
Heuristic Search in Bounded-
depth Trees: Best-Leaf-First Search

The Harvard community has made this
article openly available. Please share how
this access benefits you. Your story matters

Citation Ruml, Wheeler. 2002. Heuristic Search in Bounded-depth Trees:
Best-Leaf-First Search. Harvard Computer Science Group Technical
Report TR-01-02.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:23017122

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/154869047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Heuristic%20Search%20in%20Bounded-depth%20Trees:%20Best-Leaf-First%20Search&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23017122
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Heuristic Search in Bounded-depth Trees:

Best-Leaf-First Search

Wheeler Ruml

ruml@eecs.harvard.edu

Technical Report TR-01-02

Harvard University

January 30, 2002

Abstract

Many combinatorial optimization and constraint satisfaction prob-
lems can be formulated as a search for the best leaf in a tree of bounded
depth. When exhaustive enumeration is infeasible, a rational strategy
visits leaves in increasing order of predicted cost. Previous system-
atic algorithms for this setting follow a predetermined search order,
making strong implicit assumptions about predicted cost and using
problem-specific information inefficiently. We introduce a framework,
best-leaf-first search (BLFS), that employs an explicit model of leaf
cost. BLFS is complete and visits leaves in an order that efficiently
approximates increasing predicted cost. Different algorithms can be
derived by incorporating different sources of information into the cost
model. We show how previous algorithms are special cases of BLFS.
We also demonstrate how BLFS can derive a problem-specific model
during the search itself. Empirical results on latin square completion,
binary CSPs, and number partitioning problems suggest that, even
with simple cost models, BLFS yields competitive or superior perfor-
mance and is more robust than previous methods. BLFS can be seen
as a model-based extension of iterative-deepening A*, and thus it uni-
fies search for combinatorial optimization and constraint satisfaction
with traditional AI heuristic search for shortest-path problems.

1

1 Introduction

In a combinatorial optimization problem, one must choose one of a discrete
number of possible values for each problem variable in such a way that
the problem-specific objective function is minimized. Often, this task is
formulated as a tree search in which one selects a variable at each node
and branches on its possible values. The goal then is to find the leaf with
the lowest cost. Because these trees grow exponentially with problem size,
complete enumeration of the leaves is often infeasible, and one attempts
to visit the best leaves one can in the time available. One can think of
constraint satisfaction problems in a similar way, with the goal being to find
a leaf that violates zero constraints. Because an optimal leaf is recognizable
in this case, visiting one early in the search can save an enormous amount
of time.

Several different tree search procedures have been proposed for this set-
ting. Depth-first search has the advantage of minimal overhead, generating
each internal node in the tree no more than once. Often, a heuristic scoring
function is used to rank the children of a node, and the search visits the
preferred child first. If always choosing the preferred child does not yield
an optimal solution, depth-first search revisits the decisions lowest in the
tree first. This may be a poor strategy if the node ordering function can be
inaccurate at the top of the tree. In limited discrepancy search (Harvey and
Ginsberg, 1995; Korf, 1996), decisions at all levels of the tree are revisited
quickly. A decision at which the top-ranked child node is not selected is
called a discrepancy. Limited discrepancy search explores all paths with k
discrepancies before any with k+1 discrepancies. Other algorithms, such as
depth-bounded discrepancy search (Walsh, 1997) and iterative broadening
(Ginsberg and Harvey, 1992), use still different search orders.

Each of these algorithms can be viewed as making strong assumptions
regarding the expected costs of different leaves (Ruml, 2001a). Depth-first
search, for instance, is a rational choice only if one assumes that the cost of
every leaf whose path includes a discrepancy at the root is greater than the
cost of the worst leaf that does not. Equivalently, the penalty for taking a
discrepancy at a given depth is assumed to be greater than the cost of taking
discrepancies at all deeper depths. Limited discrepancy search, on the other
hand, assumes that discrepancies cost the same at all depths. Unfortunately,
it is not always clear in advance which search order is best, and those faced
with a new search problem are reduced to running many pilot experiments.

In this paper, we explore the advantages of representing the search al-
gorithm’s assumptions explicitly, in the form of a cost model. Because the

2

search uses an explicit model, it can depend on parameters which are esti-
mated on-line from the search tree itself, rather than assumed beforehand. It
is also easy to arrange for it to take advantage of information such as heuris-
tic child scores. We introduce a framework, best-leaf-first search (BLFS), for
systematic search using such a model. The central idea is to visit leaves in
an order that approximates increasing predicted cost. This is achieved by
visiting all leaves whose predicted cost falls within a fixed bound, and then
iteratively raising the bound.

After outlining BLFS, we will see two instantiations of the framework.
The first, indecision search, uses a cost model that depends on the heuristic
scores along the path to a leaf. We evaluate the algorithm’s performance on
both latin square completion and random binary CSPs. The second instan-
tiation uses a cost model whose parameters are learned from the leaf costs
observed during the search. We evaluate this algorithm on two different for-
mulations of the combinatorial optimization problem of number partitioning.
The results from both algorithms suggest that BLFS provides competitive or
superior performance and is more robust than existing algorithms. We will
conclude by showing how BLFS is analogous to the iterative-deepening A*
(IDA*) algorithm for shortest-path problems (Korf, 1985). Their common
framework of single-agent rationality provides a clean unification of search
for combinatorial optimization and constraint satisfaction with the tradition
of heuristic search in artificial intelligence for shortest-path problems.

2 Best-Leaf-First Search

The basic structure of BLFS is a simple loop in which we carry out successive
depth-first searches. Each search visits all leaves whose cost is predicted to
fall within a cost bound. Because the predicted costs are generated by
a known model, we can choose bounds that are expected to cause twice as
many nodes to be visited as on the previous iteration. Pseudo-code is shown
in Figure 1. In order to implement this scheme, we must equip BLFS with
a model of leaf costs that can support two different operations. The first is
to predict, given a search node, the lowest cost of any leaf below it. This
function is used to guide the search within each iteration of BLFS, allowing
the algorithm to avoid descending into any subtree that does not contain
a leaf we wish to visit on this iteration (step 9). The second operation
the model must support is to predict, given a cost bound, the number of
nodes that would be visited if that bound were used. This can be used
to help find an appropriate cost bound for each iteration (step 5). In the

3

BLFS-outer

1. Visit a few leaves
2. Nodes-desired ← number of nodes visited so far
3. Loop until time runs out:
4. Double nodes-desired
5. Estimate cost bound that visits nodes-desired nodes
6. Visit all leaves within cost bound (see BLFS-inner)

BLFS-inner(node, bound)
7. If leaf(node), visit(node)
8. else, for each child of node:
9. If best-completion(child) ≤ bound
10. BLFS-inner(child, bound)

Figure 1: Simplified pseudo-code for best-leaf-first search.

experiments reported below, a simple bisection search was performed over
possible cost bounds, searching for one that yielded, according to the model,
approximately the desired number of nodes. Any prediction within 5% of
the desired value or greater by less than 50% was deemed sufficient. The
search was limited to 10 bisections. To guard against inaccurate predictions,
an iteration was terminated after visiting three times the desired number of
nodes.

By approximately doubling the number of nodes visited on each itera-
tion, BLFS limits its overhead in the worst-case situation in which the entire
tree must be searched. In such a situation, depth-first search is optimal. If
we assume that the full tree has n nodes, the worst case for BLFS is when
its second-to-last iteration visits n − 1 nodes. In such a case, all previous
iterations visit a combined total of roughly n nodes, and thus BLFS visits
roughly 3n nodes, only three times more than optimal. In practice, the main
overhead in the algorithm has been cost bound estimation, which consumes
up to 40% of the search time for short runs in our prototype implementa-
tion. This overhead can be nearly eliminated, however, by augmenting the
bisection search with memory and interpolation.

The basic BLFS framework is remarkably simple. In the remainder of
this paper, we will demonstrate its power and flexibility by instantiating the
framework using two different cost models. The first model we will consider
is a static one that is specified before the search begins.

4

3 BLFS with a Fixed Model: Indecision Search

As mentioned earlier, heuristic child ranking is often used to guide tree
search. Most such ranking functions actually return a numerical score for
each child, although the precise semantics of this score varies. The first cost
model we will consider is based on these scores. We will assign each child a
cost based on how much worse its score is than the score of the best child.
If the child scores are s0, . . . , sb, child i has a cost of si − s0. Furthermore,
we will assume that the cost of a leaf is simply the maximum of the costs of
the nodes along its path from the root. This is a generalization of iterative
broadening, which assumes that the cost of a leaf reflects the maximum rank
of any child along its path. Another way to think about this cost model is
that the cost of a node reflects how decisively the heuristic score separated
it from the best child. Paths involving nodes for which the heuristic was
indecisive in its ranking will be explored earlier in the search than those
involving nodes whose scores were much worse. For this reason, we can call
this instantiation of BLFS indecision search.

It is easy to support the operations needed for BLFS using this cost
model. Because the preferred child is always free, the predicted cost of the
best leaf below any node is just the maximum cost of any node encountered
enroute to the node itself. To predict the number of nodes visited for a given
cost bound, we assume independence and estimate the average expected
branching factor at each level of the tree. This depends on the number of
children at each level whose costs we expect to fall below the cost bound.
Although we probably do not know all of the costs we will see, we will have
seen many of them during the previous iteration of indecision search. Recall
that each iteration explores a superset of the previous one, and that all of
the child scores at each node of the previous search will have been computed
in order to guide that search (step 9). We will use these scores as samples to
estimate the probability distribution over possible costs for each child rank
at each level of the tree. In the experiments reported here, these estimated
distributions were represented as histograms (see the appendix for details).
The expected effective branching factor at each level, call it bk, can then be
computed using the probability that each possible number of children is the

5

most we can afford,1 which we write as p(max is i):

p(max is i) = p(can afford i)× (1− p(can afford i + 1))

bk =
max-num-childrenk∑

i=1

i× p(max is i)

If a node at level k is a leaf with probability leaf-probk, then the number of
nodes at that level, nodesk, can be computed from the number of nodes at
the previous level that aren’t leaves, times their fertility:

nodes0 = 1

nodesk = nodesk−1 × (1− leaf-probk−1)× bk−1

The leaf-probk parameters can be easily estimated during the previous it-
eration. By summing the nodesk over the levels of the tree (and adding in
the leaves generated at each level), we can estimate the number of nodes
that will be visited for a given cost bound. Note that, although we estimate
on-line the node costs we expect to observe in the tree, the underlying leaf
cost model itself is fixed as exactly the maximum node cost in the path, and
is not adjusted during search. The initial iteration of the algorithm (step 1)
visits all leaves of predicted cost zero.

Other schemes in addition to iterative broadening can be viewed as ap-
proximations to indecision search. The randomized restarting technique of
Gomes, Selman, and Kautz (1998) and the GRASP methodology of Feo and
Resende (1995) both randomly permute all children whose scores are within
a specified distance from the preferred child, between iterations of search.
These techniques depend on an equivalence parameter that must be tuned
using pilot experiments, and restarting also depends on a time limit param-
eter. Also, because they regard closely-scoring children as equivalent, these
techniques throw away information that can be systematically exploited by
indecision search.

Experiments were also performed using a cost model that predicted the
cost of a leaf to be the sum of the child costs along its path, rather than
just the maximum. This model seemed to perform similarly, and is more

1When recording the costs of a node’s children, we assume they are independent and
store them in separate distributions. But when calculating the number of children we can
afford, we want to know the conditional probability that we can afford a child given that

we could afford the previous children. To calculate this properly, we should instead store
the difference in cost between each child and the previous one. (Thanks to Chung-chieh
Shan for this insight.) Empirically, however, the two strategies seem to perform similarly,
and the naive approach is faster, as it avoids a convolution.

6

cumbersome to manipulate, so we omit further discussion of it (see Ruml
(forthcoming) for details).

3.1 Evaluation

We can use constraint satisfaction problems to evaluate indecision search, as
they are commonly solved using a heuristic scoring function to rank children
in increasing order of ‘constrainingness.’ We will examine two domains: latin
square completion and random binary CSPs.

3.1.1 Latin Squares

A latin square is an n by n array in which each cell has one of n colors. Each
row and column must contain each color exactly once. Gomes and Selman
(1997) proposed the completion of partially-filled latin squares as a chal-
lenging benchmark problem, noting that it provides both regular structure,
due to the row and column constraints, and random elements, due to the
preassigned cells. We used forward-checking, choosing variables to assign
according to the most-constrained variable heuristic of Brélaz (1979) and
ranking values according to the logarithm of the promise heuristic of Geelen
(1992). Following Meseguer and Walsh (1998), we used 1,000 latin squares,
each with 30% of the cells assigned, filtering out any unsatisfiable problems.
We tested depth-first search (DFS), two version of Korf’s improved limited
discrepancy search (ILDS), one taking discrepancies at the top first and the
other taking them at the bottom first, depth-bounded discrepancy search
(DDS), and indecision search.2

The performance of the algorithms is shown in Figure 2 in terms of
the fraction of problems solved within a given number of node generations.
Small horizontal error bars mark 95% confidence intervals around the means.
Depth-first search was limited to 10,000 nodes per problem, hence its mean is
a lower bound. From the figure, we see that 25% of the problems were solved
by visiting a single leaf (the greedy solution). Depth-first search enumerates
leaves very efficiently, but is notoriously brittle and becomes hopeless lost
on many problems (Gomes et al., 2000). The discrepancy search algorithms
immediately retreat to the root. Indecision search first explores all ties,
which may occur at intermediate levels of tree. As the searches progress,
the algorithms biased toward discrepancies at the top seem to be paying a

2Due to an historical accident, indecision search attempted to double the number of
leaves visited on each iteration, rather than the number of nodes. It is not clear that this
affected the results.

7

F
ra

ct
io

n
 o

f
P

ro
b

le
m

s
S

o
lv

ed

0.8

0.6

0.4

0.2

Log10(Nodes Generated)

3.93.63.33.02.7

Indecision
ILDS (bottom)

ILDS (top)
DDS
DFS

Figure 2: Distribution of search times when completing 21×21 latin squares
with 30% of the cells preassigned.

price, as their progress comes in spurts. Indecision search makes efficient use
of the heuristic score information, exhibiting a smooth performance profile,
and it solves all the problems within 4,000 nodes (note the logarithmic scale).
Similar behavior was observed on smaller instances, although the advantage
of indecision search over the discrepancy methods seemed to increase as
problems grew larger.

3.1.2 Binary CSPs

Binary CSPs have received much attention in the literature and were used by
Meseguer and Walsh (1998) to evaluate depth-bounded discrepancy search
and interleaved depth-first search. They tested on satisfiable problems of the
〈n,m, p1, p2〉 type. These problems have n variables, each with m possible
values. Exactly p1n(n−1)/2 of the possible pairs of variables are constrained
and exactly p2m

2 of the possible value combinations are disallowed for each
of those pairs. As p2 increases toward 0.36, the constraints become tighter
and the problems become more difficult to solve, exposing differences in
performance between the algorithms. We will use the same heuristics as
employed above with latin squares.

8

CSP Class DFS ILDS DDS Indec.

〈30, 15, .4, .35〉 9,840 10,504 26,981 8,839

〈50, 12, .2, .36〉 80,851 164,538 973,437 113,450
〈100, 6, .06, .36〉 57,118 37,811 418,829 24,065

Table 1: The mean number of nodes generated to solve 100 instances of
three classes of binary CSP.

L0

L1

L2 R2

R1

L2 R2

R0

L1

L2 R2

R1

L2 R2

Figure 3: A simple model: leaf cost is the sum of edge costs which are
parameterized by depth and child rank.

The performance of the algorithms on three problem classes is summa-
rized in Table 1. Indecision search surpasses ILDS and DDS on all classes,
and proves superior to DFS on the first and third. On the second class,
indecision search takes on average only 1.4 times as many nodes as DFS,
well within the worst-case factor of three.

On both benchmark domains, the indecision search instantiation of BLFS
seems to provide a search order that is either superior to existing techniques
or closely competitive. Next we will consider a cost model that is not fixed
in advance, but is learned during the search itself.

4 BLFS with a Learned Model

In some domains, the child ranking function does not return a quantitative
score, and the only information that is readily available to guide search is
the costs of the leaves that have been visited. Following Ruml (2001a), we
will use these observed costs to estimate the cost of taking a discrepancy at
each level of the tree. More precisely, we will use a cost model that assumes
that the cost of a leaf is the sum of the costs of the edges taken to reach it,
and we will assume that the cost of an edge depends only on its depth and
its rank in the sorted list of children. An example for a binary tree appears

9

in Figure 3. A tree of depth d and branching factor b requires db parameters,
one for each edge at each level. This generalizes DFS, ILDS, and DDS.

Because these edge costs will vary depending on the problem, we will
estimate them during the search. In step 1 of BLFS, we will visit 10 random
leaves. Each path forms a linear equation in the parameters of the model. If
leafi is the cost of the ith leaf visited, then three random paths might yield:

L1 + L2 + R3 = leaf1
L1 + R2 + L3 = leaf2

R1 + L2 + L3 = leaf3

After visiting each leaf (in either step 1 or 7), we will update the parame-
ters using a simple on-line linear regression algorithm. (In the experiments
reported below, the method of Murata et al. (1997) was used. It gave very
slightly better results when learning from random paths than the methods
discussed by Sutton (1992).) To help ensure that the current cost bound
yields the predicted number of nodes, a static copy of the model is made
at the start of each iteration to guide the search. To further aid learning,
the costs estimated in the experiments below were further constrained at
the start of each iteration to be increasing with child rank at each depth.
(In other words, it was assumed that the underlying ranking function was
helpful rather than deceptive.)

This cost model also easily supports the operations required for BLFS.
The cost of the best leaf in any subtree is just the sum of the edges traversed
so far plus the sum of the costs of the cheapest options at each of the
remaining levels. These optimal completions can be precomputed at the
start of each iteration. To estimate the number of nodes that will be visited
for a given bound, we just estimate the branching factor at each level, as for
indecision search. We can consider the cost bound to be an allowance that
is spent as we descend the tree. By estimating the distribution of allowance
values expected at each level of the tree, we can estimate how many children
whose best completion will be affordable at that level. (As in indecision
search, these distributions are manipulated as histograms, as described in
the appendix.) At the root, the allowance distribution is a spike at the given
cost bound. The distribution of allowance at the next level is just the sum,
over the possible children, of the portion of the current distribution that
falls above the best completion cost for that child, translated toward zero
by that cost. Each distribution in the sum is weighted by the proportion of
the probability that survived the truncation.

10

L
og

10
(D

if
fe

re
nc

e)
-4

-5

-6

-7

Nodes Generated
1,000,000800,000600,000400,000200,000

DDS
Probing

ILDS
BLFS

DFS

Figure 4: Greedy partitioning of 128 numbers

4.1 Evaluation

We evaluated the algorithm on two different formulations of the combinato-
rial optimization problem of number partitioning. The objective is to divide
a given set of numbers into two disjoint groups such that the difference
between the sums of the two groups is as small as possible. It has been
used by many authors as a benchmark for search algorithms (Johnson et
al., 1991; Korf, 1996; Walsh, 1997; Ruml, 2001a). Following Ruml, we used
instances with 128 44-digit numbers or 256 82-digits numbers. Arbitrary
precision integer arithmetic was used in the implementation, and results
were normalized as if the original numbers had been between 0 and 1. The
logarithm of the partition difference was used as the leaf cost.

4.1.1 Greedy Number Partitioning

The first formulation of partitioning as a search is a straightforward greedy
encoding in which the numbers are sorted in descending order and then
each decision places the largest remaining number in a partition, preferring
the partition with the currently smaller sum. Figures 4 and 5 compare the

11

L
og

10
(D

if
fe

re
nc

e)

-2

-4

-6

-8

Nodes Generated
2,000,0001,600,0001,200,000800,000400,000

DDS
ILDS

Probing
BLFS

DFS

Figure 5: Greedy partitioning of 256 numbers

12

L
og

10
(D

if
fe

re
nc

e)
-10.4

-10.8

-11.2

-11.6

-12.0

Nodes Generated
1,000,000800,000600,000400,000200,000

DDS
DFS

BLFS
ILDS

Figure 6: CKK representation for partitioning 128 numbers

performance of BLFS with DFS, ILDS, DDS, and the adaptive probing al-
gorithm of Ruml (2001a), which guides search using a similar learned cost
model but is stochastic and incomplete. Error bars in the figures indicate
95% confidence intervals around the mean. Although BLFS does not sur-
pass DFS in this search space, it does seem to consistently track DFS as the
problem size increases, unlike ILDS and DDS, whose solution quality actu-
ally decreases on the larger problems. BLFS also does not seem to suffer in
comparison to adaptive probing, even though it has a further guarantee of
completeness.

4.1.2 CKK Number Partitioning

A more sophisticated representation for number partitioning was suggested
by Korf (1995), based on the heuristic of Karmarkar and Karp (1982). The
essential idea is to postpone the assignment of numbers to particular parti-
tions and merely constrain pairs of number to lie in either different bins or
the same bin. Numbers are considered in decreasing order and constrained
sets are reinserted in the list according to the remaining difference they rep-
resent. Figure 6 and 7 compare the performance of BLFS with DFS, ILDS,

13

L
og

10
(D

if
fe

re
nc

e)

-12.8

-13.2

-13.6

-14.0

Nodes Generated
2,000,0001,600,0001,200,000800,000400,000

DDS
DFS

ILDS
BLFS

Figure 7: CKK representation for partitioning 256 numbers

14

BLFS IDA*

f(n) best leaf below n best path through n
model from user additive

g(n) learned from problem
h(n) learned from user

updating bound estimation add ǫ

rational optimal

Table 2: A comparison of BLFS and IDA*.

and DDS. (Adaptive probing takes too long to learn to follow the powerful
heuristic in this space and would be off the top of both plots.) Whereas
BLFS was tracking DFS in the greedy search space, it performs comparably
to ILDS when using this CKK representation on smaller problems. And on
larger problems, BLFS surpasses all the other algorithms.

In summary, we have seen that BLFS can successfully adapt to different
search spaces, even given only observed leaf costs. It is more robust than
other algorithms, always performing competitively with or better than the
best previous strategy. Of course, comparisons against additional algorithms
and tests in domains of more practical utility will yield a fuller perspective.

5 Relations to Shortest-Path Algorithms

Although BLFS was designed for combinatorial optimization and constraint
satisfaction, its basic framework of iteratively expanding bounded search
is also found in the iterative-deepening A* (IDA*) algorithm for shortest-
path problems (see Table 2). Both algorithms visit nodes in an order that
approximates increasing predicted cost. IDA* is guided by a node evaluation
function, traditionally notated f(n), which is the sum of two parts: the
path cost from the start state to n, notated g(n), and a heuristic estimate
of the cost of the best path from n to the goal, notated h(n). If h(n) never
overestimates, IDA* returns an optimal path. By the nature of its task,
IDA* assumes the cost of a path is linear in the edge costs. The node
evaluation in BLFS reflects the cost of the best leaf in the node’s subtree,
and its model was divided into additive components in this paper only for
efficiency (as we saw when precomputing the optimal path completions for
BLFS). Because the edge costs are not inherent in the problem, the model
must be learned. And because the cost model is explicit and known, the
cost bound can be updated efficiently even when few nodes have the same

15

cost, unlike with IDA*.
This unification clarifies the common confusion that many newcomers to

AI feel when they see the term ‘heuristic search’ applied to both shortest-
path problems with an explicit h(n) and also to procedures like DFS with a
node ordering function. BLFS makes it clear that a node ordering function
is just a rough indicator of the cost of the best leaf in the subtree, and by
adhering to this semantics, it approximates a rational search order.

6 Possible Extensions

It would be very interesting to explore other models besides those inves-
tigated here. It should be straightforward to combine on-line learning of
weights with the heuristic child scores used in indecision search. This would
relax the assumption that heuristic scores are strictly comparable across
levels. Multiple models could be trained simultaneously and the one with
the lowest error on the previous iteration could be used to guide search. By
constraining adjacent costs to be similar, fewer parmeters would be needed
in the model, and it might be feasible to consider learning models for both
value choice and variable choice (Ruml, 2001b).

BLFS currently does not take into account the uncertainty in its cost
model or the possible benefits of visiting a leaf predicted to be poor. A
drastically misestimated cost can cause the search to avoid the correspond-
ing edge and fail to correct the estimate. One way to remedy this would
be to use as a node evaluation the probability that the node leads to the
optimal leaf. This could be computed from a child cost model by estimating
variance and assuming normality, following Ruml (2001a). The cost bound
on each iteration would become a probability bound. This seems similar to
the methods proposed by Bedrax-Weiss (1999), although her algorithm was
trained and scheduled off-line.

Techniques for managing the trade-off between time and expected solu-
tion improvement are orthogonal to this work, and could be applied on top
of it. Mayer (1994) and Hansson (1998) have done preliminary work in this
direction.

7 Conclusions

We introduced best-leaf-first search (BLFS), a new framework for search-
ing the bounded-depth trees that arise in combinatorial optimization and

16

constraint satisfaction problems. BLFS generalizes previous work, and rep-
resents the first successful rational approach to search for this setting. Em-
pirical results show that, even with simple cost models, BLFS performs well
on a variety of synthetic benchmark problems, yielding results competitive
with or superior to the best previous method for each problem. It retains
completeness while adapting on-line to individual problem instances, and
uses an explicit model of its assumptions. Perhaps most importantly, BLFS
shows how search for combinatorial optimization and constraint satisfaction
can be viewed from a perspective similar to that of traditional heuristic
search for shortest-path problems, as the strategy of a rational agent trying
to efficiently take advantage of heuristic information for problem-solving.

8 Acknowledgments

Stuart Shieber and the Harvard AI Research Group gave numerous helpful
suggestions and comments. This work was supported in part by NSF grants
CDA-94-01024 and IRI-9618848.

9 Appendix: Histogram Implementation

The probability distributions described in the text are estimated on-line us-
ing histograms. When adding samples to an empty histogram, individual
data values are recorded until a fixed size limit is reached (100 in the ex-
periments reported here). At this point, each value becomes the center of a
bin which reaches halfway to its neighboring values. (Bins on the ends are
symmetrical.) When additional samples are added, the weights of the appro-
priate bins are increased. When the weight of a single bin exceeds twice the
lowest weight of any adjacent pair of bins, the heavy bin is split into equal
halves and the light pair is collapsed. Operations such as the addition of
distributions are fairly straightforward but tedious to program. Four cases
must be considered, as the two distributions involved may each consist of
point-like values or bins. Considering histogram elements in a random order
avoids biasing bin accuracy. Time complexity is bounded by the square of
the histogram size limit. Source code will be made freely available at the
author website.

17

References

Bedrax-Weiss, Tania. 1999. Optimal Search Protocols. Ph.D. thesis, Uni-
versity of Oregon, Eugene, August.

Brélaz, Daniel. 1979. New methods to color the vertices of a graph. Com-
munications of the ACM, 22(4):251–256, April.

Feo, T. A. and M. G. C. Resende. 1995. Greedy randomized adaptive search
procedures. Journal of Global Optimization, 6:109–133.

Geelen, P. A. 1992. Dual viewpoint heuristics for binary constraint satisfac-
tion problems. In B. Neumann, editor, Proceedings of ECAI-92, pages
31–35.

Ginsberg, Matthew L. and William D. Harvey. 1992. Iterative broadening.
Artificial Intelligence, 55:367–383.

Gomes, Carla P. and Bart Selman. 1997. Problem structure in the presence
of perturbations. In Proceedings of AAAI-97, pages 221–226.

Gomes, Carla P., Bart Selman, Nuno Crato, and Henry Kautz. 2000. Heavy-
tailed phenomena in satisfiability and constraint satisfaction problems.
Journal of Automated Reasoning, 24:67–100.

Gomes, Carla P., Bart Selman, and Henry Kautz. 1998. Boosting combina-
torial search through randomization. In Proceedings of AAAI-98.

Hansson, Othar. 1998. Bayesian Problem-Solving Applied to Scheduling.
Ph.D. thesis, University of California, Berkeley.

Harvey, William D. and Matthew L. Ginsberg. 1995. Limited discrepancy
search. In Proceedings of IJCAI-95, pages 607–613. Morgan Kaufmann.

Johnson, David S., Cecilia R. Aragon, Lyle A. McGeoch, and Catherine
Schevon. 1991. Optimization by simulated annealing: An experimental
evaluation; Part II, graph coloring and number partitioning. Operations
Research, 39(3):378–406, May-June.

Karmarkar, Narenda and Richard M. Karp. 1982. The differencing method
of set partitioning. Technical Report UCB/CSD 82/113, Computer Sci-
ence Division, University of California, Berkeley.

Korf, Richard E. 1985. Depth-first iterative-deepening: An optimal admis-
sible tree search. Artificial Intelligence, 27(1):97–109.

18

Korf, Richard E. 1995. From approximate to optimal solutions: A case
study of number partitioning. In Proceedings of IJCAI-95.

Korf, Richard E. 1996. Improved limited discrepancy search. In Proceedings
of AAAI-96, pages 286–291. MIT Press.

Mayer, Andrew Eric. 1994. Rational Search. Ph.D. thesis, University of
California, Berkeley, December.

Meseguer, Pedro and Toby Walsh. 1998. Interleaved and discrepancy based
search. In Proceedings of ECAI-98.

Murata, Noboru, Klaus-Robert Müller, Andreas Ziehe, and Shun-ichi
Amari. 1997. Adaptive on-line learning in changing environments. In
Michael Mozer, Michael Jordan, and Thomas Petsche, editors, Advances
in Neural Information Processing Systems 9 (NIPS-96), pages 599–605.
MIT Press.

Ruml, Wheeler. 2001a. Incomplete tree search using adaptive probing. In
Proceedings of IJCAI-01, pages 235–241.

Ruml, Wheeler. 2001b. Stochastic tree search: Where to put the random-
ness? In Holger H. Hoos and Thomas G. Stützle, editors, Proceedings
of the IJCAI-01 Workshop on Stochastic Search, pages 43–47.

Ruml, Wheeler. forthcoming. Adaptive Tree Search. Ph.D. thesis, Harvard
University.

Sutton, Richard S. 1992. Gain adaptation beats least squares? In Proceed-
ings of the Seventh Yale Workshop on Adaptive and Learning Systems,
pages 161–166.

Walsh, Toby. 1997. Depth-bounded discrepancy search. In Proceedings of
IJCAI-97.

19

