
Dauer-independent insulin/
IGF-1-signalling implicates

collagen remodelling in longevity
The Harvard community has made this

article openly available.  Please share  how
this access benefits you. Your story matters

Citation Ewald, Collin Y., Jess N. Landis, Jess Porter Abate, Coleen T.
Murphy, and T. Keith Blackwell. 2014. “Dauer-independent insulin/
IGF-1-signalling implicates collagen remodelling in longevity.”
Nature 519 (7541): 97-101. doi:10.1038/nature14021. http://
dx.doi.org/10.1038/nature14021.

Published Version doi:10.1038/nature14021

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:22856959

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Dauer-independent%20insulin/IGF-1-signalling%20implicates%20collagen%20remodelling%20in%20longevity&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=52b4c8b645363c950fd79b5bfd3c0a22&department
http://nrs.harvard.edu/urn-3:HUL.InstRepos:22856959
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


Dauer-independent insulin/IGF-1-signalling implicates collagen 
remodelling in longevity

Collin Y. Ewald1, Jess N. Landis2,3, Jess Porter Abate1,3, Coleen T. Murphy2, and T. Keith 
Blackwell1

1Joslin Diabetes Center, Harvard Stem Cell Institute, and Harvard Medical School Department of 
Genetics, Boston, Massachusetts, 02215, USA

2Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton 
University, 148 Carl Icahn Laboratory, Washington Road, Princeton, NJ 08544, USA

Summary

Interventions that delay ageing mobilize mechanisms that protect and repair cellular 

components1–3, but it is unknown how these interventions might slow the functional decline of 

extracellular matrices4,5, which are also damaged during ageing6,7. Reduced Insulin/IGF-1 

signalling (rIIS) extends lifespan across the evolutionary spectrum, and in juvenile C. elegans also 

allows the transcription factor DAF-16/FOXO to induce development into dauer, a diapause that 

withstands harsh conditions (Supplementary Discussion)1,2. It has been suggested that rIIS delays 

C. elegans ageing through activation of dauer-related processes during adulthood2,8,9, but some 

rIIS conditions confer robust lifespan extension unaccompanied by any dauer-like traits1,10,11. 

Here we show that rIIS can promote C. elegans longevity through an program that is genetically 

distinct from the dauer pathway, and requires the Nrf (NF-E2-related factor) ortholog SKN-1 

acting in parallel to DAF-16. SKN-1 is inhibited by IIS and has been broadly implicated in 

longevity12–14, but is rendered dispensable for rIIS lifespan extension by even mild activity of 

dauer-related processes. When IIS is decreased under conditions that do not induce dauer traits, 

SKN-1 most prominently increases expression of collagens and other extracellular matrix (ECM) 

genes. Diverse genetic, nutritional, and pharmacological pro-longevity interventions delay an age-

related decline in collagen expression. These collagens mediate adulthood ECM remodelling, and 

are needed for ageing to be delayed by interventions that do not involve dauer traits. By 

genetically delineating a dauer-independent rIIS ageing pathway, our results show that IIS controls 

a broad set of protective mechanisms during C. elegans adulthood, and may facilitate elucidation 

of processes of general importance for longevity. The importance of collagen production in 

Correspondence should be addressed to T. K. B. and C. T. M. ctmurphy@princeton.edu (CTM) and 
keith.blackwell@joslin.harvard.edu (TKB).
3Equal contributions

Author Contributions
All authors participated in designing the experiments, and analysing and interpreting the data. JNL and JPA obtained samples for 
microarray analysis, performed the microarray experiments, analysed the expression profiling data, and performed the lifespan studies 
in Extended Data Fig. 2f–h and Supplementary Table 4 CYE performed all other experiments. CYE and TKB wrote the manuscript in 
consultation with the other authors.

The authors have no competing interests to declare.

HHS Public Access
Author manuscript
Nature. Author manuscript; available in PMC 2015 September 05.

Published in final edited form as:
Nature. 2015 March 5; 519(7541): 97–101. doi:10.1038/nature14021.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



diverse anti-ageing interventions implies that ECM remodelling is a generally essential signature 

of longevity assurance, and that agents promoting ECM youthfulness may have systemic benefit.

Results and Discussion

We hypothesized that SKN-1 would be required for rIIS lifespan extension under conditions 

in which dauer-associated processes are inactive. Class 2 mutations in the insulin/IGF-1 

receptor DAF-2 induce adulthood dauer-related traits that are mild at 20°C, and severe at 

22.5°C or above, but Class 1 mutations do not (Video 1, 2; Supplementary Discussion)10. 

SKN-1 is inhibited by IIS phosphorylation but is dispensable for dauer development13, 

adulthood dauer-related traits (Extended Data Fig. 1a–d; Supplementary Table 1), or 

lifespan extension by Class 2 daf-2 mutations at 20°C (Extended Data Fig. 1a and 

Supplementary Table 2)13. By contrast, at 15°C SKN-1 was completely required for 

longevity in the same Class 2 daf-2 mutants (Fig. 1a; Extended Data Fig. 1a, 1e, Extended 

Data Table 1, and Supplementary Table 2), which do not show dauer traits at 15°C10 

because low temperature inhibits dauer entry (Supplementary Discussion). skn-1 was also 

essential at 20°C in Class 2 daf-2; daf-16 double mutants that expressed DAF-16 

specifically in the intestine, a condition that rescues longevity but not dauer development1,15 

or traits (Extended Data Fig. 1f, 1g and Table 1). Finally, skn-1 was required at 15°C, 20°C, 

or 25°C for lifespan extension from daf-2 RNA interference (RNAi) (Fig. 1b, Extended Data 

Fig. 1a and Table 1, and Supplementary Table 2), which promotes dauer entry only at 

extreme temperature and does not induce dauer traits in adults (Extended Data Fig. 1h–j). In 

these last two scenarios, the absence of dauer traits may reflect DAF-16 insufficiency in 

neurons, which are central to dauer regulation15,16 and resistant to RNAi (Extended Data 

Fig. 1h, 1i, and Table 1). Lifespan extension is extremely robust when daf-2 RNAi is 

performed in the Class 1 mutant daf-2(e1368)11, which lacks adulthood dauer traits but 

predisposes to dauer entry10. skn-1 was largely required for this lifespan extension at 20°C, 

and was essential for the even greater healthy lifespan extension seen at 15°C (117 days 

maximum; Fig.1c, 1d; Extended Data Fig. 1a and Table 1).

The skn-1-dependence of rIIS longevity tracked inversely with predisposition to dauer entry 

or adulthood dauer traits, and was not determined by temperature (Extended Data Fig. 1a). 

skn-1-dependence also did not correlate with the magnitude of rIIS lifespan extension, 

suggesting that it was not determined by the extent of IIS reduction (Extended Data Fig. 1a). 

Accordingly, DAF-16 and SKN-1 nuclear localization was increased as robustly by daf-2 

RNAi as by Class 1 or Class 2 daf-2 mutations, and was similar in daf-2 mutants at 15°C 

and 20°C (Extended Data Fig. 1k–o). Activation of dauer processes in adults by a 

mechanism other than genetic IIS reduction should extend lifespan without skn-1. 

Accordingly, skn-1 was dispensable for lifespan extension from adulthood dauer pheromone 

exposure (Fig. 1e, Extended Data Fig. 1p, 1q and Table 1).

We conclude that skn-1 is needed for rIIS longevity specifically when dauer-associated 

mechanisms are inactive (Extended Data Fig. 1a). This genetic requirement for skn-1 reveals 

that rIIS extends lifespan through two downstream pathways that may overlap (Fig. 1f). 

During the reproductive life cycle, IIS inhibits a protective program that requires both 
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DAF-16 and SKN-1, and does not involve dauer-specific processes. This program may be 

controlled mainly by IIS acting outside the nervous system. The requirement for SKN-1 for 

lifespan extension is relieved under conditions that activate vestiges of the dauer 

developmental pathway in adults.

Analyses of how rIIS affects ageing have typically involved conditions that predispose to 

mild or even severe dauer-related traits (Supplementary Discussion), and would therefore 

allow skn-1-independent lifespan extension. We investigated the basis for dauer-independent 

rIIS longevity by identifying genes that are regulated by SKN-1 in daf-2 mutants at 15°C. At 

a false discovery rate of <3%, microarrays identified 429 genes with higher expression in 

daf-2(−) than daf-2(−); skn-1(−) animals (SKN-1-upregulated daf-2(−) genes), and 477 

SKN-1-downregulated daf-2(−) genes, including direct and indirect SKN-1 targets 

(Extended Data Fig. 2a–e; Supplementary Table 3). Many of these genes affected lifespan as 

would be predicted by these expression patterns (Extended Data Fig. 2f–h; Supplementary 

Table 4, 5). Overlap with a dauer-expressed gene set was insignificant, as was overlap 

between SKN-1- and DAF-16-downregulated daf-2(−) genes (Extended Data Fig. 2i–k). 

However, many SKN-1-upregulated daf-2(−) genes were activated by DAF-16 (Extended 

Data Fig. 2j, 2l-t), which is also required for daf-2 lifespan extension at 15°C17, indicating 

that SKN-1 responds to rIIS by functioning in parallel to and independently of DAF-16.

SKN-1 has conserved functions in stress defence, protein homeostasis, and 

metabolism12,18,19 and was required for daf-2 oxidative stress resistance (Supplementary 

Table 6)13, but only 40/429 SKN-1-upregulated daf-2(−) genes had been identified under 

normal or stress conditions (Extended Data Fig. 3a–g; Supplementary Table 7)18. 

Unexpectedly, by far the most overrepresented functional group within the SKN-1-

upregulated daf-2(−) gene set consisted of collagen genes, which seemed to be regulated by 

SKN-1 indirectly (Fig. 2a, Supplementary Table 3, 8, and 9). In humans, collagens 

constitute about 1/3 of all protein and accumulate damage during ageing, leading to 

functional decline in tissues throughout the body6,7. C. elegans collagens form basement 

membranes as well as the cuticle, a complex structure that covers the animal, lines the 

buccal cavity, pharynx, and rectum, and becomes thickened and wrinkled with age20. The 

SKN-1-upregulated daf-2(−) collagens are of the type that forms the cuticle, but are 

expressed in multiple tissues (Extended Data Fig. 3h; Supplementary Table 9). Collagen 

production decreases in human skin during ageing21, and 27 SKN-1-upregulated daf-2(−) 

collagens are among a set of genes that decline in expression as C. elegans ages22 

(Supplementary Table 10). These and other collagens were prominently upregulated in each 

of 20 C. elegans longevity-associated gene sets we examined (Extended Data Table 2; 

Supplementary Table 10). Moreover, in mice extracellular matrix genes were 

overrepresented in some longevity or Nrf2-dependent sets (Supplementary tables 11, 12), 

and in silico analysis of longevity-associated genes identified a predicted ECM network23. 

The possible significance of these expression signatures has not been explored.

We investigated the functional importance of specific SKN-1-upregulated daf-2(−) collagen 

genes that decline during aging, and are upregulated in other longevity-associated gene sets 

(Extended Data Table 2). SKN-1 increased expression of these genes during adulthood, and 

delayed their age-related decline in expression in response to multiple interventions that 
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promote longevity: daf-2 RNAi, rapamycin (mTOR kinase inhibitor24), the dietary 

restriction (DR) model eat-2, and inhibition of germ cell proliferation (glp-1(−))1 (Fig. 2b–

g; Extended Data Fig. 3i–k, 4a, 4b). Adulthood knockdown of these collagen genes did not 

affect wild type lifespan, but dramatically reduced longevity of the canonical daf-2 Class 2 

mutant e1370 at 15°C but not 20°C (Fig. 3a, 3b; Extended Data Fig. 4c and Table 3; 

Supplementary Table 13), at which skn-1 is dispensable for longevity (see above). 

Additionally, knockdown of these collagens significantly reduced lifespan extension from 

daf-2 RNAi at 20°C, and from other skn-1-dependent14,24,25 longevity interventions (Fig. 

3c–e; Extended Data Fig. 4d and Table 3; Supplementary Table 13). Most of these genes 

include regions related to other collagens, but col-120 is unique (Supplementary Table 14), 

and at 15°C, daf-2(e1370) but not wild-type lifespan was reduced by the collagen mutation 

dpy-1(e1) (Extended Data Fig. 4e, Supplementary Table 13). Lack of a single critical 

collagen can therefore impair lifespan extension. At 15°C, daf-2(e1370) lifespan was also 

decreased by adulthood knockdown of certain extracellular protease genes from the SKN-1-

upregulated daf-2(−) set, or other genes important for cuticle formation (Extended Data Fig. 

4f, 13, 15). Remarkably, transgenic overexpression of key collagens from the SKN-1-

upregulated daf-2(−) gene set but not other collagens modestly but consistently increased 

lifespan (Fig. 3f, Supplementary Table 13). Adulthood SKN-1-dependent expression of 

particular collagen and ECM genes therefore promotes lifespan extension in diverse 

pathways that slow C. elegans ageing.

Adulthood collagen RNAi did not affect body size, detectably impair cuticle function, or 

increase markers of various stresses (Extended Data Fig. 5a–v, 6a–i). Collagen RNAi 

sensitized to exogenous oxidative stress, however, and increased the prominence of ageing 

markers in daf-2 mutants at 15°C, and in rapamycin-treated animals (Fig. 4a, 4b, Extended 

Data Fig. 6j–m; Supplementary Table 16). Apparently, knockdown of these collagens 

interfered with the capacity of these interventions to delay ageing.

ECM gene upregulation might allow ECM remodelling to occur in adults. During ageing the 

collagens LON-3 and ROL-6 decline in expression22 and largely disappear from the cuticle 

(Fig. 4c; Extended Data Fig. 4a and 7a), indicating that C. elegans ECM proteins turn over. 

Adulthood daf-2 RNAi and other anti-ageing interventions increased total collagen in older 

C. elegans (Fig. 4d), indicating deposition of new ECM. This also occurred in daf-2(e1370) 

(Class 2) at 20°C, even though by adulthood day 8 expression of SKN-1 upregulated 

daf-2(−) collagens was not generally maintained in older daf-2(e1370) adults under these 

conditions (Fig. 4d; Extended Data Fig. 7b, 7c). Perhaps different genes might promote 

ECM remodelling under dauer-predisposed conditions, consistent with dauers having a 

distinct cuticle structure (Supplementary Discussion).

Longevity interventions delay ageing by acting through non cell-autonomous signalling 

pathways1. Adulthood col-120 knockdown reduced total daf-2 collagen levels (Fig. 4e), 

implying that individual collagens and the ECM influence these pathways. Adulthood 

collagen RNAi also inhibited SKN-1-responsive gene expression in adults that would 

otherwise be long-lived (Fig. 4f, Extended Data Fig. 7d–g), possibly explaining the 

importance of these collagens for oxidative stress resistance. These longevity interventions 

therefore require adulthood expression of particular ECM genes in order to maintain their 
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beneficial regulatory program. Why would diverse longevity interventions induce and 

depend upon ECM remodelling? Under conditions of low nutrient availability, it might be 

advantageous to allocate resources towards ECM maintenance. The ECM also may directly 

affect signalling that orchestrates these longevity pathways, consistent with studies in other 

systems that identified signalling functions of collagens, and critical effects of the ECM on 

signalling pathways26–28.

We determined that in adult animals rIIS can activate a longevity program that is 

distinguished from the dauer developmental pathway by its lack of dauer-like traits, and its 

dependence upon skn-1 and SKN-1-dependent collagens (Fig. 1f). Further analyses will 

determine which rIIS longevity mechanisms are linked to the dauer program, and which are 

dauer-independent and possibly more broadly involved in pathways that promote longevity. 

Considerable effort has been devoted to enhancing collagen function in order to maintain 

youthful human skin during ageing29. By demonstrating that increased collagen expression 

is a shared feature of multiple conserved longevity pathways, our results suggest strategies 

for promoting ECM function that may be widely applicable. The long-lived naked mole rat 

is remarkably cancer resistant at least in part because it produces a uniquely dense 

hyaluronan, an ECM component30. Our results suggest that functional enhancement of the 

ECM may be generally important for longevity assurance per se. We speculate that 

interventions that promote collagen and ECM function systemically are likely to be 

beneficial in human chronic disease and ageing.

Methods

Strains

Caenorhabditis elegans strains were maintained on NGM plates and OP50 Escherichia coli 

bacteria at 20°C as described (Brenner, 1974)31, except that daf-2 mutants (and 

corresponding controls for a given assay) were maintained at 15°C unless otherwise noted. 

The wild-type strain was N2 Bristol31. Mutant strains used are described in Wormbase 

(www.wormbase.org): LGI: daf-16(mgDf47, mu86); LGII: eat-2(ad1116); LGIII: 

daf-2(e1368, e1370, and m596), rrf-3(pk1462), glp-1(bn18); and LGIV: eri-1(mg366), 

skn-1(tm3411, zu67, zu129, and zu135). LGX: lin-15B(n744). Transgenic lines used were: 

jgIs5 [ROL- 6::GFP;TTX-3::GFP]32, BC12533 dpy-5(e907); sEx12533 [Pcol-89::GFP; 

dpy-5(+)]33, CF1660 daf-16(mu86); daf-2(e1370); muIs84 [Psod-3::GFP; pRF4 

rol-6(su1006gf)]; muEx211 [Pges-1::DAF-16::GFP; pRF4 rol-6(su1006gf)]15, CL2166 

dvIs19 [Pgst-4::GFP; pRF4 rol-6(su1006gf)]34, EE86 mup-4(mg36); upIs1 [MUP-4::GFP; 

pRF4 rol-6(su1006gf)]35, HT1883 daf-16(mgDf50); daf-2(e1370) unc-119(ed3); lpIs14 

[Pdaf-16::DAF-16f::GFP + unc-119(+)]36, IG274 frIs7 [Pcol-12::DsRed; Pnlp-29::GFP]37, 

LD001 ldIs007 [Pskn-1::SKN-1b/c::GFP; pRF4 rol-6(su1006gf)]38, MH2051 kuIs55 

[LON-3::GFP; unc-119(+)]39, SJ4005 zcIs4 [Phsp-4::GFP; lin-15(+)]40, SJ4103 zcIs14 

[myo-3::GFP(mit)]41, TB1682 chEx1682 [QUA-1::GFP; pRF4 rol-6(su1006gf)]42, TJ356 

zIs356 [Pdaf-16::DAF-16a/b::GFP; pRF4 rol-6(su1006gf)]43, TP12 kaIs12 

[COL-19::GFP]44.
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Construction of transgenic lines

To construct the collagen overexpression transgenes, the genomic region of each gene, 

including approximately 3 kb of promoter, the coding region, and 3’UTR sequences that 

encompass at least 2 predicted cleavage/polyadenylation sites, were amplified by PCR. 

These PCR products were injected at 50 ng/µl together with 100 ng/µl of pRF4 

rol-6(su1006gf) into wild-type (N2) animals. For the triple collagen gene transgenic line 

(ldEx111), 50 ng/µl each of PCR products for col-10, col-13, col-120 were injected together 

with 50 ng/µl of pRF4 rol-6(su1006gf). For the control line (ldEx102), pBluescript KS(+) 50 

ng/µl was injected along with 100 ng/µl of pRF4 rol-6(su1006gf)). Lines were isolated from 

at least 2 independent transgenic P0 animals. For col-10, a 4.4 kb genomic region was 

amplified using the primers 5’-CCACCAACAACTCCATCCACC-3’ and 5’- 

GTAAAGTGGGCAGGCCGTAG-3’. The resulting transgenic lines were ldEx103 and 

ldEx104. For col-13, a 4.3 kb genomic region was amplified using the primers 5’-

TAGCCCAAGTCTGACCGAAG-3’ and 5’- CGGATCTTCCCAACCAGGAG-3’. The 

resulting transgenic lines were ldEx105, ldEx106, ldEx107, and ldEx108. For col-120, a 4.4 

kb genomic region was amplified using the primers 5’-CAATATGACCCGAGGCGCTG-3’ 

and 5’-CGCCAGAATCGTAAGGCTCC-3’. The resulting transgenic lines were: ldEx109 

and ldEx110. Transgene overexpression levels were determined by qRT-PCR of one-day old 

adults.

Scoring of phenotypic experiments

No statistical methods were used in choosing sample sizes. In analyses of fluorescent 

reporters, either all or representative trials were scored blindly. All other phenotypic assays 

were not scored blindly.

Body length measurements

Animals were maintained at 15°C and either kept at 15°C, or shifted to 25°C at the first day 

of adulthood. At day 3 of adulthood, animals were mounted on 2% agar pads, immobilized 

with 0.06% tetramisole and images were taken at 10x magnification with a Zeiss Axioskop 2 

microscope and with a Zeiss AxioCam HRc digital camera. Body lengths were measured by 

placing a line through the middle of the body starting from head to tail using Zeiss 

AxioVision V 4.8.2.0 program (Extended Data Fig. 1d).

Lifespan assays

Strains were age-synchronized by picking L4 animals onto fresh OP50 plates, then day-one 

adults were placed on either OP50 or RNAi plates containing 50 µM 5-

Fluoro-2’deoxyuridine (FUdR), unless otherwise indicated, and assayed either at 15°C, 

20°C, or 25°C as described in14. All lifespans were plotted with L4 as time-point=0. For 

glp-1(bn18) lifespans, wild type (N2) and glp-1(bn18) were maintained at 15°C, then shifted 

to 25°C at the mid-L1 stage as described in45. At the first day of adulthood they were placed 

on plates containing FUdR and RNAi bacteria for lifespan assay at 20°C (Fig. 4g; Extended 

Data Table 3). For rapamycin lifespans, one-day old animals were placed on plates 

containing FUdR, RNAi bacteria, and either rapamycin (100µM) dissolved in 0.2% DMSO 

or 0.2% DMSO control as described in14. Lifespan was determined at 20°C (Fig. 3d; 
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Extended Data Table 3; Supplementary Table 13). For dauer pheromone experiments, day-

one adults were placed on plates containing FUdR, RNAi bacteria, and either crude dauer 

pheromone (a gift from Piali Sengupta) dissolved in 6% ethanol, or 6% ethanol control as 

described in46. Those lifespans were determined at 25°C (Fig. 1e; Extended Data Table 1; 

Supplementary Table 2). Animals were classified as dead animals if they failed to respond to 

prodding. Exploded or bagged animals were excluded from the statistics. The estimates of 

survival functions were calculated using the product-limit (Kaplan-Meier) method. The log-

rank (Mantel-Cox) method was used to test the null hypothesis and calculate P values (JMP 

software v.9.0.2.).

Scoring of transgenic protein nuclear accumulation or expression

Nuclear accumulation of SKN-1 that was expressed from the SKN-1bc::GFP transgene 

(LD001 strain), which encodes two of the three SKN-1 isoforms, was scored blindly after 

mounting on slides essentially as in14 (Extended Data Fig. 1k–n). none = no GFP observed 

in nuclei; low = some nuclei show GFP; medium = more than half of the nuclei show GFP; 

high = all intestinal nuclei show GFP. Nuclear accumulation of DAF-16a/b::GFP (zIs356) 

was scored as described in47 (Extended Data Fig. 1n). Nuclear accumulation of 

DAF-16f::GFP (lpIs14) was scored as none = no GFP observed in nuclei; medium = more 

than half of the nuclei show GFP; high = all intestinal nuclei show GFP (Extended Data Fig. 

1o). For Pcol-12::dsRED, Pcol-144::GFP, Pgst-4::GFP, and Phsp-4::GFP: one-day adult 

animals were placed on RNAi and three and/or seven days later the green or red 

fluorescence intensity was scored by using a Zeiss AxioSKOP2 microscope. Green or red 

fluorescence was categorized in none/very low, low, medium, or high intensity and was 

scored blindly (Fig. 4f,Extended Data Fig. 3j–k, 6h–j, 7d–g).

RNA interference

RNAi clones were picked from the Ahringer48 or Vidal49 libraries. Cultures were grown 

overnight in LB with 12.5 µg/ml tetracycline and 100 µg/ml ampicillin, diluted to an OD600 

of 1, and induced with 1 mM IPTG. This culture was seeded onto NGM agar plates 

containing tetracycline, ampicillin, and additional IPTG. Empty vector (EV) plasmid 

pL4440 was used as control. For double RNAi, clones were grown separately in parallel and 

after spin-down equal amounts of two clones were mixed and spread on plates.

RNA isolation for microarray analysis

After a timed egg-lay on HT115 E. coli, daf-2(e1368) and daf-2(e1368);skn-1(zu67) or 

daf-2(e1370) and daf-2(e1370);skn-1(zu67) worms were grown at 15°C until the late L4 

stage. Approximately 200 worms were collected and washed three times in M9 buffer31 to 

remove bacteria. TriReagent (Sigma) was added, and samples were snap frozen in liquid 

nitrogen. Total RNA was isolated using TriReagent and an RNA purification column 

(RNAeasy, Qiagen). RNA quality was determined by visualization of 28S and 18S rRNA 

bands on a denaturing formaldehyde gel, or an RNAse-free 1.5–2% agarose TBE gel.
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RNA preparation, hybridization and data collection for microarray experiments

RNA (325 ng) was linearly amplified and labeled using the Agilent Low RNA Input Linear 

Amplification Kit, with Cy3- or Cy5-CTP (Perkin Elmer), and cRNA was hybridized on 

Agilent 4×44k C. elegans arrays. A dye swap replicate was performed for each set of 

biological replicate samples as previously described18. Data were extracted with Agilent 

Feature Extraction software and submitted to the Princeton University Microarray database 

for storage and filtering (http://puma.princeton.edu).

Microarray analysis

Data were filtered to remove spots that were not above background intensity in both 

channels, and replicate spots within each array were averaged. Genes for which more than 

20% of data were missing across replicates were removed from further analysis. One-class 

SAM analysis was used to identify genes that were significantly up- or downregulated 

across all replicates in a set50. Expression profiles were clustered using Cluster 3.051 and 

visualized using Java TreeView52. Up- and downregulated genes identified by SAM 

analysis were submitted to DAVID53 to identify overrepresented functional annotations. 

Annotations used were: Gene ontology (GO) Biological Process FAT (GO BP, filtered by 

DAVID to remove the broadest GO terms), GO Molecular Function, Kegg Pathway, and 

Interpro Protein Domains. The Benjamini test for multiple hypothesis testing was applied to 

P values. Up- and downregulated genes were also submitted to GOToolBox to perform a 

hypergeometric test using the Benjamini-Hochberg correction. Enriched GO Terms were 

submitted to ReviGO to remove redundant terms. Co-occurrence between our datasets and 

previously published datasets was visualized with GeneVenn54 and BioInfoRx Area-

Proportional Venn Diagram.

Motif analysis

We used two distinct algorithms, Weeder55 and FIRE56 to perform an unbiased search for 

overrepresented sequences in the promoters of SKN-1-regulated genes that were identified 

by SAM. We submitted upstream sequences (1000 bp) to Weeder and performed a scan for 

motifs of length 6 and 8 (“Normal” scan mode). FIRE was run using default parameters, 

with all genes partitioned into three groups to identify motifs that are informative about each 

group: SKN-1-upregulated, SKN-1-downregulated, and background. To search in a directed 

manner for occurrence of the consensus SKN-1 binding motif, we used RSATools57 to 

search the 600 bp upstream of up- and downregulated targets for the SKN-1 binding motif 

(WWTRTCAT). For comparison with the percentage of promoters in a random sample of 

genes that would be expected to contain the SKN-1 motif, we searched for the motif in 

10,000 random samplings of gene promoter sets of equal size to the number of up- or 

downregulated genes, to empirically determine a distribution. To calculate a P value, we z-

transformed the percentage of SKN-1 target promoters (z = (%skn-1 - mu)/sigma), where mu 

and sigma are the mean and standard deviation of the distribution.

Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Assays

For validation of the microarray data with skn-1 and daf-16 mutants, C. elegans were 

allowed to lay eggs for 3–4 hours on RNAi plates. After 2–4 days (depending upon the 
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temperature and strain), 200 L4 worms were harvested (15°C for Extended Data Fig. 2c; 

20°C Extended Data Fig. 2m–t). For adult RNAi, one-day adults were placed on RNAi 

plates and 3–8 days later 100–200 worms were harvested (Fig. 2a–c and Extended Data Fig. 

4b). For rapamycin treatment, one-day old animals were placed on plates containing 

rapamycin (100µM) dissolved in 0.2% DMSO or in 0.2% DMSO control as described in14 

and three days later mRNA was harvested for qRT-PCR (Extended Data Fig. 3l–m). For the 

glp-1 experiment, glp-1(bn18) or wild type (N2) animals were maintained at 15°C and L2 

worms were upshifted to 25°C. One-day adults were placed on L4440 (empty vector RNAi) 

plates at 20°C and 3 days later 200 worms were harvested (Extended Data Fig. 3p–q). RNA 

was isolated with Trizol (TRI REAGENT Sigma), DNAse-treated, and cleaned over a 

column (RNA Clean & Concentrator™ ZYMO Research). First-strand cDNA was 

synthesized in duplicate from each sample (Invitogen SuperScript III). SYBR green was 

used to perform qRT-PCR (ABI 7900). For each primer set, a standard curve from genomic 

DNA accompanied the duplicate cDNA samples58. mRNA levels relative to N2 control 

were determined by normalizing to the number of worms and the geometric mean of three 

reference genes (cdc-42, pmp-3, and Y45F10D.459). Primer sequences are listed in 

Supplementary Table 17. Except for col-12/13, primers bind uniquely to the corresponding 

gene transcript (Supplementary Table 14 and 17). At least two biological replicates were 

examined for each sample. For statistical analysis, one sample t-test, two-tailed, hypothetical 

mean of 1 was used for comparison using Prism 4.0a software (GraphPad).

Oxidative stress assays

In oxidative stress assays, day-one daf-2 or skn-1 adults were placed in 5 mM sodium 

arsenite (in 1mL H2O) at 20°C and scored for survival hourly (Supplementary Table 7). For 

RNAi oxidative stress assays, wild type (N2) or daf-2(e1370) day-one adults were placed on 

RNAi plates at 15°C, and three days later animals were placed either on plates containing 

15.4 mM t-BOOH and scored hourly at 20°C, or in 5 mM sodium arsenite (in 1mL M9 

buffer) and scored after 21 hours (N2) or 30 hours (daf-2) at 20°C (Extended Data Fig. 6j–l 

and Supplementary Table 16).

Age-related phenotypic marker and body-size assays

Age-related phenotypes were described in60. One-day old animals were placed on RNAi 

food until day 10 of adulthood and the following phenotypes were scored: (1) Pharyngeal 

pumping was determined by counting grinder movements in 20 second intervals when the 

animals were placed on food (Fig. 4a and Extended Data Fig. 6m); (2) Lipofuscin levels 

were determined by mounting animals onto slides and taking bright field and DAPI channel 

pictures with a Zeiss Imager M2 microscope. Blue fluorescence from the DAPI channel 

pictures were analysed in Image J (imagej.nih.gov/ij/) by selecting the intestine and 

measuring the mean grey value minus the background (Fig. 4b); (3) The body size was 

determined from bright field images by drawing a line through the middle of the worm from 

anterior to posterior by using Zeiss Zen 2012 software (Extended Data Fig. 6a).
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Collagen assays

Synchronized L1 larvae were placed on 10 cm NGM plates containing OP50 bacteria at 

15°C, 20°C, or 25°C and monitored for development to the L4 stage. After an additional 

day, day-one adults were either harvested for the assay (Extended Data Fig. 7b), or placed 

on either 10 cm OP50 or RNAi plates containing 50 µM 5-Fluoro-2’deoxyuridine (FUdR) 

and maintained at the corresponding temperature. At day 8 of adulthood, the remaining 

animals were harvested (Fig. 4d, 4e). In each case, the animals were washed 3 times with 

M9, the number of worms was determined, and at least 3000 worms per strain and condition 

were used for the assay. Collagen levels were determined using the QuickZyme Biosciences 

Total Collagen Kit (QZBTOTCOL1), which detects Hydroxyproline 61, according to the 

manufacturer’s instructions.

Barrier function assay

One-day old adults were placed on RNAi food and at day 9 were harvested, washed 3 times 

with M9 and incubated in 1µg/ml Hoechst (Hoechst 33342, which is cuticle-impermeable 

but membrane-permeable) for 15 minutes in darkness at room temperature. The animals 

were then washed 3 times in M9, allowed to recover for 10 minutes on plates with food, and 

mounted for microscopy (Extended Data Fig. 6b, 6c; method adapted from 62).
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Extended Data

Extended Data Figure 1. Analyses of rIIS under dauer-independent and dauer-predisposed 
conditions
a, Data from this study illustrating that rIIS longevity dependence upon skn-1 correlates with 

low dauer pathway activity, not temperature or percent increase in mean lifespan extension. 

b, Partial schematic of the IIS pathway in C. elegans. Insulin-like peptides (ins) bind to 

DAF-2, leading to activation of the AKT-1/2 and possibly SGK-1 kinases1,13,80, which 

phosphorylate DAF-16 and SKN-1. Class 1 daf-2 mutations are typically located on the 
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extracellular portion of DAF-2, whereas most Class 2 mutations affect its intracellular 

domains81. c, daf-2 mutant phenotypes. Red indicates penetrance specifically at higher 

temperatures (Supplementary Discussion). d, The Class 2 (dauer-related) daf-2 trait of 

reduced body length is skn-1-independent. Each dot represents an animal, with P values 

determined by one-way ANOVA with post hoc Tukey. e, Dependence of dauer-independent 

daf-2 longevity on adulthood skn-1. daf-2(e1370) lifespan extension requires skn-1 when the 

temperature is downshifted to 15°C specifically during adulthood (blue). For additional 

information see Supplementary Table 2. f, skn-1-dependence of daf-2(e1370) longevity at 

20°C when DAF-16 is expressed specifically in the intestine (strain description in Extended 

Data Table 1). g, Intestine-specific DAF-16 expression fails to rescue a Class 2 dauer-like 

trait (immobility) in daf-2(e1370). h-j, Condition-specific induction of dauer by daf-2 

RNAi. daf-2 RNAi fails to induce dauer entry even at 25°C (j), although some dauers are 

seen under more extreme conditions (27°C)82. The activity of IIS and DAF-16 in neurons is 

critical for dauer regulation15,16,83, and in the wild-type RNAi is comparatively ineffective 

in neurons84, suggesting that the extremely weak dauer propensity of daf-2 RNAi might 

derive from a failure to reduce IIS sufficiently in neurons. Supporting this idea, daf-2 RNAi 

induced dauer entry even at 20°C in eri-1(mg366); lin-15B(n744) mutants, in which 

neuronal RNAi is robust85 (h). N>100 for each condition, 2 merged trials. k-n, Robust 

SKN-1 and DAF-16 nuclear localization under conditions of dauer inactivity. SKN-1 

nuclear accumulation is inhibited comparably by IIS at 15°C and 20°C. SKN-1 is 

constitutively localized to ASI neuron nuclei in wild type animals, and accumulates in 

intestinal nuclei in daf-2(e1370)13. k, Extent of IIS reduction from daf-2(e1370) at 15°C, 

indicated by nuclear SKN-1::GFP. Chevrons indicate intestinal nuclei, Scale bar = 20 µm. 

SKN-1::GFP (LD001) in intestinal nuclei is quantified in (l, m). N> 60 for each condition 

and trial, 3 merged trials with P values determined by chi2 test. Nuclear accumulation was 

scored as in Methods. n, daf-2 RNAi comparably induces SKN-1::GFP (LD001) and 

DAF-16::GFP (TJ356) intestinal nuclear localization at 15°C and 20°C. (N>60 for each 

condition, 1 trial with all experimental conditions done in parallel). o, Comparable nuclear 

accumulation of DAF-16f::GFP (lpIs14) induced by daf-2 RNAi and daf-2(e1370) at 15°C 

and 20°C (N>60 for each condition, 1 trial performed in parallel). p, q, Induction of dauer 

development (p) and dauer-like traits (skn-1-independent) (q) by the crude dauer pheromone 

preparation used in lifespan assays (Fig. 1e; Extended Data Table 1, Supplementary Table 

2). In p; N>100 for each condition, 1 trial. In q; N=30 for each condition, 3 merged trials. 

For h-j, l-o: P values were determined by chi2 test. n.s.= not significant, *<0.05, **<0.001, 

***<0.0001.
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Extended Data Figure 2. Identification of SKN-1-regulated daf-2(−) genes
a, Heatmap of 429 genes identified by SAM as significantly upregulated by SKN-1 in daf-2 

mutants. b, 477 genes identified by SAM as significantly downregulated by SKN-1 in daf-2 

mutants (Supplementary Table 3). The SKN-1-downregulated daf-2(−) set was enriched for 

genes involved in ubiquitin-mediated proteolysis (E3 ligase/SCF, F-box; Supplementary 

Table 8). Columns represent biological samples. blue = down; black = unregulated. c, 

Confirmation of microarray data for SKN-1-upregulated daf-2(−) genes by qRT-PCR at 

15°C. One and three biological replicates were analysed in the left and right panels, 
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respectively. SAM scores are in Supplementary Table 3. Data are represented as mean ± 

s.e.m. P values *<0.05, **<0.001, ***<0.0001 relative to daf-2 were determined by one 

sample t-test, two-tailed, hypothetical mean of 1. d-e, Enrichment of SKN-1 binding sites 

upstream of SKN-1-regulated daf-2(−) genes. An unbiased search using the Weeder and 

FIRE algorithms did not detect any overrepresented form of the consensus SKN-1 binding 

motif (WWTRTCAT) (W=A/T, R=G/A)86. Given the degeneracy of this motif, we used 

RSA Tools to perform a directed search of 600 bp upstream of SKN-1 upregulated (d) and 

downregulated (e) genes. This search window was based upon the location of SKN-1 

binding sites identified by genome-wide ChIP-seq using transgenically-expressed SKN-187. 

A SKN-1 motif was detected at only 13% of a random sample of 10,000 genes, but at 37% 

and 24% of the SKN-1-upregulated (out of 429 genes) and downregulated genes (out of 477 

genes), respectively. f, Importance of SKN-1-upregulated daf-2(−) genes for daf-2(e1368) 

lifespan. The Class 1 daf-2 allele e1368 is partially dependent upon skn-1 for lifespan 

extension at 20°C (Extended Data Table 1)13. Adult RNAi against 5 of 12 genes tested 

reduced daf-2(e1368) lifespan at 20°C. g-h, Several SKN-1-downregulated daf-2(−) genes 

decrease lifespan. Knockdown was performed in the RNAi-sensitive strain rrf-3(pk1426)88. 

(g) Genes for which RNAi knockdown increased lifespan, from 12 that were analysed 

without regard to their function. (h) Analysis of 6 Skp1-related genes, an overrepresented 

category among SKN-1-downregulated daf-2(−) genes (Supplementary Table 8). Only 

genes that affected lifespan are shown. Other data and all statistics are in Supplementary 

Table 6. For 15 other SKN-1-downregulated daf-2(−) genes, it has been shown previously 

that RNAi increases lifespan (Supplementary Table 5). (f) and (g) each show a single trial, 

and a composite of 3 trials is shown in (h). In (g) the negative RNAi control is elpc-4(RNAi) 

instead of L4440. Mean lifespan (days) is indicated for each gene. i, Overlap between the 

daf-2(−); SKN-1-dependent upregulated gene set (429 genes, this study) and a set of genes 

preferentially upregulated in dauers (358 genes)89. The overlap of 6 genes was not 

significant (P-value 0.6391 by two-sided Chi-square). The number of genes that were 

present in neither set (no/no) was determined by subtracting the total number in both gene 

sets from the total number of genes encoded in C. elegans 19,73590. j, Overlaps between 

SKN-1-regulated daf-2(−) and DAF-16-regulated daf-2(−) gene sets72. For both up- and 

down-regulated daf-2(−) genes, overlaps between the SKN-1- and DAF-16-regulated sets 

were significant (P-value <0.0001 determined by two-sided Chi-square). Moreover, 

hierarchical clustering identified additional SKN-1-upregulated daf-2(−) genes that were 

also upregulated by DAF-16 even though they were not present in this list of highest-

confidence DAF-16-regulated genes (l). The number of genes that were in neither set 

(no/no) was determined as (i). k, Hierarchical clustering of SKN-1-downregulated daf-2(−) 

gene sets with DAF-16-regulated genes. SKN-1-regulated genes identified here were 

queried as to how they were influenced by DAF-16 in a comparison of daf-2(e1370) vs 

daf-2(e1370);daf-16(mu86) animals raised at 20°C72. 393 SKN-1-upregulated daf-2(−) 

genes that were present in this DAF-16-regulated dataset are shown. Most SKN-1-

downregulated daf-2(−) genes did not appear to be regulated by DAF-16. l, Hierarchical 

clustering of SKN-1-upregulated daf-2(−) genes with DAF-16-regulated genes that were 

identified by comparing daf-2(e1370) vs daf-2(e1370);daf-16(mu86) at 20°C72. 272 SKN-1-

upregulated daf-2(−) genes that were present in this DAF-16-regulated dataset are shown, 

46% of which were upregulated by both SKN-1 and DAF-16. yellow = up; blue = down; 
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black = unregulated. m-t, Effects of SKN-1 and DAF-16 on individual genes in response to 

daf-2 RNAi at 20°C. A qRT-PCR analysis of skn-1(zu67) daf-16(mgDf47), and skn-1;daf-16 

skn-1(zu67); daf-16(mgDf47) double mutants indicated that many genes are upregulated by 

daf-2(RNAi) (red) in a skn-1-dependent manner, but also that these genes vary in how they 

are affected by DAF-16. DAF-16 and SKN-1 increased activity of gst-4 col-65, and col-176, 

but DAF-16 seemed to downregulate dod-24 nas-7, and F55G11.2. All of these genes 

except ins-7 were identified in our daf-2;skn-1 data sets. For each condition, 3 biological 

samples of 200 worms each were analysed by qRT-PCR. All data are represented as mean ± 

s.e.m. P values of *<0.05, **<0.001, ***<0.0001 relative to wild type RNAi control were 

determined by one sample t-test, two-tailed, hypothetical mean of 1.
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Extended Data Figure 3. Analyses of SKN-1-regulated daf-2(−) genes
a–f, SKN-1-upregulated (a–c) and downregulated (d–f) daf-2(−) gene sets were examined 

by hierarchical clustering to determine how they were previously found to be affected by 

SKN-1 under unstressed or oxidative stress conditions18. t-BOOH= tert-butyl 

hydroperoxide. g, Proportional Venn diagrams show comparisons of SKN-1-upregulated 

genes identified under daf-2(−), normal, or arsenite treatment conditions18 (Supplementary 

Tabel 7). In each case, L4 larvae were analysed to avoid embryogenesis effects. Heatmaps 

are shown in (a-f). h, The SKN-1-upregulated daf-2(−) collagen col-89 is expressed in 
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neurons and the intestine, but not in hypodermis. Transgenic Pcol-89::GFP (BC12533) at 

day 8 of adulthood is shown. Anterior to the left, ventral side down, scale bar = 100 µm. i-k, 

SKN-1-mediated collagen gene activation in day 8 daf-2(RNAi) adults. Adulthood daf-2 

knockdown (i) activated a Pcol-12::dsRED reporter (j; Scale bar = 100 µm). (k). skn-1-

dependence of Pcol-12::dsRED expression. EV: empty RNAi vector. N> 60 for each 

condition, 3 merged trials, with P value by chi2 (*=P<0.05; ***=P<0.0001; n.s.= not 

significant).

Extended Data Figure 4. rIIS delays age-associated decline in collagen expression
a, Age-associated decline in expression of selected collagen and SKN-1-dependent 

detoxification genes. 88 collagens are among many genes that decline in expression as C. 
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elegans ages22. Fifty of these age-downregulated genes were in our SKN-1 upregulated 

daf-2(−) gene set, including 27 collagen genes (Supplementary Table 10). These daf-2(−); 

SKN-1-dependent collagens were neither flanked by SKN-1 binding sites nor bound by 

SKN-1 in a genome-wide survey (Supplementary Table 9)87, suggesting that they are 

regulated by SKN-1 indirectly. The average Cy5-labeled cDNA values of day 2–11 adults 

(indicated as “exp”) are plotted in binary logarithm (log2) relative to cy3-labeled reference 

cDNA from mixed stage hermaphrodites (indicated as “ref”). Data are from22. nit-1 gst-4, 

and F56D5.3 are predicted to encode a nitrilase, glutathione S-transferase, and NADPH 

oxidoreductase, respectively (WormBase). b, Expression of SKN-1-regulated collagen and 

oxidative stress response genes (nit-1 and gst-4) are maintained during ageing in 

daf-2(RNAi) animals. One-day old adult wild type (N2) animals were placed on either empty 

vector control (L4440)(black) or daf-2 RNAi (red) at 20°C. mRNA was harvested at days 3, 

6 and 8. mRNA levels are shown relative to wild type (N2) day 3 adults on empty vector 

control (L4440) RNAi and are represented as mean ± s.e.m. For each condition, 2 biological 

samples of >100 worms each were analysed by qRT-PCR. For each gene, statistical 

difference of relative mRNA expression levels between L4440 and daf-2(RNAi) treatment 

over the time-course (day 3,6,8) is shown by two-way ANOVA (repeated measures). c, 

Adulthood knockdown of SKN-1-upregulated collagens did not affect wild-type lifespan 

(for statistics and additional trials: Extended Data Table 3 and Supplementary Table 13). d, 

Importance of SKN-1-upregulated collagens for daf-2(RNAi) longevity. Adulthood RNAi 

knockdown of daf-2 with combined with collagens or skn-1 at 20°C is shown. GFP was the 

RNAi control. (for statistics and additional data: Supplementary Table 13). e, Suppression of 

daf-2(e1370) but not wild-type longevity at 15°C by the collagen mutation dpy-1(e1), which 

affects the cuticle31,91, but was not present in our SKN-1-regulated gene set. For details and 

statistics see Supplementary Table 13. f, daf-2(e1370) longevity at 15°C requires the 

SKN-1-upregulated extracellular proteases asp-14 and suro-1, along with cuticle integrity 

genes acs-20 and acs-2262, suggesting a general importance of ECM gene expression. For 

details and statistics see Supplementary Table 13.
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Extended Data Figure 5. Adulthood knockdown of collagens important for longevity does not 
affect morphology of cuticle-associated structures
a, Schematic cross-section of C. elegans illustrating the proximity of the cuticle (black), 

hypodermis (red), basal lamina (blue), and bodywall muscles (purple). Annuli, Furrow, and 

Alae are characteristic cuticle structures. b-j, Adulthood RNAi against SKN-1-upregulated 

daf-2(−) collagens does not affect cuticle morphology. b-f, One-day old wild-type animals 

were exposed to either empty vector (control) or the indicated RNAi clone by feeding. 10 

days later animals were incubated in DiI for 16 hours, the cuticle was imaged as described 
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in92. N>30 animals per condition scored, with typical images shown. Scale bar = 10 µm. g-j, 
Cuticle morphology revealed by the collagen COL-19, detected by a translational fusion 

protein (kaIs12 [COL-19::GFP]). We did not identify col-19 as being regulated by daf-2 and 

skn-1, and daf-2(RNAi) did not detectably alter COL-19::GFP levels (not shown). k-n, 

Adulthood knockdown of SKN-1-upregulated daf-2(−) collagens does not affect the pattern 

of chEx1682 QUA-1::GFP, a marker of cuticle adhesion. QUA-1 encodes a hedgehog 

related protein required for molting, cuticle adhesion, and alae formation42. o-r, Adulthood 

RNAi against SKN-1-upregulated daf-2(−) collagens does not affect the pattern of muscle-

hypodermis-cuticle adhesion, as indicated by upIs1 MUP-4::GFP. MUP-4 is a 

transmembrane protein that is part of a complex that attaches hypodermis and muscles to the 

cuticle35. s-v, Adulthood collagen knockdown does not affect mitochondrial morphology in 

muscle. For g-v, animals where placed on RNAi at the first day of adulthood and scored and 

imaged at day 8 of adulthood. N>30 animals per condition scored, with typical images 

shown. Scale bar = 10 µm.
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Extended Data Figure 6. Phenotypic analyses of collagens important for longevity
a, Adulthood col-120 knockdown does not affect daf-2(e1370) body size at 15°C. 

daf-2(e1370) animals were placed on RNAi food as day-one adults, and at day 10 body size, 

pharyngeal pumping and lipofuscin levels were scored in parallel in the same animals 

(N>30; 1 trial; see Fig. 4a, 4b). b, c, Adulthood knockdown of SKN-1-upregulated collagens 

does not alter barrier function. b, Upper panel: animals were placed on RNAi food on 

adulthood day one, and at day 9 were incubated in 1µg/ml Hoechst 33342, which is 

membrane-permeable but cuticle-impermeable. For details see full methods, adapted from62. 

b, Lower panel: Barrier permeability was not affected by daf-2 mutation or collagen 

knockdown. Permeability was assessed by nuclear Hoechst staining in the tail62 (N>50 per 
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condition; 1 trial). Approximately half of the animals in each group showed nuclear staining 

in the tail that is likely to have arisen through uptake in the intestine, as suggested by the 

high levels of intestinal Hoechst staining (c). Uptake through the cuticle would have resulted 

in a much wider distribution of stained nuclei. c, representative pictures of quantification 

categories. Arrow indicates Hoechst-stained tail nuclei. Scale bar = 50 µm. d, Adulthood 

knock-down of col-120 did not sensitize to hypertonic stress. Day-one adult wild-type 

animals were placed RNAi food for 3 days, and then on plates containing food and high 

concentrations of salt for 24 hours prior to assay (NaCl: 450 mM, 500 mM, 600 mM; N>60 

per condition; 2 trials). e, Adulthood knockdown of SKN-1-upregulated collagens did not 

impair body movement. Neither the frequency nor morphology (not shown) of body 

movement was affected. In parallel, the daf-2 RNAi control increased movement frequency 

because these animals were chronologically younger. (**P-value < 0.001, One-way 

ANOVA post hoc Tukey compared to EV). f, Adulthood collagen RNAi did not increase 

vulval rupturing during ageing. The bar graph shows the mean ± s.e.m percentage of 

exploded worms that were censored during lifespan assays (Extended Data Table 3 and 

Supplementary Table 13). g-i, Adulthood col-120 knockdown did not induce unfolded 

protein, heat-shock stress, or oxidative stress responses. In (g), daf-2(e1370) mutants were 

placed on RNAi food as day-one adults, and assayed at day 8 (upper panel). Relative levels 

of these stress response gene mRNAs were determined by qRT-PCR (2 independent trials 

with each 200 worms per condition). h, Adulthood collagen RNAi does not activate the 

oxidative stress response marker Pgst-4::GFP34, assayed after 4 and 8 days of RNAi. As a 

control, daf-2 RNAi induced SKN-1 to increase gst-4 expression (Fig. 2a). i, Adulthood 

collagen RNAi does not activate the unfolded protein response marker Phsp-4::GFP40. j-l, 
Importance of collagens for oxidative stress resistance. Day-one adults were exposed to 

empty vector (EV) or RNAi food at 15°C, then at day three were placed in 5 mM arsenite 

(As) and scored for survival. Knockdown of collagens and other SKN-1 upregulated 

daf-2(−) genes sensitized to oxidative stress from arsenite. nit-1 (nitrilase), gst-4 

(glutathione S-transferase), F56D5.3 (NADPH oxidoreductase). P value *<0.05, **<0.01, 

***<0.001 relative to control (EV), determined by one-way ANOVA with post hoc Tukey. 

t-BOOH experiments are described in Supplementary Table 16. m, Adulthood collagen 

expression required for rapamycin to delay appearance of an ageing marker (pharyngeal 

pumping). N>30; each dot represents an animal; P value ***<0.0001 determined with 

unpaired t-test, two-tailed.
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Extended Data Figure 7. Cuticle remodelling in adults
a, The collagen ROL-6 is present in the cuticle during development and early adulthood93, 

then largely disappears during aging. The upper panels show the mid-body (left) and head 

(right) regions in an L4 animal. Day-one adults exhibited similar levels and patterns of jgIs5 

ROL-6::GFP fluorescence (not shown). Lower panels show the corresponding regions in a 

day-8 adult, in which jgIs5 ROL-6::GFP levels are reduced. The orange signal corresponds 

to gut autofluorescence. Representative images are shown, with scale bar = 20 µm. N=30 for 

each sample set (L4, day 1, and day 8). b, Total collagen levels are elevated in long-lived 
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animals at the first day of adulthood. Note that these long-lived animals also maintain higher 

collagen levels in later life despite an age-related decline (Fig. 4d). Relative collagen levels 

were estimated by a hydroxyproline assay61. In daf-2 mutants total collagen levels were 

elevated at both temperatures but the increase was greater at 15°C, at which skn-1 and 

SKN-1-dependent collagens are required for lifespan extension (Fig. 3, Supplementary 

Table 13). Temperature-sensitive glp-1(bn18) mutants were maintained at 15°C (permissive 

temperature), or upshifted to 25°C (restrictive temperature) as L1 larvae until the L4 stage, 

then placed at 20°C. c, SKN-1-dependent collagen genes from the daf-2(−) set are not 

upregulated in 8 day-old daf-2(e1370) adults at 20°C. Expression of these collagens remains 

increased at this age in daf-2(e1370) at 15°C or after daf-2 RNAi at 20°C (Fig. 2a, Extended 

Data Fig. 2c, 4b), conditions in which the dauer pathway is inactive and lifespan extension is 

skn-1-dependent (see text). 200 day-8 adults were assayed in each sample, with 3 merged 

independent trials shown. d, Scoring categories for the Pcol-144::GFP reporter are shown in 

(e, g; Fig. 4f; scale bar = 100 µm). e, Adulthood rapamycin treatment increases col-144 

promoter activity. Knockdown of col-10, col-13, or col-120 did not reduce Pcol-144::GFP 

levels at day 4, but significantly decreased Pcol-144::GFP levels by day 8 (g). N>60 for each 

condition, 2 merged trials, with P value by chi2 (#=P<0.0001 against untreated EV control 

animals). f, Dependence of the SKN-1 target gene gst-4 on adulthood SKN-1-upregulated 

collagen expression in daf-2(RNAi) animals. Collagen or empty vector (EV) control RNAi 

was initiated at day 1 of adulthood at 20°C, together with daf-2 knockdown. g, Adulthood 

collagen RNAi decreases col-144 promoter activity in rapamycin-treated animals. As is seen 

in daf-2 mutants at 15°C (Fig. 4f), activity of this rapamycin-activated promoter is 

unaffected by adulthood collagen RNAi at day 4 (e), but reduced at day 8. For f and g, N>60 

for each condition, 2 merged trials, with P value by chi2 (#=P<0.0001).
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Extended Data Table 2
Collagen genes are upregulated by diverse interventions 
that increase lifespan

Collagens were overrepresented in each C. elegans longevity-associated gene set we 

examined. Gene Ontology (GO) enrichment clusters were identified by DAVID, using high 

stringency classification. Enrichment scores were ranked from highest (1) to lowest (>10). 

Additional information is provided in Supplementary Table 10, including P-values that were 

determined by DAVID using the Fisher Exact test53,78,79.

Experimental condition Total # of 
genes
upregulated

Reference Enrichment 
score

rank of 
collagens

# of collagens
upregulated

# of 
collagens
shared with 
daf-2;
skn-1 
upregulated
collagens

shared collagens 
tested in lifespan 
assays (in this study)

COLLAGENS UPREGULATED BY DRUG TREATMENTS THAT INCREASE C. ELEGANS LIFESPAN

Resveratrol treatment in 
young wild-type adults

116 63 2 8 0

Resveratrol treatment in 
young daf-16(−) adults

1027 63 1 85 28 col-12, col-13, col-65, 
col-97, col-120, 
col-127, col-133,

Humic acid treatment in 11 
days old wild-type adults

740 64 1 27 5 col-13,col-167,col-133

Tannic acid treatment in 
young wild-type adults

2842 65 1 74 33 col-10, col-12, col-13, 
col-65, col-97, col-133, 
col-141, col-144, 
col-167, col-180

Quercetin treatment in 
young wild-type adults

1562 65 1 67 18 col-12, col-13, col-97, 
col-133

MAHMA (nitric oxide 
donor) in wild-type L4 
worms

65 66 1 8 1 col-97

MAHMA (nitric oxide 
donor) in hsf-1(sy441) L4 
worms

99 66 1 21 1 col-97

Rotenone treatment in 
young wild-type adults

2380 67 1 64 27 col-10, col-65, col-97, 
col-133, col-141

COLLAGENS UPREGULATED IN GENETIC BACKGROUNDS THAT INCREASE C. ELEGANS LIFESPAN

Mixed-stage 
wdr-23(tm1817) mutants 
compared to wild type

2285 68 7 41 15 col-10, col-144, col-167

Young age-1(mg44) adults 
compared to wild type

791 69 1 54 9 col-141

daf-2(e1370) at day 5 of 
adulthood vs wild type*

869 70 1 57 19 col-10, col-12, col-65, 
col-89, col-97, col-144, 
col-167

daf-2(m41) at day 10 vs. 
wild type at day 6 of 
adulthood at 25.5°C

48 71 2 17 1 col-141

DAF-16-dependent genes 
expressed in daf- 2(e1370) 
in day 1 adults at 20°C**

1078 72 1 43 16 col-141
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Experimental condition Total # of 
genes
upregulated

Reference Enrichment 
score

rank of 
collagens

# of collagens
upregulated

# of 
collagens
shared with 
daf-2;
skn-1 
upregulated
collagens

shared collagens 
tested in lifespan 
assays (in this study)

TGFβ-dependent in day 1 
adults

2181 72 1 90 30 col-13, col-65, col-127, 
col-141, col-144, 
col-167, col-180

AMPK and downstream 
signaling (shared 
transcriptional output of 
loss of crh-1 (CREB) / loss 
of tax-6 (calrectulin) / 
AAK-2 (AMPK) 
overexpression) in L4 
larvae

549 73 1 31 17 col-12, col-13, col-127, 
col-133, col-141, 
col-167, col-180

ash-2 RNAi in animals that 
lacked a germline in day 8 
adults

592 74 1 21 4 col-12, col-133

Young isp-1 mutant adults 
compared to wild type

709 75 3 15 2

cyc-1 RNAi in young adults 2459 75 1 51 18 col-12, col-13, col-97, 
col-120, col-141, 
col-144

2 day old rsks-1(ok1255) 
adults

155 76 1 13 3 col-133

Young ctbp-1(ok498) adults 213 77 1 30 16 col-65, col-97, col-120, 
col-144, col-180

*
Temperature not specified.

**
daf-2(e1370) vs daf-2(e1370);daf-16(mu86).

Extended Data Table 3
Suppression of lifespan extension by adulthood collagen 
gene knockdown

Lifespans were measured and presented as in Extended Data Table 1, and one-day old 

animals were placed on RNAi plates. Additional related experiments are shown in 

Supplementary Table 13. col-10 and col-12 share >99% protein sequence identity with 

col-144 col-13, respectively. In analysis of glp-1(bn18), both N2 and glp-1 animals were 

upshifted from 15°C to 25°C from the mid-L1 stage until the first day of adulthood, then 

lifespan analysis was performed at 20°C.

Strain / RNAi Mean
lifespan ±

S.E.M.
[Days]

75th

percentile
[Days]

N dead/
Initial N

% mean
lifespan

change to
control

P-value
(log-rank)
vs. control

Figure

Trial of collagen genes from SKN-1-upregulated dat −2(−)set at 15°C

rrf-3(pk1426) RNAi L4440 (control) 27.2 ±0.4 29 55/64 ED Fig. 4c

rrf-3(pk1426) RNAi col-10 28.2 ±0.6 29 70/77 +4 0.0253 ED Fig. 4c

rrf-3(pk1426) RNAi col-65 26.4 ±0.5 29 57/70 −3 0.4555 ED Fig. 4c

rrf-3(pk1426) RNAi col-120 25.7 ±0.7 29 46/56 −6 0.2542 ED Fig. 4c

rrf-3(pk1426) RNAi col-127 26.7 ±0.5 29 48/61 −2 0.4797 ED Fig. 4c

rrf-3(pk1426) RNAi col-133 27.2 ±0.7 31 58/69 0 0.4623 ED Fig. 4c
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Strain / RNAi Mean
lifespan ±

S.E.M.
[Days]

75th

percentile
[Days]

N dead/
Initial N

% mean
lifespan

change to
control

P-value
(log-rank)
vs. control

Figure

rrf-3(pk1426) RNAi col-141 25.3 ± 0.8 29 29/43 −7 0.0668 ED Fig. 4c

rrf-3(pk1426) RNAi col-167 24.8 ±0.7 29 47/64 −9 0.1128 ED Fig. 4c

rrf-3(pk1426) RNAi col-180 27.3 ±0.7 29 47/61 0 0.4668 ED Fig. 4c

P-value and % mean lifespan change are relative to rrf-3(pk1426) RNAi L4440

daf-2(e1370); rrf-3(pk1426) RNAi L4440 37.3 ±1.1 43 51/62 Fig. 3a

daf-2(e1370);rrf-3(pk1426) RNAi col-10 28.6 ± 0.6 31 69/80 −23 <0.0001 Fig. 3a

daf-2(e1370); rrf-3(pk1426) RNAi col-65 30.4 ±0.8 36 71/86 −18 <0.0001 Fig. 3a

daf-2(e1370);rrf-3(pk1426) RNAi col-120 26.6 ±0.6 29 53/66 −29 <0.0001 Fig. 3a

daf-2(e1370);rrf-3(pk1426) RNAi col-127 29.5 ±0.7 33 56/62 −21 <0.0001 Fig. 3a

daf-2(e1370); rrf-3(pk1426) RNAi 
col-133

28.2 ±0.5 31 66/75 −24 <0.0001 Fig. 3a

daf-2(e1370);rrf-3(pk1426) RNAi col-141 29.1 ±0.6 31 58/71 −22 <0.0001 Fig. 3a

daf-2(e1370);rrf-3(pk1426) RNAi col-167 28.3 ±0.6 29 50/59 −24 <0.0001 Fig. 3a

daf-2(e1370);rrf-3(pk1426) RNAi col-180 30.7 ±0.7 33 53/65 −18 <0.0001 Fig. 3a

P-value and % mean lifespan change are relative to daf-2(e1370); rrf-3(pk1426) RNAi L4440

eat-2(ad1116); rrf-3(pk1426) RNAi 
L4440

42.1 ±1.0 47 75/81 Fig. 3c

eat-2(ad1116); rrf-3(pk1426) RNAi 
col-10

38.9 ±0.9 45 97/102 −7 0.0356 Fig. 3c

eat-2(ad1116); rrf-3(pk1426) RNAi 
col-65

38.0 ±1.0 43 75/79 −10 0.0038 Fig. 3c

eat-2(ad1116); rrf-3(pk1426) RNAi 
col-120

37.1 ±0.9 43 60/64 −12 <0.0001 Fig. 3c

eat-2(ad1116); rrf-3(pk1426) RNAi 
col-127

37.4 ±0.8 43 83/85 −11 <0.0001 Fig. 3c

eat-2(ad1116); rrf-3(pk1426) RNAi 
col-133

37.3 ±1.1 45 75/83 −11 0.0022 Fig. 3c

eat-2(ad1116); rrf-3(pk1426) RNAi 
col-141

34.7 ±1.2 43 49/54 −18 <0.0001 Fig. 3c

eat-2(ad1116); rrf-3(pk1426) RNAi 
col-167

36.9 ±1.0 43 62/69 −12 0.0002 Fig. 3c

eat-2(ad1116); rrf-3(pk1426) RNAi 
col-180

34.5 ±0.9 37 55/58 −18 <0.0001 Fig. 3c

P-value and %mean lifespan change are relative to eat-2(ad1116), rrf-3(pk1426) RNAi L4440

Trial of collagen genes from SKN-1-upregulated daf-2(−) set at 20°C

wild type (N2) RNAi L4440 (control) 24.6 ±0.2 25 98/107 Fig. 3b

daf-2(e1370); rrf-3(pk1426) RNAi L4440 38.2 ±0.8 44 86/93 Fig. 3b

daf-2(e1370);rrf-3(pk1426) RNAi col-10 37.4 ±0.7 42 104/110 −2 0.4014 Fig. 3b

daf-2(e1370);rrf-3(pk1426) RNAi col-13 35.2 ±0.7 42 92/99 −7 0.0043 Fig. 3b

daf-2(e1370);rrf-3(pk1426) RNAi col-120 38.8 ±0.6 44 103/110 +2 0.9386 Fig. 3b

P-value and % mean lifespan change are relative to daf-2(e1370); rrf-3(pk1426) RNAi L4440

Trial of collagen genes from the SKN-1-upregulated daf-2(−) set at 20°C

wild type (N2) RNAi L4440 (control) 
0.2% DMSO

25.7 ±0.3 29 96/103 Fig. 3d
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Strain / RNAi Mean
lifespan ±

S.E.M.
[Days]

75th

percentile
[Days]

N dead/
Initial N

% mean
lifespan

change to
control

P-value
(log-rank)
vs. control

Figure

wild type (N2) RNAi col-10 0.2% DMSO 25.7 ±0.4 28 92/100 0 0.1545

wild type (N2) RNAi col-13 0.2% DMSO 26.4 ±0.3 27 102/111 +3 0.0811

wild type (N2) RNAi col-120 0.2% 
DMSO

26.6 ±0.2 29 98/104 +4 0.0147

P-value and % mean lifespan change are relative to wild type (N2) RNAi L4440 (control) 0.2% DMSO

wild type (N2) RNAi L4440 (control) 
0.2% DMSO 100µM Rapamycin

30.7 ±0.3 32 107/118 Fig. 3d

wild type (N2) RNAi col-10 0.2% DMSO 
100µM Rapamycin

28.6 ±0.5 32 83/93 −7 0.0083 Fig. 3d

wild type (N2) RNAi col-13 0.2% DMSO 
100µM Rapamycin

28.0 ±0.5 32 83/90 −8 0.0003 Fig. 3d

wild type (N2) RNAi col-120 0.2% 
DMSO 100µM Rapamycin

26.8 ±0.5 29 77/87 −13 <0.0001 Fig. 3d

P-value and % mean lifespan change are relative to wild type (N2) RNAi L4440 (control) 0.2% DMSO 100µM Rapamycin

Trial of collagen genes from SKN-1-upregulated daf-2(−) set at 20°C

wild type (N2) RNAi L4440 (control) 23.8 ±0.3 26 126/142 Fig. 3e

wild type (N2) RNAi col-10 23.7 ±0.3 26 94/108 0 0.9994

wild type (N2) RNAi col-13 23.3 ±0.3 26 97/112 −2 0.2122

wild type (N2) RNAi col-120 23.1 ±0.3 26 71/84 −3 0.1610

P-value and % mean lifespan change are relative to wild type (N2) RNAi L4440 (control)

glp-1(bn 18) RNAi L4440 (control) 31.2 ±0.6 34 53/64 Fig. 3e

glp-1(bn 18) RNAi col-10 25.8 ±0.6 30 74/90 −17 <0.0001 Fig. 3e

glp-1(bn 18) RNAi col-13 27.8 ±0.7 30 64/84 −11 0.0001 Fig. 3e

glp-1(bn18) RNAi col-120 27.0 ±0.6 30 75/98 −13 <0.0001 Fig. 3e

P-value and % mean lifespan change are relative to glp-1(bn 18) RNAi L4440 (control)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Dauer-independent rIIS longevity requires SKN-1
a, b, skn-1-dependent rIIS lifespan extension in the absence of dauer traits. c, d, skn-1-

dependent extreme rIIS longevity. EV: empty RNAi vector. e, skn-1-independent longevity 

from adulthood dauer pheromone treatment but not daf-2(RNAi). f, Longevity assurance 

programs regulated by IIS. Under conditions that predispose to dauer traits (right panel) 

some SKN-1 functions may be assumed by DAF-16, possibly including ECM remodelling. 

Statistics and additional lifespan data are in Extended Data Table 1 and Supplementary 

Table 2.
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Figure 2. Longevity-promoting interventions increase skn-1 dependent collagen expression in 
adults
a, Functional categories enriched in SKN-1-upregulated daf-2(−) gene sets, identified by 

DAVID. Enrichment scores ≥ 1.3 are shown. b-d, Collagen upregulation by adulthood daf-2 

RNAi. mRNA expression in wild type (+) or skn-1(zu135) (−) animals, assayed by qRT-

PCR. nit-1 and gst-4 are canonical SKN-1 targets18. SAM score ranks are in Supplementary 

Table 3. e, Rapamycin-treated (100 µM) wild type and skn-1(zu67) animals are compared. f. 
Expression in the DR model eat-2. RNAi-sensitized control (rrf-3(pk1426)) (ctr) or 
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eat-2(ad1116); rrf-3(pk1426) (eat-2) adults were exposed to EV or skn-1 RNAi. g. 

Upregulation after germline stem cell proliferation block induced by glp-1(bn18) 

temperature shift. 3 replicates of 200 worms were analysed at the indicated days (c, d) or at 

the end of treatment. Data are represented as mean ± s.e.m. P value *<0.05, **<0.001, 

***<0.0001 relative to wild type or control, by one sample t-test, two-tailed, hypothetical 

mean of 1.
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Figure 3. Adulthood collagen expression promotes longevity
a, b, SKN-1-upregulated collagens are needed for daf-2(e1370) longevity at 15°C but not 

20°C. c, Adulthood collagen knockdown reduced eat-2(ad1116) lifespan at 15°C. Trial run 

in parallel with (a, and Extended Data Fig. 4c). d, Adulthood collagen expression is required 

for rapamycin lifespan extension. Rapamycin treatment and RNAi were initiated at 

adulthood day one. e, Longevity from reduced germline stem cell number requires adult 

collagen expression. glp-1(bn18) was exposed to RNAi or EV control after downshift from 

the non-permissive temperature to 20°C. In (a-e), the grey dashed line shows the wild-type 

or control lifespan. f, Overexpression of collagens COL-10, COL-13, and COL-120 

individually or in combination increased lifespan. P value *<0.05, **<0.001, ***<0.0001 by 
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Log-Rank. Statistics and additional lifespan data are in Extended Data Table 3 and 

Supplementary Table 13.
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Figure 4. Importance of ECM remodelling for longevity assurance
a, b, Adulthood collagen expression is required for rIIS to delay appearance of ageing 

markers. The same animals were scored in each panel, N>60. Each dot represents an animal; 

2 merged trials; P value ***<0.0001 determined with unpaired t-test, two-tailed. c, 

Disappearance of the LON-3 collagen from the cuticle during ageing. Typical animals at the 

indicated days of adulthood are shown. Midsections from representative LON-3::GFP (green 

fluorescent protein) adults are shown, ventral side down, anterior to the left, scale bar = 10 

µm. d, Interventions that increase longevity induce adulthood ECM deposition. Total 
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collagen in day-8 adults is indicated by hydroxyproline content. daf-2 RNAi was initiated at 

day-one. glp-1(bn18) mutants were kept at the permissive temperature (15°C) or shifted to 

25°C until day-one of adulthood then kept at 20°C. e, Loss of a single collagen interferes 

with rIIS-induced collagen deposition. In d, e, N>3000 per sample. Data are represented as 

mean ± s.e.m. P -value *<0.05 relative to control, by one sample t-test, two-tailed, 

hypothetical mean of 1. f, Dependence of a collagen promoter (col-144) on adulthood 

expression of other SKN-1-upregulated collagens in daf-2(e1370) under dauer-independent 

conditions. Scoring is described in Extended Data Fig. 7d RNAi initiated at day 1 of 

adulthood had a much more severe effect at 15°C (upper panel) than 20°C (lower panel), 

starting at day 6. N>60 for each condition, 1 representative trial is shown, with P value by 

chi2 (*=P<0.05; $=P<0.001; #=P<0.0001).
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