab. The cdf is computed
with the trapeze method, and the function inversion is done using
a linear search and a piecewise linear approximation of the func-
tion. The inverse Radon transform is computed by Matlab using a
linear interpolation and a Hann filter, and a discretization every one
degree (we did not notice further improvement by refining the dis-
cretization). Differentiation is performed using second order cen-
tered finite differences. Radon transforms are precomputed so that
multiple displacement interpolations can be performed on the same
functions with different parameters more efficiently.

4.2 Results

We analyze the method for both speed and accuracy. Although
we do not aim at accurately representing the exact Wasserstein
barycenter, we aim at loosely mimicking its behavior at a signifi-
cant speed improvement.

Speed: A typical interpolation of three two-dimensional pdfs dis-
cretized on a 1024× 1024 pixel grid requires 5 seconds for the ini-
tial Radon transforms, and 0.4 seconds to compute the barycenter
and perform the inverse Radon transform. After storing the initial
Radon transforms, we can typically compute 200 barycenters for
the same three functions, in approximately 88 seconds, on a single
core with unoptimized Matlab code. For comparison, the interpola-
tion between two two-dimensions pdfs discretized on a 128 × 128
pixel grid requires 1721 seconds using [Papadakis et al. 2013], re-
suting in the exact interpolation, up to numerical precision (see
Fig. 4). Using a 128 × 128 discretization, our method requires
0.1 second to produce the sliced Wasserstein barycenter of three
functions, corresponding to a speedup of four orders of magnitude.

Qualitive results: In addition to the theoretical guaranties pro-
vided by this interpolation, we evaluate the sliced Wasserstein inter-
polation on several cases, including the interpolation between sums
of Gaussians (Fig. 4 and 5 left), smooth images (Fig. 5 right) and
photographs (Fig. 6). We show that interpolating between smooth
probability distributions often produce a desired motion, while it

1We thank Marie-Paule Cani for this example.

Figure 6: The sliced Wasserstein barycenter does not properly han-
dle non-smooth image interpolation as shown on this cloud exam-
ple, and exhibits slicing artifacts.

Figure 7: The sliced Wasserstein barycenter between two
anisotropic Gaussians does remain Gaussian, as shown with the
degenerate truncated Gaussian on the top row. A line segment is
not interpolated as a line segment (bottom row).

Figure 8: The sliced Wasserstein barycenter of four 2D distribu-
tions with equal weights.

may not be suited for image interpolation. We verify that the inter-
polation between isotropic Gaussians remains Gaussian (Fig. 1).
Interpolation between four distributions behaves similarly to the
case of three distributions (Fig. 8). In some highly anisotropic cases
(Fig. 7) the resulting distribution might not be appropriate.
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Figure 4: The sliced Wasserstein barycenter (left) does not, in general, produce the same result as the exact Wasserstein barycenter (right,
[Papadakis et al. 2013]). However, it is much faster (more than four orders of magnitude), works equally well for the barycenter of N > 2
probability distributions and shares similar properties.

Figure 5: The sliced Wasserstein barycenter properly advects smooth functions, as shown on this sum of 2D Gaussians (left) and hand drawn
non-centered blobs (right).

4.3 Conclusion

We have shown that a sliced Wasserstein barycenter can be ap-
propriate to interpolate between two smooth probability distribu-
tions, at a fraction of the cost of the exact computation, using
the Radon transform. It also provides the flexibility to interpolate
between more than two probability distributions. Samples drawn
from sliced Wasserstein barycenters have already found applica-
tions in computer graphics [Rabin et al. 2011], showing the practi-
cal importance of this approximation. We have demonstrated that
the sliced Wasserstein barycenter of isotropic Gaussians and of
translated and scaled distributions are equal to the exact Wasser-
stein barycenter. Further theoretical guarantees would provide in-
creased robustness in methods that make use the sliced approxima-
tion [Pitié et al. 2005, Rabin et al. 2011]. Although we focused on
the 2D case, the same principles apply in higher dimension. For in-
stance, the 3D case would amount to projecting onto planes, which
would then reduce to the 2D case. Such implementation could di-

rectly be handled with projections onto lines, as has been proposed
in [Rabin et al. 2011]. Finally, the Radon transform approach can
make it difficult to recover the transport plan. We hope that this
work will spur further research in efficient approximations of mass
transportation and Wasserstein barycenters in high dimension.
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AND AUJOL, J.-F. 2013. Optimal trans-
port mixing of gaussian texture models. In
Proc. SSVM’13.

[Haker et al. 2004] HAKER, S., ZHU, L., TANNENBAUM, A.,
AND ANGENENT, S. 2004. Optimal mass
transport for registration and warping. In-
ternational Journal of Computer Vision 60,
3, 225–240.

[Matusik et al. 2005] MATUSIK, W., ZWICKER, M., AND DU-
RAND, F. 2005. Texture design using a
simplicial complex of morphable textures.
In ACM Transactions on Graphics (TOG),
vol. 24, ACM, 787–794.

[McCann 1997] MCCANN, R. J. 1997. A convexity prin-
ciple for interacting gases. advances in
mathematics 128, 1, 153–179.
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