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A transgenic resource for conditional competitive
inhibition of conserved Drosophila microRNAs
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Eric C. Lai6, Dennis P. Wall5,w, Norbert Perrimon2,3 & David Van Vactor1

Although the impact of microRNAs (miRNAs) in development and disease is well established,

understanding the function of individual miRNAs remains challenging. Development of

competitive inhibitor molecules such as miRNA sponges has allowed the community to

address individual miRNA function in vivo. However, the application of these loss-of-function

strategies has been limited. Here we offer a comprehensive library of 141 conditional miRNA

sponges targeting well-conserved miRNAs in Drosophila. Ubiquitous miRNA sponge delivery

and consequent systemic miRNA inhibition uncovers a relatively small number of miRNA

families underlying viability and gross morphogenesis, with false discovery rates in the 4–8%

range. In contrast, tissue-specific silencing of muscle-enriched miRNAs reveals a surprisingly

large number of novel miRNA contributions to the maintenance of adult indirect flight muscle

structure and function. A strong correlation between miRNA abundance and physiological

relevance is not observed, underscoring the importance of unbiased screens when assessing

the contributions of miRNAs to complex biological processes.
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T
he last decade in biomedical sciences has brought
renewed appreciation for the ancient world of RNAs and
unanticipated dimensions of genome regulation by non-

coding RNAs. In particular, microRNAs (miRNAs) have emerged
as versatile rheostats of gene expression in development and
disease. MiRNAs are B22 nucleotide endogenous non-coding
RNAs that bind to specific miRNA recognition elements in
target RNAs1,2. The overt consequence of miRNA activity is
post-transcriptional silencing of gene expression primarily via
RNA decay or translational inhibition3–6.

Despite rapid progress in understanding the molecular
mechanisms underlying miRNA biogenesis and mechanisms of
action, the biological functions of most miRNAs remain elusive at
an organismal level. Aside from experiments in cell culture7,8,
relatively little comprehensive screening has been performed
in vivo to assess the functional complexity of the miRNA
landscape9–13. This is partly due to a paucity of genome-wide
resources for assessing miRNA loss of function (LOF). Null
miRNA mutations obtained by targeted approaches will be
invaluable for analysis of in vivo function13–17. However,
comprehensive analyses of miRNA functions in specific tissues
and in the dynamic context of the developing organism will also
require precise spatiotemporal and gene dosage control. For this
reason, we set out to develop a resource for conditional miRNA
LOF that could enable unbiased screens for tissue-specific
phenotypes.

The specificity of miRNA target recognition and binding
is determined by Watson–Crick base pair complementarity.
Recent studies suggest the existence of endogenous competitive
inhibition regulatory systems that exploit this mechanism to
control endogenous miRNA activity18–24. The same concept
inspired the design of artificial competitive inhibitors that offer a
powerful experimental approach for miRNA LOF studies. Such
miRNA ‘sponge’ and ‘decoy’ technologies were successfully used
to define a handful of miRNA functions in multiple species and
biological contexts25. Mechanistically, this approach relies on the
overexpression of transgenes encoding multiple copies of perfect
complementary or ‘bulged’ miRNA target sites. Sponge (SP)
transcripts sequester miRNAs, blocking access of target
transcripts to endogenous target mRNAs, and thus creating
a knockdown of miRNA activity that closely resembles
hypomorphic or null mutants. When transgenically encoded,
SPs can be deployed using binary modular expression systems,
providing a versatile tool to study miRNA functions in vivo with
spatial and temporal resolution26–32.

Results
A transgenic library of conditional miRNA competitive inhibitors.
We have previously demonstrated that transgenic SP constructs
can faithfully recapitulate known LOF phenotypes for several
well-characterized miRNA genes26. Here we report the first
transgenic library of conditional miRNA-SPs (miR-SPs), and
describe several screens to detect novel miRNA functions
required for adult viability, external morphology and flight
muscle function in Drosophila. Second-generation (GenII) SP
constructs were designed and cloned as recently described
(Fig. 1a; see Methods section)33. A sliding window of 7–8
nucleotides encompassing linker and adjacent SP sequence
was scanned to avoid cryptic overlap with existing Drosophila
miRNA seed sequences in order to prevent off-target effects
(Supplementary Data 1). For the purpose of this study, we
focused on a subset of 141 high-confidence miRNAs34, 78 of
which display Z70% sequence similarity between Drosophila and
humans35. Using the øC31 site-directed integrase system, we
generated 282 transgenic lines carrying one miR-SP transgene on
either the second or the third autosome, for each miRNA.

Because we observed dose dependence when comparing
expression of single and multiple SP insertions (see below),
double transgenic lines were then created for each construct and
used throughout this study. Analysis of endogenous miRNA
levels following ubiquitous miR-SPGenII expression in larvae
(tubulin-Gal4 driver) indicated that the effect of miR-SP
expression can vary depending on the miRNA. In some cases,
we observed no effect on normal miRNA homeostasis (for
example, miR-9b), in other cases a significant decrease in the
abundance of mature target miRNAs was apparent (for example,
miR-8 and miR-13b) (Fig. 1b). However, an in vivo miRNA
reporter assay in wing imaginal discs revealed that a comparable
decrease in miRNA activity is observed in all three cases
(Fig. 1c–h).

miRNA regulation of adult viability and external morphology.
The importance of miRNA-dependent post-transcriptional
regulation in animal development and disease is well documented
in a large number of case studies. Surprisingly though,
a comprehensive in vivo screen of 95 miRNA genes in
Caenorhabditis elegans revealed that most individual miRNAs are
dispensable or have limited impact on gross organismal devel-
opment and innate adult behaviour9–11. To obtain an initial
assessment of miRNA regulatory activities in Drosophila, we
screened our attP2 and attP40 double-insertion miR-SP library
with the ubiquitous tubulin-Gal4 driver, and assayed viability and
gross morphological defects in eclosing adults. We also included
in our screen two SP lines designed and characterized
independently (for example, bantam36 and miR-1). Lines that
displayed significant reduction in viability, defined by a stringent
cutoff at a value equal or less than 1 s.d. of percent viability across
the entire collection, were further validated in triplicate (see
Methods section).

In total, 9% (13/143) of individual miR-SP transgenes rendered
a statistically significant viability phenotype, ranging from lethal
(0–5% viability) to semilethal (6–50% viability) to subviable
(50–70% viability; Fig. 2a). Some lines displayed penetrance
below our stringent cutoff that may reflect partial LOF in essential
miRNA functions (Supplementary Data 2). In principle, some SPs
should be able to inhibit multiple miRNAs in a conserved family.
Supporting this argument, several hits in the viability screen
belonged to the K-box family (miR-2a, miR-2b and miR-2c,
and miR-13a and miR-13b) and the miR-9 family (miR-9b and
miR-9c). Previous analysis of K-box miRNA double mutants
revealed functional redundancy for lethality37. We tested several
of our hits using a complementation assay where the lethal
phenotype of a single SP insertion was compared with the same
SP carried over a deficiency (Df/þ ) at the endogenous locus
(as described in ref. 26). By this classical criterion, miR-2aSP,
miR-2bSP and miR-8SP displayed increased penetrance, and thus
non-complementing behaviour, over Df (Supplementary Fig. 1a).
Interestingly, among miR-9 family members tested (miR-9bSP
and miR-9cSP), only miR-9cSP was strongly uncovered by Df
(Supplementary Fig. 1a), suggesting some degree of specialization
for endogenous miRNA functions within the conserved family.

While our manuscript was under review, a screen of miRNA
deletion mutants for lethal phenotypes was published13, thus
allowing a broad benchmark comparison of miR-SPs with
independent viability data (summary in Fig. 2b). Of the
miRNAs we tested for viability (141 miR-SPGenII strains plus
two other constructs; Supplementary Data 2), null alleles exist for
115. Sixteen of these mutants were deemed as not comparable as
benchmarks because they either (a) remove multiple clustered
miRNA genes, (b) fail to display non-complementation over large
Dfs at each locus (that is, not genetically validated) or (c) they
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were not tested for lethality by Chen and colleagues13

(Supplementary Data 3). In addition, 27 miR-SPGenII constructs
correspond to miRNAs for which no null allele currently exists
(Supplementary Data 3). Thus, we compared adult viability
phenotypes of null and tubulin-Gal4;UAS-miR-SP for 99 genes
(Fig. 2b and Supplementary Data 3; ref. 13). The vast majority of
the viability phenotypes in our screen match the published data
(82.8%; green in Fig. 2b and Supplementary Data 3). Several
miR-SPs did show viability defects that were not observed in
corresponding nulls; however, several were members of highly
conserved families likely to display functional redundancy as
previously observed for K-box miRNAs (light blue in Fig. 2b and
Supplementary Data 3; ref. 37), thus leaving 4% as conclusive
false positives (miR-14, miR-79, miR-307 and miR-975; dark
blue in Fig. 2b and Supplementary Data 3). Finally, some
null mutants displayed lethality that was not detected in our
tubulin-Gal4;UAS-miR-SP screen, as expected in screens of
hypomorphic mutants (for example, using RNA interference
or chemical mutagenesis). Overall, the false-negative rate for
viability was 8.1% (red in Fig. 2b and Supplementary Data 3).

We expected that SP activity would be dose dependent relative
to endogenous levels of targeted miRNA, thus allowing us to

control the strength of conditional inhibition. To test this, we
compared the viability of 1� and 2� SP insertions with tubulin-
Gal4 for several of the hits in our screen, including miR-2bSP,
miR-8SP, miR-9bSP and miR-9cSP. In each case, the 2� SP gave
a more penetrant adult lethal phenotype than 1� SP
(Supplementary Fig. 1b). In addition, it is likely that intrinsic
differences in miR-SP architecture can influence their efficacy.
For example, a previous study using a different lethality assay and
SP design reported viability defects following miR-92 competitive
inhibition28. However, our individual strains with miR-SPGenII

constructs directed against miR-92 family members (miR-92a,b
and miR-310/311/312/313) did not display significant lethality,
despite the fact that other phenotypes can be detected with SPs
directed against this family (see below).

Examining external morphology, we have previously reported
that miR-SPs can replicate the deformed adult leg phenotype
caused by loss of miR-8 function26,38. This was confirmed with
our GenII miR-8SP lines (Supplementary Fig. 2a–c). GenII SP
strains also recapitulated the miR-9-dependent notching of the
posterior wing blade margin39–41 (Supplementary Fig. 2d–f).
In the adult compound eye, we also observed a novel and
highly penetrant morphological phenotype using miR-92bSP,
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characterized by an apparent invasion of the head cuticle into the
retina (Fig. 2c–e) or even more marked ectopic outgrowth within
the retinal field (Fig. 2g,h). The identical phenotype was observed

for miR-310SP, another member of the miR-92 family (Fig. 2f),
suggesting some degree of functional redundancy between
endogenous members of this miRNA family. In addition, we
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found that surviving miR-2aSP adults displayed a novel vein
patterning defect and a decreased wing size (Fig. 2i–k). However,
the overall frequency of gross morphological phenotypes was
quite low (0.7–1.4%, depending on phenotype).

Tissue-specific miRNA function in Drosophila muscle.
Although a growing body of evidence suggests that miRNAs play
vital roles in maintaining the integrity and function of adult
tissues42–44, comprehensive interrogation of such phenotypes has
been challenging. To realize the potential of our SP library for
unbiased discovery of tissue-specific miRNA functions, we next
sought to screen for miRNAs that regulate adult muscle
morphology, maintenance and function. We first determined
the muscle expression of the miRNAs present in our collection.
Total RNA was isolated from dissected adult thoracic muscles,
and relative expression levels were determined using a miRNA

microarray platform (Fig. 3a). Drosophila miRNA array signals
were obtained by fitting a linear model to the log2-transformed
probe intensities. This analysis detected 61 miRNAs expressed
across a broad range of relative levels in adult thoracic muscles
(Fig. 3b; miR-SPGenII strains were available to test 58 of these).

To disrupt the activity of these candidate miRNAs selectively
in the muscle tissue from embryonic stages through adulthood,
2� miR-SP constructs were expressed using a dMef2-Gal4 driver.
Flight behaviour and indirect flight muscle (IFM) morphology
were assessed in adult progeny at 10 and 30 days post eclosion
(Fig. 3a). Analysis of 30-day-old animals revealed that 14 miR-SP
lines rendered a penetrant ‘flightless’ phenotype (black bars in
Fig. 3c). These included miR-SPs targeting bantam, miR-1, the
K-box family (miR-2b, miR-2c and miR-13b displayed strong
phenotypes; miR-2a and miR-13a were flight impaired but fell
below our stringent cutoff; Supplementary Data 4), miR-7, the
miR-31 family, miR-34, miR-190, miR-957, miR-986, miR-987
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Figure 4 | Twelve miRNAs are required to maintain flight muscle structure. Fifty-eight lines were assayed for flight at 10 and 30 days post eclosion, and

all lines that displayed significant flight deficits were then assayed for IFM morphology (a–h). Sagittal bisections of the adult thorax stained for actin and

myosin heavy chain (Mhc) shown at low (top panel) and high magnification (bottom panel). Normal IFM and sarcomere morphology in 10- and 30-day-old

Scramble-SP controls (a,b; scale bars, 200mm), late-onset IFM phenotype following miR-1SP expression (c,d) or miR-34SP expression (e,f), and early-onset

IFM defects in miR-987SP animals (g,h). A summary of the lines that display flight and IFM phenotypes at 10 days post eclosion (i) is shown for comparison

with the 30-day results shown in j; red represents all SP lines that display both flight and IFM defects, whereas orange and yellow represent animals with no

detectable IFM morphology defect that were flight impaired or flightless, respectively. (k–l) Comparison of miR-34SP and miR-34D/D null mutants. Null

mutant adults (orange bars) display a stronger flightless phenotype at 10 days but are comparable to miR-34SP (green bars) at 30 days (k); error bars,

s.e.m., n¼ 3 replicates of 20 animals. IFM sarcomere morphology and Mhc distribution and pattern are comparable in miR-34SP and miR-34D/D null

mutants at 30 days (displaying 15.7% penetrance (n¼ 19), compared with 25% in miR-34SP; l; scale bar,5mm). (m) NanoString nCounter profiling of adult

thoracic muscle. All miRNAs expressed above background values are represented. Only the levels of mature miR-34–5p were substantially reduced in the

null mutant. Statistical significance was established in this case by comparing the expression values of miR-34D/D to the wild-type control using the

NanoStringNorm package in R (t-test, **Po0.003). For all other genotypes, statistical significance was established by comparing the miR-SP values,

against miR-34D/D, Scramble-SP and wild-type controls. No other endogenous miRNA levels change significantly in miR-34SP or miR-34D/D animals

compared with Scramble-SP or wild-type controls (see Methods section).
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and miR-1001. All but one of these lines (miR-987SP) appeared
normal or displayed mildly impaired flight behaviour at 10 days
(grey bars in Fig. 3c). However, when we then assayed miR-987SP
adults at 4 days post eclosion, we found normal flight behaviour
relative to control (1.7±2.9% non-fliers in miR-987SP compared
with 0% in Scramble-SP). Therefore, all behavioural phenotypes
recovered in our muscle screen displayed a progressive, age-
dependent loss of flight. These miRNA genes were also evenly
distributed across the range of expression levels (Fig. 3b red bars),
showing little correlation with endogenous miRNA abundance.

Adult flight behaviour is primarily dependent on the activity of
the IFMs. To assess the impact of miRNA inhibition on muscle
morphology, IFM myofibril structure was examined in sagittal
bisections of the thorax stained for F-actin and myosin heavy
chain. At 30 days, 12 of the 14 flightless SP lines showed marked
defects in IFM muscle integrity and sarcomere organization
(Fig. 4a–h; Supplementary Fig. 3), with a relatively broad range
of penetrance (Supplementary Fig. 4). Only miR-7SP and
miR-13bSP showed no detectable IFM abnormalities at this level
of resolution (yellow wedge in Fig. 4j). Notably, miR-987SP
animals displayed a detectable defect in gross IFM or myofibril
morphology at 10 days (red wedge in Fig. 4i). Thus, despite strong
dMef2-Gal4-dependent expression starting in the mesoderm at
embryonic stage 7, our SP screen detected many age-dependent
IFM phenotypes, but no obvious defects in muscle development.

Among the candidate miRNAs identified in our screen, miR-1
is considered an ‘archetypal’ muscle miRNA whose sequence and
expression pattern appears to be evolutionarily conserved from
flies to mammals. In Drosophila, miR-1 null mutations display
paralysis, severe disruption of somatic muscle tissues and early
larval death, preventing analysis of function during adult life45–47.
Examination of 30-day-old escapers expressing miR-1SP
uncovered a highly penetrant flightless phenotype and severe
degeneration of IFM muscle fibres (Fig. 3c and 4d). These results
highlight the capacity of miRNA SPs to complement studies
where complete LOF renders early developmental lethality.

Unlike miR-1, miR-34 had not previously been analysed in
Drosophila muscle despite mounting evidence implicating this
conserved miRNA in muscle function (Supplementary Table 1).
Thus, we sought to confirm this function for miR-34 by
examining a null mutation42. Indeed, homozygous null animals
(miR-34D/D) display age-dependent deficits in flight behaviour
that are slightly more severe than miR-34SP at 10 days but
reach comparable levels at 30 days (Fig. 4k). Moreover, IFM
morphology comparisons confirm that miR-34D/D nulls display
the same abnormal morphology and distribution of myosin
heavy chain characteristic of dMef2-Gal4;miR-34SP animals at
comparable penetrance (Fig. 4l). Because the miR-34 muscle
phenotype was qualitatively similar to many of the other hits in
our flight screen, we wanted to confirm that miR-34D/D and
miR-34SP did not cause altered expression of other muscle-
expressed miRNAs required for muscle maintenance. Thus,
we used sensitive NanoString nCounter profiling to monitor
miRNAs levels in the adult thorax (see Methods section). Aside
from the loss of miR-34–5p in null mutants, no other miRNAs
were significantly changed compared with controls (Fig. 4m
and Supplementary Data 5), suggesting that miR-34 acts
independently of other conserved miRNAs in this context.

Discussion
In this study, we describe a transgenic Drosophila resource for
conditional competitive inhibition for 141 high-confidence
miRNAs, as a versatile toolkit for discovery and tissue-specific
analysis of miRNA functions in vivo. This resource is highly
complementary to collections of miRNA gene deletions that offer

chronic, complete and systemic LOF48,13. Similar to the chemical
mutagenesis and RNAi methods typically used to detect novel
loci in genome-wide functional screens49, miR-SPs usually
produce partial LOF; however, this feature combined with the
spatial–temporal specificity conferred by the huge arsenal of Gal4
drivers (for example, http://flystocks.bio.indiana.edu/) empowers
the miR-SP approach with many advantages for analysis of
post-embryonic and cell- or tissue-specific functions.

Overall, the occurrence of significant adult viability and
external morphology defects following ubiquitous miRNA
inhibition in Drosophila appears to be comparable to the
frequency of phenotypes resulting from systemic loss of miRNA
function in C. elegans10. The relatively low frequency of external
morphology defects (3.5% overall; n¼ 5/143; Fig. 2 and
Supplementary Fig. 2) and the low false discovery rates
observed in our tubulin-Gal4 screens (Fig. 2b), suggest that
transgenic SPs are largely free from significant off-target effects.
Interestingly, our novel tissue-specific screen identified a much
greater percentage of miRNAs required for the form and function
of adult flight muscle (24%; n¼ 14/58; Fig. 4h). Our analysis
suggests that disruption of miR-34 and 11 other miRNAs can
induce a progressive disruption of IFM structure and function,
thus uncovering a substantial regulatory landscape for muscle
maintenance and/or homeostasis.

Recent studies suggest that vertebrate orthologues for several of
the conserved miRNAs required for muscle maintenance in our
screen (miR-1, miR-7, miR-31 and miR-34, and the K-box
orthologue miR-23) are associated with muscle physiology in
vertebrate species (Supplementary Table 1). However, to our
knowledge, only miR-1 and miR-34 have been implicated by LOF
in vertebrate cardiac and/or skeletal muscle function43,50.
Interestingly, loss of Drosophila miR-34 has been reported to
induce late-onset brain degeneration42, raising the intriguing
possibility of a general tissue maintenance theme. Of course,
future study is needed to distinguish between events that may
trigger active degenerative processes versus those that disrupt
ongoing replenishment of protein networks in muscle. It may also
be interesting to test these muscle-maintenance miRNAs for
degenerative phenotypes in other tissues. Although future
comparisons with null mutations will be required to validate
many of these novel loci, the fact that most of these miRNAs were
not previously known to support muscle maintenance highlights
the potential of the miR-SP library for tissue-specific screening. In
conclusion, the library of transgenic SPs reported here represents
a valuable resource for unbiased and conditional LOF screens in
the intact organism.

Methods
Genetics and miR-SP library generation. Drosophila stocks. The following Gal4
drivers were obtained from the Bloomington Stock Center and crossed with
miR-SP lines to drive ubiquitous, wing disc and mesodermal expression:
tubulin-Gal4, patched (ptc)-Gal4 and dMef2-Gal4, respectively. The transgenic lines
containing 30-untranslated region sensors for miR-8, nerfin, and K-box miRNAs,
were previously described51–53. miR-1SP construct was generated in the Han
laboratory by introducing 10 repetitive miRNA complementary sequences
(50-GGTACGTTTAGCGTAAGTTAT-30 synthesized by GenScript) separated by
four nucleotide linkers 50-CGCG-30 into the pUAST vector. Bantam-SP was a
generous gift from Steve Cohen.

Conditional miR-SP collection. miR-SP constructs were designed with a
silencing cassette of 20 repetitive miRNA complementary sequences separated by
variable four-nucleotide linker sequences, and assembled as previously described26.
To avoid off-target effects, the combined miRNA and linker sequences were
checked against every mature miRNA sequence in the Drosophila genome. The
entire cassette was then cloned into the 30-untranslated region of mCherry between
NotI and XbaI in a modified pWALIUM10-moe vector (ref. 54, http://www.flyrnai.
org/TRiP-HOME.html) carrying the whiteþ selectable marker and flanking
insulator sequences (as described in ref. 33) To obtain miR-SPs with relatively
equal expression and avoid epigenetic positional effects, transgenic flies were
generated using phiC31 site-specific genomic integration in specific landing sites
on the second (attP40) and third (attP2) Drosophila autosomes (Genetic Services
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Inc.). Both attP2 and attP40 insertion site stocks are viable as homozygotes and
have been characterized by the Perrimon laboratory as controls for genetic analysis
of muscle ageing and viability phenotypes that run out to 56 days55; attP40
insertions are carried as heterozygotes in all SP screens carried out. Insertion of
Scramble-SP sequence at the attP2 and attP40 sites acted as control. The sequences
of all designed miR-SP constructs are listed in Supplementary Data 1.

Mature miRNA quantification. Total RNA was isolated according to the
miRVana miRNA kit protocol without enrichment for miRNAs (Invitrogen) from
ubiquitously expressing miR-SP or Scramble wandering third instar larvae with
intestines removed. Real-time quantitative PCR was performed using a standard
TaqMan MicroRNA assay kit protocol on an Applied Biosystems 7900HT
Sequence Detection System (Applied Biosystems). Reaction volumes, cycles and
analysis were performed as described56 with the exception that expression values
are expressed relative to S2 rRNA expression.

Immunostaining of imaginal discs. Larvae were dissected in ice-cold PBS. Discs
were fixed in 4% paraformaldehyde (PFA) at room temperature for 20 min, washed
in PBS and PBST (0.01% Triton X-100), blocked with 5% normal goat serum in
PBST and incubated with primary antibody anti-GFP (Molecular Probes A6455,
1:500) overnight at 4 �C, washed three times in PBST and then incubated with
secondary Alexa Fluor 488 goat anti-rabbit IgG (Molecular Probes A-11008,
1:2,000) for 3 h at room temperature. Discs were then washed, mounted in
SlowFade Gold antifade reagent (Invitrogen) and imaged with a � 20 objective
on a Nikon A1R confocal.

Ubiquitous miR-SP expression and analysis. Crosses to examine lethality were
carried out at 27 �C with 12 males carrying the miR-SP on the second and third
chromosome, and 25 tubulin-Gal4/TM3 virgins allowed to mate for 1 day in a vial,
then transferred to a bottle on the second day and finally transferred to a second
bottle on day 4. After 2 days, the adult flies in the final bottle were discarded. Eclosed
animals were collected every day up to 6 days after first eclosion and promptly
counted. Flies were scored for and against mCherry expression, or against the TM3
balancer. To account for subtle contribution(s) of TM3 to viability phenotypes,
balanced drivers were crossed to Canton-S to establish a correction factor. Raw data
are shown in Supplementary Data 2. miR-SP lines displaying lethality in the above
assay were crossed again in vials with six miR-SP males and 10 tubulin-Gal4 virgins.
Each genotype was set up in triplicate. Crosses were flipped every 2 days into a new
vial for 5 days, after which eclosed animals were collected and counted as described
above. All lines were screened as double-insert (2� ) stocks to increase phenotypic
penetrance because comparisons between 1� for several miR-SPs showed con-
sistent dose dependence (Supplementary Fig. 1b).

Gross morphology of ubiquitously miR-SP expressing animals was examined
with specific attention to retina (size/shape/pattern/pigmentation/bristle), wing
(size/shape/veination/bristle and hair pattern), leg (length/shape/segment
morphology/bristle pattern) and body (size/shape/bristle pattern). For the analysis
of leg and wing morphology, cuticle preparations were prepared by dehydrating in
a series of ethanol dilutions. Muscle was then cleared in xylene and tissues were
mounted in Cytoseal-60 (Cole-Parmer). Wings and legs were imaged with Nikon
Digital Sight DS-Fi1 colour camera on a Nikon 80i upright microscope at � 4.
A 2� 2 montage was taken and stitched together using NIS-Elements software.
Area was calculated from stitched images using Fiji image processing package
(http://fiji.sc/Fiji).

Muscle-specific miR-SP expression and analysis. Crosses to examine adult
flight behaviour were carried out as described above (lethality assay) with the
exception that dMef2-Gal4 virgins were used to drive muscle-specific expression of
the miR-SP. Eclosed animals were collected every day up to 6 days after first
eclosion, and then aged for 10 or 30 days. Animals were flipped to new food vials
every other day to maintain integrity of the collection. Flight assay was carried out
at ambient temperature in a dark room in an illuminated arena with the following
dimensions: H¼ 65 cm, W¼ 64 cm and D¼ 51 cm. Flies were sorted into three
groups of 20 for each gender, a minimum of 1 h before the assay. After 1 h recovery
from brief anaesthesia, we found that no wild-type control flies (Canton-S; dMef2-
Gal4 raised at 27 �C to elevate Gal4 activity) hit the target area at 10 days of age.
A small number of control animals fly poorly, ending up in the outer ring, when
the flies are reared and aged to 30 days at 27 �C. This result was consistent with
observations following 24 h of recovery from CO2. All tests were completed at the
same time of day. Animals were flipped into a vial with no food directly preceding
the assay. Flies were dropped through a funnel from a height of 74 cm centred
above three concentric circles (diameter: 7 cm inner circle, 15 cm middle circle and
21 cm outer circle), and the number of animals in each circle was scored from an
image of the arena taken immediately after landing. Flies falling within the first two
circles were counted as ‘non-fliers’ (raw data in Supplementary Data 4). A
threshold for ‘non-fliers’ was set at 2 s.d.’s of Scramble-SP, followed by analysis of
variance and Tukey–Kramer multiple comparisons test to assess significance for
each SP line above threshold.

IFM morphology was assessed only in flightless animals and controls. Wings,
legs and abdomen removed from adult flies and the thorax muscles were soaked in
relaxing solution (20 mM phosphate buffer, (pH 7.0), 5 mM MgCl2 and 5 mM
EGTA) for 5 min. Thoraces were then moved to 4% PFA in relaxing solution
for 10 min and then transferred to a 5% agarose gel plate covered with PBT

(PBSþ 0.2% Triton X-100). Thoraces were then bisected sagittally with a scalpel
blade (Fine Science Tools) and blocked in relaxing solutionþ 3% heat inactivated
goat serum for 20 min before fixation in 4% PFA in PBT for 10 min.
Immunohistochemistry was carried out on the hemi-thoraces with mouse a-MHC
(myosin heavy chain) (1:50 in PBT; ref. 57) followed with incubation in goat a-
mouse 568 (1:200 in PBT, Invitrogen A-11031) and Alexa Fluor phalloidin 488
(1:500 in PBT, Invitrogen A12379). Samples were mounted in SlowFade Gold
antifade reagent (Invitrogen). Hemi-thoraces were imaged using a Nikon Ti-E and
A1R confocal with � 10 and � 100 objectives using NIS-Elements acquisition
software. A minimum of n¼ 4 hemi-thoraces were imaged for each genotype to
account for variable expressivity (Supplementary Fig. 4); samples with evidence of
tissue damage due to improper dissection were excluded before analysis of the
results. Max-intensity projections were obtained using the NIS-Elements analysis
software.

Profiling miRNA muscle expression. Muscle tissue was dissected from the thorax
of adult flies and isolated using the standard Trizol (Invitrogen) protocol followed
by RNeasy Plus kit (Qiagen) clean up with DNase treatment. RNA was labelled
with Cy5 following Agilent standard protocol. Agilent microarrays covering 152
Drosophila miRNAs were designed as previously described58, with miRNA probes
of varied lengths to equalize melting temperatures to 55 �C. MiRNA expression
data were analysed using the AgiMicroRNA Bioconductor Package version 2.0.1
(ref. 59). The software is implemented in the open-source statistical scripting
language R and is integrated into the Bioconductor project (http://www.
bioconductor.org) under the general public licence (GPL) licence. For data pre-
processing, a target file was generated to assign each scanned data file to the
appropriate experimental group. Scanned data from the Agilent Feature Extraction
image analysis software were imported into an R object that stores the relevant
probe and raw intensity data information needed for the pre-processing. Raw array
data were normalized using quantile normalization, and we obtained the miRNA
gene signal by fitting a linear model to the log2-transformed probe intensities. This
model produced an estimate of the miRNA gene signal corrected for probe effects.
To evaluate differences in the individual gene expression between experimental
groups, the absolute value of the difference in total expression was computed for
each of the miRNAs sampled on the array.

NanoString nCounter miRNA profiling. All crossed were carried out at 27 �C.
Thoraces from 1- to 2-day-old adult females of relevant genotypes (dMef2-Gal44
miR34b; dMef2-Gal44Scramble-SP; miR-34D/D (a gift from Nancy Bonini) and Iso
white-1,2,3) were dissected (nZ4) in PBS in biological duplicates. Total RNA was
extracted using the miRNeasy kit (Qiagen). Purified RNA was concentrated using
Amicon Ultra-0.6 Centrifugal Filters (Millipore). For each sample, B100 ng total
RNA was loaded into the nCounter Drosophila miRNA Assay (NanoString) and
processed according to the manufacturer’s protocols. Briefly, miRNAs were ligated,
hybridized to reporter probes at 65 �C for 12 h and prepared on the nCounter Prep
Station before being digitally counted at 555 Field of view (FOV) on the nCounter
Digital Analyzer. The raw data counts were analysed using the NanoStringNorm R
package60. The data were normalized using the geometric mean of the six positive
controls, and then it was background corrected by subtracting the mean and 2 s.d.’s
of the six negative controls. Finally, the data were normalized for sample/RNA
content using the geometric mean of three housekeeping genes. Normalized
miRNA expression levels were log2 transformed and analysed using a t-test to
identify differentially expressed miRNA between samples. Heatmaps were
generated using the gplots R package with the log2-transformed and normalized
values of the experiment. Subsequently, for each condition, the mean of the two
replicates was taken and the data were centred and scaled by subtracting for each
condition the mean values and dividing it by the s.d.
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