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Abstract

Recent image-based rendering techniques have shown success in approximating detailed
models using sampled images over coarser meshes. One limitation of these techniques is that
the coarseness of the geometric mesh is apparent in the roughpolygonal silhouette of the
rendering. In this paper, we present a scheme for accuratelycapturing the external silhouette
of a model in order to clip the approximate geometry.

Given a detailed model, silhouettes sampled from a discreteset of viewpoints about the
object are collected into a silhouette map. The silhouette from an arbitrary viewpoint is then
computed as the interpolation from three nearby viewpointsin the silhouette map. Pairwise
silhouette interpolation is based on a visual hull approximation in the epipolar plane. The sil-
houette map itself is adaptively simplified by removing views whose silhouettes are accurately
predicted by interpolation of their neighbors. The model geometry is approximated by a pro-
gressive hull construction, and is rendered using projected texture maps. The 3D rendering is
clipped to the interpolated silhouette using stencil planes.

1 Introduction

In interactive 3D rendering there is a constant tension between model complexity and rendering
speeds. Scenes with high geometric complexity are necessary for visual realism, but require high
computational costs to achieve. This tension will not go away soon. To this end there has been
considerable research into how to best use a given amount of rendering resources,and a number of
successful approaches have been developed.
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One such approach is level-of-detail rendering [18]. In this approach, more polygons are used
for nearby objects than for distant objects, using more rendering resources where they produce the
most visual impact. More complicated view based level of detail methods alsouse more poly-
gons in the silhouette regions of models, since this typically produces the highest qualityvisual
appearance [42, 20, 27].

Another such approach is texture mapping and its descendant image based rendering algo-
rithms. In these methods, resources are used to create photometric appearances of high complexity
using objects with low geometric complexity and fidelity.

Some of the most impressive results are obtained from systems that combine concepts from
both of these approaches[6, 9, 24, 31, 41]. Cohen et al. [9] combine model simplification with
texture and normal maps to produce objects with high visual complexity with modest rendering
budgets. This combination of approaches works extremely well at representing the appearances
of the interiors of objects. The one limitation of these approaches is that they do a poorjob
of displaying high quality silhouettes of objects, since they use a low polygon count. This is
unfortunate since the appearance of the silhouette of an object is one of the strongest visual cues
as to the shape of an object [23].

To address this problem we have developed a rendering system that ensures that objects are
displayed with high resolution silhouettes, even when low resolution geometryis used to speed up
rendering. Like Cohen et al., we use simplified geometry to describe the objects’ shapes, and we
use textures to create high visual complexity in the objects’ interiors. In our system, we introduce
a silhouette clippingalgorithm to ensure that the low resolution geometry is only drawn in the
screen region defined by a high resolution silhouette. Silhouette clipping is an alternative to the
view based level of detail methods such as [20], that must dynamically create amodel simplified for
the current view. These methods are quite complicated, and for model consistency must generate
high polygon counts in regions that are near but not on the silhouette.

The first challenge one must face in order to do silhouette clipping is a way of quicklycon-
structing a high resolution silhouette for a given view. One could extract the silhouette dynamically
by appealing to the high resolution geometry for each frame as done in [30, 16]. But these meth-
ods compute all silhouette curves that separate front-facing polygons from back-facing polygons.
Some of these curves lie in the interior of the model, and can not be used for silhouette clipping.
We must be able to quickly compute only the boundary silhouettes (defined below).

Our system accomplishes the construction of a high resolution silhouette by using a precom-
putedsilhouette map. A silhouette map is a data structure completely independent of the original
geometry that stores an explicit representation of the silhouette contour as seen from a discrete
set of views. To obtain a silhouette for an arbitrary current view, three “nearby” silhouettes are
extracted from this silhouette map.Silhouette interpolationis performed to create a silhouette for
the current view. Thus, during the rendering of the current view, the data accessed and processed
is on the order of the complexity of a silhouette contour, which is typically much lessthan the size
of the high resolution model.1

1As a rule of thumb, if the high resolution model hasn polygons, and is tessellated evenly, the silhouette contour
is usually made up ofO(

p

n) edges.
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In some ways, the silhouette interpolation problem referred to above resembles the contour
interpolation problem found in animation and morphing applications [38], which can be solved
effectively with a number of ad hoc solutions. But silhouette interpolation is different from con-
tour morphing in a few key ways. Silhouette contours routinely undergo complicated topological
changes as the viewpoint changes [23], and thus a silhouette interpolation method must be able to
handle such cases routinely. Moreover, when there is a sharp feature point on theobject, that point
may remain on the silhouette of the nearby views. During silhouette interpolation,these points
should be considered to be “in correspondence”. Typical contour morphing algorithms would not
guarantee this. We have therefore developed a novel silhouette interpolation based on the epipolar
geometry of two views. Our method can handle topological changes, and it ensures that actual
feature points on silhouettes are treated as being in correspondence. Moreover, unlike the many
existing contour morphing methods, our silhouette interpolation algorithm has a clear geometric
interpretation. It also guarantees that the resulting interpolated silhouette contour is conservative:
it is guaranteed to lie outside the actual silhouette that would be observed from the current view.

For typical objects, the silhouettes can change rapidly in some region of view space, and slowly
in others. This happens for both geometric and topological reasons.

In areas of low surface curvature, the silhouette (when seen in 3D) slips quickly across the
surface as the view changes, while in areas of high curvature, the silhouette moves slowly across
the surface. In the limit, at sharp edges, the silhouette doesn’t move at allas the view position
changes, until some change in global geometric configuration occurs.

When one considers both internal and external silhouettes portions (see terminology below),
the topological changes that can occur for a silhouette are well understood [23]. As the view
changes, the silhouette topology remains unchanged until a singular view is reached. At such a
view a catastrophe occurs, and the topology of the silhouette changes according to well defined
rules. When one only considers external silhouettes, as we do, the topological changes that occur
cannot be analyzed as easily. Nevertheless, it should be clear that in certain regions, the silhouette
undergoes discontinuous changes and interpolation becomes more difficult.

To address both of these problems, we have developed asilhouette map simplificationalgorithm
that adaptively samples the view space. As a result, we keep more silhouette information in regions
of view space where the silhouettes change most rapidly.

In order to perform silhouette clipping on the approximate geometry, one must have an ap-
proximation that encloses a volume that is larger than the original geometry. To this end we have
developed aprogressive hullrepresentation. This creates a nested family of approximating meshes
with the property that each coarser mesh encloses the finer meshes. This representation is a variant
of the progressive mesh representation [19] that uses linear programming to ensure the desired hull
property.

Our silhouette map could also be used in cases where explicit high resolution geometry is not
available, but high resolution silhouette information is. One such promising example is image
based rendering. Extracting high quality depth information from images is a difficult problem;
automatic (multi)stereo algorithms are notoriously unreliable, and even theheartiest of graduate
students quickly tires from manually specifying the necessary correspondence points. In contrast,
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the silhouette of an object can be extract from an image easily and with high accuracy.

Contributions

Our work has a number of distinct contributions

� We introduce the idea of silhouette clipping, to efficiently render low resolution geometric
objects with high resolution silhouettes .

� We introduce the idea of a silhouette map, which is an auxiliary data structure that stores the
silhouette appearance from a number of sampled viewpoints.

� We describe an algorithm for silhouette interpolation. This algorithm, which is based on
epipolar geometry can handle topological changes, keeps sharp feature points in correspon-
dence, and guarantees a silhouette which is outside the actual silhouette .

� We describe a greedy simplification algorithm that samples silhouette information most
densely in regions of view space where the most changes occur.

� We describe a progressive hull data structure for representing a nested sequenceof enclosing
approximate geometries. This representation may have other uses such as collision detection.

Limitations

Our work has several limitations and thus directions where future work is required.

� Silhouette clipping can only be applied to external silhouettes . Internal silhouettes are gen-
erally not closed contours, and therefore cannot be used to create a clipping region.This
results in visible artifacts where an object is self occluding. To solve this, some method for
decomposing the original object into subobjects would be necessary.

� Our interpolation method is conservative. Given the silhouettes recorded atthree viewpoints
in space, our algorithm will produce a conservative silhouettes for any viewpoint onthe
triangle connecting the three vertices. The actual silhouette is guaranteed to lie within the
interpolated silhouette , but is generally not on it. Our interpolation algorithm is based on
the concept of visual hull, which is generally too conservative. In order to produce tighter
silhouettes ideally would require higher order differential information about the surface at
each point on the silhouettes .

� Our algorithm is local, in that it only uses the nearest three views to createthe interpolation.
While for some classes of contours it can be shown that this is optimal, in general there are
cases where other farther views can improve the computation of the silhouettesof the visual
hull. Further analysis is required.
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� The algorithm described in section 5.1 is an interpolation algorithm and not an extrapolation
algorithm. In order to compute correctly silhouettes that are not on a triangle (because
the viewpoint has moved closer or farther from the object) would requires explicitdepth
information at each point on the silhouettes , or a tetrahedralization of space.In practice we
use a simple planar homography (section 5) which we have found to work adequately well
in practice.

� Subdividing the intervals of a span into cliques requires correspondence between the inter-
vals in the two views. Our heuristic for this can be incorrect if multiple topological changes
have occurred between the two views. In practice, this is taken care of byour silhouette map
simplification algorithm. In regions where correspondence is difficult, denser samples are
used. Again more analysis would be useful here.

Preliminaries

Silhouettes

In order to help our discussion, we will introduce here a small amount of terminology. For a pin
hole imaging model and a smooth surface, a silhouette is created when a ray with direction vector
~r passing through the pin hole touches the surface at a pointP where the normal of the surface is
orthogonal to the ray direction

~r � ~n

P

= 0

The set of 3D pointsP for which this is true is called thecontour generator. The contour generator
is generically made up of a set of smooth closed 3D contours on the surface [7]. The projection of
the contour generator onto the image plane is called theapparent contour. The apparent contour
is a 2D curve that can self intersect, and at some points (called cusps) it can be non-smooth. If we
view the image of an opaque object, many parts of the apparent contour are occluded by other parts
of the object. We call the unoccluded part of the apparent contour thevisible apparent contour.
For a non-convex object, the visible apparent contour consists of two parts,externalandinternal.
The internal part projects onto the interior of the image of the opaque object while the external part
projects onto the boundary of the opaque object. The external part forms the boundary between the
projection of an object and its background; this is defined by a closed contour (possibly with holes).
In our system we only deal with the external visible apparent contour which we will hereafter refer
to simply as the silhouette . See Plate 4.

The Visual Hull

In order to understand the conservative nature of our algorithms we briefly review the concept of
the visual hull. Researchers have used (external) silhouette information to carve away regions of
3D space where it is known that the object is not present. The result of this carving is a shape
called thevisual hullof the object [25]. The visual hull is generally not identical to the object (for
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example in a concave surface region), nor is it identical to its convex hull. Visual hull methods
are extremely robust compared to other vision algorithms. We use the concept of thevisual hull to
develop our interpolation algorithm.

Suppose that some original 3D geometry is viewed from a set of viewsV . In each viewi, the
silhouettes

i

is formed by the boundary between the points interior and exterior to the object. For
view i we create the cone-like volumevh

i

defined by all the rays starting at the image’s point of
view p

i

and passing through the interior points on its image plane. It is guaranteed that the actual
3D geometry must be contained invh

i

. This statement is true for alli and so the 3D geometry
must be contained in the volumevh

V

=

T

i

vh

i

. As the size ofV goes to infinity, and includes
all possible views,vh

V

converges to an approximate shape known as the visual hullvh

1

of the
original geometry. The visual hull is not guaranteed to be the same as the original geometry since
concave region shapes can never be distinguished using silhouette information.

In practice, one must construct approximate visual hulls using only a finite number of views.
Given the set of viewsV , the approximationvh

V

is the best conservative geometry that one can
achieve. (If one doesn’t require a conservative estimate, then better approximations are usually
achievable by fitting higher order surface approximations to the observed data [5].)

As one uses more and more views, the resulting hull improves, and converges tovh

1

. In-
terestingly though, when one is only concerned with predicting silhouettes and one plans to view
the scene from some viewv

t

that lies in the triangle defined by three viewsv
1

; v

2

; v

3

, then the
silhouette observed is typically not improved by including any views other thanv

1

; v

2

; v

3

. In other
wordssill(v

t

; vh

123

) � sill(v

t

; vh

1

). The reasons for this will be discussed below. This is an
encouraging result, for it means that local computation can be optimal.

Computation of visual hulls with high resolution can be a tricky matter. The intersection of the
volumesvh

i

is done with some form of CSG. If the silhouettes are polygonal, then the CSG can
be done using polyhedral CSG but this is very hard to do in a robust fashion. More typically the
CSG is done using a discrete voxelization of space [34]. In these systems one is usually severely
limited by the low voxel resolutions achievable. The silhouette interpolationalgorithm we use in
our system provides us with a conservative approximation of the silhouettes

c

� sill(v

i

; vh

123

)

without ever explicitly constructing any visual hull data structures whatsoever.

2 Relation to Previous Work

Level of Detail/Simplification

Several level-of-detail (LOD) techniques have been developed to adapt the complexity of a mesh
to changing viewing parameters. The simplest approach is to precompute for a given model a set
of view-independent approximating meshes at different resolutions (see survey in [18]). Then, a
runtime LOD framework can switch between these approximations based on the distance of the
model from the viewer.

A more elaborate approach is to locally adapt the resolution of the approximating mesh at run-
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time based on its relation to the viewer. For instance, areas of the surface can be kept coarser if they
are outside the view frustum, facing away from the viewer, or sufficiently faraway. Methods for
this so-called view-dependent LOD have been presented by Xia and Varshney [42], Hoppe [20],
and Luebke and Erikson [27]. In particular, the view-dependent error metric of Hoppe[20] au-
tomatically induces more refinement near the silhouette of the mesh. However,a cascade of de-
pendencies between refinement operations also causes further refinement to faces not exactly on
the silhouette, thus increasing rendering load. Another limitation of the view-dependent LOD ap-
proach is that its efficiency relies on time-coherence of the viewing parameters. If the view jumps
quickly from one frame to the next, more work must be expended in traversing the refinement
hierarchy.

In contrast, with silhouette clipping, fewer polygons need to be rendered since accurate, anti-
aliased silhouettes are obtained as a 2D post-process. Moreover, computational effort is concen-
trated on the visible contour.

Silhouettes

It has long been recognized that silhouettes are an important visual cue that humans use to deter-
mine shape and recognize objects [23]. InSolid Shape[22], Koenderink catalogues the topological
changes that can occur in the apparent contour as the viewpoint changes continuously.

In the computational vision community there is a large body of work studying how shape
information can be computed from silhouette data. Koenderink and VanDoorn describe some of
the shape information that can be deduced from a single image [23]. Giblin and Weiss[14] describe
how shape can be extracted from silhouette information from multiple views. This work has been
extended in numerous ways. For example Cipolla and Blake [7] provide a thorough analysis ofthe
relationship between differential changes in the apparent contour seen by a movingobserver, and
the first and second fundamental forms of the surface geometry. They also analyzeof the epipolar
correspondence between silhouettes which we use in our silhouette interpolation algorithm. Boyer
and Berger show how three discrete views can be used to compute an approximate osculating
paraboloid for each point on the contour generator [5]. Many more references are contained in
those papers.

In computer graphics, silhouette information has been used to enhance the expressive render-
ings of 3D objects [30, 15, 16]. We use the silhouette information to create renderings with the
appearance of high resolution.

There are also a number of algorithms described for extracting silhouettes frompolyhedral
models. Blyth et al. describe a multipass rendering algorithm [4]. This algorithm requires a
complete traversal of the high resolution geometry and is not fit for our purposes. Markosian et
al. [30] describe an algorithm for quickly extracting both internal and external silhouette edges
from a polyhedral model using random sampling and view coherence. Gooch et al. [16] describe
a hierarchical Gauss map for quickly rejecting edges that are not on the silhouette . These two
methods compute the entire contour generator, and not the silhouette . As a result they can not be
used directly for silhouette clipping.
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Image Based Rendering

Recently there has been a strong effort to develop image based rendering algorithms. These algo-
rithms render new views starting from image-like input and representations. They can allow for
faster rendering than from traditional model representations, and can also allow the creation of
models using photographs as input, without requiring the lengthy process of geometric modeling.

Work such as that of Debevec et al [11] has shown that one can extract low resolution geometry
and combine this with images to give the appearance of high resolution. In particular, they discuss
the concept of view dependent texture maps wherein different projective textures [40]are used
depending on the view. This work was further developed in [12]. In our system we adopt a
similar rendering approach and use view dependent projective textures mapped onto low resolution
geometry.

Seitz and Dyer [37] present a view morphing algorithm to interpolate between two images.
Their system is based on the idea that if two images are rectified (such that their image planes are
parallel to each other and to the direction of motion), all parallax is horizontal and linear. As a
result, view interpolation can be done for each scan line independently, and linearinterpolation
can be used to warp the pixel locations. After correspondences are manually entered, their method
consists of an image rectification of the pair of images, followed by a linearinterpolation, followed
by an unrectification of the resulting image. We adopt a similar three-stage approach (rectify pair,
warp, unrectify) to perform silhouette interpolation. We interpolate between three views using a
series of two pairwise interpolations.

Pollard and Hayes [36] present an image based algorithm that performs image interpolation
between three views without manually specified correspondence by performing edge extraction
and edge matching. They interpolate between three views by using barycentric linear interpolation,
which is correct in the special case of orthographic views.

The silhouette map data structure described in this paper has some similarities to the light field
representation [28, 35]. A light field attempts to sample all of the photometric information about
an object. This can be thought of as storing the set ofimagesviewed from a 2D manifold (a plane);
this is effectively a 4d set of data. A silhouette map stores only the silhouettecontourinformation
viewed from a 2D manifold (for example a sphere) of views; this is effectively a 3D set of data. As
a result it can be much more compact.

In a light field representation, data on the(s; t; u; v) domain is sufficient to correctly recon-
struction a new view from any point in free space. This is due to the 4d nature of itsdata structure.
In contrast, from a silhouette map one can only truly interpolate new silhouette information for
new views on the sampling surface (sphere). As one moves off the sampling surface, one can-
not do proper interpolation without additional information, such as depth. In the absence of such
information, we use a simple scaling heuristic.

When a new view is reconstructed from a light field, (quadrilinear) interpolationis performed
parametrically in the(s; t; u; v) domain. Effectively, nearby images are superimposed on top of
each other. As a result, if the light field sampling rate is low, and the underlying geometry non-
planar, the result can have significant ghosting (or blurring) artifacts. Without depth information (or

8



high res model

progressive hull binary images from many views

silhouette contours from many views

simplified contours

render low res model using stencil

shaded images  from few views

interpolate silhouette contour

render  contour into stencil and alpha buffers

projective textures on objects

preprocess

keep only necessary contours

for current view

Figure 1: System overview.

its moral equivalent in some form) light field data cannot generally be interpolated or extrapolated
very far. When interpolating from a silhouette map, the nearby silhouettes areinterpolated in 2D
geometrically, and so no ghosting can occur.

When reconstructing new views from a light field/lumigraph representation using geometric
correction [35], one obtains a result very similar to view dependent texture mapping.No processing
is done on the silhouettes , and so ghosting is still visible on the silhouettes (see Figure 17d of [35]).

Contour Morphing

Contour morphing is an animation technique that creates a smooth transition from one contour
to another. Sederberg and Greenwood [38] describe a method that uses a toroidal shortest path
approach to solve for a correspondence between points on two simple closed contours. Given such
a correspondence, Sederberg et al. [39] use a turtle graphics metaphor to drive the interpolation of
intermediate views. Shapira and Rappoport [29] use a star-skeleton decompositionof the contour
to achieve higher quality animations. These methods provide no simple way to morph between
two contours with differing topologies, and so it would be difficult to use these for silhouette
interpolation. Cohen-Or et al. [10] use a distance field interpolation (similarin spirit to [21]) to
interpolate between two arbitrary contours. Although this method can handle topology changes
and is very useful for animation, for our purposes it would be a rather ad hoc choice. It is not based
on the geometry of silhouette generation, has no geometric interpretation, no relation to the visual
hull, and will not properly interpolate actual sharp feature points on a silhouette .
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3 System Overview

An overview of our system is described in Figure 1. We begin with a high resolutionpolyhedral
model as input. We first apply a number of preprocessing operations on the data. First werender
a small number of views to be later used as textures to projectively map onto the rendered low
resolution geometry. We select the views by hand using a simple interactive program. Automatic
view selection would be desirable; this remains an open question.

Next a progressive hull construction is run on the high resolution geometry. The resulting
progressive hull is a sequence of lower and lower resolution mesh geometries with the property
that the volume defined in each successive lower resolution mesh is guaranteed to contain the
volume defined by the previous higher resolution meshes. This property allows us to render views
of the low resolution geometry which can clipped to a high resolution silhouette .

Finally a silhouette map is constructed. To do this we render binary images of theobject as
seen from a large number of viewpoints on a surrounding sphere. A pixel-resolution polygonal
contour is generated from each image; this contour is then simplified using a simplification algo-
rithm similar to [19]. These contours make up a dense silhouette map. We run a silhouette map
simplification algorithm to discard views that can be well predicted withthe remaining views.

At run time for an arbitrary current view, we find three nearby views on the silhouette map, and
an interpolated silhouette is produced. This new silhouette contour is drawn into the stencil buffer.
Then the low resolution geometry is rendered using the stencil buffer to clipout the shape of the
high resolution silhouette . A subset of the prerendered images are used as projective textures
applied to the low res geometry. The result is a rendering with high resolutionappearance.

4 Silhouette Map Representation

At the heart of our system is the silhouette map representation. The map represents the shape of the
external visible apparent contour (silhouette ) as seen from a number of views. A viewv

i

stores its
intrinsic and extrinsic camera parameters including the location of the point of viewp

i

. The view
also stores the silhouettes

i

seen from that view. The silhouette is represented as a closed polygon,
possibly with holes.

The 3D positions of the optical centers of the view cameras form the vertices of some star
shaped triangulated polytope that surrounds the object in question. See plate 6. This polytope is
represented as a 3D mesh. The center of the polytopec is also stored in the silhouette map. For
an arbitrary current view pointp

c

we form the segment connecting its position with the center of
the polytope. If the viewpoint lies outside of the polytope, then this segment will intersect the
polytope once in the interior of some triangle (or degenerately at some edge or vertex point). If the
viewpoint lies inside of the polytope, the segment is extended backwards from the viewpoint until
it intersects one of the polytope triangles. There is exactly one intersection because the polytope
is star shaped. We call the intersection point on the trianglep

t

. The three viewsv
1

; v

2

; v

3

stored
with the three vertices of the intersected triangle are called the “nearby views” and they are used
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to generate the silhouette for the current view. This triangle intersection pointp

t

can be tracked
efficiently as the current view moves continuously by searching the neighborhood of the previous
intersection point.

5 Silhouette Interpolation

Given three nearby viewsv
1

; v

2

; v

3

(at viewpointsp
1

;p

2

;p

3

) with their associated silhouettes
s

1

; s

2

; s

3

, the goal of silhouette interpolation is to produce a silhouettes

c

for the current view
v

c

taken from the viewpointp
c

. Without 3D information about the silhouettes , this is a difficult
problem and we make a number of approximations to make a solution feasible. In this section we
describe our algorithm in detail, and discuss its geometric properties. The algorithm which must
be invoked for each rendered frame runs in timeO(n logn), wheren is the number of vertices
in the nearby silhouettes ; this number is typically much less than the number of vertices in the
original high resolution geometric model. The algorithm must create valid output even if the input
silhouettess

1

; s

2

; s

3

have different topologies.

We treat this problem in two steps. In the first step we use the interpolationmethod described
below to produce an interpolateds

t

for some viewv
t

that hasp
t

(the intersection point in the
triangle) as its viewpoint. In the second step we maps

t

to the current view to produce the current
silhouettes

c

. During this second step we pretend that contour generator fors

t

lies entirely in a
plane that passes through the polytope centerc and is parallel to the triangle�(p

1

;p

2

;p

3

).2 It is
well known that the image of a planar object undergoes a 2D projective transformationas the view
is changed. So we can model this transformation by applying a 3 by 3 matrix to all ofthe vertices
of s

t

to obtains
c

.

The following pseudocode shows an outline of the entire process. The remainder of this section
discusses proceduretriSillInterp().

sill s_c <-- 3dSillInterp(view v_c, sillMap sm){
(p_t, v_1, v_2, v_3) = polytopeIntersection (v_c, sm);
(s_t, v_t) = triSillInterp(p_t, v_1, v_2, v_3, s_1, s_2, s_3);
p_1 = v_1.pov; p_2 = v_2.pov; p_3 = v_3.pov;
plane = planeThroughCenter(sm.center, p_1, p_2, p_3);
H = determine3by3Matrix(plane, v_t, v_c);
for each vertex index i in s_t
s_c[i] = H * s_t[i];

return s_c;
}

2This is an approximation since in general, the contour generator is not a plane curve at all [23]. And nearby points
on theexternalvisible apparent contour do not necessarily correspond to nearby points on the contour generator.
Moreover, as one moves fromp

t

top
c

the points on the contour generator will generally not remain constant.
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Figure 2: Triangular interpolation (in 2D).

5.1 Triangular Silhouette Interpolation

Given 3 viewsv
1

; v

2

; v

3

and their associated silhouettess
1

; s

2

; s

3

and a pointp
t

on the triangle
p

1

;p

2

;p

3

our goal is to produce the camera information for some viewv

t

with viewpointp
t

on
the triangle, and an interpolated silhouettes

t

for that view.

In this section we describe our algorithm for this problem. Our algorithm has a number of
unique features

� The algorithm runs inO(n logn) time.

� If a sharp point on the object is seen on the silhouettes of all the three nearby views, then the
resulting interpolated silhouettes

t

will correctly predict its location.

� The algorithm is conservative in way that is described below.

� The algorithm produces an interpolation with the above features even when the three input
silhouettes have different topologies.

Briefly stated, we solve the triangular silhouette interpolation problem by solving two linear
silhouette interpolation subproblems. In the linear silhouette interpolation algorithm we use the

12



epipolar geometry of the two views to rectify the two silhouettes , much as inthe process of view
morphing [37]. The vertices of the two rectified silhouettes are then processed in scan line order.
Linear interpolation of the silhouette boundary is performed at the scan lines containing the vertices
in order to produce an output set of vertices. Special care must be taken when thetwo silhouettes
have a different number of spans on a given scan line. The resulting vertices are reconnected to
create an output silhouette . The details and analysis follow.

Algorithm

Given three silhouettes from three views, finding the actual correspondence between points on
these silhouettes is not a well defined problem. This is because as one’s view moves, the points on
the contour generator slide locally over the surface. Only at points with infinitecurvature (creases)
do points on the contour generator remain constant; clearly at these points, the conceptof actual
correspondence is well defined, and should be obeyed by a silhouette interpolation algorithm. This
problem is made even more difficult if the three silhouette polygons have different topologies3.
Thus, barycentric coordinates cannot be directly used.

Given 2 silhouettes from 2 views, there is generally no actual physical correspondence. but
there is a “natural” correspondence defined by the epipolar geometry of the two views,which has
been used by vision researchers to extract curvature information from silhouettes [7, 14]. We
use this epipolar correspondence to create an interpolation algorithm between two views with the
desired criteria. Because this epipolar correspondence is only defined for pairsof views, and not
triplets of views, we solve fors

c

by solving a sequence of two pairwise interpolation steps.

First we find the edge of the triangle�
123

that is closest top
t

. Without loss of generality
suppose this edge is defined by pointsp

1

;p

2

. We then find the the intersectionp
e

of that edge
and the line defined byp

3

andp
t

. We perform linear silhouette interpolation betweens

1

ands
2

to
obtain the intermediate edge silhouettes

e

. We then perform a second linear silhouette interpolation
betweens

3

ands
e

to constructs
t

. See Figure 2. We note that the result of this two-step interpolation
is order-dependent.4

This is described by the following pseudocode:

(s_t, v_t) <-- triSillInterp(p_t, v_1, v_2, v_3, s_1, s_2, s_3){
p_1 = v_1.pov; p_2 = v_2.pov; p_2 = v_2.pov;
edge_12 = closestEdge((p_t, p_1, p_2, p_3); //wlog
p_e = isect(line(p_1,p_2), line(p_t, p_3) );
(s_e, v_e) = linSillInterp(p_e, v_1, v_2, s_1, s_2);
(s_t, v_t) = linSillInterp(p_t, v_e, v_3, s_3, s_3);

3At some singular viewpoints, the topology of the contour generator can change, and new closed contours can be
created. At these viewpoints the apparent contour will change its topology. At other singular viewpoints, the topology
of the contour generator may remain the same, but the topology of the (projected) apparent contour can change.

4As we will see below, each stage of linear silhouette interpolation will give us the same silhouette that is predicted
by the the visual hull defined by the two input views (for examplevh

12

). But the composition of these two steps does
not generate the same silhouette that would be predicted by the visual hull defined by all three viewsvh

123

. It is only
a conservative estimate. Further analysis is the topic of future research.
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Figure 3: Silhoutette interpolation in an epipolar plane.

return (s_t, v_t);
}

5.2 Linear Silhouette Interpolation

Given 2 viewsv
1

; v

2

and their associated silhouettess
1

; s

2

and a pointp
e

on the edgep
1

;p

2

our
goal is to produce the camera information for some viewv

e

with viewpointp
e

, and an interpolated
silhouettes

e

for that view.

In this section we describe our algorithm for this problem. In addition to the abovefeatures,
this step has the following property

� If span (defined below) correspondence is solved correctly thens

e

= sill(v

e

; vh

12

) �

sill(v

e

; vh

1

)

As stated earlier, we wish to use an epipolar geometry to define correspondence. This will
allow us to guarantee the above properties. In particular an epipolar decomposition of the scene
will allow us to reduce the contour interpolation problem to a set of independent and mucheasier
1d span interpolation problem restricted to individual scan lines.

Epipolar Decomposition

Epipolar decomposition is most easily accomplished in a rectified domain. Given two silhouettes
s

1

; s

2

taken with 2 viewsv
1

; v

2

with locationsp
1

;p

2

we construct the linel = p

1

;p

2

. We then
construct two new camera geometriesv

0

1

; v

0

2

such that their image planes are parallel to each other
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and tol. We also require that the scan lines of the two image planes are aligned and incorrespon-
dence. We define the output viewv

e

to be a camera with center atp
e

and an image plane rectified
with v

0

1

; v

0

2

. This can be accomplished since all three camera centers lie on one line [37]. Because
the viewsv

1

andv0
1

share the same camera center, one can correctly warps

1

to s

0

1

by computing
the appropriate 3 by 3 matrixH

1

and applying it to the silhouette vertices. Likewise forv

2

.

In a rectified context, given some scan lines, there is an epipolar planeep
s

that includes the
scan lines and the linel joiningp

1

;p

2

. The intersection ofep
s

and a closed 3D surface is generally
a set of closed curvescr

s

. If the epipolar plane intersects the top or bottom of a convex surface
region, then the intersection can include unconnected points called frontier points [2]. See Plate 5.

The pin hole projection of the curvescr
s

into the viewv0
1

will cover a spansp
1s

in scan line
s. A span is defined by a set of covered intervals; this is described by an even number of vertices.
Likewise, the pin hole projection of the curvescr

s

into the viewv0
2

will cover a spansp
2s

in scan
line s. Our strategy is to interpolate betweensp

1s

andsp
2s

to produce a spansp
es

in scan lines of
the interpolated viewv

e

. If this can be done for all scan liness, then we have accomplished our
goal. Thus we have reduced a contour interpolation problem to a much easier span interpolation
problem.

Algorithm

When the silhouettes are represented as polygons, and the scan line interpolation algorithm per-
forms linear interpolation, the output silhouette will be a polygon with vertices atthose scan lines
where there are vertices in the original silhouettes . As a result, we do not need to apply our span
interpolation algorithm at every scan line, but only at the scan lines where there are vertices. The
algorithm thus resembles an active edge style polygon scan converter. The vertices of the rectified
silhouettes ,s0

1

ands0
2

, are sorted iny order. Scan lines that have vertices are visited from top
to bottom. An active edge data structure allows us to quickly determine all of the edge intersects
with the scan line. An interpolation is performed on the two spans, which results in an interpolated
span. After all of the scan lines are processed, the resulting vertices are connected together to form
the output silhouette5.

(s_e, v_e) <-- linSillInterp(p_e, v_1, v_2, s_1, s_2){
(v’_1, v’_2) = determineRectification(v_1, v_2);
s’_1 = rectify(s_1, v_1, v’_1);
s’_2 = rectify(s_2, v_2, v’_2);
v_e = determineRectifiedEdgeView(p_e, v’_1, v’_2);

sorted = sortVertsByYCoord(s_1,s_2);
for each scanline s in sorted{
sp_1s = intersect(s, s_1); //using active edge list
sp_2s = intersect(s, s_2); //using active edge list
sp_e[s] = spanInterp(v_e, v’_1, v’_2, sp_1s, sp_2s);

5Details of this step are not particularly enlightening and are deferred to a longer report.
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}
s_e = connectUpSpans(sp_e);
return (s_e, v_e);

}

5.3 Span Interpolation

Given two rectified viewsv0
1

; v

0

2

, with two associated spanssp
1s

; sp

2s

the goal is to interpolate an
output spansp

es

for the viewv
e

. Because we are in a rectified context, this can be viewed entirely
as a rectified problem in flatland(see Figure 3). This makes the problem much easier to analyze
and solve.

Single Interval spans

The easiest case to consider (and the most frequent case) is when the epipolar planeep
s

intersects
the 3D geometry in a single closed curve. In this case, the span seen from each of the two views
v

0

1

; v

0

2

will consist of a single covered interval (see Figure 3). The interval inv

0

1

is defined by the
two image x coordinate numbersx1l; x1r, and the interval inv0

2

is defined by the two numbers
x2l; x2r.

In this case we use simple linear interpolation to predict the output interval(xel; xer).

xel = (1� �)x1l + (�)x2l

xer = (1� �)x1r + (�)x2r

Where� represents the fraction of the distance along the segment.

It is well known (see for example [37]), that in a rectified context, linear interpolation of an
imagex coordinate between two views in image space (for example (x1l, x2l)) corresponds to the
projection of some geometric pointl in space. The pointl must project inv0

1

with x coordinatex1l
and inv0

2

with x2l. Clearly l must be the intersection in space between the ray fromp

1

passing
through the left of the span on its image plane, and the ray fromp

2

passing through the left of the
span on its image plane, Likewise forr.

The linear interpolation algorithm behaves as if the silhouette was defined by fixed feature
pointsl; r on the epipolar plane. This of course is not how the actual silhouette would behave on
the curved surface. In the bottom of Figure 3, the dotted curves show the evolution of the actual
silhouette while the solid lines show the evolution we predict. The velocity of the actual left point
on the contour generatorcgl1 as one moves fromv0

1

to v0
2

is governed by the following equation [7]

dcgl1

d�

= (

d~r

d�

� ~n

�

)~r (1)

where~r = cgl1�p

1

kcgl1�p

1

k

is the direction from the optical center towards the contour generator,~n is the
surface normal, and� is the normal curvature (at the pointcgl1) of cr

s

, the curve defined by the
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intersection of the 3D geometry with the epipolar plane . When the curvature is very low, thecgl1
slips quickly across the curve. When the curvature is high, the point slips slowly.In the limit, at
a feature point with infinite curvature, the point on the contour generator does not move atall. In
this case, if the same feature point is visible in both views, the linear interpolation algorithm will
produce the correct prediction.

If we do not have an estimate of the curvature, the most conservative estimate is to assume it is
a sharp point. This is exactly what our interpolation algorithm does. This is the same assumption
that is made when constructing the visual hull.

If we were to explicitly construct the flatland visual hullvh
12

from the given silhouette infor-
mation, we would intersect the two associated wedges (flatland cones), givingus a quadrilateral
surrounding the closed curve. The quadrilateral is defined by four points in spacel; r;n; f (left,
right, near and far). For any viewv

e

that lies on the segment connectingv0
1

; v

0

2

, the flatland ob-
served silhouettesill(v

e

; vh

12

) is a single interval defined by the projection of the two points
l; r into v

e

. In fact, it can easily be proven that given more silhouettes observed from a set of
views V where the extra viewpoints lie on the linel but outside of the the segmentp

1

p

2

, that
sill(v

e

; vh

12

) = sill(v

e

; vh

V

). In other words, having more silhouette information from farther
away than the surrounding two views cannot improve the predicted silhouette6. See Figure 4.

To summarize, in the case of a closed curve, the linear interpolation of the interval endpoints is
equivalent to predicting the silhouette usingvh

12

. Using views from farther away can not improve
this prediction.

Multiple Interval Spans: Pants

When the intersection of the epipolar plane and the 3D geometry consists of more than oneclosed
curve, the situation gets a bit more complicated. In this case the span in each view can be made
up of any number of intervals, and the number of intervals in the two views need not be the same.
For example in Figure 5, the left span has one interval, and the right span has two intervals. If one
draws the actual evolution of the observed silhouette intervals as one moves fromp

1

to p

2

using
the vertical dimension as time,�, one obtains the diagram shown as dotted curves in Figure 5.

6A formal proof is left to a longer report.
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Clearly this exact shape would be hard to predict simply from the silhouette information in the two
views.

Once again we appeal here tovh
12

, which in the case of Figure 5 is made up of two quadrilat-
erals. The evolution of the silhouette of the visual hull is defined by the solid lines in the figure,
a configuration we refer to as “pants”. The pants evolution can also be correctly predicted using a
modified linear interpolation algorithm.

Given that the left view span has a single intervalx1l; x1r and the right view has two spans
x2la; x2ra andx2lb; x2rb one performs the following pants computation

xela = lerp(alpha, x1l, x2la);
xera = lerp(alpha, x1r, x2ra);
xelb = lerp(alpha, x1l, x2lb);
xerb = lerp(alpha, x1r, x2rb);
if (xelb < xera)
return (xela, xerb);

else
return (xela, xera, xelb, xerb);

In the casexelb < xera the image of the two quadrilaterals invh
12

overlap in the output view, and
only one interval is output. Otherwise, the image includes 2 intervals which areoutput. In either
case, the correct visual hull is reproduced.

We note that in the case of multiple intervals, it is not the case that one will notbe helped
by silhouette information from farther views, i.e.,sill(v

e

; vh

12

) 6= sill(v

e

; vh

V

). For example
see Figure 6. For efficiency, in this case we still do not use more views, and understand that our
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prediction may be suboptimal.

Mutant Pants

The pants algorithm can be extended in a straightforward manner to include more complicated
topological changes such as n-legged pants, and two-sided-no-torso pants (see Figure 8).

In Figure 7, we show an example where both the left and right views have spans with two
intervals. The visual hull here is defined by the four shaded quadrilaterals, whichresults in two
sided pants. If there is no geometry in the front and back quadrilaterals, then this is overly conser-
vative. If we can determine that during the interpolation, the two observed silhouette intervals do
not interact, then we can use the less conservative interpolation shown on theright. More generally
givenn intervals forv0

1

, andm intervals forv0
2

, we attempt to group the intervals in into cliques
such as those shown in in Figure 8. An independent pants is created for each clique.

We have developed a heuristic algorithm for clique determination using the matching of frontier
points and tracking from span to span. Stated briefly, for the pair of views, we attempt to form a
correspondence between the convex and concave minima and maxima of the silhouette .Matched
extrema, and their associated spans are put in separate cliques. Unmatchedextrema and their
associated spans are put in the nearest existing clique. This heuristic works well if the views are
taken closely together with few topological changes between the views. An adequate sampling rate
is set adaptively by the silhouette map simplification algorithm described next.

6 Silhouette Map Simplification

In a silhouette map, views are sampled at a set of vertices describing a star-shaped polytope sur-
rounding the object. For most objects, a uniform sampling is inefficient. In some regions of view
space, the silhouette changes slowly (for example� in equation 1 may be large). In other regions,
the silhouette may change rapidly. Geometrically this can occur wherek is small. Moreover when
topological changes occur, our interpolation algorithm uses the pants connection, which canbe
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Figure 8: Cliques with mutant pants.

quite conservative, making a higher sampling rate desirable. Our solution to this is to use an adap-
tive sampling in the silhouette map. This is achieved using a greedy silhouettemap simplification
procedure that is inspired by the mesh simplification algorithm described in [19].

In particular, we begin with a silhouette map that contains many samples, densely surrounding
the object. It is this original data that any simplified map must approximate. During the simpli-
fication process, any edge on the silhouette map polytope can be collapsed and one of itsviews
discarded. We associate with each edge the error that would be incurred by collapsing it. The
error is measured by comparing the original silhouette data points with predictionsthat would be
made by the simplified mesh. The error metric measures the number of pixels thatare misclassified
(interior/exterior) by the prediction. Since we wish the polytope to remain star shaped, an edge is
given infinite cost if its collapse would lead to a non-star shape.

The edges are stored in a heap, sorted by cost. The lowest cost edge is removedfrom the heap,
and is collapsed in the silhouette map. The edges in the neighborhood of the collapse must then
have their costs reevaluated.

An example of the simplification is shown in Plate 6. The simplification is somewhat time
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consuming, and is run as a preprocess.

7 Construction of progressive hulls

For the rendering application in this paper, we need to compute, for an arbitrarytriangle meshMn,
a set of one or more coarser approximating meshes that completely encloseM

n. In this section, we
solve the somewhat more general problem of constructing fromM

n a continuous family of nested
approximating meshesM0

: : :M

n, such that

V(M

0

) � V(M

1

) : : : � V(M

n

)

whereV(M) denotes the interior volume ofM . We refer tofM0

: : :M

n

g as aprogressive hull
(PH) sequence forMn. Before presenting the technique in more detail, let us first more precisely
defineV(M).

Definition of interior volume The given meshMn is assumed to be orientable and closed (i.e. it
has no boundaries). The mesh may have several connected components, and may containinterior
cavities (e.g. a hollowed sphere). In most cases, it is relatively clear which points lie in the interior
volumeV(M). The definition of interior is less obvious in the presence of self-intersections, or
when surfaces are nested (e.g. concentric spheres). Interfaces for 2D rasterization often allow
several rules to define the interior of non-simple polygons [1, 32]. These rules do generalize to the
case of meshes in 3D, as shown next.

To determine if a pointp 2 R

3 lies in the interior of a meshM , select a ray fromp off to
infinity, and find all intersections of the ray withM . Assume without loss of generality that the ray
intersects the mesh only within interiors of faces (i.e. not on any edges). Each intersection point
is assigned a number, +1 or -1, equal to the sign of the dot product between the ray direction and
the normal of the intersected face. Let thewinding numberw

M

(p) be the sum of these numbers.
Because the mesh is closed, it can be shown thatw

M

(p) is independent of the chosen ray.

Based onw
M

(p), several definitions of interior volume are possible. Thenon-zerowinding
rule definesp to be interior if and only ifw

M

(p) 6= 0. With theeven-oddrule, the condition is that
w

M

(p) is odd. In this work, we use thepositive winding rulewhich defines interior volume as

V(M) = fp 2 R

3

: w

M

(p) > 0g :

Progressive mesh representation The progressive hull (PH) sequence is an adaptation of the
earlierprogressive mesh(PM) representation [19] developed for level-of-detail control and pro-
gressive transmission of geometry.

The PM representation of a meshMn is obtained by simplifying the mesh through a sequence
of edge collapsetransformations, and recording their inverses. Specifically, the PM representation
consists of a coarse base meshM

0 and a sequence ofn vertex splittransformations (Figure 9) that
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Figure 9: The vertex split transformation and its inverse, the edge collapsetransformation.

progressively recover detail. Thus, the representation captures a continuous family of approximat-
ing meshesM0

: : :M

n.

As shown in Figure 9, each edge collapse transformation unifies two adjacent vertices into
one, thereby removing two faces from the mesh. For the purpose of level-of-detailcontrol, edge
collapses are selected so as to best preserve the appearance of the mesh during simplification.
Several appearance metrics have been developed (e.g. [9, 13, 17, 19, 26]).

In this paper, we show that proper constraints on the selection of edge collapse transformations
allow the creation of PM sequences that are progressive hulls.

Progressive hull construction For the PM sequence to be a progressive hull, each edge collapse
transformationM i+1

!M

i must satisfy the property

V(M

i

) � V(M

i+1

) :

A sufficient condition is to guarantee that, at all points in space, the winding numbereither remains
constant or increases:

8p 2 R

3

; w

M

i+1

(p) � w

M

i

(p) :

Intuitively, the surface must either remain unchanged or locally move “outwards” everywhere.

Let F i andF i+1 denote the sets of faces in the neighborhood of the edge collapse as shown
in Figure 9, and letv be the position of the unified vertex inM i. For each facef 2 F

i+1, we
constrainv to lie “outside” the plane containing facef . Note that the outside direction from a face
is meaningful since the mesh is oriented. The resulting set of linear inequalityconstraints defines
a feasible volume for the location ofv. The feasible volume may be empty, in which case the edge
collapse transformation is disallowed. The transformation is also disallowed if eitherF i or F i+1

contain self-intersections.7 If v lies within the feasible volume, it can be shown that the facesF

i

cannot intersect any of the facesF i+1. Therefore,F i

[ flip(F

i+1

) forms a simply connected, non-
intersecting, closed mesh enclosing the difference volume betweenM

i andM i+1. The winding
numberw(p) is increased by 1 within this difference volume and remains constant everywhere
else. Therefore,V(M i

) � V(M

i+1

).

The positionv is found with a linear programming algorithm, using the above linear in-
equality constraints and the goal function of minimizing volume. Mesh volume, defined here

7We currently hypothesize that preventing self-intersections inF

i andF i+1 may be unnecessary.
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as
R

p2R

3

w

M

(p)dp, is a linear function onv that involves the ring of vertices adjacent tov (refer
to [17, 26]).

As in earlier simplification schemes, all candidate edge collapses are entered into a priority
queue according to some cost metric. At each iteration, the edge with the lowest cost is collapsed,
and the costs of affected edges are recomputed. Various cost metrics are possible. To obtain
monotonically increasing bounds on the accuracy of the hull, one can track maximum errors as
in [3, 8]. Another choice is the quadric error metric [13]. We obtain good results simply by
minimizing the increase in volume, which matches the goal function used in positioning the vertex.

As discussed in Section 8.2, each projected texture used in rendering a coarsemeshM c requires
a surface parametrization. A simple approach is to map the positions of vertices inM c through the
same projective view that captured the image. Because the meshM

c is an outer hull of the original
meshMn, its vertices may lie some distance fromMn. We have found that the parametrization
is improved if we associate to each vertexv in M

c a “closest point”P(v) on the surface ofMn.
We setP(v) = v for all v 2 M

n, and for each edge collapseM i+1

! M

i, assign to the unified
vertexv 2 M

i the parametrizationP(p) linearly interpolated at its closest pointp on the surface
of M i+1.

Inner and outer hulls The algorithm described so far constructs aprogressive outer hullse-
quenceM

0

� : : : � M

n

. By simply reversing the orientation of the initial meshMn, the same
construction gives rise to anprogressive inner hullsequenceM 0

� : : : � M

n. Combining these
produces a single sequence of hulls

M

0

� : : : � M

n

= M

n

� : : : � M

0

that bounds the meshMn from both sides.

We expect that this representation will also find useful applications in collision detection, par-
ticularly using a selective refinement framework [20, 42].

8 Rendering Using Silhouette Clipping

To exploit the computed polygonal silhouette, we structure the rendering process as follows. First,
we draw the silhouette polygon into the stencil plane of the frame buffer, setting the stencil bits at
each pixel such that future rendering operations only affect the interior of the silhouette polygon.
Second, we render the coarse mesh subject to the stencil, mapping textures onto themesh faces
using the precomputed object views. Finally, to obtain an anti-aliased silhouette, we render the
silhouette polygon as an anti-aliased polyline, recording the alpha values in the frame buffer. We
then render the coarse mesh again, using those computed alpha values at the silhouette pixels. We
next describe each of these steps in further detail.
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8.1 Silhouette clipping

At each frame, the stencil plane is initialized to zero as part of the frame buffer clear operation.
Even though the silhouette polygon is generally concave and contains holes, it can be rasterized
into the stencil plane efficiently as a single triangle fan. The trick is to use parity bits so that
overlapping triangles cancel out correctly; for details, refer to the OpenGLprogramming guide
[33]. Note that drawing the silhouette polygon is a simple 2D rasterization operation and is thus
extremely fast. Having established the silhouette in the stencil plane, wenext render the coarse
mesh subject to the stencil.

8.2 Projective textures

In a precomputation stage, we store a small number of shaded images of the high resolution ge-
ometry as textures. For each face of the coarse mesh, we compute the set of texture views from
which it is completely visible [12]. This set of visible textures is stored as a visibility bit vector
associated with the face.

During rendering we sort the texture views in order of increasing distance from thecurrent
camera view, where distance is simply Euclidean distance between the camera centers. The number
of texture views is generally small (e.g. 20) so this sorting operation is fast.For each face of the
coarse mesh, the texture used to texture map the face is taken to be the closest texture view that is
contained in the visibility bit vector.

At each vertex of the face, the projective texture coordinates are obtained byprojecting a 3D
position into the appropriate texture view. While we could simply use the position of the ver-
tex, texture map distortion is reduced by instead using the parametrizationsP(v) computed in
Section 7.

8.3 Anti-aliasing of the silhouette

One benefit of the silhouette clipping approach is that the silhouette can be anti-aliased even if the
hardware lacks polygonal anti-aliasing. To achieve this, the silhouette polygon is rendered again
simply as a 2D anti-aliased polyline, but only affecting the alpha channel of the frame buffer. Then,
the mesh is rendered, using the alpha values already in framebuffer.

As with conventional polygonal rendering, correct anti-aliasing in the presence ofmultiple
objects requires that the objects be rendered in back-to-front order.

9 Results

Plate 1 shows meshes in a progressive hull sequence for a mesh of69; 674 faces. Construction of
the sequence took 17 minutes on an SGI R10K, but the prototype software was not designed for
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Figure 10: Rendering speeds.

speed. Plate 2 shows another example.

Figure 2 shows an example of silhouette interpolation. Note that the resulting silhouette has a
different topology than any of the original data.

Plate 3 shows silhouette clipping used for efficient high quality rendering. In (a) the original
high resolution mesh is shown. In (b) we show a low resolution approximation with500 faces.
In (c) the low resolution geometry is texture mapped using 20 precomputed texture views. In (d)
we show the interpolated silhouette for this view. In (e), the interpolated silhouette is used to clip
the low resolution mesh. In (f) the silhouette is also used to antialias thesilhouette of the low
resolution geometry.

In figure 10 we show timing performance on an SGI R5K, of our algorithm on the bunny
data set. For the low resolution geometry we use 500 faces. The horizontal axis measuresn, the
(average) number of vertices in each of the silhouette contours of the silhouette map. The dot-dash
line shows the time it takes to perform the silhouette interpolation for eachframe. The dotted line
shows the time it takes to interpolate the silhouette , and draw the low resolution using silhouette
clipping. The solid line shows the time to interpolate, silhouette clip and applyprojective textures.
For comparison, we show timings for rendering high resolution geometry withn

2 faces. For evenly
tessellated objects, it takes roughlyn2 faces to obtain a silhouette withn vertices. This is shown
with a dashed line.

Plate 6 shows an example of our silhouette map simplification algorithm. We begin with 1024
evenly spaced views about the torus. When we have reached 128 views, the structureof the re-
maining star shaped polytope appears to be well tuned to the structure of silhouette changes for
various directions.
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In figure 11, we show the performance of our simplification algorithm on the torus data set. The
horizontal axis measures the number of views kept. Error is measured by comparing the original
1024 silhouette contours to those predicted by the simplified map. The number of misclassified
pixels (exterior/interior) is measured. This number is divided by the entire number of pixels in the
interior of the object for that view. This is summed up over all the views and divided by 1024.
The simplification algorithm in conjunction with the silhouette interpolation method described
produces a silhouette map with high fidelity and minimal storage overhead.

10 Discussion

We have introduced the framework of silhouette clipping, in which low-resolutiongeometry is ren-
dered and clipped to a more accurate silhouette. During a preprocess, a silhouette map is formed by
sampling the object silhouette from a discrete set of viewpoints. Interpolation ofthese silhouettes
was made principled using a visual hull approximation of the model in a rectified epipolar setting.
Topological changes between adjacent silhouettes can be handled properly by this algorithm. We
reduced storage of the silhouette map through adaptive simplification.

To guarantee that the geometry be at least as large as the silhouette, we presented a technique
for constructing a nested sequence of meshes, in which each coarser mesh completely encloses the
original mesh.

Finally we reported on the rendering speedups possible using silhouette mapping.
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