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Abstra
t

This paper analyzes and improves the re
ently proposed bins and balls signature (BiBa [23℄),

a new approa
h for designing signatures from one-way fun
tions without trapdoors.

We �rst 
onstru
t a general framework for signature s
hemes based on the balls and bins

paradigm and propose several new related signature algorithms. The framework also allows us

to obtain upper bounds on the se
urity of su
h signatures. Several of our signature algorithms

approa
h the upper bound. We then show that by 
hanging the framework in a novel manner we


an boost the eÆ
ien
y and se
urity of our signature s
hemes. We 
all the resulting me
hanism

Powerball signatures. Powerball signatures o�er greater se
urity and eÆ
ien
y than previous

signature s
hemes based on one-way fun
tions without trapdoors.

Keywords: One-time signature, signature based on one-way fun
tion without trapdoor, Power-

ball signature.

1 Introdu
tion

Although the speed of high-end pro
essors 
ontinues to steadily in
rease, we simultaneously witness

the proliferation of low-powered, resour
e-starved handheld devi
es (e.g. 
ell phone, pager, Palm

pilot). These handheld devi
es are designed for mobility and 
onvenien
e, and their 
omputation

power is limited by minimal mi
ropro
essors and energy resour
es.

1

Similarly, low powered 
om-

putation devi
es have been proposed to build sensor networks for measuring the weather or other

geographi
ally distributed phenomena. We 
olle
tively 
all handheld devi
es and sensor network

nodes with 
onstrained 
omputation and energy resour
es small devi
es. The widespread deploy-

ment of small devi
es with severe resour
e 
onstraints motivates the need for faster and simpler

signature me
hanisms, even though mi
ropro
essors 
ontinue to dramati
ally in
rease in speed. On

these small devi
es, even the most eÆ
ient asymmetri
 signature algorithms typi
ally require on

the order of se
onds to generate or verify a signature (assuming that the signature 
ode even �ts

into memory). Se
tion 7 reviews related work in eÆ
ient signature s
hemes.

Signatures based on one-way fun
tions without trapdoors (sometimes 
alled one-time signature

s
hemes) are an interesting alternative to signatures based on asymmetri
 
ryptography [4, 5, 14,

18, 19, 28℄. One of their main advantages is that these signatures only rely on a one-way fun
tion,

whi
h we 
an implement with a fast hash fun
tion (e.g. SHA-1 [22℄ or MD5 [29℄), or from a blo
k


ipher [16, 20, 26, 27℄.

These one-time signature s
hemes are orders of magnitude faster than traditional signatures, so

they may be an attra
tive alternative for small devi
es. However, some of these s
hemes have large

1

To save produ
tion 
osts, manufa
turer deploy minimal mi
ropro
essors for the required task. Even in the year

2000, 80% of all mi
ropro
essors shipped are 4-bit and 8-bit pro
essors [35℄.
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signatures, and 
an only sign a �xed number of messages per publi
 key. We review the merits and

drawba
ks of one-time signature s
hemes in Se
tion 7.

The re
ently proposed bins and balls (BiBa) signature is a promising new approa
h to mitigate

some of the drawba
ks of one-time signatures [23℄. We review BiBa in Se
tion 2. In Se
tion 3

we present an abstra
t framework for these types of signatures, whi
h allows us to present new

approa
hes in Se
tion 4 that are more se
ure. Our framework also allows us to analyze the se
urity

of these signature s
hemes (see Se
tion 5); we �nd that the se
urity of the basi
 BiBa signature as

well as several of our variations is 
lose to the theoreti
al bound.

In Se
tion 6 we extend our abstra
t framework and �nd an opportunity for a new signature

s
heme that improves the se
urity of the previous approa
h (given a 
ertain signature overhead).

From this framework, we derive the Powerball signature, a new one-time signature s
heme with low

overhead and high se
urity. We �nd that Powerball s
hemes are viable alternatives for signatures

in small devi
es.

2 Review of the BiBa Signature

This se
tion presents a brief review of the BiBa (bins and balls) signature algorithm [23℄. The

set of t se
ret balls 
onstitutes the private key PK

�1

= fB

1

: : : B

t

g. The publi
 key 
ommits

to all balls in the private key.

2

The publi
 key may be the 
on
atenation of t 
ommitments

PK = F (B

1

) jj : : : jj F (B

t

) = 


1

jj : : : jj 


t

, or the publi
 key may be the root of a Merkle hash

tree 
omputed over the se
ret balls [17℄. For simpli
ity of the following des
ription, we assume that

the publi
 key is the 
on
atenation of 
ommitments.

To sign message M , the signer 
omputes the hash of the message h = H(M) and uses h to

sele
t a one-way fun
tion g

h

from a family of hash fun
tions G (in the random ora
le model [2℄).

The hash fun
tion g

h

maps ea
h ball to one of the n bins. The signature is a 
olle
tion of balls

that produ
e a spe
ial pattern in the bins. A BiBa signature is a 
olle
tion of k balls that form a

k-way 
ollision under g

h

in one bin: hB

�

1

; : : : ; B

�

k

i where �

i

is the index in the publi
 key of the

ith ball in the signature.

To verify the signature hB

�

1

; : : : ; B

�

k

i on message M , the veri�er performs the steps: (1) 
he
k

that all balls of the signature are distin
t (B

�

i

6= B

�

j

for i 6= j); (2) verify the authenti
ity of the

balls using the publi
 key (
he
k that F (B

�

i

) = 


�

i

3

); (3) 
ompute h = H(M) and sele
t g

h

from

the one-way fun
tion family; (4) verify the k-way 
ollision (g

h

(B

�

1

) = : : : = g

h

(B

�

k

)).

Note that the probability P

s

that the signer 
an su

essfully sign a message is less than 1. To

deal with this problem, the signer 
an use a 
ounter value 
 as follows. The signer 
omputes the

hash of the message h = H(M jj 
) and uses h to sele
t the one-way fun
tion g

h

. If this does not

lead to a su

essful signature the signer 
an in
rement the 
ounter and try again. The signature

is then hB

�

1

; : : : ; B

�

k

; 
i. In this setting we may de�ne P

s

to be the probability that the signer


an su

essfully sign for a given value of 
. In the original BiBa paper a design goal was to have

P

s

� 1=2, so that on average only two values of 
 need to be tried.

2

A 
ommitment lo
ks in a se
ret s without revealing s. We use a one-way and weak 
ollision resistant fun
tion F

to 
ommit to a se
ret s: the 
ommitment is 
 = F (s). To open the 
ommitment, one publishes s and anybody 
an

verify that s really 
orresponds to 
: 
ompute F (s) and verify the equality 
 = F (s).

3

In pra
ti
e the singer 
ould help the veri�er by also sending the indi
es �

i

; this does not 
hange the se
urity of

the system sin
e the the forger 
ould easily 
hange these un
ommitted values.

2



k n P

f

k n P

f

2 762460 2

�19:5403

13 192 2

�91:0196

3 15616 2

�27:8615

14 168 2

�96:1001

4 3742 2

�35:6088

15 151 2

�101:3377

5 1690 2

�42:8912

16 136 2

�106:3119

6 994 2

�49:7855

17 123 2

�111:0802

7 672 2

�56:3539

18 112 2

�115:7250

8 494 2

�62:6386

19 104 2

�120:6079

9 384 2

�68:6797

20 96 2

�125:1143

10 310 2

�74:4851

21 89 2

�129:5147

11 260 2

�80:2237

22 83 2

�133:8758

12 222 2

�85:7386

23 78 2

�138:2788

Table 1: The se
urity of some BiBa instan
es. The signer knows t = 1024 balls and the adversary

has r = k balls. The table shows the probability of forgery P

f

to �nd a k-way 
ollision when

throwing k balls into n bins.

We de�ne P

f

as the probability that an atta
ker forges a signature after one attempt. We list

Table 1 from [23℄, whi
h lists P

f

for di�erent BiBa instan
es, where in ea
h 
ase the number of

bins n is 
hosen so P

s

� 1=2. To 
ompute the P

f

listed in the table, we assume that the atta
ker

knows the balls from one dis
losed signature, so P

f

=

1

n

k�1

.

3 A generalized setting

We may abstra
t the BiBa setting into a 
ombinatorial balls and bins setting as follows. The signer

has t balls, B

1

; B

2

; : : : ; B

t

, from a universe U

1

. The signer 
an 
onstru
t fun
tions g

h

i

, for i =

1; 2; : : :, so that the fun
tions g

h

i

map balls into bins, where the bins lie in a universe U

2

. We assume

that the fun
tions g

h

i

look random, so that we model the bin g

h

i

(B

j

) as a bin 
hosen independently

and uniformly at random from U

2

. A signature 
onsists of a fun
tion index i along with a set of k or-

dered pairs of balls and their 
orresponding bins, f(B

�

1

; g

h

i

(B

�

1

)); (B

�

2

; g

h

i

(B

�

2

)); : : : ; (B

�

k

; g

h

i

(B

�

k

))g.

For a signature to be valid, it must be a member of the set of valid signature patterns P , where

P � (U

1

� U

2

)

k

.

A forger 
an 
onstru
t fun
tions g

f

i

, for i = 1; 2; : : :, that also appear to map balls to bins

independently and uniformly at random. The forger, however, does not have a

ess to all t

balls, but only to balls used by the sender in a sent signature. In the 
ase where a set of

t balls is only used to 
onstru
t a single valid signature, the forger will only have a

ess to k

balls; this is the 
ase we 
onsider in detail here. The forger 
reates a su

essful signature forgery

f(B

�

1

; g

f

i

(B

�

1

)); (B

�

2

; g

f

i

(B

�

2

)); : : : ; (B

�

k

; g

f

i

(B

�

k

))g if this signature lies in the set of valid signa-

ture patterns P .

In the original BiBa paper, the set of valid signature patterns P 
onsisted of any set of k balls

that all fell in the same bin. The design goal that the su

essful signature probability P

s

be at least

1/2 determines the number of bins n that 
an be used. While this 
hoi
e is somewhat arbitrary, as

we shall see in our analysis in Se
tion 5, it is useful for 
omparison purposes and we will adopt it

hereon as well.
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4 Variations

In this se
tion we 
onsider other possible s
hemes based on our general framework. Some of our

examples prove better than the original BiBa s
heme in some 
ases; others are given simply as

instru
tional examples of what is possible. The variations listed are by no means exhaustive.

We provide limited numeri
al results, 
omparing our s
heme against the BiBa s
heme for the

range of P

f

values that are interesting for pra
ti
al appli
ations (roughly 2

�70

to 2

�90

).

� The bins 
orrespond to the range [0; n � 1℄ and a valid signature pattern 
onsists of k balls

that lie in distin
t bins a

1

; a

2

; : : : a

j

with k

i

balls in bin a

i

. As a spe
i�
 example, the k balls


ould lie in two distin
t bins ea
h with exa
tly k=2 balls. This is a natural generalization of

the BiBa s
heme that performs better for some parameter settings.

For example, let us 
onsider the 
ase where a valid signature pattern 
onsists of k balls with

k=2 balls in ea
h of two distin
t bins. The probability the forger su

eeds is

�

n

2

��

k

k=2

�

�

1

n

�

k

;

this is easily seen by multiplying the number of ways of 
hoosing two bins, the number of ways

of splitting the k balls between the bins, and the probability the balls land in the appropriate

bins.

In Table 2 below, we 
onsider some spe
i�
 examples where at least x balls are required to

land in ea
h of y distin
t bins, so that k = x � y. In all of these simulation results, we 
he
k

that P

s

� 1=2 over a series of 1; 000; 000 trials.

4

In all 
ases using two bins with k=2 balls a

signature performs better than the original BiBa s
heme by at least a fa
tor of 2.

k x y n P

f

10 5 2 1308 2

�75:85

12 6 2 796 2

�87:52

14 7 2 551 2

�98:53

12 4 3 2290 2

�87:96

12 3 4 6856 2

�87:57

Table 2: Results when a signature requires throwing k balls into y bins with x balls in ea
h bin.

� The bins 
orrespond to the range [0; n � 1℄ and a valid signature 
onsists of k balls falling

in sequential bins modulo n. For the forger, the probability that k balls form a signature

is just (1=n)

k�1

k!; there are n possible starting positions, and for ea
h starting position the

probability the k balls land in the appropriate k 
onse
utive bins in some order is (1=n)

k

k!.

This s
heme appears to perform slightly worse than the original BiBa s
heme, as shown in

Table 3, whi
h is also based on having P

s

� 1=2 over 1; 000; 000 trials.

� The balls lie in a universe [0; 2

z

), the bins 
orrespond to the range [0; n � 1℄, and a valid

signature pattern 
onsists of k balls B

�

1

< B

�

2

< : : : < B

�

k

falling in sequential bins in

order. That is, B

�

1

falls in the �rst bin in the sequen
e, B

�

2

in the se
ond, et
. This extends

4

Te
hni
ally, ensuring P

s

� 1=2 requires some statisti
al 
are; in pra
ti
e, we simply tested that if P

s

� 1=2, we

were obtaining results at least one standard deviation from the mean. Small variations in n yield minor variations in

P

f

, so we feel our results are a

urate enough for demonstrative purposes.

4



k n P

f

10 1489 2

�73:07

11 1318 2

�78:39

12 1188 2

�83:52

13 1087 2

�88:50

Table 3: Results when a signature requires k 
onse
utive non-empty bins.

k n P

f

10 290 2

�73:62

11 241 2

�79:13

12 205 2

�84:47

13 177 2

�89:61

Table 4: Results when a signature requires k 
onse
utive bins with balls in temporal order.

the previous example to in
lude a natural temporal ordering on the balls. One might think

the signer would have an advantage in this 
ase sin
e the sender 
an have several balls in a

bin, and therefore the e�e
t of the temporal ordering may be harsher for the forger than the

signer. Note the probability of a forgery is now just (1=n)

k�1

, mat
hing the original s
heme.

This modi�
ation improves over the previous s
heme slightly but the resulting numbers are

still not better than BiBa, as shown in Table 4. Again, the results are based on 1; 000; 000

trials.

� The n bins 
orrespond to

�

v

2

�

edges on a graph with v verti
es, and a valid signature pattern


onsists of k edges that form a 
y
le. While this s
heme sounds simple, in pra
ti
e it would

prove hard to implement. While algorithms for �nding k-
y
les in graphs exist, the best

known general algorithms are exponential in k [1, 39℄. (Sin
e these are random and fairly

sparse graphs, better algorithms may exist; still, this is a non-trivial problem.) Sin
e 
y
les

of length 4 are easier to �nd, we suggest the following variation.

� The n bins 
orrespond to

�

v

2

�

edges on a graph with v verti
es, and a valid signature pattern


onsists of k = 4k

1

edges that form k

1

vertex-disjoint 
y
les of length 4. Finding 
y
les

of length four 
an be done using matrix multipli
ation on the adja
en
y graph, and faster

algorithms are known [10℄. This approa
h still requires signi�
ant 
omputation for �nding a

signature, unlike the original BiBa s
heme; however, verifying a signature 
an still be done

qui
kly.

We 
onsider the spe
i�
 
ase of k = 12 and 
ompute the probability of a su

essful forgery.

There are

1

6

�

v

4

��

v�4

4

��

v�8

4

�

possible ways of 
hoosing the sets of verti
es that 
onstitute the three


y
les, and then three ways of orienting the verti
es within a 
y
le. Hen
e the probability of

a su

essful forgery is

27

6

�

v

4

��

v�4

4

��

v�8

4

�

12!

�

v

2

�

12

5



In simulations we �nd that 936 verti
es yields P

s

� 1=2. We did only simulations of 10,000

trials here, as we used simple matrix multipli
ation te
hniques to 
he
k for 
y
les of length

four. In this 
ase P

f

= 2

�89:28

. This is more than a fa
tor of eight smaller than for the

original BiBa s
heme.

� The balls lie in a universe [0; 2

z

), and the bins 
orrespond to the range [0; n� 1℄ for an even

number n. We assume the balls are thrown in sequential order, a

ording to a load balan
ing

s
heme as des
ribed by V�o
king [37℄. Ea
h ball has two possible hash lo
ations, one 
hosen

independently and uniformly at random from the range [0; n=2 � 1℄ (whi
h we 
all the left)

and the other 
hosen independently and uniformly at random from the range [n=2; n � 1℄

(whi
h we 
all the right); it is pla
ed in the bin with fewer balls, with ties being broken in

favor of the smaller numbered bin (toward the left). A signature in this s
heme 
orresponds

to a witness tree, whi
h proves that a bin with a 
ertain number of balls exists. For example,

to show that a bin on the left holds three balls, we must not only show the three balls in that

bin, but we must show for the third ball on the left that the 
orresponding bin on the right

had two balls there previously. Further dis
ussion of the witness trees 
an be found in [37℄,

and of 
ourse this approa
h 
an be generalized to other similar hashing s
hemes.

The spe
i�
 
ase of k = 12 
orresponds to a witness tree for a bin with three balls on the

left, where there are no repeated balls in the tree. We tested this 
ase, �nding that 1316 bins

allow for P

s

� 1=2. The probability of a false positive is somewhat more diÆ
ult to 
ompute;

we simply note that with these parameters P

f

= 2

�87:68

, whi
h is almost a fa
tor of 4 better

than the 
orresponding BiBa s
heme.

5 A Unifying Analysis

It should be apparent from our results in the previous se
tion that many of the s
hemes we suggest

appear to perform nearly the same. This may seem somewhat unusual, given the variety in the

des
riptions of the s
hemes and the variety in the number of balls ne
essary to a
hieve P

s

� 1=2. In

this se
tion we provide an analysis that explains this behavior. Our analysis yields both an upper

bound on and an approximation for the performan
e of BiBa s
hemes and the variations we have


onsidered in Se
tion 4.

We will say that a bin is 
overed if a ball lands in the bin. Let us �rst 
onsider any balls and

bins setting where ea
h su

essful signature 
orresponds to one of N distin
t patterns, where ea
h

pattern 
onsists of a list of k distin
t bins to be 
overed.

Theorem 1 In the setting where a valid signature 
orresponds to one of N distin
t patterns, where

ea
h pattern 
onsists of a list of k distin
t bins to be 
overed,

P

s

P

f

�

t

k

k!

Proof: We �rst note that the probability of su

ess for the forger is P

f

=

Nk!

n

k

. Now 
onsider the

probability of su

ess for the signer. As an upper bound (and rough estimate) for the su

ess of

the signer, we may 
onsider the expe
ted number of su

essful patterns mat
hed by the signer. To

6



see this, let p

i

be the probability that the signer mat
hes at least i patterns, and let X be a random

variable representing the number of patterns mat
hed. Then

E[X℄ = p

1

+ p

2

+ p

3

+ : : :

Hen
e E[X℄ � p

1

(and in fa
t E[X℄ � p

1

when p

i

is small for i � 2).

Now 
onsider the event that for a spe
i�
 pattern all k bins are 
overed. The probability

that any single bin is 
overed is at most t=n by a union bound. Moreover, for any two bins,

the events 
orresponding to ea
h being 
overed are negatively 
orrelated. It follows easily that

(t=n)

k

is an upper bound on the probability that all bins in the pattern are 
overed. Hen
e

N(t=n)

k

� E[X℄ � p

1

= P

s

.

It follows that

P

s

P

f

�

t

k

k!

, proving the theorem.

Interestingly, this upper bound is independent of the number of bins n and the number of

patterns N .

Looking at the argument more 
losely, we see that the upper bound should be a fairly good

approximation of the ratio. There is an error introdu
ed be
ause E[X℄ � p

1

, but when p

i

is small

for i � 2, this error is not large. Also, in bounding E[X℄ we used a union bound of t=n for the

probability that a bin is 
overed. In fa
t the probability that any spe
i�
 bin remains un
overed

(1 � 1=n)

t

� e

�t=n

. Now if n is large, the events 
orresponding to bins being 
overed are nearly

independent. Hen
e for suÆ
iently large n, the probability that k bins that 
onstitute a pattern

are 
overed is approximately (1 � e

�t=n

)

k

. If n is large 
ompared to t, then this is approximately

(t=n)

k

, the quantity used in the theorem.

Hen
e we 
on
lude this upper bound is a good approximation when n is large 
ompared to t

and when p

i

is small for i � 2. These properties are approximately true for many of our variations,

explaining their similar performan
e despite the varying nature of the patterns and the number

of bins required to a
hieve a su

ess probability P

s

� 1=2. This argument also explains why the

variations that have more bins generally appear to do better than the original BiBa s
heme. The

poorer performan
e of s
hemes involving 
overing several 
onse
utive bins is also 
lari�ed, as with

these s
hemes it is 
lear that p

2

and higher values of p

i

are 
omparatively large.

While te
hni
ally the above argument assumed that a pattern 
onsisted solely of a set of bins to

be 
overed, entirely similar results 
an be shown to hold for all of the variations we have 
onsidered.

For example, 
onsider the original BiBa s
heme, in whi
h a bin is supposed to re
eive not just one

but many balls, whi
h does not appear to �t this model. However, 
onsider the relationship between

an original BiBa s
heme with n bins and a modi�ed s
heme with ng bins that are grouped into n

groups of size g. If we seek k balls in the same bin for the original BiBa s
heme, then our patterns

in the modi�ed s
heme will 
onsist of all sets of k distin
t bins that all lie in the same group. The

two s
hemes are nearly equivalent, and hen
e the performan
e ratio is essentially the same.

Similarly, requiring the balls to arrive in a spe
i�
 order does not 
hange the result. The

probability of su

ess for the forger drops to to

N

n

k

, sin
e ordering variations no longer help the

forger. But there is a 
orresponding drop in the bound for P

s

by a 1=k! fa
tor, sin
e the sender

must also a
hieve a spe
i�
 ordering on the balls.
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6 The Powerball Signature

This se
tion introdu
es the Powerball signature, our improvement on the BiBa signature. Our new

signature is based on the following observation. The original BiBa s
heme has a �xed number of

known signature patterns, i.e., a 
ollision of k balls in one bin is a valid signature pattern. In BiBa,

these patterns are impli
it; all the parti
ipants agree on them. In our new approa
h, the signature

patterns are expli
it. In the same way the signer 
ommits to t balls in the publi
 key, the signer

also 
ommits to t

0

patterns P

i

(1 � i � t

0

). Ea
h pattern spe
i�es k bins, so P

i

= hb

1

; : : : ; b

k

i.

As in BiBa, to sign message M , the signer 
omputes the hash of the message h = H(M jj 
) (


is a 
ounter that the sender in
rements if it didn't �nd a signature) and uses h to sele
t a one-way

fun
tion g

h

from a family of hash fun
tions G (in the random ora
le model [2℄). The hash fun
tion

g

h

maps ea
h ball to one of the n bins. To �nd a valid signature, the signer sear
hes for a 
omplete

pattern P

i

, where every bin in the pattern 
ontains a ball. (If a bin appears � times in the pattern,

the 
orresponding bin 
ontains at least � balls.) If the signer �nds a 
omplete pattern P

i

, it 
reates

the signature hB

�

1

; : : : ; B

�

k

; P

i

; 
i (where �

j

are the indi
es of the balls that landed in the bins of

pattern P

i

).

To verify the signature hB

�

1

; : : : ; B

�

k

; P

i

; 
i on message M , the veri�er performs the steps: (1)


he
k that all balls of the signature are distin
t (B

�

i

6= B

�

j

for i 6= j); (2) verify the authenti
ity of

the balls using the publi
 key (
he
k that the 
ommitment F (B

�

i

) is in the publi
 key); (3) verify

the authenti
ity of the pattern P

i

using the publi
 key (
he
k that the 
ommitment F (P

i

) is in the

publi
 key); (4) 
ompute h = H(M jj 
) and sele
t g

h

from the one-way fun
tion family; (5) verify

that the k balls 
over all k bins of pattern P

i

= hb

1

; : : : ; b

k

i, so g

h

(B

�

1

) = b

1

; : : : ; g

h

(B

�

k

) = b

k

.

Let us 
onsider the ratio of su

ess between the sender and the forger in this model. The forger

knows k balls and a pattern. Re
all that in the standard s
heme with k + 1 balls sent, we found

an upper bound on this ratio

t

k+1

(k+1)!

. The probability of su

ess for the forger in our new s
heme is

P

f

=

k!

n

k

.

For the signer, we approximate the expe
ted number of mat
hed patterns, whi
h in turn ap-

proximates P

s

. For simpli
ity we assume that the signer has t

0

= t possible patterns; we further

assume that the system is arranged so that these patterns are distin
t. As before, the probability

that ea
h is 
overed is upper bounded by (t=n)

k

; this is a good approximation if n is mu
h larger

than t. Hen
e our approximation for P

s

is t

k+1

=n

k

, and hen
e the ratio between the sender and

forger is

t

k+1

k!

. Our new s
heme therefore 
hanges the bound of Theorem 1, doing better by a fa
tor

of k + 1.

Adding t

0

= t 
ommitments of the patterns to the publi
 key would double its size, a rather

severe additional 
ost. We introdu
e a method to add the patterns to the publi
 key without

in
reasing its size. Imagine that the ball is the 
ommitment of the pattern, so a 
ommitment

in the publi
 key 
ommits to both the ball and the pattern. We 
all this stru
ture a Powerball.

For a Powerball, we begin with a bit string that represents a pattern P

i

. (For now we assume a

simple mapping from bit strings to patterns.) The ball B

i

is derived from the pattern P

i

using the

one-way fun
tion F : B

i

= F (P

i

). The 
ommitment C

i

is then a further appli
ation of F on B

i

:

C

i

= F (B

i

) = F (F (P

i

)). This requires the additional assumption that F is not only one-way, but

that as a fun
tion it appears random, so that we may assume the balls are distributed independently

and uniformly at random. Hash fun
tions in the random ora
le model have this property [2℄.

Note that the forger 
an obtain a (k + 1)st ball from P

i

by 
omputing B

i

= F (P

i

). We solve
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k n P

f

9 1734 2

�78:37

10 1548 2

�84:17

11 1407 2

�89:79

12 1295 2

�95:23

13 1204 2

�100:50

Table 5: Results with the Powerball s
heme when a signature pattern uses k bins, and therefore

k + 1 Powerball are used.

this problem by requiring that the ball B

i

does not o

ur as a ball in the signature. If the forger

does not have another pattern, it 
annot use B

i

be
ause it has to use the only pattern it knows.

Results from simulations of the Powerball s
heme are presented in Table 6. Comparing with

Table 1, we see that the Powerball s
heme does improve performan
e, as the theoreti
al framework

suggests. A Powerball is worth almost another ball; that is, using k + 1 = 11 Powerballs is almost

as good as requiring 12 balls to fall into a bin using the original BiBa s
heme.

We 
an slightly enhan
e the advantage for the signer by further 
hanging the meaning of a

Powerball. For example, suppose we require that two Powerballs must be 
ombined in some order

to represent a pattern. For example, we may take the ex
lusive-or of bits in the P

i

in order to

obtain a pattern. In this 
ase we use k + 2 Powerballs to represent a signature; k 
orrespond to

balls, and two 
orrespond to a pattern. In this 
ase we still have P

f

=

k!

n

k

. On the other hand, for

the signer we have E[X℄ �

t

k+2

2n

k

. Note the introdu
tion of the fa
tor of two in the denominator,

sin
e there are

�

t

2

�

possible patterns for the signer. Hen
e the upper bound on the ratio P

s

=P

f

is

about t

k+2

=2k!. This is a fa
tor

�

k

2

�

better than the s
heme without Powerballs. Again, there are

tradeo�s to using su
h me
hanisms, in
luding the diÆ
ulty for the signer to �nd a mat
hed pattern,

so these Powerball variations may be of theoreti
al interest only. However, this demonstrates how

small 
hanges in the model 
an lead to di�erent analyses.

A similar idea 
an be used to redu
e the size of the publi
 key, whi
h is very large in the standard

BiBa s
heme. Suppose we require that two Powerballs be 
ombined, say via an ex
lusive-or, in

order to 
onstru
t a ball. In this 
ase, a sender with t Powerballs has roughly

�

t

2

�

balls to play with;

this number is not exa
t be
ause we restri
t ea
h pair of Powerballs to be disjoint. Now a forger

with k non-pattern Powerballs has (k � 1) � (k � 3) � : : : 3 � 1 ways of pairing up the k Powerballs

into k=2 a
tual balls. Hen
e at the 
ost of in
reasing the power of the forger somewhat (by giving

the forger more than one set of balls to use), we 
an dramati
ally redu
e the size of the publi
 key.

Whether this tradeo� is useful may depend on the desired system parameters.

7 Related Work

We �rst review related work in eÆ
ient asymmetri
 signatures targeted towards resour
e-
onstrained

devi
es. We then review resear
h related to signatures based on one-way fun
tions without trap-

doors. We also point out that the idea of using the asymmetry between signers and forgers in balls

and bins s
enarios has been used in other situations, su
h as the Mi
roMint payment s
heme [30℄.
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EÆ
ient Signature Algorithms for Resour
e-
onstrained Devi
es

Previous studies show that 
omputing asymmetri
 
ryptographi
 operations (e.g. 
omputing an

RSA signature [31℄, or a DiÆe-Hellman key agreement [9℄) takes on the order of se
onds and

sometimes even minutes on some handheld devi
es. Brown et al. analyze the 
omputation time of

various digital signature algorithms on various platforms [7℄: Ellipti
 Curve Cryptography (ECC)

signature algorithms require 1:0{2:2 se
onds for one signature generation, and 1:8{5:3 se
onds for

veri�
ation (on a Palm Pilot or RIM pager). On the same ar
hite
ture, a 512-bit RSA signature

requires 2:4{5:7 se
onds for generation, and 0:1{0:6 se
onds for veri�
ation (depending on the publi


exponent). The problem of performing 
ryptographi
 operations on minimal hardware is even more

pronoun
ed on some sensor networks. For example, futuristi
 Smart Dust sensors present even more

stringent resour
e 
onstraints [13, 38℄.

To speed up the slow signature generation, Even, Goldrei
h, and Mi
ali propose on-line / o�-line

signatures [11℄. The slow signing operation is performed o�-line, and the signer has subsequently a

low overhead to generate the �nal signature. They propose to use a traditional signature algorithm

to sign the publi
 key of a one-time signature algorithm o�-line. The on-line signature with the

one-time signature algorithm is very eÆ
ient.

S
hnorr proposes a signature algorithm that allows the signer to perform most of the work

o�-line and the remaining on-line work is eÆ
ient [33℄. Shamir and Tauman propose a signature

based on 
hameleon hashing whi
h allows o�-line pre
omputation and eÆ
ient on-line signing [34℄.

Other resear
hers propose to use 
omputationally more powerful third parties to o�-load some

of the expensive operations. For example, Modadugu, Boneh, and Kim propose to use an untrusted

third party to speed up RSA key generation on a small devi
e [21℄.

Smart 
ards also attra
ted attention for eÆ
ient signature algorithms. Poupard and Stern

design signature algorithms eÆ
ient on smart 
ards [24, 25℄. Courtois, Goubin, and Patarin also

design new signature algorithms eÆ
ient for smart 
ards [8℄. Lenstra and Verheul propose an

eÆ
ient signature based on XTR, whi
h provides short signatures [15℄. Ho�stein, Pipher, and

Silverman propose NSS, an eÆ
ient NTRU latti
e-based signature algorithm [12℄. To the best of

our knowledge, the signature veri�
ation times of all of these algorithms are still slower than RSA.

Signatures based on One-way Fun
tions without Trapdoors

Signatures based on one-way fun
tions without trapdoors are sometimes also 
alled one-time sig-

natures.

Rabin published the �rst one-time signature based on a symmetri
 en
ryption fun
tion [28℄.

The signature requires intera
tion between the signer and the veri�er, and the publi
 key and

signature are on the order of 1 Kbyte.

Lamport shows how to 
onstru
t a digital signature out of a one-way fun
tion [14℄. His approa
h

does not require intera
tion between the signer and veri�er, however, the size of the validation

parameters and signature are still on the order of 1 Kbyte. Lamport's basi
 approa
h is that the

signer publishes two 
ommitments for ea
h bit (for 0 and 1, respe
tively) of the data to sign. To

sign the message, the signer reveals one of the values previously 
ommitted to, based on whether

the 
orresponding message bit was 0 or 1.

Merkle and Winternitz improved on Lamport's signature [18, 19℄. Even, Goldrei
h, and Mi
ali

[11℄ use the Merkle-Winternitz approa
h to 
onstru
t their on-line / o�-line signature. Rohatgi

10



Signature Generation Veri�
ation Signature size Publi
 key size

O�-line On-line (expe
ted)

Lamport 160 1 80 80 160

Merkle-Winternitz 355 1 169 23 1

Blei
henba
her-Maurer 182 1 72 45 1

BiBa 1024 2048 23 11 1024

Powerball 2048 2048 20 10 1024

Table 6: Comparison of one-time signature algorithms. The table 
onsiders a signature of an 80-bit

hash. For the Merkle-Winternitz signature, we use the parameters that Rohatgi proposes to sign

80 bits [32℄.

further re�nes Merkle andWinternitz's approa
h and proposes k-times signatures [32℄, whi
h feature

a small publi
 key and allow signing k messages. The main drawba
k of this approa
h is the large

signature size, whi
h is around 300 bytes per signature (for a 6-times key), whi
h is more than twi
e

the size of the equivalent BiBa signature. Furthermore, the signer 
omputes 350 o�-line one-way

fun
tion appli
ations per signature, and the veri�er 
omputes 184 one-way fun
tions on average to

verify the signature.

Blei
henba
her and Maurer analyzed signature algorithms with a minimal number of nodes in

the graph [5, 4, 3℄.

Table 6 
ompares the various one-time signature algorithms. We 
onsider the 
omputation and


ommuni
ation overhead as a basis for 
omparison. We 
hoose the signature parameters su
h that

a forger has a probability of 2

�80

to �nd a valid signature after one try. For the 
omputation

overhead, we 
onsider the number of one-way fun
tion 
omputations the signer needs to perform to


ompute the publi
 key (o�-line), and the expe
ted number of one-way fun
tion 
omputations the

signer performs to a
tually generate the signature (on-line). For the veri�
ation overhead we list

the expe
ted number of one-way fun
tion 
omputations the veri�er performs to 
he
k the signature.

For the 
omputation overhead, we 
onsider the size of the publi
 key, and the size of a signature.

We express the signature and publi
 key size in number of nodes. In pra
ti
e, ea
h node may be

on the order of 96{128 bits long.

8 Dis
ussion and Con
lusion

To the best of our knowledge, the Powerball signature is the fastest signature for veri�
ation.

To a
hieve a probability of forgery of P

f

� 2

�80

, the veri�er only needs to 
ompute 20 one-way

fun
tions. This veri�
ation 
ost de
reases further if we in
rease the number of balls of the signer.

In the most extreme 
ase, the signature only 
ontains a single ball, and the veri�er only 
omputes

two hash fun
tions to verify the signature.

The Powerball signature also features shorter signatures than previous one-time signature al-

gorithms. These improvements 
ome at the 
ost of a larger publi
 key and a higher signature

generation overhead. However, the signature generation in Powerball is highly parallelizable |

with enough pro
essors Powerball only requires two sequential hash fun
tion 
omputations.

Other features of Powerball in
lude the small 
ode size (as we 
an implement it based on

11



a blo
k 
ipher), that the se
urity does not rely on any unproven number-theoreti
 assumptions

(the signature remains se
ure even if a fast fa
toring algorithm is invented), and the fa
t that

the signature algorithm 
annot be used as an en
ryption algorithm (advantage for 
ertain export

restri
tions).

The Powerball signature has many appli
ations. For example, the fast signature generation

(with parallel pro
essors) and super-fast veri�
ation may be useful in sto
k trading systems that

require non-repudiation and the lowest possible end-to-end delay.

Another appli
ation is in small devi
es that take se
onds to generate or verify a traditional asym-

metri
 digital signature. Some embedded 8 bit mi
ropro
essors even la
k a built-in multipli
ation

instru
tion. Thus, many traditional signature algorithms are ineÆ
ient on su
h devi
es. Fortu-

nately, many eÆ
ient blo
k 
iphers exist for these ar
hite
tures, and we 
an implement Powerball

based on a single blo
k 
ipher en
ryption fun
tion.

The Powerball signature may also solve another hard problem. Many appli
ations that rely

on digital signatures are sus
eptible to a denial-of-servi
e (DoS) atta
k: an atta
ker 
oods the

vi
tim with a large number of bogus signatures. Be
ause signature veri�
ation is generally a slow

operation (a 1024-bit RSA verify takes on the order of 0:5 millise
ond on a 800 MHz Pentium II

pro
essor), the vi
tim is 
omputationally overwhelmed just 
he
king all signatures. Powerball has

a ni
e property: even if a forger 
an �nd a signature where k � 1 balls land in the 
orre
t bin, a

veri�er that 
he
ks the balls of the signature in random order dis
overs the bad ball after 
he
king

after 
he
king an average of (k + 1)=2 balls. In pra
ti
e, the forger 
an �nd even fewer mat
hing

balls, so the veri�er 
an dete
t an invalid signature after a few hash fun
tion 
omputations. The

Powerball s
heme is thus ideal to defend against these DoS atta
ks.
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