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Bounds and Improvements for BiBa Signature Shemes

Mihael Mitzenmaher and Adrian Perrig

Abstrat

This paper analyzes and improves the reently proposed bins and balls signature (BiBa [23℄),

a new approah for designing signatures from one-way funtions without trapdoors.

We �rst onstrut a general framework for signature shemes based on the balls and bins

paradigm and propose several new related signature algorithms. The framework also allows us

to obtain upper bounds on the seurity of suh signatures. Several of our signature algorithms

approah the upper bound. We then show that by hanging the framework in a novel manner we

an boost the eÆieny and seurity of our signature shemes. We all the resulting mehanism

Powerball signatures. Powerball signatures o�er greater seurity and eÆieny than previous

signature shemes based on one-way funtions without trapdoors.

Keywords: One-time signature, signature based on one-way funtion without trapdoor, Power-

ball signature.

1 Introdution

Although the speed of high-end proessors ontinues to steadily inrease, we simultaneously witness

the proliferation of low-powered, resoure-starved handheld devies (e.g. ell phone, pager, Palm

pilot). These handheld devies are designed for mobility and onveniene, and their omputation

power is limited by minimal miroproessors and energy resoures.

1

Similarly, low powered om-

putation devies have been proposed to build sensor networks for measuring the weather or other

geographially distributed phenomena. We olletively all handheld devies and sensor network

nodes with onstrained omputation and energy resoures small devies. The widespread deploy-

ment of small devies with severe resoure onstraints motivates the need for faster and simpler

signature mehanisms, even though miroproessors ontinue to dramatially inrease in speed. On

these small devies, even the most eÆient asymmetri signature algorithms typially require on

the order of seonds to generate or verify a signature (assuming that the signature ode even �ts

into memory). Setion 7 reviews related work in eÆient signature shemes.

Signatures based on one-way funtions without trapdoors (sometimes alled one-time signature

shemes) are an interesting alternative to signatures based on asymmetri ryptography [4, 5, 14,

18, 19, 28℄. One of their main advantages is that these signatures only rely on a one-way funtion,

whih we an implement with a fast hash funtion (e.g. SHA-1 [22℄ or MD5 [29℄), or from a blok

ipher [16, 20, 26, 27℄.

These one-time signature shemes are orders of magnitude faster than traditional signatures, so

they may be an attrative alternative for small devies. However, some of these shemes have large

1

To save prodution osts, manufaturer deploy minimal miroproessors for the required task. Even in the year

2000, 80% of all miroproessors shipped are 4-bit and 8-bit proessors [35℄.

1



signatures, and an only sign a �xed number of messages per publi key. We review the merits and

drawbaks of one-time signature shemes in Setion 7.

The reently proposed bins and balls (BiBa) signature is a promising new approah to mitigate

some of the drawbaks of one-time signatures [23℄. We review BiBa in Setion 2. In Setion 3

we present an abstrat framework for these types of signatures, whih allows us to present new

approahes in Setion 4 that are more seure. Our framework also allows us to analyze the seurity

of these signature shemes (see Setion 5); we �nd that the seurity of the basi BiBa signature as

well as several of our variations is lose to the theoretial bound.

In Setion 6 we extend our abstrat framework and �nd an opportunity for a new signature

sheme that improves the seurity of the previous approah (given a ertain signature overhead).

From this framework, we derive the Powerball signature, a new one-time signature sheme with low

overhead and high seurity. We �nd that Powerball shemes are viable alternatives for signatures

in small devies.

2 Review of the BiBa Signature

This setion presents a brief review of the BiBa (bins and balls) signature algorithm [23℄. The

set of t seret balls onstitutes the private key PK

�1

= fB

1

: : : B

t

g. The publi key ommits

to all balls in the private key.

2

The publi key may be the onatenation of t ommitments

PK = F (B

1

) jj : : : jj F (B

t

) = 

1

jj : : : jj 

t

, or the publi key may be the root of a Merkle hash

tree omputed over the seret balls [17℄. For simpliity of the following desription, we assume that

the publi key is the onatenation of ommitments.

To sign message M , the signer omputes the hash of the message h = H(M) and uses h to

selet a one-way funtion g

h

from a family of hash funtions G (in the random orale model [2℄).

The hash funtion g

h

maps eah ball to one of the n bins. The signature is a olletion of balls

that produe a speial pattern in the bins. A BiBa signature is a olletion of k balls that form a

k-way ollision under g

h

in one bin: hB

�

1

; : : : ; B

�

k

i where �

i

is the index in the publi key of the

ith ball in the signature.

To verify the signature hB

�

1

; : : : ; B

�

k

i on message M , the veri�er performs the steps: (1) hek

that all balls of the signature are distint (B

�

i

6= B

�

j

for i 6= j); (2) verify the authentiity of the

balls using the publi key (hek that F (B

�

i

) = 

�

i

3

); (3) ompute h = H(M) and selet g

h

from

the one-way funtion family; (4) verify the k-way ollision (g

h

(B

�

1

) = : : : = g

h

(B

�

k

)).

Note that the probability P

s

that the signer an suessfully sign a message is less than 1. To

deal with this problem, the signer an use a ounter value  as follows. The signer omputes the

hash of the message h = H(M jj ) and uses h to selet the one-way funtion g

h

. If this does not

lead to a suessful signature the signer an inrement the ounter and try again. The signature

is then hB

�

1

; : : : ; B

�

k

; i. In this setting we may de�ne P

s

to be the probability that the signer

an suessfully sign for a given value of . In the original BiBa paper a design goal was to have

P

s

� 1=2, so that on average only two values of  need to be tried.

2

A ommitment loks in a seret s without revealing s. We use a one-way and weak ollision resistant funtion F

to ommit to a seret s: the ommitment is  = F (s). To open the ommitment, one publishes s and anybody an

verify that s really orresponds to : ompute F (s) and verify the equality  = F (s).

3

In pratie the singer ould help the veri�er by also sending the indies �

i

; this does not hange the seurity of

the system sine the the forger ould easily hange these unommitted values.
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k n P

f

k n P

f

2 762460 2

�19:5403

13 192 2

�91:0196

3 15616 2

�27:8615

14 168 2

�96:1001

4 3742 2

�35:6088

15 151 2

�101:3377

5 1690 2

�42:8912

16 136 2

�106:3119

6 994 2

�49:7855

17 123 2

�111:0802

7 672 2

�56:3539

18 112 2

�115:7250

8 494 2

�62:6386

19 104 2

�120:6079

9 384 2

�68:6797

20 96 2

�125:1143

10 310 2

�74:4851

21 89 2

�129:5147

11 260 2

�80:2237

22 83 2

�133:8758

12 222 2

�85:7386

23 78 2

�138:2788

Table 1: The seurity of some BiBa instanes. The signer knows t = 1024 balls and the adversary

has r = k balls. The table shows the probability of forgery P

f

to �nd a k-way ollision when

throwing k balls into n bins.

We de�ne P

f

as the probability that an attaker forges a signature after one attempt. We list

Table 1 from [23℄, whih lists P

f

for di�erent BiBa instanes, where in eah ase the number of

bins n is hosen so P

s

� 1=2. To ompute the P

f

listed in the table, we assume that the attaker

knows the balls from one dislosed signature, so P

f

=

1

n

k�1

.

3 A generalized setting

We may abstrat the BiBa setting into a ombinatorial balls and bins setting as follows. The signer

has t balls, B

1

; B

2

; : : : ; B

t

, from a universe U

1

. The signer an onstrut funtions g

h

i

, for i =

1; 2; : : :, so that the funtions g

h

i

map balls into bins, where the bins lie in a universe U

2

. We assume

that the funtions g

h

i

look random, so that we model the bin g

h

i

(B

j

) as a bin hosen independently

and uniformly at random from U

2

. A signature onsists of a funtion index i along with a set of k or-

dered pairs of balls and their orresponding bins, f(B

�

1

; g

h

i

(B

�

1

)); (B

�

2

; g

h

i

(B

�

2

)); : : : ; (B

�

k

; g

h

i

(B

�

k

))g.

For a signature to be valid, it must be a member of the set of valid signature patterns P , where

P � (U

1

� U

2

)

k

.

A forger an onstrut funtions g

f

i

, for i = 1; 2; : : :, that also appear to map balls to bins

independently and uniformly at random. The forger, however, does not have aess to all t

balls, but only to balls used by the sender in a sent signature. In the ase where a set of

t balls is only used to onstrut a single valid signature, the forger will only have aess to k

balls; this is the ase we onsider in detail here. The forger reates a suessful signature forgery

f(B

�

1

; g

f

i

(B

�

1

)); (B

�

2

; g

f

i

(B

�

2

)); : : : ; (B

�

k

; g

f

i

(B

�

k

))g if this signature lies in the set of valid signa-

ture patterns P .

In the original BiBa paper, the set of valid signature patterns P onsisted of any set of k balls

that all fell in the same bin. The design goal that the suessful signature probability P

s

be at least

1/2 determines the number of bins n that an be used. While this hoie is somewhat arbitrary, as

we shall see in our analysis in Setion 5, it is useful for omparison purposes and we will adopt it

hereon as well.
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4 Variations

In this setion we onsider other possible shemes based on our general framework. Some of our

examples prove better than the original BiBa sheme in some ases; others are given simply as

instrutional examples of what is possible. The variations listed are by no means exhaustive.

We provide limited numerial results, omparing our sheme against the BiBa sheme for the

range of P

f

values that are interesting for pratial appliations (roughly 2

�70

to 2

�90

).

� The bins orrespond to the range [0; n � 1℄ and a valid signature pattern onsists of k balls

that lie in distint bins a

1

; a

2

; : : : a

j

with k

i

balls in bin a

i

. As a spei� example, the k balls

ould lie in two distint bins eah with exatly k=2 balls. This is a natural generalization of

the BiBa sheme that performs better for some parameter settings.

For example, let us onsider the ase where a valid signature pattern onsists of k balls with

k=2 balls in eah of two distint bins. The probability the forger sueeds is

�

n

2

��

k

k=2

�

�

1

n

�

k

;

this is easily seen by multiplying the number of ways of hoosing two bins, the number of ways

of splitting the k balls between the bins, and the probability the balls land in the appropriate

bins.

In Table 2 below, we onsider some spei� examples where at least x balls are required to

land in eah of y distint bins, so that k = x � y. In all of these simulation results, we hek

that P

s

� 1=2 over a series of 1; 000; 000 trials.

4

In all ases using two bins with k=2 balls a

signature performs better than the original BiBa sheme by at least a fator of 2.

k x y n P

f

10 5 2 1308 2

�75:85

12 6 2 796 2

�87:52

14 7 2 551 2

�98:53

12 4 3 2290 2

�87:96

12 3 4 6856 2

�87:57

Table 2: Results when a signature requires throwing k balls into y bins with x balls in eah bin.

� The bins orrespond to the range [0; n � 1℄ and a valid signature onsists of k balls falling

in sequential bins modulo n. For the forger, the probability that k balls form a signature

is just (1=n)

k�1

k!; there are n possible starting positions, and for eah starting position the

probability the k balls land in the appropriate k onseutive bins in some order is (1=n)

k

k!.

This sheme appears to perform slightly worse than the original BiBa sheme, as shown in

Table 3, whih is also based on having P

s

� 1=2 over 1; 000; 000 trials.

� The balls lie in a universe [0; 2

z

), the bins orrespond to the range [0; n � 1℄, and a valid

signature pattern onsists of k balls B

�

1

< B

�

2

< : : : < B

�

k

falling in sequential bins in

order. That is, B

�

1

falls in the �rst bin in the sequene, B

�

2

in the seond, et. This extends

4

Tehnially, ensuring P

s

� 1=2 requires some statistial are; in pratie, we simply tested that if P

s

� 1=2, we

were obtaining results at least one standard deviation from the mean. Small variations in n yield minor variations in

P

f

, so we feel our results are aurate enough for demonstrative purposes.
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k n P

f

10 1489 2

�73:07

11 1318 2

�78:39

12 1188 2

�83:52

13 1087 2

�88:50

Table 3: Results when a signature requires k onseutive non-empty bins.

k n P

f

10 290 2

�73:62

11 241 2

�79:13

12 205 2

�84:47

13 177 2

�89:61

Table 4: Results when a signature requires k onseutive bins with balls in temporal order.

the previous example to inlude a natural temporal ordering on the balls. One might think

the signer would have an advantage in this ase sine the sender an have several balls in a

bin, and therefore the e�et of the temporal ordering may be harsher for the forger than the

signer. Note the probability of a forgery is now just (1=n)

k�1

, mathing the original sheme.

This modi�ation improves over the previous sheme slightly but the resulting numbers are

still not better than BiBa, as shown in Table 4. Again, the results are based on 1; 000; 000

trials.

� The n bins orrespond to

�

v

2

�

edges on a graph with v verties, and a valid signature pattern

onsists of k edges that form a yle. While this sheme sounds simple, in pratie it would

prove hard to implement. While algorithms for �nding k-yles in graphs exist, the best

known general algorithms are exponential in k [1, 39℄. (Sine these are random and fairly

sparse graphs, better algorithms may exist; still, this is a non-trivial problem.) Sine yles

of length 4 are easier to �nd, we suggest the following variation.

� The n bins orrespond to

�

v

2

�

edges on a graph with v verties, and a valid signature pattern

onsists of k = 4k

1

edges that form k

1

vertex-disjoint yles of length 4. Finding yles

of length four an be done using matrix multipliation on the adjaeny graph, and faster

algorithms are known [10℄. This approah still requires signi�ant omputation for �nding a

signature, unlike the original BiBa sheme; however, verifying a signature an still be done

quikly.

We onsider the spei� ase of k = 12 and ompute the probability of a suessful forgery.

There are

1

6

�

v

4

��

v�4

4

��

v�8

4

�

possible ways of hoosing the sets of verties that onstitute the three

yles, and then three ways of orienting the verties within a yle. Hene the probability of

a suessful forgery is

27

6

�

v

4

��

v�4

4

��

v�8

4

�

12!

�

v

2

�

12
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In simulations we �nd that 936 verties yields P

s

� 1=2. We did only simulations of 10,000

trials here, as we used simple matrix multipliation tehniques to hek for yles of length

four. In this ase P

f

= 2

�89:28

. This is more than a fator of eight smaller than for the

original BiBa sheme.

� The balls lie in a universe [0; 2

z

), and the bins orrespond to the range [0; n� 1℄ for an even

number n. We assume the balls are thrown in sequential order, aording to a load balaning

sheme as desribed by V�oking [37℄. Eah ball has two possible hash loations, one hosen

independently and uniformly at random from the range [0; n=2 � 1℄ (whih we all the left)

and the other hosen independently and uniformly at random from the range [n=2; n � 1℄

(whih we all the right); it is plaed in the bin with fewer balls, with ties being broken in

favor of the smaller numbered bin (toward the left). A signature in this sheme orresponds

to a witness tree, whih proves that a bin with a ertain number of balls exists. For example,

to show that a bin on the left holds three balls, we must not only show the three balls in that

bin, but we must show for the third ball on the left that the orresponding bin on the right

had two balls there previously. Further disussion of the witness trees an be found in [37℄,

and of ourse this approah an be generalized to other similar hashing shemes.

The spei� ase of k = 12 orresponds to a witness tree for a bin with three balls on the

left, where there are no repeated balls in the tree. We tested this ase, �nding that 1316 bins

allow for P

s

� 1=2. The probability of a false positive is somewhat more diÆult to ompute;

we simply note that with these parameters P

f

= 2

�87:68

, whih is almost a fator of 4 better

than the orresponding BiBa sheme.

5 A Unifying Analysis

It should be apparent from our results in the previous setion that many of the shemes we suggest

appear to perform nearly the same. This may seem somewhat unusual, given the variety in the

desriptions of the shemes and the variety in the number of balls neessary to ahieve P

s

� 1=2. In

this setion we provide an analysis that explains this behavior. Our analysis yields both an upper

bound on and an approximation for the performane of BiBa shemes and the variations we have

onsidered in Setion 4.

We will say that a bin is overed if a ball lands in the bin. Let us �rst onsider any balls and

bins setting where eah suessful signature orresponds to one of N distint patterns, where eah

pattern onsists of a list of k distint bins to be overed.

Theorem 1 In the setting where a valid signature orresponds to one of N distint patterns, where

eah pattern onsists of a list of k distint bins to be overed,

P

s

P

f

�

t

k

k!

Proof: We �rst note that the probability of suess for the forger is P

f

=

Nk!

n

k

. Now onsider the

probability of suess for the signer. As an upper bound (and rough estimate) for the suess of

the signer, we may onsider the expeted number of suessful patterns mathed by the signer. To

6



see this, let p

i

be the probability that the signer mathes at least i patterns, and let X be a random

variable representing the number of patterns mathed. Then

E[X℄ = p

1

+ p

2

+ p

3

+ : : :

Hene E[X℄ � p

1

(and in fat E[X℄ � p

1

when p

i

is small for i � 2).

Now onsider the event that for a spei� pattern all k bins are overed. The probability

that any single bin is overed is at most t=n by a union bound. Moreover, for any two bins,

the events orresponding to eah being overed are negatively orrelated. It follows easily that

(t=n)

k

is an upper bound on the probability that all bins in the pattern are overed. Hene

N(t=n)

k

� E[X℄ � p

1

= P

s

.

It follows that

P

s

P

f

�

t

k

k!

, proving the theorem.

Interestingly, this upper bound is independent of the number of bins n and the number of

patterns N .

Looking at the argument more losely, we see that the upper bound should be a fairly good

approximation of the ratio. There is an error introdued beause E[X℄ � p

1

, but when p

i

is small

for i � 2, this error is not large. Also, in bounding E[X℄ we used a union bound of t=n for the

probability that a bin is overed. In fat the probability that any spei� bin remains unovered

(1 � 1=n)

t

� e

�t=n

. Now if n is large, the events orresponding to bins being overed are nearly

independent. Hene for suÆiently large n, the probability that k bins that onstitute a pattern

are overed is approximately (1 � e

�t=n

)

k

. If n is large ompared to t, then this is approximately

(t=n)

k

, the quantity used in the theorem.

Hene we onlude this upper bound is a good approximation when n is large ompared to t

and when p

i

is small for i � 2. These properties are approximately true for many of our variations,

explaining their similar performane despite the varying nature of the patterns and the number

of bins required to ahieve a suess probability P

s

� 1=2. This argument also explains why the

variations that have more bins generally appear to do better than the original BiBa sheme. The

poorer performane of shemes involving overing several onseutive bins is also lari�ed, as with

these shemes it is lear that p

2

and higher values of p

i

are omparatively large.

While tehnially the above argument assumed that a pattern onsisted solely of a set of bins to

be overed, entirely similar results an be shown to hold for all of the variations we have onsidered.

For example, onsider the original BiBa sheme, in whih a bin is supposed to reeive not just one

but many balls, whih does not appear to �t this model. However, onsider the relationship between

an original BiBa sheme with n bins and a modi�ed sheme with ng bins that are grouped into n

groups of size g. If we seek k balls in the same bin for the original BiBa sheme, then our patterns

in the modi�ed sheme will onsist of all sets of k distint bins that all lie in the same group. The

two shemes are nearly equivalent, and hene the performane ratio is essentially the same.

Similarly, requiring the balls to arrive in a spei� order does not hange the result. The

probability of suess for the forger drops to to

N

n

k

, sine ordering variations no longer help the

forger. But there is a orresponding drop in the bound for P

s

by a 1=k! fator, sine the sender

must also ahieve a spei� ordering on the balls.

7



6 The Powerball Signature

This setion introdues the Powerball signature, our improvement on the BiBa signature. Our new

signature is based on the following observation. The original BiBa sheme has a �xed number of

known signature patterns, i.e., a ollision of k balls in one bin is a valid signature pattern. In BiBa,

these patterns are impliit; all the partiipants agree on them. In our new approah, the signature

patterns are expliit. In the same way the signer ommits to t balls in the publi key, the signer

also ommits to t

0

patterns P

i

(1 � i � t

0

). Eah pattern spei�es k bins, so P

i

= hb

1

; : : : ; b

k

i.

As in BiBa, to sign message M , the signer omputes the hash of the message h = H(M jj ) (

is a ounter that the sender inrements if it didn't �nd a signature) and uses h to selet a one-way

funtion g

h

from a family of hash funtions G (in the random orale model [2℄). The hash funtion

g

h

maps eah ball to one of the n bins. To �nd a valid signature, the signer searhes for a omplete

pattern P

i

, where every bin in the pattern ontains a ball. (If a bin appears � times in the pattern,

the orresponding bin ontains at least � balls.) If the signer �nds a omplete pattern P

i

, it reates

the signature hB

�

1

; : : : ; B

�

k

; P

i

; i (where �

j

are the indies of the balls that landed in the bins of

pattern P

i

).

To verify the signature hB

�

1

; : : : ; B

�

k

; P

i

; i on message M , the veri�er performs the steps: (1)

hek that all balls of the signature are distint (B

�

i

6= B

�

j

for i 6= j); (2) verify the authentiity of

the balls using the publi key (hek that the ommitment F (B

�

i

) is in the publi key); (3) verify

the authentiity of the pattern P

i

using the publi key (hek that the ommitment F (P

i

) is in the

publi key); (4) ompute h = H(M jj ) and selet g

h

from the one-way funtion family; (5) verify

that the k balls over all k bins of pattern P

i

= hb

1

; : : : ; b

k

i, so g

h

(B

�

1

) = b

1

; : : : ; g

h

(B

�

k

) = b

k

.

Let us onsider the ratio of suess between the sender and the forger in this model. The forger

knows k balls and a pattern. Reall that in the standard sheme with k + 1 balls sent, we found

an upper bound on this ratio

t

k+1

(k+1)!

. The probability of suess for the forger in our new sheme is

P

f

=

k!

n

k

.

For the signer, we approximate the expeted number of mathed patterns, whih in turn ap-

proximates P

s

. For simpliity we assume that the signer has t

0

= t possible patterns; we further

assume that the system is arranged so that these patterns are distint. As before, the probability

that eah is overed is upper bounded by (t=n)

k

; this is a good approximation if n is muh larger

than t. Hene our approximation for P

s

is t

k+1

=n

k

, and hene the ratio between the sender and

forger is

t

k+1

k!

. Our new sheme therefore hanges the bound of Theorem 1, doing better by a fator

of k + 1.

Adding t

0

= t ommitments of the patterns to the publi key would double its size, a rather

severe additional ost. We introdue a method to add the patterns to the publi key without

inreasing its size. Imagine that the ball is the ommitment of the pattern, so a ommitment

in the publi key ommits to both the ball and the pattern. We all this struture a Powerball.

For a Powerball, we begin with a bit string that represents a pattern P

i

. (For now we assume a

simple mapping from bit strings to patterns.) The ball B

i

is derived from the pattern P

i

using the

one-way funtion F : B

i

= F (P

i

). The ommitment C

i

is then a further appliation of F on B

i

:

C

i

= F (B

i

) = F (F (P

i

)). This requires the additional assumption that F is not only one-way, but

that as a funtion it appears random, so that we may assume the balls are distributed independently

and uniformly at random. Hash funtions in the random orale model have this property [2℄.

Note that the forger an obtain a (k + 1)st ball from P

i

by omputing B

i

= F (P

i

). We solve
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k n P

f

9 1734 2

�78:37

10 1548 2

�84:17

11 1407 2

�89:79

12 1295 2

�95:23

13 1204 2

�100:50

Table 5: Results with the Powerball sheme when a signature pattern uses k bins, and therefore

k + 1 Powerball are used.

this problem by requiring that the ball B

i

does not our as a ball in the signature. If the forger

does not have another pattern, it annot use B

i

beause it has to use the only pattern it knows.

Results from simulations of the Powerball sheme are presented in Table 6. Comparing with

Table 1, we see that the Powerball sheme does improve performane, as the theoretial framework

suggests. A Powerball is worth almost another ball; that is, using k + 1 = 11 Powerballs is almost

as good as requiring 12 balls to fall into a bin using the original BiBa sheme.

We an slightly enhane the advantage for the signer by further hanging the meaning of a

Powerball. For example, suppose we require that two Powerballs must be ombined in some order

to represent a pattern. For example, we may take the exlusive-or of bits in the P

i

in order to

obtain a pattern. In this ase we use k + 2 Powerballs to represent a signature; k orrespond to

balls, and two orrespond to a pattern. In this ase we still have P

f

=

k!

n

k

. On the other hand, for

the signer we have E[X℄ �

t

k+2

2n

k

. Note the introdution of the fator of two in the denominator,

sine there are

�

t

2

�

possible patterns for the signer. Hene the upper bound on the ratio P

s

=P

f

is

about t

k+2

=2k!. This is a fator

�

k

2

�

better than the sheme without Powerballs. Again, there are

tradeo�s to using suh mehanisms, inluding the diÆulty for the signer to �nd a mathed pattern,

so these Powerball variations may be of theoretial interest only. However, this demonstrates how

small hanges in the model an lead to di�erent analyses.

A similar idea an be used to redue the size of the publi key, whih is very large in the standard

BiBa sheme. Suppose we require that two Powerballs be ombined, say via an exlusive-or, in

order to onstrut a ball. In this ase, a sender with t Powerballs has roughly

�

t

2

�

balls to play with;

this number is not exat beause we restrit eah pair of Powerballs to be disjoint. Now a forger

with k non-pattern Powerballs has (k � 1) � (k � 3) � : : : 3 � 1 ways of pairing up the k Powerballs

into k=2 atual balls. Hene at the ost of inreasing the power of the forger somewhat (by giving

the forger more than one set of balls to use), we an dramatially redue the size of the publi key.

Whether this tradeo� is useful may depend on the desired system parameters.

7 Related Work

We �rst review related work in eÆient asymmetri signatures targeted towards resoure-onstrained

devies. We then review researh related to signatures based on one-way funtions without trap-

doors. We also point out that the idea of using the asymmetry between signers and forgers in balls

and bins senarios has been used in other situations, suh as the MiroMint payment sheme [30℄.
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EÆient Signature Algorithms for Resoure-onstrained Devies

Previous studies show that omputing asymmetri ryptographi operations (e.g. omputing an

RSA signature [31℄, or a DiÆe-Hellman key agreement [9℄) takes on the order of seonds and

sometimes even minutes on some handheld devies. Brown et al. analyze the omputation time of

various digital signature algorithms on various platforms [7℄: Ellipti Curve Cryptography (ECC)

signature algorithms require 1:0{2:2 seonds for one signature generation, and 1:8{5:3 seonds for

veri�ation (on a Palm Pilot or RIM pager). On the same arhiteture, a 512-bit RSA signature

requires 2:4{5:7 seonds for generation, and 0:1{0:6 seonds for veri�ation (depending on the publi

exponent). The problem of performing ryptographi operations on minimal hardware is even more

pronouned on some sensor networks. For example, futuristi Smart Dust sensors present even more

stringent resoure onstraints [13, 38℄.

To speed up the slow signature generation, Even, Goldreih, and Miali propose on-line / o�-line

signatures [11℄. The slow signing operation is performed o�-line, and the signer has subsequently a

low overhead to generate the �nal signature. They propose to use a traditional signature algorithm

to sign the publi key of a one-time signature algorithm o�-line. The on-line signature with the

one-time signature algorithm is very eÆient.

Shnorr proposes a signature algorithm that allows the signer to perform most of the work

o�-line and the remaining on-line work is eÆient [33℄. Shamir and Tauman propose a signature

based on hameleon hashing whih allows o�-line preomputation and eÆient on-line signing [34℄.

Other researhers propose to use omputationally more powerful third parties to o�-load some

of the expensive operations. For example, Modadugu, Boneh, and Kim propose to use an untrusted

third party to speed up RSA key generation on a small devie [21℄.

Smart ards also attrated attention for eÆient signature algorithms. Poupard and Stern

design signature algorithms eÆient on smart ards [24, 25℄. Courtois, Goubin, and Patarin also

design new signature algorithms eÆient for smart ards [8℄. Lenstra and Verheul propose an

eÆient signature based on XTR, whih provides short signatures [15℄. Ho�stein, Pipher, and

Silverman propose NSS, an eÆient NTRU lattie-based signature algorithm [12℄. To the best of

our knowledge, the signature veri�ation times of all of these algorithms are still slower than RSA.

Signatures based on One-way Funtions without Trapdoors

Signatures based on one-way funtions without trapdoors are sometimes also alled one-time sig-

natures.

Rabin published the �rst one-time signature based on a symmetri enryption funtion [28℄.

The signature requires interation between the signer and the veri�er, and the publi key and

signature are on the order of 1 Kbyte.

Lamport shows how to onstrut a digital signature out of a one-way funtion [14℄. His approah

does not require interation between the signer and veri�er, however, the size of the validation

parameters and signature are still on the order of 1 Kbyte. Lamport's basi approah is that the

signer publishes two ommitments for eah bit (for 0 and 1, respetively) of the data to sign. To

sign the message, the signer reveals one of the values previously ommitted to, based on whether

the orresponding message bit was 0 or 1.

Merkle and Winternitz improved on Lamport's signature [18, 19℄. Even, Goldreih, and Miali

[11℄ use the Merkle-Winternitz approah to onstrut their on-line / o�-line signature. Rohatgi
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Signature Generation Veri�ation Signature size Publi key size

O�-line On-line (expeted)

Lamport 160 1 80 80 160

Merkle-Winternitz 355 1 169 23 1

Bleihenbaher-Maurer 182 1 72 45 1

BiBa 1024 2048 23 11 1024

Powerball 2048 2048 20 10 1024

Table 6: Comparison of one-time signature algorithms. The table onsiders a signature of an 80-bit

hash. For the Merkle-Winternitz signature, we use the parameters that Rohatgi proposes to sign

80 bits [32℄.

further re�nes Merkle andWinternitz's approah and proposes k-times signatures [32℄, whih feature

a small publi key and allow signing k messages. The main drawbak of this approah is the large

signature size, whih is around 300 bytes per signature (for a 6-times key), whih is more than twie

the size of the equivalent BiBa signature. Furthermore, the signer omputes 350 o�-line one-way

funtion appliations per signature, and the veri�er omputes 184 one-way funtions on average to

verify the signature.

Bleihenbaher and Maurer analyzed signature algorithms with a minimal number of nodes in

the graph [5, 4, 3℄.

Table 6 ompares the various one-time signature algorithms. We onsider the omputation and

ommuniation overhead as a basis for omparison. We hoose the signature parameters suh that

a forger has a probability of 2

�80

to �nd a valid signature after one try. For the omputation

overhead, we onsider the number of one-way funtion omputations the signer needs to perform to

ompute the publi key (o�-line), and the expeted number of one-way funtion omputations the

signer performs to atually generate the signature (on-line). For the veri�ation overhead we list

the expeted number of one-way funtion omputations the veri�er performs to hek the signature.

For the omputation overhead, we onsider the size of the publi key, and the size of a signature.

We express the signature and publi key size in number of nodes. In pratie, eah node may be

on the order of 96{128 bits long.

8 Disussion and Conlusion

To the best of our knowledge, the Powerball signature is the fastest signature for veri�ation.

To ahieve a probability of forgery of P

f

� 2

�80

, the veri�er only needs to ompute 20 one-way

funtions. This veri�ation ost dereases further if we inrease the number of balls of the signer.

In the most extreme ase, the signature only ontains a single ball, and the veri�er only omputes

two hash funtions to verify the signature.

The Powerball signature also features shorter signatures than previous one-time signature al-

gorithms. These improvements ome at the ost of a larger publi key and a higher signature

generation overhead. However, the signature generation in Powerball is highly parallelizable |

with enough proessors Powerball only requires two sequential hash funtion omputations.

Other features of Powerball inlude the small ode size (as we an implement it based on
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a blok ipher), that the seurity does not rely on any unproven number-theoreti assumptions

(the signature remains seure even if a fast fatoring algorithm is invented), and the fat that

the signature algorithm annot be used as an enryption algorithm (advantage for ertain export

restritions).

The Powerball signature has many appliations. For example, the fast signature generation

(with parallel proessors) and super-fast veri�ation may be useful in stok trading systems that

require non-repudiation and the lowest possible end-to-end delay.

Another appliation is in small devies that take seonds to generate or verify a traditional asym-

metri digital signature. Some embedded 8 bit miroproessors even lak a built-in multipliation

instrution. Thus, many traditional signature algorithms are ineÆient on suh devies. Fortu-

nately, many eÆient blok iphers exist for these arhitetures, and we an implement Powerball

based on a single blok ipher enryption funtion.

The Powerball signature may also solve another hard problem. Many appliations that rely

on digital signatures are suseptible to a denial-of-servie (DoS) attak: an attaker oods the

vitim with a large number of bogus signatures. Beause signature veri�ation is generally a slow

operation (a 1024-bit RSA verify takes on the order of 0:5 milliseond on a 800 MHz Pentium II

proessor), the vitim is omputationally overwhelmed just heking all signatures. Powerball has

a nie property: even if a forger an �nd a signature where k � 1 balls land in the orret bin, a

veri�er that heks the balls of the signature in random order disovers the bad ball after heking

after heking an average of (k + 1)=2 balls. In pratie, the forger an �nd even fewer mathing

balls, so the veri�er an detet an invalid signature after a few hash funtion omputations. The

Powerball sheme is thus ideal to defend against these DoS attaks.

Referenes

[1℄ N. Alon, R. Yuster, and U. Zwik. Finding and ounting given length yles. In Proeedings

of the 2nd European Symposium on Algorithms, number 855, pages 354{364, Utreht, The

Netherlands, 1994. Springer-Verlag, Berlin Germany.

[2℄ M. Bellare and P. Rogaway. Random orales are pratial: A paradigm for designing eÆient

protools. In V. Ashby, editor, 1st ACM Conferene on Computer and Communiations Seu-

rity, pages 62{73, Fairfax, Virginia, Nov. 1993. ACM Press. Appeared also (in idential form)

as IBM RC 19619 (87000) 6/22/94.

[3℄ D. Bleihenbaher and U. Maurer. On the eÆieny of one-time digital signatures. In K. Kim

and T. Matsumoto, editors, Advanes in Cryptology { ASIACRYPT '96, number 1163 in

Leture Notes in Computer Siene, pages 196{209. Springer-Verlag, Berlin Germany, 1996.

[4℄ D. Bleihenbaher and U. Maurer. Optimal tree-based one-time digital signature shemes.

In C. Pueh and R. Reishuk, editors, 13th Symposium on Theoretial Aspets of Computer

Siene (STACS'96), number 1046 in Leture Notes in Computer Siene, pages 363{374.

Springer-Verlag, Berlin Germany, 1996.

[5℄ D. Bleihenbaher and U. M. Maurer. Direted ayli graphs, one-way funtions and digital

signatures. In Y. G. Desmedt, editor, Advanes in Cryptology { CRYPTO '94, volume 839

12



of Leture Notes in Computer Siene, pages 75{82. International Assoiation for Cryptologi

Researh, Springer-Verlag, Berlin Germany, 1994.

[6℄ G. Brassard, editor. Advanes in Cryptology { CRYPTO '89, number 435 in Leture Notes in

Computer Siene, Santa Barbara, CA, USA, 1990. International Assoiation for Cryptologi

Researh, Springer-Verlag, Berlin Germany.

[7℄ M. Brown, D. Cheung, D. Hankerson, J. Hernandez, M. Kirkup, and A. Menezes. PGP in

onstrained wireless devies. In 9th USENIX Seurity Symposium, Denver, Colorado, Aug.

2000. USENIX.

[8℄ N. Courtois, L. Goubin, and J. Patarin. Flash, a fast multivariate signature algorithm. In

D. Naahe, editor, Progress in Cryptology - CT-RSA 2001, number 2020 in LNCS. Springer-

Verlag, Berlin Germany, Apr. 2001.

[9℄ W. DiÆe and M. Hellman. New diretions in ryptography. IEEE Transations on Information

Theory, IT-22(6):644{654, Nov. 1976.

[10℄ C. Dorgerloh and J. Wirtgen. One again: Finding simple yles in graphs. Tehnial Report

85165-CS, University of Bonn, Germany, 1997.

[11℄ S. Even, O. Goldreih, and S. Miali. On-line/o�-line digital signatures. In Brassard [6℄, pages

263{277.

[12℄ J. Ho�stein, J. Pipher, and J. H. Silverman. NSS: An NTRU lattie-based signature sheme. In

B. P�tzmann, editor, Advanes in Cryptology { EUROCRYPT '2001, number 2045 in Leture

Notes in Computer Siene, pages 211{228, Innsbruk, Austria, 2001. Springer-Verlag, Berlin

Germany.

[13℄ J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next entury hallenges: mobile networking for

smart dust. In International Conferene on Mobile Computing and Networking (MOBICOM

'99), pages 271{278, Aug. 1999.

[14℄ L. Lamport. Construting digital signatures from a one-way funtion. Tehnial Report SRI-

CSL-98, SRI International Computer Siene Laboratory, Ot. 1979.

[15℄ A. K. Lenstra and E. R. Verheul. Key improvements to XTR. In T. Okamoto, editor, Advanes

in Cryptology { ASIACRYPT '2000, number 1976 in Leture Notes in Computer Siene, pages

220{233, Kyoto, Japan, 2000. International Assoiation for Cryptologi Researh, Springer-

Verlag, Berlin Germany.

[16℄ S. M. Matyas, C. H. Meyer, and J. Oseas. Generating strong one-way funtions with rypto-

graphi algorithm. IBM Tehnial Dislosure Bulletin, 27:5658{5659, 1985.

[17℄ R. Merkle. Protools for publi key ryptosystems. In Proeedings of the IEEE Symposium on

Researh in Seurity and Privay, Oakland, CA, Apr. 1980. IEEE Computer Soiety Press.

[18℄ R. C. Merkle. A digital signature based on a onventional enryption funtion. In C. Pomer-

ane, editor, Advanes in Cryptology { CRYPTO '87, number 293 in Leture Notes in Com-

puter Siene, pages 369{378, Santa Barbara, CA, USA, 1988. International Assoiation for

Cryptologi Researh, Springer-Verlag, Berlin Germany.

13



[19℄ R. C. Merkle. A erti�ed digital signature. In Brassard [6℄, pages 218{238.

[20℄ S. Miyaguhi, S. Kurihara, K. Ohta, and H. Morita. 128-bit hash funtion (N-hash). NTT

Review, (2):128{132, 1990.

[21℄ N. Modadugu, D. Boneh, and M. Kim. Generating RSA keys on a handheld using an untrusted

server. In RSA Conferene 2000, San Jose, CA, U.S.A., Jan. 2000.

[22℄ National Institute of Standards and Tehnology (NIST) (Computer Systems Laboratory). Se-

ure hash standard. Federal Information Proessing Standards Publiation FIPS PUB 180-1,

Apr. 1995.

[23℄ A. Perrig. The BiBa one-time signature and broadast authentiation protool. In Proeed-

ings of the Eighth ACM Conferene on Computer and Communiations Seurity (CCS-8),

Philadelphia PA, USA, Nov. 2001.

[24℄ G. Poupard and J. Stern. Seurity analysis of a pratial "on the y" authentiation and

signature generation. In K. Nyberg, editor, Advanes in Cryptology { EUROCRYPT '98,

number 1403 in Leture Notes in Computer Siene, pages 422{436. International Assoiation

for Cryptologi Researh, Springer-Verlag, Berlin Germany, 1998.

[25℄ G. Poupard and J. Stern. On the y signatures based on fatoring. In Tsudik [36℄, pages

37{45.

[26℄ B. Preneel. Analysis and design of ryptographi hash funtions. PhD thesis, Katholieke

Universiteit Leuven (Belgium), 1993.

[27℄ B. Preneel, R. Govaerts, and J. Vandewalle. Hash funtions based on blok iphers: A syntheti

approah. In B. S. Kaliski, Jr., editor, Advanes in Cryptology { CRYPTO '97, number 1294

in Leture Notes in Computer Siene. International Assoiation for Cryptologi Researh,

Springer-Verlag, Berlin Germany, 1997.

[28℄ M. O. Rabin. Digitalized signatures. In R. A. DeMillo, D. P. Dobkin, A. K. Jones, and R. J.

Lipton, editors, Foundations of Seure Computation, pages 155{168. Aademi Press, 1978.

[29℄ R. Rivest. The MD5 message-digest algorithm. Internet Request for Comment RFC 1321,

Internet Engineering Task Fore, Apr. 1992.

[30℄ R. L. Rivest and A. Shamir. PayWord and MiroMint: Two simple miropayment shemes. In

M. Lomas, editor, Seurity Protools|International Workshop, volume 1189 of Leture Notes

in Computer Siene, pages 69 { 88, Cambridge, United Kingdom, Apr. 1997. Springer-Verlag,

Berlin Germany.

[31℄ R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures and

publi-key ryptosystems. Communiations of the ACM, 21(2):120{126, Feb. 1978.

[32℄ P. Rohatgi. A ompat and fast hybrid signature sheme for multiast paket. In Tsudik [36℄,

pages 93{100.

14



[33℄ C. P. Shnorr. EÆient signature generation by smart ards. Journal of Cryptology, 4(3):161{

174, 1991.

[34℄ A. Shamir and Y. Tauman. Improved online/o�ine signature shemes. In J. Kilian, editor,

Advanes in Cryptology { CRYPTO '2001, number 2139 in Leture Notes in Computer Siene,

pages 355{367. International Assoiation for Cryptologi Researh, Springer-Verlag, Berlin

Germany, 2001.

[35℄ D. Tennenhouse. Embedding the Internet: Proative omputing. Communiations of the

ACM, 43(5):43{43, 2000.

[36℄ G. Tsudik, editor. 5th ACM Conferene on Computer and Communiations Seurity, Singa-

pore, Nov. 1999. ACM Press.

[37℄ B. V�oking. How asymmetry helps load balaning. In IEEE Symposium on Foundations of

Computer Siene, pages 131{141, 1999.

[38℄ B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister. Smart dust: Communiating with a

ubi-millimeter omputer. IEEE Computer, pages 44{51, Jan. 2001.

[39℄ R. Yuster and U. Zwik. Finding even yles even faster. In Proeedings of the 21st Inter-

national Colloquium on Automata, Languages and Programming, volume 21, pages 532{543.

Springer-Verlag, Berlin Germany, 1994.

15


