<
brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

DIGITAL ACCESS 1o —
SCHOLARSHIP st HARVARD HARVARD LIBRARY

Office for Scholarly Communication
DASH.HARVARD.EDU

provided by Harvard University - DASH

Silhouette Mapping

The Harvard community has made this
article openly available. Please share how
this access benefits you. Your story matters

Citation Gu, Xiangfeng, Steven J. Gortler, Hugues Hoppe, Leonard McMillan,
Benedict J. Brown, and Abraham D. Stone. Silhouette Mapping.
Harvard Computer Science Group Technical Report TR-1-99.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:23017274

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

https://core.ac.uk/display/154869364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Silhouette%20Mapping&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=8efa907db4ee433a2ceb32b378d07b44&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23017274
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Silhouette Mapping

Xianfeng Gu Steven J. Gortler Hugues Hoppe
Computer Science , Harvard Univ. Microsoft Research

Leonard McMillan Benedict J. Brown Abraham D. Stone
MIT LCS Computer Graphics CS, Harvard Dept of Philosophy, Harvard

March 15, 1999

Harvard University, Computer Science Technical Report: TR-1-99

Abstract

Recent image-based rendering techniques have shown suncgsproximating detailed
models using sampled images over coarser meshes. Ondibimitd these techniques is that
the coarseness of the geometric mesh is apparent in the mmighonal silhouette of the
rendering. In this paper, we present a scheme for accureaplyiring the external silhouette
of a model in order to clip the approximate geometry.

Given a detailed model, silhouettes sampled from a disaetef viewpoints about the
object are collected into a silhouette map. The silhouettm fan arbitrary viewpoint is then
computed as the interpolation from three nearby viewpdimtbe silhouette map. Pairwise
silhouette interpolation is based on a visual hull appration in the epipolar plane. The sil-
houette map itself is adaptively simplified by removing véemhose silhouettes are accurately
predicted by interpolation of their neighbors. The modeadrgetry is approximated by a pro-
gressive hull construction, and is rendered using prajeteieture maps. The 3D rendering is
clipped to the interpolated silhouette using stencil pkane

1 Introduction

In interactive 3D rendering there is a constant tension between model comegirendering
speeds. Scenes with high geometric complexity are necessary for visustrdalt require high
computational costs to achieve. This tension will not go away soon. To this erahhsrbeen
considerable research into how to best use a given amount of rendering resandcesumber of
successful approaches have been developed.

1

One such approach is level-of-detail rendering [18]. In this approach, more polygouseat
for nearby objects than for distant objects, using more rendering resources hdepedduce the
most visual impact. More complicated view based level of detail methodsuaksanore poly-
gons in the silhouette regions of models, since this typically produces the highest gisalay
appearance [42, 20, 27].

Another such approach is texture mapping and its descendant image based rendering algo-
rithms. In these methods, resources are used to create photometric apgeafdmgh complexity
using objects with low geometric complexity and fidelity.

Some of the most impressive results are obtained from systems that combinptsdrnoe
both of these approaches[6, 9, 24, 31, 41]. Cohen et al. [9] combine model simplification wit
texture and normal maps to produce objects with high visual complexity with modwektrieg
budgets. This combination of approaches works extremely well at representingpibarances
of the interiors of objects. The one limitation of these approaches is that they do gopoor
of displaying high quality silhouettes of objects, since they use a low polygon count. sThis i
unfortunate since the appearance of the silhouette of an object is one of the strongésueisua
as to the shape of an object [23].

To address this problem we have developed a rendering system that ensures thataobjec
displayed with high resolution silhouettes, even when low resolution geomsetsed to speed up
rendering. Like Cohen et al., we use simplified geometry to describe the olsjeapes, and we
use textures to create high visual complexity in the objects’ interiors. Inystes, we introduce
a silhouette clippingalgorithm to ensure that the low resolution geometry is only drawn in the
screen region defined by a high resolution silhouette. Silhouette clipping iseanadive to the
view based level of detail methods such as [20], that must dynamically creetded simplified for
the current view. These methods are quite complicated, and for model consisteri@emersite
high polygon counts in regions that are near but not on the silhouette.

The first challenge one must face in order to do silhouette clipping is a way of quioklky
structing a high resolution silhouette for a given view. One could extract theustte dynamically
by appealing to the high resolution geometry for each frame as done in [30, 16]. Bainieds-
ods compute all silhouette curves that separate front-facing polygons from baog-fexdygons.
Some of these curves lie in the interior of the model, and can not be used for siéholigting.
We must be able to quickly compute only the boundary silhouettes (defined below).

Our system accomplishes the construction of a high resolution silhouette by usingpanpre
putedsilhouette mapA silhouette map is a data structure completely independent of the original
geometry that stores an explicit representation of the silhouette contourrafr@@ea discrete
set of views. To obtain a silhouette for an arbitrary current view, threerbyéailhouettes are
extracted from this silhouette ma§ilhouette interpolatioms performed to create a silhouette for
the current view. Thus, during the rendering of the current view, the data accesbptbaessed
is on the order of the complexity of a silhouette contour, which is typically muchhessthe size
of the high resolution model.

L As a rule of thumb, if the high resolution model hapolygons, and is tessellated evenly, the silhouette contour
is usually made up af(,/n) edges.

In some ways, the silhouette interpolation problem referred to above resemhigl contour
interpolation problem found in animation and morphing applications [38], which can tedsol
effectively with a number of ad hoc solutions. But silhouette interpolation feremt from con-
tour morphing in a few key ways. Silhouette contours routinely undergo complicated tagdlogi
changes as the viewpoint changes [23], and thus a silhouette interpolation method musttbe abl
handle such cases routinely. Moreover, when there is a sharp feature pointotjeitte that point
may remain on the silhouette of the nearby views. During silhouette interpol#tiese points
should be considered to be “in correspondence”. Typical contour morphing algorithms would not
guarantee this. We have therefore developed a novel silhouette interpolatohdpethe epipolar
geometry of two views. Our method can handle topological changes, and it ensurestulbt a
feature points on silhouettes are treated as being in correspondence. Mouetikerthe many
existing contour morphing methods, our silhouette interpolation algorithm has a cleaetgeom
interpretation. It also guarantees that the resulting interpolated sileargattour is conservative:
it is guaranteed to lie outside the actual silhouette that would be observediearartrent view.

For typical objects, the silhouettes can change rapidly in some region of view spacgowly
in others. This happens for both geometric and topological reasons.

In areas of low surface curvature, the silhouette (when seen in 3D) slipklyaicross the
surface as the view changes, while in areas of high curvature, the silhouets siowly across
the surface. In the limit, at sharp edges, the silhouette doesn’t moveas ik view position
changes, until some change in global geometric configuration occurs.

When one considers both internal and external silhouettes portions (see terminolagy, bel
the topological changes that can occur for a silhouette are well understood [23]. Asthe vi
changes, the silhouette topology remains unchanged until a singular view is reachedh At suc
view a catastrophe occurs, and the topology of the silhouette changes according tofiwedl de
rules. When one only considers external silhouettes, as we do, the topological chahgesuha
cannot be analyzed as easily. Nevertheless, it should be clear thatim cegions, the silhouette
undergoes discontinuous changes and interpolation becomes more difficult.

To address both of these problems, we have developiditbauette map simplificaticagorithm
that adaptively samples the view space. As aresult, we keep more sithimfietination in regions
of view space where the silhouettes change most rapidly.

In order to perform silhouette clipping on the approximate geometry, one must haye an a
proximation that encloses a volume that is larger than the original geometriisTertd we have
developed @rogressive hultepresentation. This creates a nested family of approximating meshes
with the property that each coarser mesh encloses the finer meshes. Tésenggtion is a variant
of the progressive mesh representation [19] that uses linear programming te #nesdesired hull

property.

Our silhouette map could also be used in cases where explicit high resolutioetggemot
available, but high resolution silhouette information is. One such promising@eras image
based rendering. Extracting high quality depth information from images is autlificoblem;
automatic (multi)stereo algorithms are notoriously unreliable, and evehetlatiest of graduate
students quickly tires from manually specifying the necessary correspondence poaustrast,

the silhouette of an object can be extract from an image easily and with leghaay.

Contributions

Our work has a number of distinct contributions

e We introduce the idea of silhouette clipping, to efficiently render low resolutiomgéric
objects with high resolution silhouettes .

e We introduce the idea of a silhouette map, which is an auxiliary data structuistdhes the
silhouette appearance from a number of sampled viewpoints.

e We describe an algorithm for silhouette interpolation. This algorithm, which sedan
epipolar geometry can handle topological changes, keeps sharp feature pointssparoire
dence, and guarantees a silhouette which is outside the actual silhouette .

e We describe a greedy simplification algorithm that samples silhouette infiormiaost
densely in regions of view space where the most changes occur.

e We describe a progressive hull data structure for representing a nested sexfusrotesing
approximate geometries. This representation may have other uses suclsasadtiection.

Limitations

Our work has several limitations and thus directions where future work is estjuir

e Silhouette clipping can only be applied to external silhouettes . Internal sitleswet gen-
erally not closed contours, and therefore cannot be used to create a clipping régisn.
results in visible artifacts where an object is self occluding. To soh& suime method for
decomposing the original object into subobjects would be necessary.

e Our interpolation method is conservative. Given the silhouettes recordecatviewpoints
in space, our algorithm will produce a conservative silhouettes for any viewpoittieon
triangle connecting the three vertices. The actual silhouette is guarantéedvithin the
interpolated silhouette , but is generally not on it. Our interpolation algorithbased on
the concept of visual hull, which is generally too conservative. In order to prodydert
silhouettes ideally would require higher order differential information aboutuhface at
each point on the silhouettes .

e Our algorithm is local, in that it only uses the nearest three views to dteaiaterpolation.
While for some classes of contours it can be shown that this is optimal, in démenaare
cases where other farther views can improve the computation of the silhoofatiessisual
hull. Further analysis is required.

e The algorithm described in section 5.1 is an interpolation algorithm and not apeldtion
algorithm. In order to compute correctly silhouettes that are not on a triangtaube
the viewpoint has moved closer or farther from the object) would requires exgépth
information at each point on the silhouettes , or a tetrahedralization of Spguectice we
use a simple planar homography (section 5) which we have found to work adequately well
in practice.

e Subdividing the intervals of a span into cliques requires correspondence betwestethe i
vals in the two views. Our heuristic for this can be incorrect if multiple togadal changes
have occurred between the two views. In practice, this is taken careafrtsjlhouette map
simplification algorithm. In regions where correspondence is difficult, denseplea are
used. Again more analysis would be useful here.

Preliminaries
Silhouettes

In order to help our discussion, we will introduce here a small amount of terminolagya pin
hole imaging model and a smooth surface, a silhouette is created when ahaimesdtion vector
7 passing through the pin hole touches the surface at a powthere the normal of the surface is
orthogonal to the ray direction

7-fip =0

The set of 3D point® for which this is true is called theontour generatarThe contour generator

is generically made up of a set of smooth closed 3D contours on the surface [7]. Téetipropf

the contour generator onto the image plane is callecfparent contour The apparent contour

is a 2D curve that can self intersect, and at some points (called cuspe)bemon-smooth. If we
view the image of an opague object, many parts of the apparent contour are occluded byrtgher pa
of the object. We call the unoccluded part of the apparent contourisiide apparent contour

For a non-convex object, the visible apparent contour consists of two peigésnalandinternal.

The internal part projects onto the interior of the image of the opaque object while draaart
projects onto the boundary of the opaque object. The external part forms the boundary between the
projection of an object and its background; this is defined by a closed contour (possibholas).

In our system we only deal with the external visible apparent contour which we \nglafter refer

to simply as the silhouette . See Plate 4.

The Visual Hull

In order to understand the conservative nature of our algorithms we briefly rdveegoncept of
the visual hull. Researchers have used (external) silhouette informatianv® @way regions of
3D space where it is known that the object is not present. The result of this casvinghape
called thevisual hullof the object [25]. The visual hull is generally not identical to the object (for

example in a concave surface region), nor is it identical to its convex huduaVihull methods
are extremely robust compared to other vision algorithms. We use the concepvisiuhlehull to
develop our interpolation algorithm.

Suppose that some original 3D geometry is viewed from a set of iewa each viewi, the
silhouettes; is formed by the boundary between the points interior and exterior to the object. For
view i we create the cone-like volume,; defined by all the rays starting at the image’s point of
view p; and passing through the interior points on its image plane. It is guaranteed thatiuidle ac
3D geometry must be containeddih;. This statement is true for alland so the 3D geometry
must be contained in the volumeé, =), vh;. As the size ofi” goes to infinity, and includes
all possible viewsyph, converges to an approximate shape known as the visual hyllof the
original geometry. The visual hull is not guaranteed to be the same as the originaltgesimse
concave region shapes can never be distinguished using silhouette information.

In practice, one must construct approximate visual hulls using only a finite number «f.view
Given the set of viewd’, the approximatiowh,, is the best conservative geometry that one can
achieve. (If one doesn’t require a conservative estimate, then better apptimxis are usually
achievable by fitting higher order surface approximations to the observed data [5].)

As one uses more and more views, the resulting hull improves, and convergks toln-
terestingly though, when one is only concerned with predicting silhouettes and onelaes t
the scene from some view that lies in the triangle defined by three views v,, v3, then the
silhouette observed is typically not improved by including any views otherdhan, v3. In other
words sill(vy, vhias) = sill(v, vhy). The reasons for this will be discussed below. This is an
encouraging result, for it means that local computation can be optimal.

Computation of visual hulls with high resolution can be a tricky matter. Thesattion of the
volumeswvh; is done with some form of CSG. If the silhouettes are polygonal, then the CSG can
be done using polyhedral CSG but this is very hard to do in a robust fashion. More typicall
CSG is done using a discrete voxelization of space [34]. In these systems onallg severely
limited by the low voxel resolutions achievable. The silhouette interpolatigorithm we use in
our system provides us with a conservative approximation of the silhogette sill(v;, vhio3)
without ever explicitly constructing any visual hull data structures whatsoeve

2 Relation to Previous Work

Level of Detail/Simplification

Several level-of-detail (LOD) techniques have been developed to adapirtiexity of a mesh
to changing viewing parameters. The simplest approach is to precompute fonargdel a set
of view-independent approximating meshes at different resolutions (see sundg})inThen, a
runtime LOD framework can switch between these approximations based orsthecgi of the
model from the viewer.

A more elaborate approach is to locally adapt the resolution of the approximatsiganein-

6

time based on its relation to the viewer. For instance, areas of thesgdade kept coarser if they
are outside the view frustum, facing away from the viewer, or sufficientlafay. Methods for
this so-called view-dependent LOD have been presented by Xia and Varshney ¢4l F20],
and Luebke and Erikson [27]. In particular, the view-dependent error metric of Ha@ppeau-
tomatically induces more refinement near the silhouette of the mesh. Howesascade of de-
pendencies between refinement operations also causes further refinemeas todiaexactly on
the silhouette, thus increasing rendering load. Another limitation of the viewadepéLOD ap-
proach is that its efficiency relies on time-coherence of the viewing paeaséf the view jumps
quickly from one frame to the next, more work must be expended in traversing thenrefihe
hierarchy.

In contrast, with silhouette clipping, fewer polygons need to be rendered sinceaganti-
aliased silhouettes are obtained as a 2D post-process. Moreover, compltdtahas concen-
trated on the visible contour.

Silhouettes

It has long been recognized that silhouettes are an important visual cue that huméamsleter-
mine shape and recognize objects [23]Sliid Shap§22], Koenderink catalogues the topological
changes that can occur in the apparent contour as the viewpoint changes continuously.

In the computational vision community there is a large body of work studying how shape
information can be computed from silhouette data. Koenderink and VanDoorn desamleeo$
the shape information that can be deduced from a single image [23]. Giblin and[¥vgidsscribe
how shape can be extracted from silhouette information from multiple views.Wank has been
extended in numerous ways. For example Cipolla and Blake [7] provide a thorough anatigis of
relationship between differential changes in the apparent contour seen by a robserger, and
the first and second fundamental forms of the surface geometry. They also avfalyzepipolar
correspondence between silhouettes which we use in our silhouette interpolgtiothat. Boyer
and Berger show how three discrete views can be used to compute an approxinuddéngsc
paraboloid for each point on the contour generator [5]. Many more references armednta
those papers.

In computer graphics, silhouette information has been used to enhance the erpersder-
ings of 3D objects [30, 15, 16]. We use the silhouette information to create renderitigthevi
appearance of high resolution.

There are also a number of algorithms described for extracting silhouettegtiytmedral
models. Blyth et al. describe a multipass rendering algorithm [4]. This ahgoriequires a
complete traversal of the high resolution geometry and is not fit for our purpose&oditar et
al. [30] describe an algorithm for quickly extracting both internal and exteitradugette edges
from a polyhedral model using random sampling and view coherence. Gooch et al. [16béescri
a hierarchical Gauss map for quickly rejecting edges that are not on the sithouEtese two
methods compute the entire contour generator, and not the silhouette . As a resulhthey loa
used directly for silhouette clipping.

Image Based Rendering

Recently there has been a strong effort to develop image based renderinthalgofihese algo-
rithms render new views starting from image-like input and representatidmesy dan allow for
faster rendering than from traditional model representations, and canliasotize creation of
models using photographs as input, without requiring the lengthy process of geometric modeling.

Work such as that of Debevec et al [11] has shown that one can extract low i@sgledmetry
and combine this with images to give the appearance of high resolution. In partibeladiscuss
the concept of view dependent texture maps wherein different projective textureargtQked
depending on the view. This work was further developed in [12]. In our system we adopt a
similar rendering approach and use view dependent projective textures mappecvaetsdioition
geometry.

Seitz and Dyer [37] present a view morphing algorithm to interpolate betweenntageis.
Their system is based on the idea that if two images are rectified (sudhdivaimage planes are
parallel to each other and to the direction of motion), all parallax is hor@t@mtd linear. As a
result, view interpolation can be done for each scan line independently, andihiegolation
can be used to warp the pixel locations. After correspondences are manuathdetheir method
consists of an image rectification of the pair of images, followed by a linéznpolation, followed
by an unrectification of the resulting image. We adopt a similar three-spgmeach (rectify pair,
warp, unrectify) to perform silhouette interpolation. We interpolate betweraetviews using a
series of two pairwise interpolations.

Pollard and Hayes [36] present an image based algorithm that performs imagelatien
between three views without manually specified correspondence by performing echygi@xt
and edge matching. They interpolate between three views by using barycentriaitegaolation,
which is correct in the special case of orthographic views.

The silhouette map data structure described in this paper has some sisitarthe light field
representation [28, 35]. A light field attempts to sample all of the photomefiecrnation about
an object. This can be thought of as storing the sehafyesviewed from a 2D manifold (a plane);
this is effectively a 4d set of data. A silhouette map stores only the silteaz@itourinformation
viewed from a 2D manifold (for example a sphere) of views; this is effegtiaélD set of data. As
a result it can be much more compact.

In a light field representation, data on thet, u,v) domain is sufficient to correctly recon
struction a new view from any point in free space. This is due to the 4d naturedat@structure.
In contrast, from a silhouette map one can only truly interpolate new silhoudttenation for
new views on the sampling surface (sphere). As one moves off the samplingesfeccan-
not do proper interpolation without additional information, such as depth. In the absengghof s
information, we use a simple scaling heuristic.

When a new view is reconstructed from a light field, (quadrilinear) interpolasiperformed
parametrically in thes, ¢, u,v) domain. Effectively, nearby images are superimposed on top of
each other. As a result, if the light field sampling rate is low, and the widgrgeometry non-
planar, the result can have significant ghosting (or blurring) artifacts. Withtit dgormation (or

high res mode

preprocei/ \
'

| shaded images frofew views| progressive hul | binary images fronmany views

silhouette contourfom many view:
simplified contours

keep only necessagontours

/

interpolate silhoutte contout

for current view

ntour it stencil and alphbuffers
ow res modieising stenci

projective texturesn objects

Figure 1: System overview.

its moral equivalent in some form) light field data cannot generally be integabtatextrapolated
very far. When interpolating from a silhouette map, the nearby silhouettestarpolated in 2D
geometrically, and so no ghosting can occur.

When reconstructing new views from a light field/lumigraph representation usmyejac
correction [35], one obtains a result very similar to view dependent texture mapongocessing
is done on the silhouettes , and so ghosting is still visible on the silhouettesdsee E7d of [35]).

Contour Morphing

Contour morphing is an animation technique that creates a smooth transition fronordoerc
to another. Sederberg and Greenwood [38] describe a method that uses a toroidat phatite
approach to solve for a correspondence between points on two simple closed coniiensuGh
a correspondence, Sederberg et al. [39] use a turtle graphics metaphor to dnterh@ation of
intermediate views. Shapira and Rappoport [29] use a star-skeleton decompaifsitiercontour
to achieve higher quality animations. These methods provide no simple way to mawsdehe
two contours with differing topologies, and so it would be difficult to use theseifooigette
interpolation. Cohen-Or et al. [10] use a distance field interpolation (simnilapirit to [21]) to
interpolate between two arbitrary contours. Although this method can handle topdiagges
and is very useful for animation, for our purposes it would be a rather ad hoc chogeotthased
on the geometry of silhouette generation, has no geometric interpretation, marrédethe visual
hull, and will not properly interpolate actual sharp feature points on a silhouette .

3 System Overview

An overview of our system is described in Figure 1. We begin with a high resolpttytedral

model as input. We first apply a number of preprocessing operations on the data. Fiesidee
a small number of views to be later used as textures to projectively map lmtendered low
resolution geometry. We select the views by hand using a simple interactigeapr. Automatic
view selection would be desirable; this remains an open question.

Next a progressive hull construction is run on the high resolution geometry. Théingsul
progressive hull is a sequence of lower and lower resolution mesh geomethe$evproperty
that the volume defined in each successive lower resolution mesh is gearaoteontain the
volume defined by the previous higher resolution meshes. This property allows us toviende
of the low resolution geometry which can clipped to a high resolution silhouette .

Finally a silhouette map is constructed. To do this we render binary images objbet as
seen from a large number of viewpoints on a surrounding sphere. A pixel-resolution polygonal
contour is generated from each image; this contour is then simplified using afsiatioin algo-
rithm similar to [19]. These contours make up a dense silhouette map. We rlimoaetie map
simplification algorithm to discard views that can be well predicted wighremaining views.

At run time for an arbitrary current view, we find three nearby views on thesétte map, and
an interpolated silhouette is produced. This new silhouette contour is drawn intericé buffer.
Then the low resolution geometry is rendered using the stencil buffer towatithe shape of the
high resolution silhouette . A subset of the prerendered images are used asverdgedtres
applied to the low res geometry. The result is a rendering with high resolapipearance.

4 Silhouette Map Representation

At the heart of our system is the silhouette map representation. The map reptbseshape of the
external visible apparent contour (silhouette) as seen from a number of views. A;\s8taves its
intrinsic and extrinsic camera parameters including the location of the poinéwfpsi The view

also stores the silhouetteseen from that view. The silhouette is represented as a closed polygon,
possibly with holes.

The 3D positions of the optical centers of the view cameras form the vertices & stam
shaped triangulated polytope that surrounds the object in question. See plate 6. This pslytope i
represented as a 3D mesh. The center of the polytapelso stored in the silhouette map. For
an arbitrary current view poiri,. we form the segment connecting its position with the center of
the polytope. If the viewpoint lies outside of the polytope, then this segment will ictetise
polytope once in the interior of some triangle (or degenerately at some edge or vertgxIpthe
viewpoint lies inside of the polytope, the segment is extended backwards from the viewpaint unt
it intersects one of the polytope triangles. There is exactly one intersectiand®the polytope
is star shaped. We call the intersection point on the triapgleThe three views, v, v3 Stored
with the three vertices of the intersected triangle are called theligeacws” and they are used

10

to generate the silhouette for the current view. This triangle intersection poa#n be tracked
efficiently as the current view moves continuously by searching the neighborhood of Wiupre
intersection point.

5 Silhouette Interpolation

Given three nearby views,, v, v3 (at viewpointspy, p2, p3) With their associated silhouettes
s1, S92, S3, the goal of silhouette interpolation is to produce a silhouettor the current view
v. taken from the viewpoinp.. Without 3D information about the silhouettes , this is a difficult
problem and we make a number of approximations to make a solution feasible. ladtissve
describe our algorithm in detail, and discuss its geometric properties. Thélagevhich must
be invoked for each rendered frame runs in tiée: logn), wheren is the number of vertices
in the nearby silhouettes ; this number is typically much less than the numbertickgan the
original high resolution geometric model. The algorithm must create valid outputiethe input
silhouettess, s, s3 have different topologies.

We treat this problem in two steps. In the first step we use the interpolagbdimod described
below to produce an interpolateg for some viewy, that hasp, (the intersection point in the
triangle) as its viewpoint. In the second step we maio the current view to produce the current
silhouettes.. During this second step we pretend that contour generatay; aes entirely in a
plane that passes through the polytope centand is parallel to the trianglA (p;, p2, p3).2 Itis
well known that the image of a planar object undergoes a 2D projective transforraatibe view
is changed. So we can model this transformation by applying a 3 by 3 matrix toth# gértices
of s, to obtains,.

The following pseudocode shows an outline of the entire process. The remainder ettlus s
discusses procedutei Sil | I nterp().

sill s ¢ <-- 3dSillInterp(viewv_c, sillMp sm/{
(p_t, v_1, v_2, v_3) = polytopelntersection (v_c, sm;

(s_t, v_t) =triSillInterp(p_t, v_1, v_ 2, v_.3, s 1, s 2, s_3);
p_1=v_1.pov; p_2 =v_2.pov; p_3 = vVv_3. pov,

pl ane = pl aneThroughCenter(smcenter, p_1, p_2, p_3);

H = determ ne3by3Matri x(plane, v_t, v_c);

for each vertex index i in s_t

s c[i] =H* s t[i];
return s_c;

2This is an approximation since in general, the contour generator is tama gurve at all [23]. And nearby points
on theexternalvisible apparent contour do not necessarily correspond to nearby pairiteeaontour generator.
Moreover, as one moves frop to p. the points on the contour generator will generally not remain constant.

11

originalp3

o
LY
rectify i
=
AR \
o2
|nterpolatei \
oo
D
O TN
A
rectify £
o /V/’) fﬁ\\\\ H ,§r\\\> e o
original I (- = (3‘ f (4 J\onglnal
pl . \ o / >~ !¢ o < p2
gvy) —_) > () —) >)
....................... > i <@
rectify mteggolate rectify

Figure 2: Triangular interpolation (in 2D).

5.1 Triangular Silhouette Interpolation

Given 3 viewsuy, vy, v3 and their associated silhouettes s,, s3; and a pointp; on the triangle
p1, P2, p3 our goal is to produce the camera information for some vigwith viewpointp; on
the triangle, and an interpolated silhouettéor that view.

In this section we describe our algorithm for this problem. Our algorithm has a number of
unique features

e The algorithm runs it©(n log n) time.

e If a sharp point on the object is seen on the silhouettes of all the three nearby thiewthe
resulting interpolated silhouette will correctly predict its location.

e The algorithm is conservative in way that is described below.

e The algorithm produces an interpolation with the above features even whenebdrthut
silhouettes have different topologies.

Briefly stated, we solve the triangular silhouette interpolation problem byrsplwo linear
silhouette interpolation subproblems. In the linear silhouette interpolationithiigowe use the

12

epipolar geometry of the two views to rectify the two silhouettes , much deiprocess of view
morphing [37]. The vertices of the two rectified silhouettes are then prat@ssean line order.
Linear interpolation of the silhouette boundary is performed at the scan linesrangthe vertices
in order to produce an output set of vertices. Special care must be taken wheto ihouettes
have a different number of spans on a given scan line. The resulting vertecescannected to
create an output silhouette . The details and analysis follow.

Algorithm

Given three silhouettes from three views, finding the actual correspondenceshgtamts on
these silhouettes is not a well defined problem. This is because as one’s vieg, theveoints on
the contour generator slide locally over the surface. Only at points with infiniteature (creases)
do points on the contour generator remain constant; clearly at these points, the aérampal
correspondence is well defined, and should be obeyed by a silhouette interpolation algbhihm
problem is made even more difficult if the three silhouette polygons have differenptpest.
Thus, barycentric coordinates cannot be directly used.

Given 2 silhouettes from 2 views, there is generally no actual physicalspmnelence. but
there is a “natural” correspondence defined by the epipolar geometry of the two wikigh,has
been used by vision researchers to extract curvature information from gik®ufy, 14]. We
use this epipolar correspondence to create an interpolation algorithm betweeieivg with the
desired criteria. Because this epipolar correspondence is only defined foofpaiesis, and not
triplets of views, we solve fog. by solving a sequence of two pairwise interpolation steps.

First we find the edge of the triangl®,,; that is closest tg,. Without loss of generality
suppose this edge is defined by poiptsp,. We then find the the intersectign of that edge
and the line defined by; andp,. We perform linear silhouette interpolation betwegmnds, to
obtain the intermediate edge silhouetteWe then perform a second linear silhouette interpolation
betweers; ands, to construct,;. See Figure 2. We note that the result of this two-step interpolation
is order-dependent.

This is described by the following pseudocode:

(s_t, v_t) <-- triSillInterp(p_t,

v 1 v 2, v.3 s1, s 2, s 3){
p_1=v_ 1 pov;, p_2=v_2.pov; p_2 =

2. pov,

%
edge_12 = cl osestEdge((p_t, p_1, p_2, p_3); //wWog
p_e = isect(line(p_1,p_2), line(p_t, p_3));
(s_e, v.e) =linSillInterp(p_e, v_1, v_2, s 1, s_2);
(s_t, v_t) =1linSillInterp(p_t, v_e, v_3, s 3, s_3);

3 At some singular viewpoints, the topology of the contour genextn change, and new closed contours can be
created. At these viewpoints the apparent contour will change its tgpofa other singular viewpoints, the topology
of the contour generator may remain the same, but the topology of thie¢prd) apparent contour can change.

4As we will see below, each stage of linear silhouette interpolation widl gs the same silhouette that is predicted
by the the visual hull defined by the two input views (for examylg;). But the composition of these two steps does
not generate the same silhouette that would be predicted by the vidudéfined by all three viewsh,,3. Itis only
a conservative estimate. Further analysis is the topic of future research.

13

x2I

Figure 3: Silhoutette interpolation in an epipolar plane.

return (s_t, v_t);

}

5.2 Linear Silhouette Interpolation

Given 2 viewsu, v, and their associated silhouettgs s, and a pointp,. on the edge,, p> our
goal is to produce the camera information for some vigwith viewpointp., and an interpolated
silhouettes, for that view.

In this section we describe our algorithm for this problem. In addition to the aleareres,
this step has the following property

e If span (defined below) correspondence is solved correctly thee sill(v,, vhis) ~
Sill(ve, vhoo)

As stated earlier, we wish to use an epipolar geometry to define correspendémis will
allow us to guarantee the above properties. In particular an epipolar decampos$ithe scene
will allow us to reduce the contour interpolation problem to a set of independent andeasieh
1d span interpolation problem restricted to individual scan lines.

Epipolar Decomposition

Epipolar decomposition is most easily accomplished in a rectified domaien®ivo silhouettes

s1, so taken with 2 viewsy, vy with locationsp,, po we construct the liné = py, pz. We then
construct two new camera geometri¢sv), such that their image planes are parallel to each other

14

and tol. We also require that the scan lines of the two image planes are aligned eordagpon-
dence. We define the output viewto be a camera with center gt and an image plane rectified
with v}, v5. This can be accomplished since all three camera centers lie on one linBg#use
the viewsv, andwv] share the same camera center, one can correctly syags| by computing
the appropriate 3 by 3 matrii{; and applying it to the silhouette vertices. Likewise for

In a rectified context, given some scan liniehere is an epipolar plang, that includes the
scan lines and the lind joining py, p2. The intersection afp, and a closed 3D surface is generally
a set of closed curves:,. If the epipolar plane intersects the top or bottom of a convex surface
region, then the intersection can include unconnected points called frontier @jirieg Plate 5.

The pin hole projection of the curves, into the viewv] will cover a sparsp,s in scan line
s. A span is defined by a set of covered intervals; this is described by ameweber of vertices.
Likewise, the pin hole projection of the curves into the viewuv;, will cover a sparnsp,, in scan
line s. Our strategy is to interpolate between, andsp,, to produce a spasp., in scan lines of
the interpolated view,. If this can be done for all scan linesthen we have accomplished our
goal. Thus we have reduced a contour interpolation problem to a much easier spaolatitan
problem.

Algorithm

When the silhouettes are represented as polygons, and the scan line interpddatidihna per-
forms linear interpolation, the output silhouette will be a polygon with verticéisaste scan lines
where there are vertices in the original silhouettes . As a result, we do edto@pply our span
interpolation algorithm at every scan line, but only at the scan lines where are vertices. The
algorithm thus resembles an active edge style polygon scan converter. Tibhesvefthe rectified
silhouettes | andsi, are sorted iny order. Scan lines that have vertices are visited from top
to bottom. An active edge data structure allows us to quickly determine diectdge intersects
with the scan line. An interpolation is performed on the two spans, whiclitsas an interpolated
span. After all of the scan lines are processed, the resulting verteesmnected together to form
the output silhouette.

(s_e, v.e) <-- linSillInterp(p_e, v_1, v_2, s 1, s 2){
(v _1, v'_2) = determ neRectification(v_1, v_2);

s’ 1 =rectify(s_1, v_1, v’ _1);
s’ 2 =rectify(s_2, v_2, v _2);
v_e = determ neRectifiedEdgeViewm(p e, v’ 1, v’ _2);

sorted = sortVertsByYCoord(s_1,s 2);

for each scanline s in sorted{
sp_1s = intersect(s, s _1); [//using active edge I|i st
sp_2s = intersect(s, s_2); //using active edge |ist
sp_e[s] = spaninterp(v_e, v’ 1, v’ _2, sp_1ls, sp_2s);

5Details of this step are not particularly enlightening and are deferreddtogeet report.

15

}
s_e = connect UpSpans(sp_e);
return (s_e, v_e);

}

5.3 Span Interpolation

Given two rectified views/, v}, with two associated spang;;, spss the goal is to interpolate an
output sparsp,, for the viewv,. Because we are in a rectified context, this can be viewed entirely
as a rectified problem in flatland(see Figure 3). This makes the problem msiehn taanalyze
and solve.

Single Interval spans

The easiest case to consider (and the most frequent case) is when the epgraeap ohtersects
the 3D geometry in a single closed curve. In this case, the span seen frobrofehe two views
vy, vh, will consist of a single covered interval (see Figure 3). The interval iis defined by the
two image x coordinate numbefd/, z1r, and the interval in/}, is defined by the two numbers
x2l, x2r.

In this case we use simple linear interpolation to predict the output interwalcer).

zel = (1—a)zll+ ()2l
zer = (1—a)zlr+ (a)x2r

Wherea represents the fraction of the distance along the segment.

It is well known (see for example [37]), that in a rectified context, linedenpolation of an
imagex coordinate between two views in image space (for examgle ¢2/)) corresponds to the
projection of some geometric poihin space. The poiritmust project iy} with = coordinater1]
and invh, with 2[. Clearlyl must be the intersection in space between the ray fsrpassing
through the left of the span on its image plane, and the ray fsopassing through the left of the
span on its image plane, Likewise far

The linear interpolation algorithm behaves as if the silhouette was defined lolyféaeure
pointsl, r on the epipolar plane. This of course is not how the actual silhouette would behave on
the curved surface. In the bottom of Figure 3, the dotted curves show the evolutios attual
silhouette while the solid lines show the evolution we predict. The velocitige@attual left point
on the contour generatogl1 as one moves from to v;, is governed by the following equation [7]

degll ar g

(de—)r (1)

da K

wherer’ = ”—ggﬁ:—gin is the direction from the optical center towards the contour generéaisthe

surface normal, angd is the normal curvature (at the poiegll) of cr,, the curve defined by the

16

=7

Further view

Figure 4: Further views dont help.

intersection of the 3D geometry with the epipolar plane . When the curvatureyitove thecgll
slips quickly across the curve. When the curvature is high, the point slips slowlge limit, at
a feature point with infinite curvature, the point on the contour generator does not nmedizelat
this case, if the same feature point is visible in both views, the lineapioiron algorithm will
produce the correct prediction.

If we do not have an estimate of the curvature, the most conservative gsti@aassume it is
a sharp point. This is exactly what our interpolation algorithm does. This is the aasumption
that is made when constructing the visual hull.

If we were to explicitly construct the flatland visual huh,, from the given silhouette infor-
mation, we would intersect the two associated wedges (flatland cones), gwiagjuadrilateral
surrounding the closed curve. The quadrilateral is defined by four points in kpaeef (left,
right, near and far). For any view, that lies on the segment connectinig v}, the flatland ob-
served silhouetteill(v., vho) iS a single interval defined by the projection of the two points
Lr into v.. In fact, it can easily be proven that given more silhouettes obseroea dr set of
views V' where the extra viewpoints lie on the lindut outside of the the segmeptp,, that
sill(ve,vhy) = sill(ve, vhy). In other words, having more silhouette information from farther
away than the surrounding two views cannot improve the predicted silhotie®ee Figure 4.

To summarize, in the case of a closed curve, the linear interpolation oftdreal endpoints is
equivalent to predicting the silhouette using,. Using views from farther away can not improve
this prediction.

Multiple Interval Spans: Pants

When the intersection of the epipolar plane and the 3D geometry consists of more transace
curve, the situation gets a bit more complicated. In this case the spanhiviesccan be made

up of any number of intervals, and the number of intervals in the two views need o barne.

For example in Figure 5, the left span has one interval, and the right span hasdwalstIf one
draws the actual evolution of the observed silhouette intervals as one morep;fito p, using

the vertical dimension as time,, one obtains the diagram shown as dotted curves in Figure 5.

A formal proofis left to a longer report.

17

p1 p2

Figure 5: Pants.

Clearly this exact shape would be hard to predict simply from the silhouettenat@n in the two
views.

Once again we appeal hereutb,,, which in the case of Figure 5 is made up of two quadrilat-
erals. The evolution of the silhouette of the visual hull is defined by the solid Imgeeifigure,
a configuration we refer to as “pants”. The pants evolution can also be cygmpeetlicted using a
modified linear interpolation algorithm.

Given that the left view span has a single interval, x1 and the right view has two spans
x2la, x2ra andz2[b, x2rb one performs the following pants computation

xela = lerp(al pha, x1l, x2la);
xera = |l erp(al pha, x1r, x2ra);
xel b = lerp(al pha, x1l, x2Ib);
xerb = lerp(al pha, x1r, x2rb);

if (xelb < xera)
return (xela, xerb);
el se
return (xela, xera, xelb, xerb);

In the caserelb < xera the image of the two quadrilateralsdh,, overlap in the output view, and
only one interval is output. Otherwise, the image includes 2 intervals whicbudpeit. In either
case, the correct visual hull is reproduced.

We note that in the case of multiple intervals, it is not the case that one wibhadielped
by silhouette information from farther views, i.&ill(ve, vhys) # sill(ve,vhy). For example
see Figure 6. For efficiency, in this case we still do not use more views, andstartEthat our

18

Further view pl p2

Figure 6: Further views do help.

prediction may be suboptimal.

Mutant Pants

The pants algorithm can be extended in a straightforward manner to include moracabenpl
topological changes such as n-legged pants, and two-sided-no-torso pants (see Figure 8).

In Figure 7, we show an example where both the left and right views have spansmaith t
intervals. The visual hull here is defined by the four shaded quadrilaterals, vesghs in two
sided pants. If there is no geometry in the front and back quadrilaterals hilsea tverly conser-
vative. If we can determine that during the interpolation, the two obserltealigitte intervals do
not interact, then we can use the less conservative interpolation shownrgghth®lore generally
givenn intervals forv], andm intervals forv),, we attempt to group the intervals in into cliques
such as those shown in in Figure 8. An independent pants is created for each clique.

We have developed a heuristic algorithm for clique determination using the mguaffrontier
points and tracking from span to span. Stated briefly, for the pair of views,temgit to form a
correspondence between the convex and concave minima and maxima of the silhla¢tieed
extrema, and their associated spans are put in separate cliques. Unnettketh and their
associated spans are put in the nearest existing clique. This heuristic waltkktihe views are
taken closely together with few topological changes between the views. An adsquapling rate
is set adaptively by the silhouette map simplification algorithm described ne

6 Silhouette Map Simplification

In a silhouette map, views are sampled at a set of vertices describiagshaped polytope sur-
rounding the object. For most objects, a uniform sampling is inefficient. In somensegf view
space, the silhouette changes slowly (for exampleequation 1 may be large). In other regions,
the silhouette may change rapidly. Geometrically this can occur whisremall. Moreover when
topological changes occur, our interpolation algorithm uses the pants connection, which can

19

- |

NN

Figure 7: Two different possible hulls.

\4

AN

Figure 8: Cliques with mutant pants.

quite conservative, making a higher sampling rate desirable. Our solutios is thiuse an adap-
tive sampling in the silhouette map. This is achieved using a greedy silhouwgttsimplification
procedure that is inspired by the mesh simplification algorithm described]in [19

In particular, we begin with a silhouette map that contains many samplesgigesurrounding
the object. It is this original data that any simplified map must approximaiein® the simpli-
fication process, any edge on the silhouette map polytope can be collapsed and onveeofsits
discarded. We associate with each edge the error that would be incurred lpscw)la. The
error is measured by comparing the original silhouette data points with preditt@ansould be
made by the simplified mesh. The error metric measures the number of pixelsdimaisclassified
(interior/exterior) by the prediction. Since we wish the polytope to remairssi@ped, an edge is
given infinite cost if its collapse would lead to a non-star shape.

The edges are stored in a heap, sorted by cost. The lowest cost edge is ré&nmoviee heap,
and is collapsed in the silhouette map. The edges in the neighborhood of the collapseemust t
have their costs reevaluated.

An example of the simplification is shown in Plate 6. The simplificationoimewhat time

20

consuming, and is run as a preprocess.

7 Construction of progressive hulls

For the rendering application in this paper, we need to compute, for an arhitearyle mesh\/”,

a set of one or more coarser approximating meshes that completely ehfloge this section, we
solve the somewhat more general problem of constructing frbhva continuous family of nested
approximating meshe®° ... M, such that

V(M®) D V(MY ... D V(M™)

whereV(M) denotes the interior volume dff. We refer to{ M°... M"} as aprogressive hull
(PH) sequence fok/™. Before presenting the technique in more detail, let us first more precisely
defineV(M).

Definition of interior volume The given mesh/" is assumed to be orientable and closed (i.e. it
has no boundaries). The mesh may have several connected components, and majntemdain
cavities (e.g. a hollowed sphere). In most cases, it is relativelyy alich points lie in the interior
volumeV(M). The definition of interior is less obvious in the presence of self-intersectowns
when surfaces are nested (e.g. concentric spheres). Interfaces for 2izatisin often allow
several rules to define the interior of non-simple polygons [1, 32]. These rules do gentydhe
case of meshes in 3D, as shown next.

To determine if a poinp € R? lies in the interior of a mesh/, select a ray fronp off to
infinity, and find all intersections of the ray witlf. Assume without loss of generality that the ray
intersects the mesh only within interiors of faces (i.e. not on any edgesh ikrsection point
is assigned a number, +1 or -1, equal to the sign of the dot product between the ragrimadt
the normal of the intersected face. Let thimding numbenv,,(p) be the sum of these numbers.
Because the mesh is closed, it can be shownithatp) is independent of the chosen ray.

Based onw,,(p), several definitions of interior volume are possible. Hoa-zerowinding
rule define to be interior if and only ifw,, (p) # 0. With theeven-oddule, the condition is that
wy (p) is odd. In this work, we use thgositive winding rulevhich defines interior volume as

V(M) ={p e R wy(p) >0} .

Progressive mesh representation The progressive hull (PH) sequence is an adaptation of the
earlier progressive mesfPM) representation [19] developed for level-of-detail control and pro-
gressive transmission of geometry.

The PM representation of a mesf* is obtained by simplifying the mesh through a sequence
of edge collapséransformations, and recording their inverses. Specifically, the PMseptation
consists of a coarse base mégh and a sequence efvertex splitransformations (Figure 9) that

21

faces vsplit faces

Fi — F i+1
—
ecol
M i M i+1

Figure 9: The vertex split transformation and its inverse, the edge coliegrsformation.

progressively recover detail. Thus, the representation captures a continuolysdf approximat-
ing meshed\/° ... M™.

As shown in Figure 9, each edge collapse transformation unifies two adjac@inevento
one, thereby removing two faces from the mesh. For the purpose of level-of-cmi&ibl, edge
collapses are selected so as to best preserve the appearance of the nmeskimhptification.
Several appearance metrics have been developed (e.g. [9, 13, 17, 19, 26]).

In this paper, we show that proper constraints on the selection of edge collapserraations
allow the creation of PM sequences that are progressive hulls.

Progressive hull construction For the PM sequence to be a progressive hull, each edge collapse
transformatiom/**! — M* must satisfy the property

V(M) D V(M™Y.

A sufficient condition is to guarantee that, at all points in space, the winding nuwettber remains
constant or increases:

Vp € R? |, wysiti(p) > wysi(p) -
Intuitively, the surface must either remain unchanged or locally move “aodsVa&verywhere.

Let F* and F'*! denote the sets of faces in the neighborhood of the edge collapse as shown
in Figure 9, and lewr be the position of the unified vertex ilW. For each facef € Ft!, we
constrainv to lie “outside” the plane containing fage Note that the outside direction from a face
is meaningful since the mesh is oriented. The resulting set of linear ineqoatistraints defines
a feasible volume for the location of The feasible volume may be empty, in which case the edge
collapse transformation is disallowed. The transformation is alsololigzd if either F* or Fi+!
contain self-intersectionsIf v lies within the feasible volume, it can be shown that the faces
cannot intersect any of the faces!. Therefore F* U flip(F'') forms a simply connected, non-
intersecting, closed mesh enclosing the difference volume betwgesnd //*+!. The winding
numberw(p) is increased by 1 within this difference volume and remains constant evarsywhe
else. Thereforey(M*) D V(M*1).

The positionv is found with a linear programming algorithm, using the above linear in-
equality constraints and the goal function of minimizing volume. Mesh volume, defires

"We currently hypothesize that preventing self-intersectio&’iand F*+! may be unnecessary.

22

as [,cr: Wy (P)dp, is a linear function orv that involves the ring of vertices adjacentidrefer
to [17, 26]).

As in earlier simplification schemes, all candidate edge collapsesnseeed into a priority
gueue according to some cost metric. At each iteration, the edge with thstloest is collapsed,
and the costs of affected edges are recomputed. Various cost metrics atdepo3si obtain
monotonically increasing bounds on the accuracy of the hull, one can track maximusiasror
in [3, 8]. Another choice is the quadric error metric [13]. We obtain good resutiplgiby
minimizing the increase in volume, which matches the goal function used inqrosgd the vertex.

As discussed in Section 8.2, each projected texture used in rendering arnealsé requires
a surface parametrization. A simple approach is to map the positions afegainil/ ¢ through the
same projective view that captured the image. Because the higghan outer hull of the original
meshM™, its vertices may lie some distance frami*. We have found that the parametrization
is improved if we associate to each vertein /¢ a “closest point”’P(v) on the surface ofi/™.
We setP(v) = v for all v € M™, and for each edge collapgé‘t! — M?, assign to the unified
vertexv € M* the parametrizatio® (p) linearly interpolated at its closest poipton the surface
of M+,

Inner and outer hulls The algorithm described so far constructpragressive outer hulse-

quenceﬁ0 D ... D M". By simply reversing the orientation of the initial mesH, the same
construction gives rise to girogressive inner hubequenceé/’ C ... € M". Combining these
produces a single sequence of hulls

n

Mc..cM =M"C..CM

that bounds the mesii” from both sides.

We expect that this representation will also find useful applications irsanlidetection, par-
ticularly using a selective refinement framework [20, 42].

8 Rendering Using Silhouette Clipping

To exploit the computed polygonal silhouette, we structure the rendering proces®was félirst,

we draw the silhouette polygon into the stencil plane of the frame buffer, satirgencil bits at
each pixel such that future rendering operations only affect the interior ofltimusite polygon.
Second, we render the coarse mesh subject to the stencil, mapping textures onéshhices
using the precomputed object views. Finally, to obtain an anti-aliased sitepwes render the
silhouette polygon as an anti-aliased polyline, recording the alpha values irathe buffer. We
then render the coarse mesh again, using those computed alpha values at theespinaisttWe

next describe each of these steps in further detalil.

23

8.1 Silhouette clipping

At each frame, the stencil plane is initialized to zero as part of @w@érbuffer clear operation.
Even though the silhouette polygon is generally concave and contains holes, it catebeaads
into the stencil plane efficiently as a single triangle fan. The trick is ® peity bits so that

overlapping triangles cancel out correctly; for details, refer to the Opem@gramming guide

[33]. Note that drawing the silhouette polygon is a simple 2D rasterization operatid is thus

extremely fast. Having established the silhouette in the stencil planegxterender the coarse
mesh subject to the stencil.

8.2 Projective textures

In a precomputation stage, we store a small number of shaded images of the higticegs-
ometry as textures. For each face of the coarse mesh, we compute the satrefvexs from
which it is completely visible [12]. This set of visible textures is storsdaavisibility bit vector
associated with the face.

During rendering we sort the texture views in order of increasing distance frorcutinent
camera view, where distance is simply Euclidean distance between tikeezceemters. The number
of texture views is generally small (e.g. 20) so this sorting operation is Fasteach face of the
coarse mesh, the texture used to texture map the face is taken to be tis¢ telisge view that is
contained in the visibility bit vector.

At each vertex of the face, the projective texture coordinates are obtaingwjegting a 3D
position into the appropriate texture view. While we could simply use the positioheofer-
tex, texture map distortion is reduced by instead using the parametrizatiar)scomputed in
Section 7.

8.3 Anti-aliasing of the silhouette

One benefit of the silhouette clipping approach is that the silhouette can be aséeadiven if the
hardware lacks polygonal anti-aliasing. To achieve this, the silhouette polygomdisresl again
simply as a 2D anti-aliased polyline, but only affecting the alpha channel ofaheefbuffer. Then,
the mesh is rendered, using the alpha values already in framebuffer.

As with conventional polygonal rendering, correct anti-aliasing in the presenomiitiple
objects requires that the objects be rendered in back-to-front order.

9 Results

Plate 1 shows meshes in a progressive hull sequence for a més/t664 faces. Construction of
the sequence took 17 minutes on an SGI R10K, but the prototype software was not designed for

24

silhoutte map running time
0.09 T T T

0.08 s 7

0.07 7 b

o o ©
o =} =)
5 a &
T T T
\
\
N
L L L

execution time per frame (s)
N\

o

o

@
T

A4
L

1 1 1
40 50 60 70 80 90 100 110 120
number of vertices on silhoutte

Figure 10: Rendering speeds.

speed. Plate 2 shows another example.

Figure 2 shows an example of silhouette interpolation. Note that the resultiogisite has a
different topology than any of the original data.

Plate 3 shows silhouette clipping used for efficient high quality rendering.) lthéaoriginal
high resolution mesh is shown. In (b) we show a low resolution approximationS@ihfaces.
In (c) the low resolution geometry is texture mapped using 20 precomputed texdéwe v (d)
we show the interpolated silhouette for this view. In (e), the interpolatbdisstte is used to clip
the low resolution mesh. In (f) the silhouette is also used to antialiasilineuette of the low
resolution geometry.

In figure 10 we show timing performance on an SGI R5K, of our algorithm on the bunny
data set. For the low resolution geometry we use 500 faces. The horizontal ademes, the
(average) number of vertices in each of the silhouette contours of the silhowagttdirte dot-dash
line shows the time it takes to perform the silhouette interpolation for faate. The dotted line
shows the time it takes to interpolate the silhouette , and draw the lowtesolsing silhouette
clipping. The solid line shows the time to interpolate, silhouette clip and gpplgctive textures.

For comparison, we show timings for rendering high resolution geometrynfithces. For evenly
tessellated objects, it takes roughly faces to obtain a silhouette withvertices. This is shown
with a dashed line.

Plate 6 shows an example of our silhouette map simplification algorithm. We i 1024
evenly spaced views about the torus. When we have reached 128 views, the striitheree-
maining star shaped polytope appears to be well tuned to the structure of silhdwettes for
various directions.

25

Silhoutte Map Simplification Error for 3-hole Torus
0.03 T T T T T T

0.025

0.02-

average error
o
o
=3
o

0.01

0.005 [

L L L L L L L L
100 200 300 400 500 600 700 800 900 1000
number of views

Figure 11: Silhouette map simplification error.

In figure 11, we show the performance of our simplification algorithm on the torus dafiehse
horizontal axis measures the number of views kept. Error is measured by comparimgginal
1024 silhouette contours to those predicted by the simplified map. The number of sifsadas
pixels (exterior/interior) is measured. This number is divided by the entire nuofipexels in the
interior of the object for that view. This is summed up over all the views and diMige1024.
The simplification algorithm in conjunction with the silhouette interpolatiorthoe described
produces a silhouette map with high fidelity and minimal storage overhead.

10 Discussion

We have introduced the framework of silhouette clipping, in which low-resolggametry is ren-
dered and clipped to a more accurate silhouette. During a preprocess, a séhoaets formed by
sampling the object silhouette from a discrete set of viewpoints. Interpolatibresé silhouettes
was made principled using a visual hull approximation of the model in a rectified epgxiting.
Topological changes between adjacent silhouettes can be handled properly by thisralgdrfe
reduced storage of the silhouette map through adaptive simplification.

To guarantee that the geometry be at least as large as the silhouette, vimeoresiechnique
for constructing a nested sequence of meshes, in which each coarser mestelyraptloses the
original mesh.

Finally we reported on the rendering speedups possible using silhouette mapping.

26

Acknowledgements

We would like to thank Aaron Isaksen for help with the Faro Arm, Petke-Biloan for helpful
input, and Julie Dorsey for making the MIT LCS graphics lab available to us. Wik has
been supported in part by NSF Career Awards 9703399, A Sloan research fellcavghgy IBM
partnership award.

References

[1] ADOBE SYSTEMS INC. Postscript Language Reference Manwsacond ed. Addison Wesley,
1990.

[2] B. VIJAYAKUMAR , D. KRIEBMAN, AND J. PONCE structure and motion of curved 3d objects
from moncular silhouettes?roc CVPR 96

[3] BAJAJ, C., AND SCHIKORE, D. Error-bounded reduction of triangle meshes with multivari-
ate dataSPIE 26561996), 34—45.

[4] BLYTHE, D., GRANTHAM, B., NELSON, S.,AND MCREYNOLDS, T. advanced graphics
programming techniques using opengl|.

[5] BOYER, E., AND BERGER M. 3d surface reconstruction using occluding contowd&V
22, 3(1997), 219-233.

[6] CIGNONI, P., MONTANI, C., ROCCHINI, C., AND SCOPIGNQ, R. A general method for
preserving attribute values on simplified meshesViBualization '98 Proceeding&l 998),
IEEE, pp. 59-66.

[7] CipOLLA, R., AND BLAKE, A. surface shape from the deformation of apparent contours.
[JCV 9 2 (1992), 83-112.

[8] COHEN, J., MANOCHA, D., AND OLANO, M. Simplifying polygonal models using succes-
sive mappings. IVisualization '97 Proceedingd997), IEEE, pp. 81-88.

[9] COHEN, J., Q_.ANO, M., AND MANOCHA, D. Appearance-preserving simplificatiddom-
puter Graphics (SIGGRAPH '98 Proceeding$998), 115-122.

[10] DANIEL COHEN OR, DAVID LEVIN , AND AMIRA SOLOMOVICI. contour blending using warp
guided distance field interpolatioproc visualization 96165—-172.

[11] DEBEVEC, P.,C. TAYLOR, AND J. MALIK . modeling and rendering architecture from pho-
tographs SIGGRAPH 9611-20.

[12] DEBEVEC, P.,V. YU, AND G. BORSHUKOV. efficient view dependent image based rendering
with projective texture mappindzurographics rendering workshop 1998

27

[13] GARLAND, M., AND HECKBERT, P. Surface simplification using quadric error metrics.
Computer Graphics (SIGGRAPH '97 Proceedin@€997), 209-216.

[14] GIBLIN, P.,AND WEISS, R. reconstruction of surfaces from profild€CV (1987), 136—
144,

[15] GoocH, A., GOOCH, B., SHIRLEY, P., AND COHEN, E. A non photorealistic lighting
model for automatic technical illustratio®I GGRAPH 98

[16] GoocH, B., SL.OAN, P., GOoCH, A., SHIRLEY, P., AND RIESENFELD, R. Interactive
technical illustration ACM Symposium on Interactive 3D graphics 199999).

[17] GuEziEC, A. Surface simplification with variable tolerance. Pnoceedings of the Second
International Symposium on Medical Robotics and Computer Assisted Sy imrgmber
1995), pp. 132-139.

[18] HECKBERT, P.,AND GARLAND, M. Survey of polygonal surface simplification algorithms.
In Multiresolution surface modeling (SIGGRAPH '97 Course notes #26M SIGGRAPH,
1997.

[19] HopPE H. Progressive meshe€omputer Graphics (SIGGRAPH '96 Proceedin(€)96),
99-108.

[20] HoPPE H. View-dependent refinement of progressive mest@@asmputer Graphics (SIG-
GRAPH '97 Proceedingg)1997), 189-198.

[21] J. HUGUES scheduled fourier volume morphin§IGGRPAH 9243-46.
[22] KOENDERINK, J. Solid ShapeMIT Press, 1990.

[23] KOENDERINK, J. J. What does the occluding contour tell us about solid shagreeption
13(1984), 321-330.

[24] KRISHNAMURTHY, V., AND LEVOY, M. Fitting smooth surfaces to dense polygon meshes.
Computer Graphics (SIGGRAPH '96 Proceedin(€96), 313-324.

[25] LAURENTINI, A. the visual hull concept for silhouette based image understandigtge
PAMI 16, 2 (1994), 150-162.

[26] LINDSTROM, P., AND TURK, G. Fast and memory efficient polygonal simplification. In
Visualization '98 Proceedingd.998), IEEE, pp. 279-286.

[27] LUEBKE, D., AND ERIKSON, C. View-dependent simplification of arbitrary polygonal en-
vironments.Computer Graphics (SIGGRAPH '97 Proceedin(€97), 199-208.

[28] M. LEVOY, AND P. HANRAHAN. light field rendering SIGGRAPH 9631-42.
[29] M. SHAPIRA, AND A. RAPPOPORT shape blending using the star skeleton representation.

IEEE CG&A(march 1995), 44-50.

28

[30] MARKOSIAN, L., KOWALSKI, M., TRYCHIN, S.,AND HUGUES, J. Real time non photo-
realistic renderingSIGGRAPH 971997).

[31] MARUYA, M. Generating texture map from object-surface texture datemputer Graphics
Forum (Proceedings of Eurographics '95),131(1995), 397-405.

[32] MICROSOFTCORP Programming Windowdifth ed. Microsoft Press, 1998.

[33] NEIDER, J., Davis, T., AND W00, M. OpenGL Programming GuideAddison-Wesley,
1993.

[34] POTMESIL, M. generating octree models of 3d objects from their silhouettes in a sequence
of images.CVGIP 40(1987), 1-29.

[35] S. GORTLER, R. GRZESZCZUK, R. SZELISKI, AND M. COHEN. The lumigraph SIGGRAPH
96, 43-54.

[36] S. POLLARD, AND S. HAYES. view synthesis by edge transfer with applications to the gener-
ation of immersive video object®roc VRST 19981-98.

[37] S. SEITZ, AND C. DYER. view morphing.SIGGRAPH 9621-30.

[38] SEDERBERG T., AND GREENWOOD, E. A physically based approach to 2d shape blending.
SIGGRAPH 9225-34.

[39] SEDERBERG T.,P. GAO, G. WANG, AND H. MU. 2d shape blendingIGGRAPH 9315-18.

[40] SEGAL, M., C. KOROBKIN, R. VAN WIDENFELG, J. FORAN, AND P HAEBERLI. fast shadows
and lighting effects using texture mappif§lGGRPAH 92249-252.

[41] Soucy, M., GoDIN, G.,AND RIoux, M. A texture-mapping approach for the compression
of colored 3D triangulationsThe Visual Computer 1@986), 503-514.

[42] X1A, J.,AND VARSHNEY, A. Dynamic view-dependent simplification for polygonal models.
In Visualization '96 Proceedingd996), IEEE, pp. 327-334.

29

