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Abstract.  Visualizing and quantifying spatial patterns of co-occurrence (i.e., of two or more 12 

species, or of species and underlying environmental variables) can suggest hypotheses about 13 

processes that structure species assemblages and their relevant spatial scales. Statistical models 14 

of spatial co-occurrence generally assume that underlying spatial processes are isotropic and 15 

stationary but many ecologically realistic spatial processes are anisotropic and non-stationary. 16 

Here, we introduce codispersion analysis to ecologists and use it to detect and quantify 17 

anisotropic and nonstationary patterns and their relevant spatial scales in bivariate co-occurrence 18 

data. Simulated data illustrated that codispersion analysis can accurately characterize complex 19 

spatial patterns. Analysis of co-occurrence of common tree species growing in a 35-ha plot 20 

revealed both positive and negative codispersion between different species; positive codispersion 21 

values reflected positive correlation in species abundance (aggregation), whereas negative 22 

codispersion values reflected negative correlation in species abundance (segregation). 23 

Comparisons of observed patterns with those simulated using two different null models showed 24 

that the codispersion of most species pairs differed significantly from random expectation.  We 25 

conclude that codispersion analysis can be a useful exploratory tool to guide ecologists interested 26 

in modeling spatial processes. 27 

 28 
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INTRODUCTION 31 

A central inferential challenge for ecologists is the identification of mechanisms and 32 

operational scales of processes determining observed spatial patterns. We normally begin to 33 

address this challenge using spatial pattern analysis (e.g., Dale 1999, Cressie and Wikle 2011, 34 



Wiegand and Moloney 2014). In particular, analysis and interpretation of patterns of co-35 

occurrence of two or more species, or of individual species and environmental variables, are used 36 

routinely to identify relevant spatial scales and generate testable hypotheses about processes 37 

determining observed co-occurrence patterns (e.g., Wiegand and Moloney 2014).  38 

Spatial patterns of co-occurring species often reflect the temporal integration of pairwise 39 

species associations, varying environmental conditions, and intra- and interspecific interactions 40 

(Dale 1999). For example, spatial patterns of locations and sizes of trees in a forest reflect the 41 

life history differences of the component species as well as the cumulative history of the stand: 42 

stochastic dispersal; small-scale environmental conditions for successful germination and 43 

establishment; self-thinning of once-dense groups of saplings and small trees; interspecific 44 

competition; loss of individuals to insects and disease; and ongoing environmental change. In 45 

many cases, environmental gradients dominate spatial patterns in forest stands, but the most 46 

widely-used spatial pattern analyses assume that underlying spatial processes of the analyzed 47 

spatial patterns are stationary (spatial processes are invariant under translation) and isotropic 48 

(invariant under rotation) (Dale 1999, Cressie and Wikle 2011). Although these assumptions are 49 

mathematically convenient, they are rarely true. Alternatives, such as wavelet and other spectral 50 

methods can be used to identify scales of variation in isotropic or anisotropic spatial data, but, 51 

some of these methods can analyze only limited types of ecological data (e.g., data collected on 52 

lattices: Deblauwe et al. 2012). 53 

Codispersion analysis (Cuevas et al. 2013) is a new method for describing and visualizing 54 

complex spatial patterns of multiple co-occurring variables. In brief, codispersion quantifies 55 

covariation of two or more spatial patterns as a function of both spatial lag and direction (Cuevas 56 

et al. 2013). The analyzed spatial patterns may be any combination of point patterns, marked 57 



point patterns (where we are interested in the spatial pattern of the marks, such as tree diameter), 58 

irregularly spaced plots, or rasters (contiguous grids); in the latter two cases, each plot or cell is 59 

assigned a single value, such as tree density or basal area. To date, codispersion analysis has 60 

been applied to only a limited number of datasets: photographic image analysis (Ojedat et al. 61 

2012), the relationship between tree size and an underlying environmental gradient (Cuevas et al. 62 

2013), bivariate temporal data (Vallejos 2012), and multivariate spectral data (Vallejos et al. 63 

2015). 64 

Cuevas et al. (2013) suggested that codispersion analysis may be useful to describe the 65 

pattern of covariation found in many different kinds of spatial ecological data, but it has not yet 66 

been used to analyze known (i.e., pre-determined) spatial patterns, nor have the results from 67 

observed patterns been evaluated against reasonable null expectations. Here, we describe how to 68 

apply codispersion analysis to species co-occurrence data. Using both simulated and real species 69 

co-occurrence data, we illustrate how the results can identify and quantify complex spatial 70 

patterns and spatial scales at which ecological processes may be operating. Results of 71 

codispersion analysis applied to simulated data illustrate the range of detectable patterns. We 72 

also show how to test for departure of observed codispersion from null models that (1) assume 73 

complete spatial randomness (CSR) in species co-occurrence or (2) fix the distances between 74 

points, but break the association between the two species by shifting one of the entire patterns 75 

randomly, treating the plot as a torus (toroidal shift null model). 76 

METHODS 77 

Examining codispersion between two or more spatial datasets depends on the precise 78 

locations at which measurements were made and the sampling grain of the measurements (i.e., 79 

the “support,” sensu Dungan et al. 2002). If we are interested in point-wise codispersion between 80 



two marked point patterns, the variables to be compared must be measured at exactly the same 81 

locations (e.g., beetles feeding on trees or the diameter and height of individual trees). In 82 

contrast, if the variables to be compared are measured at different spatial locations, the data need 83 

to be rescaled in one of two ways prior to analysis.  84 

One way to rescale the data is convert the point patterns to small, identically-sized plots 85 

prior to analysis. If variables are measured at irregularly-spaced locations, they can be up-scaled 86 

to a common plot size; each “plot” is then considered to be a point with x, y coordinates equal to 87 

the center of the plot and with marks equal to some aggregate measure of the individuals within 88 

the “plot” (e.g., Cuevas et al. 2013). For example, if soil pH is measured at 100 random points 89 

and tree diameters are measured in a 20-m diameter circular plot around each of these points, 90 

then the average tree size in each plot can be used as the estimate of tree size at the point where 91 

soil pH was measured. Codispersion calculations then proceed as if the point patterns were 92 

measured at identical locations, but the “grain of inference” is the 20-m diameter plot. 93 

Alternatively, to compare the co-occurrence of two tree species in a large plot where, by 94 

definition, different individual trees cannot occupy identical point locations, we could first 95 

calculate the abundance of each species in individual contiguous subplots, i.e., one abundance 96 

raster for each species. Codispersion calculations then proceed as if the point patterns were 97 

measured at the centers of each of the subplots and the “grain of inference” is the size of each 98 

subplot (grid cell) in the rasters. In our worked examples, we use this latter, raster-based method. 99 

A recipe for codispersion analysis of ecological data 100 

 To generate codispersion coefficients across a range of spatial scales (which we illustrate 101 

for rasterized data): 102 



1. Generate three vectors of spatial lags (Fig. 1A). Two of these vectors of lags should be 103 

parallel to the x axis, one positive and one negative around zero (–h1 to +h1), up to one-fourth 104 

of the smallest plot dimension. The third vector of lags is parallel to the y axis, again 105 

increasing from the size of a raster up to one-fourth of the smallest plot dimension (h2). For 106 

example, for a 500 × 700-m plot, the smaller dimension is 500 m, so the maximum of |h1| or 107 

|h2| is 500/4 = 125 m. This ensures an adequate sample size for calculating codispersion at the 108 

largest lag. The smallest lag size should be the grain size of the raster. 109 

2. Apply a kernel function across all possible cell-wise distances for each lag to compute a 110 

variation surface for all lag distances and directions h (the two dimensions are defined by the 111 

{h1, h2} coordinate pairs) for each dataset individually and the intersection of the two 112 

datasets. The way the kernel surfaces characterize spatial variation within and between 113 

datasets X and Y is controlled by specifying appropriate kernel bandwidth parameters k = {kX, 114 

kY, kXY} (Cuevas et al. 2013). If data have been rasterized, we recommend setting each 115 

element of k equal to the grid cell size of the raster. 116 

3. Compute semi-variograms for each variable ( , , and the semi-cross-variogram  117 

across all kernel-smoothed lag vectors h using a Nadaraya-Watson type estimator: 118 

(1) 
∑ ∑

∑ ∑  119 

 120 

where s is the set of spatial locations and K(·) is a symmetric and strictly positive kernel 121 

function with bandwidth kXY (Garcia-Soidán 2007, Cuevas et al. 2013).   122 



4. Compute the empirical codispersion coefficient (Matheron 1965) for each lag (h) as the semi-123 

cross-variogram of the two variables (  normalized by the square root of the product 124 

of the semi-variograms of each of the two variables:  125 

(2) . 126 

where the formula for the empirical semi-variogram is: 127 

(3) | | ∑ , ,  128 

In equations (2) and (3), h is the lag distance,  denotes the sets of pairs of observations, 129 

s is the set of spatial locations, and Z is the value of interest at a given location.  130 

5. Plot the codispersion values for each spatial lag h (Fig. 1B). Positive codispersion values 131 

indicate positive covariation (aggregation) and negative codispersion values indicate negative 132 

covariation (segregation) for lag h with a given distance (in x,y space) and direction. Positive 133 

and negative lags on the x-axis refer to “looking right” (e.g., east) and “looking left” (e.g., 134 

west) within the plot, respectively. Positive lags on the y-axis refer to “looking up” (e.g., 135 

north) within the plot.  136 

6. An appropriate set of null models should be selected to compare against the observed 137 

codispersion values. The choice of null model depends on the ecological question asked and 138 

the processes hypothesized to generate the observed spatial patterns. For instance, a CSR null 139 

model allows us to ask whether or not the observed pattern is spatially non-random, i.e., the 140 

species are distributed independently. Application of a toroidal shift null model asks whether 141 

the association between the species is non-random, given their univariate spatial patterns; 142 

thus, we are assessing their co-variation in space while excluding any effect of individual 143 

species’ autocorrelation structures. Other, process-based null models (Wiegand and Moloney 144 



2014) may be appropriate in certain circumstances, if sensible ideas about the processes 145 

generating spatial patterns can be formulated (e.g., Wiegand et al. 2009).  146 

Illustrating codispersion analysis using simulations and real data 147 

We first generated and analyzed a range of bivariate spatial patterns (Fig. 2; a complete 148 

set of simulated patterns is in Appendix A; pseudocode and accompanying R code is in the 149 

Supplement). Because we were interested in comparing simulated results with observed data 150 

from a large, gridded, forest inventory plot (see below), we simulated species abundance patterns 151 

as a raster of 225 contiguous 20 × 20-m grid cells arrayed in a 300 × 300-m “plot”. Abundance 152 

values in grid cells were distributed either completely spatially randomly (CSR) among grid 153 

cells, increasing or decreasing to the left side, right side, left or right top corners, or in one large 154 

clump in the center of the plot. We analyzed a wide range of the possible pairs of these simulated 155 

distributions (Appendix A).  156 

 Second, we analyzed all observed pairwise bivariate spatial patterns of the four most 157 

abundant tree species in the Harvard Forest long-term forest dynamics plot (Orwig et al. 2015; 158 

Figure 3A). This fully-censused 35-ha plot is part of the Smithsonian Tropical Research 159 

Institute’s Center for Tropical Forest Science – Forest Global Earth Observatory (CTFS-160 

ForestGEO) network of plots.1 In this plot, a total of 116,227 woody stems > 1 cm diameter were 161 

mapped, tagged, and measured between June 2010 and March 2014. The four most common 162 

species, Acer rubrum L. (red maple, Sapindaceae), Pinus strobus L. (white pine, Pinaceae), 163 

Quercus rubra L. (red oak, Fagaceae) and Tsuga canadensis (L.) Carrière (eastern hemlock, 164 

Pinaceae), together comprise > 90% of the total basal area in the plot. Data are available from the 165 

Harvard Forest data archive (Orwig et al. 2015). 166 

                                                            
1 <http://www.forestgeo.si.edu> 



We calculated the number of individuals of each of these four species within 20 × 20-m 167 

contiguous grid cells covering the 500 × 700-m plot (a total of 875 grid cells) and used these 168 

cell-level abundance data for all spatial analyses. We aggregated these data into 20 × 20-m cells 169 

because: this is the approximate canopy diameter of the dominant tree species in the Harvard 170 

Forest plot; 20 × 20 m (0.04 ha) is a common plot size used by foresters and ecologists to collect 171 

and analyze forest stand data (Kangas 2006); and a 20 × 20 m grid is the standard of collection 172 

and aggregation for ForestGeo data (Condit 1998).  173 

We computed the codispersion of each pair of species at spatial lags ranging from 20 to 174 

120 m. The maximum spatial lag equaled just under one-fourth of the length of the shortest side 175 

of the plot and was used to ensure adequate sample sizes for the largest spatial lag. To assess the 176 

significance of the observed codispersion patterns, we compared the observed codispersion 177 

values for each species pair calculated for each spatial lag and direction to values generated 178 

using two null models. The first was a CSR model, where one species distribution was fixed and 179 

the point locations of the other species were distributed completely spatially randomly across the 180 

plot. The second was a toroidal shift model, where the positions of trees were fixed, thus 181 

maintaining their autocorrelation structure, but the entire plot was shifted in a random direction 182 

and distance around a torus (Wiegand and Moloney 2014).  183 

 For each comparison, the null models were used to generate 199 new datasets for one of 184 

the species of each pair; 199 null simulations was a large enough number to confidently 185 

determine significant differences between observed and expected, and small enough to generate 186 

expected values on a desktop computer within a few days. Only one of the species pair needed to 187 

be randomized because this was enough to break their spatial association, allowing us to test the 188 

significance of their co-variation. The observed codispersion values at each spatial lag were then 189 



compared to the vector of codispersion values at the same spatial lags and directions under each 190 

null model to estimate tail probabilities; if the observed value was greater than or equal to the 191 

195th value or less than or equal to the 5th value, we deemed it to be significantly different from 192 

expected (i.e., a two-tailed test; P < 0.05). Finally, we calculated the Type I error rate of the CSR 193 

and toroidal shift null models by comparing the observed codispersion between two CSR 194 

simulated patterns (Appendix B) to values generated under the CSR and toroidal shift models.  195 

RESULTS 196 

Simulations 197 

Codispersion analysis accurately detected both positive and negative covariation in 198 

abundance in simulated bivariate spatial patterns (Fig. 2). For cases in which we simulated no 199 

strong covariation between two species (i.e., at least one “species” was CSR), codispersion 200 

values at all lags were around zero (Fig. 2A; Appendix A). When the two species were strongly 201 

segregated or aggregated (i.e., negative or positive covariance, respectively, between them; Fig. 202 

2B-2C), the codispersion values were similarly highly negative or positive. When the patterns of 203 

abundance of the two species were strongly anisotropic in the east-west direction (the x 204 

[horizontal] dimension of the plot), such that in some areas of the plot the species were 205 

aggregated and in other areas they were segregated (Fig. 2D-2F), the analysis illustrated the 206 

anisotropy by having different patterns for positive and negative lags on the x-axis of the 207 

codispersion graph. Positive codispersion values reflected lags and directions over which species 208 

were both either increasing or decreasing in abundance (Fig. 2D-2F). In contrast, negative values 209 

of codispersion represented lags and directions for which the abundances of the two species were 210 

negatively correlated, e.g., one species was high in abundance when the other was low. Rotating 211 

the species’ patterns illustrated that the method was sensitive to the orientation of the plot 212 



(Compare Fig. 2B and 2C). Analysis of the mirrored reflection of the patterns illustrated that 213 

identical results were obtained for positive and negative lags in the y direction (compare Figs. 2E 214 

and 2F). For both the CSR and toroidal shift null models, none of the observed codispersion 215 

values from the two CSR patterns were significantly different from that expected under either 216 

model at the 5% level, indicating a Type I error rate ≤ 5% for both null models (Appendix B).  217 

Real data 218 

 Empirical semi-variograms illustrated that spatial autocorrelation of P. strobus in the 35-219 

ha forest dynamics plot was apparent up to lags of approximately 180 m, but that abundances of 220 

the other three species were autocorrelated at scales of at least 300 m (variograms showed a 221 

linear trend, with no sill; Fig. 3B). Tsuga canadensis, the dominant species, negatively co-varied 222 

with (i.e., was spatially segregated from) the three other species (Fig. 4). This species showed 223 

weak anisotropy in its covariation with Q. rubra and A. rubrum, as indicated by different values 224 

of the codispersion coefficient on the right and left-hand sides of the codispersion graph, but not 225 

with P. strobus. In contrast, the three sub-dominant species all positively co-varied (were 226 

aggregated) at most spatial lags; the positive codispersion was strongest between Q. rubra and A. 227 

rubrum (Fig. 4). The observed codispersion patterns largely were significantly different from 228 

those expected under the two null models, except for P. strobus and Q. rubra, which showed 229 

only weak positive covariation (Fig. 4). Because the toroidal shift null model maintained the 230 

autocorrelation structure of the individual species’ patterns while breaking their bivariate spatial 231 

association, observed codispersion values were significantly different from null expectation at a 232 

smaller number of lags than we observed with the CSR model (Fig. 4). 233 



DISCUSSION 234 

Codispersion analysis is an effective method for quantifying and visualizing the pairwise 235 

covariation of two or more variables in space (Vallejos et al. 2015). One of the key benefits of 236 

this method is that it gives a 2-D graph illustrating the sign (positive or negative), magnitude, 237 

scale, and direction of covariation between two species. This information is especially useful for 238 

choosing appropriate models for subsequent inference about underlying spatial processes. 239 

Most methods used to model spatial data assume that the data are stationary (but see 240 

Wiegand et al. 2007, Getzin et al. 2008). The “strong” form of spatial stationarity is the situation 241 

in which both the joint distribution of the data is invariant when the pattern is moved (translated) 242 

through space. For ecological data, this assumption is rarely, if ever, true. A weaker form of 243 

spatial stationarity, “second-order stationarity,” assumes that only the mean, variance, and 244 

covariance must be stationary (Vieira et al. 2010). Even this assumption is rarely satisfied. 245 

However, most spatial statistical methods can be used if the data meet the assumption of the 246 

“intrinsic hypothesis:” that the mean and the semi-variance of the distribution are dependent only 247 

on distance between points, not on their location; i.e., there is no underlying large-scale spatial 248 

“trend” in the data (Vieira et al. 2010).  249 

A common way to determine if there is spatial trend in the data is to compare the semi-250 

variograms between raw and adequately detrended data: raw data with a spatial trend will have a 251 

semi-variogram that lacks a sill, whereas the semi-variogram of data without a spatial trend will 252 

have an obvious and stable sill (Vieira et al. 2010). However, simply detrending data and 253 

comparing semi-variograms does not identify directionality in the data. In contrast, codispersion 254 

plots illustrate distances and directions at which significant spatial covariance occur.  255 



In our examples, codispersion plots correctly detected isotropic and anisotropic positive 256 

and negative spatial covariation in simulated abundances of two species on a grid for a variety of 257 

ecologically interpretable patterns (Fig. 1; Appendix A). Analysis of pairwise co-occurrences of 258 

the abundances of forest tree species in a 35-ha plot (Fig. 3) also showed that codispersion 259 

analysis could detect subtle variation in spatial co-occurrences among species. Comparisons of 260 

observed values with those obtained from repeated realizations of null models also could be used 261 

to evaluate the statistical significance of observed patterns of anisotropic spatial covariance. 262 

We emphasize that codispersion analysis can only detect and illustrate covariation in 263 

species distribution patterns; like a semi-variogram, a codispersion graph it is not explicitly 264 

designed to reveal the processes that gave rise to the observed patterns. For instance, there are at 265 

least two possible reasons that species’ distributions can co-vary in space: (1) interactions that 266 

lead to aggregation or segregation; or (2) similarity or differences in species’ habitat preferences 267 

or other underlying (and unmeasured) variables, such as soil nutrients. As shown by the 268 

simulations (e.g., Fig. 1D), patterns that are caused by different spatial processes will show high 269 

codispersion if they co-vary spatially. However, comparison of observed codispersion to that 270 

expected under different null models can help determine the nature of the observed spatial 271 

pattern and how to develop predictive process models. For example, P. strobus and Q. rubra 272 

showed no significant codispersion at all but the largest spatial scales under either the CSR or 273 

toroidal shift null model. This result suggests that these data meet the assumption of second-274 

order stationarity and that process models to describe their covariance could proceed without 275 

detrending the data. In contrast, all other pairs of species showed some significant codispersion 276 

relative to the toroidal shift model, suggesting that at best, process models of their covariance 277 

could lend support to the intrinsic hypothesis, not second-order stationarity. 278 



The choice of null models also is critical in any description of spatial pattern. The CSR 279 

null model, as we applied it, did not account for tree size in randomly rearranging their positions, 280 

so it is possible that trees in the null patterns were closer than is realistic, given their size. 281 

Further, the toroidal shift model can lead to artificial significance if large-scale clustering occurs 282 

at the plot edges, creating edge effects in the null realizations (Wiegand and Moloney 2014, pp 283 

365). In the case of the data from the Harvard Forest’s 35-ha forest dynamics plot, variable land-284 

use history within the plot area precluded using a model based on a simple spatial process, such 285 

as a Thomas cluster process, which would assume spatial homogeneity in the plot. Future 286 

research should pursue more alternative null models; recent research suggests that spectral 287 

randomization methods (e.g. Deblauwe et al. 2012, Wagner and Dray 2015) and pattern 288 

reconstruction (Wiegand and Moloney 2014, pp 368) may be useful approaches to this problem. 289 

The key consideration when applying a null model to a spatial pattern is that we understand the 290 

process being tested by the model; this may not be trivial for more complex null models. 291 

When using codispersion analysis with any null model, there are three technical issues 292 

that are important to keep in mind. First, a maximum lag distance should be selected that is not 293 

more than one-quarter of the smallest dimension of the plot. This ensures that an adequate 294 

number of pairs at all combinations of lags (especially the maximum lag) and directions for 295 

calculating the codispersion coefficient are available.   296 

Second, the choice of bandwidth for the kernel function is critical. By default, our code 297 

(based on Cuevas et al. 2013) uses the same kernel for both variables and their intersection (the 298 

cross-variogram). However, if the spatial variation in the two variables differs substantially, it 299 

may be appropriate to select different bandwidths for the different variables. A sensible value for 300 

the kernel bandwidth should be selected that is no smaller than the grain size (support) of the 301 



data and not so large that it smooths across lags (which results in no differentiation across the 302 

codispersion graph). Cuevas et al. (2013) recommend using an optimization method to select 303 

appropriate bandwidth parameters for the kernel function. More easily, the range of the 304 

univariate variograms and bivariate cross-variogram (if they exist) might be used to select an 305 

appropriate bandwidth for each variable and their covariance. We note, however, that detrending 306 

the data to obtain stable variograms with sills (as suggested by Vieira et al. 2010) prior to 307 

running codispersion analysis can be expected to eliminate the pattern that codispersion aims to 308 

detect (Appendix C).  309 

Clearly, the kernel bandwidth will differ if raw point-pattern data are used or if the data 310 

are rasterized. If the observations are of individual locations in space (i.e., a point pattern), the 311 

initial selection of the scale at which the data could be rasterized (or not) should be determined 312 

based on biological considerations. If all variables are measured at identical points, no 313 

rasterization is necessary. However, in many ecological datasets, individuals of two or more 314 

different species do not co-occur at identical locations (due to physical constraints or the scale of 315 

sampling), so rasterizing species co-occurrences makes sense.  Note, however, that rasterizing a 316 

point pattern so that grid cells include ≥ 1 observation is equivalent to applying a uniform 317 

bivariate kernel with bandwidth equal to the width of a grid cell. Thus, when calculating 318 

codispersion values as illustrated in Fig. 3, we set the bandwidth parameter to 20 m so as to not 319 

re-smooth the data any further than they had already been rasterized. 320 

Finally, codispersion analysis is particularly useful for examining anisotropic patterns 321 

and processes. As a result, the orientation of the data matters. The x and y dimensions of the 322 

values in the codispersion graphs (Figs. 1, 3) describe lags in the “left”, “right”, and “up” 323 

directions, and anisotropy is illustrated in most detail across the x dimension (see also Appendix 324 



1). Therefore, we recommend that the data be oriented in a manner that reflects the directionality 325 

of patterns of particular interest, or, that the pattern is rotated and analyzed in both directions. In 326 

this way, interesting patterns are more likely to be identified and used to suggest new and 327 

testable ecological hypotheses. Future research also should directly compare the ability of this 328 

method to detect complex multivariate spatial patterns with that of other methods, including 329 

spectral analysis (Deblauwe et al. 2012), geographically weighted regression (Fotheringham et 330 

al. 2002), and Moran eigenvector maps (Wagner and Dray 2015). 331 
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Figure legends 390 

Figure 1. (A) Illustration of the generation of spatial lags in three directions for two rasterized 391 

surfaces (Datasets A and B) used as input to codispersion analysis. (B) A codispersion plot. 392 

The color of each cell is the value of the codispersion coefficient of two variables for each 393 

given spatial lag h and direction in x,y space. 394 

Figure 2. Simulated species co-occurrence patterns on 20 × 20-m grids in 300 × 300-m plots and 395 

their resultant codispersion graphs. In each case, the colors on the codispersion graphs on 396 

the left are scaled to the range of values for that plot and those on the right are scaled from –397 

1 to +1. The mean (standard deviation) codispersion values for each analysis were (A) 0.02 398 

(0.02), (B) -0.77 (0.21), (C) -0.87 (0.09), (D) 0.38 (0.48), (E) -0.28 (0.56) and (F) -0.28 399 

(0.56).  400 

Figure 3. Observed (A) point patterns and (B) semi-variograms for the four most abundant 401 

species in the Harvard Forest 35-ha forest dynamics plot, calculated using species’ 402 

abundances in 20 × 20-m rasters. In (A), the sizes of the symbols are scaled to each tree’s 403 

DBH: diameter measured at breast height (1.3-m above ground).  404 

Figure 4: Observed codispersion values and their significance (red) or not (blue) when compared 405 

to null expectation for bivariate co-occurrence data from all species pairs of the four most 406 

common tree species in the Harvard Forest 35-ha forest dynamics plot, calculated using 407 

species’ abundances in 20 × 20-m grid cells. Scaled (–1 to +1) codispersion graphs are 408 

shown with 0.1-unit contours. On the left, the mean codispersion values for each 409 

codispersion graph (standard deviation) are given for each species pair. Significance of 410 

codispersion values in each grid cell were calculated by comparing the observed value with 411 

199 codispersion values from a CSR null model and a toroidal shift null model; if the 412 



observed value was greater than or equal to the 195th value or less than or equal to the 5th 413 

value, the cell was labelled as significant. 414 















APPENDIX A 

Codispersion results, presented as codispersion graphs with scaled and unscaled colors, from all 
simulated bivariate codispersion analyses. See Supplement 1 for R code to generate these graphs. 

 



 

 



APPENDIX B 

We estimated the Type I error rate of the CSR and the toroidal shift models by comparing the 

observed codispersion values for two CSR species in a 300 × 300-m plot divided into 20 × 20-m 

grid cells (Figure AB1) with that expected under each of the null models. Here, we present the 

results from those comparisons. Graphs (Figure AB2) show the values of the (observed – 

expected) codispersion. Each line in the following tables represents one cell on the codispersion 

graph. Given are the observed and expected codispersion values; the ‘P.value’, which is the 

proportion of values that were the minimum of the number of expected values that were less than 

or greater than the observed value; the mean of the expected codispersion values and the 

difference between the observed codispersion value and that mean; and whether or not that 

difference was significant at the α = 0.05 level (two-tailed test).  

  



(a)    (b)  

 

Figure AB1: Simulated relative abundance values of (a) Species 1 and (b) Species 2 used to 

calculate observed codispersion values that were compared to those generated under the CSR 

and toroidal shift null models. 

  



 

(a)       (b) 

 

Figure AB2: Observed – expected codispersion for the (a) CSR and (b) toroidal shift null 

models.  



Table AB1: Cell-level results for codispersion analysis with (a) CSR and (b) toroidal shift null 

models. 

(a) CSR null model 

cell xx yy Codispersion P.value null_mean diff P.value.cat 

1 -75 20 -0.048 0.271 0.008 -0.057 Non-sig. 

2 -67.1 20 -0.039 0.302 0.007 -0.046 Non-sig. 

3 -59.2 20 -0.027 0.367 0.005 -0.033 Non-sig. 

4 -51.3 20 -0.032 0.296 0.007 -0.039 Non-sig. 

5 -43.4 20 -0.036 0.291 0.007 -0.043 Non-sig. 

6 -35.5 20 -0.047 0.246 0.006 -0.054 Non-sig. 

7 -27.6 20 -0.055 0.191 0.005 -0.06 Non-sig. 

8 -19.7 20 -0.065 0.166 0.003 -0.068 Non-sig. 

9 -11.8 20 -0.046 0.246 0.002 -0.048 Non-sig. 

10 -3.9 20 -0.034 0.312 0.001 -0.035 Non-sig. 

11 3.9 20 -0.014 0.397 0.002 -0.016 Non-sig. 

12 11.8 20 -0.003 0.467 0.004 -0.006 Non-sig. 

13 19.7 20 0.014 0.447 0.006 0.008 Non-sig. 

14 27.6 20 -0.002 0.482 0.006 -0.008 Non-sig. 

15 35.5 20 -0.015 0.437 0.005 -0.02 Non-sig. 

16 43.4 20 0.001 0.487 0.004 -0.003 Non-sig. 

17 51.3 20 0.039 0.332 0.004 0.034 Non-sig. 

18 59.2 20 0.089 0.171 0.004 0.085 Non-sig. 

19 67.1 20 0.042 0.347 0.006 0.037 Non-sig. 

20 75 20 0.001 0.427 0.007 -0.006 Non-sig. 

21 -75 26.1 -0.008 0.452 0.004 -0.012 Non-sig. 

22 -67.1 26.1 -0.003 0.462 0.004 -0.007 Non-sig. 

23 -59.2 26.1 0 0.497 0.004 -0.004 Non-sig. 

24 -51.3 26.1 -0.026 0.342 0.004 -0.03 Non-sig. 

25 -43.4 26.1 -0.045 0.246 0.004 -0.049 Non-sig. 

26 -35.5 26.1 -0.061 0.201 0.004 -0.065 Non-sig. 

27 -27.6 26.1 -0.062 0.186 0.003 -0.065 Non-sig. 

28 -19.7 26.1 -0.062 0.191 0.002 -0.064 Non-sig. 

29 -11.8 26.1 -0.048 0.241 0.001 -0.049 Non-sig. 

30 -3.9 26.1 -0.038 0.296 0.001 -0.039 Non-sig. 

31 3.9 26.1 -0.019 0.372 0.002 -0.02 Non-sig. 

32 11.8 26.1 -0.004 0.452 0.003 -0.007 Non-sig. 

33 19.7 26.1 0.018 0.447 0.005 0.013 Non-sig. 

34 27.6 26.1 -0.009 0.452 0.005 -0.013 Non-sig. 

35 35.5 26.1 -0.029 0.357 0.004 -0.033 Non-sig. 

36 43.4 26.1 -0.025 0.367 0.004 -0.028 Non-sig. 

37 51.3 26.1 0.01 0.477 0.004 0.006 Non-sig. 

38 59.2 26.1 0.056 0.256 0.005 0.051 Non-sig. 

39 67.1 26.1 0.036 0.362 0.006 0.03 Non-sig. 

40 75 26.1 0.015 0.477 0.006 0.009 Non-sig. 

41 -75 32.2 0.016 0.457 0.002 0.014 Non-sig. 

42 -67.1 32.2 0.02 0.437 0.002 0.017 Non-sig. 

43 -59.2 32.2 0.016 0.437 0.003 0.014 Non-sig. 

44 -51.3 32.2 -0.022 0.387 0.002 -0.024 Non-sig. 

45 -43.4 32.2 -0.05 0.256 0.002 -0.053 Non-sig. 

46 -35.5 32.2 -0.069 0.191 0.002 -0.071 Non-sig. 

47 -27.6 32.2 -0.065 0.191 0.002 -0.067 Non-sig. 

48 -19.7 32.2 -0.059 0.186 0.002 -0.061 Non-sig. 



49 -11.8 32.2 -0.048 0.246 0.001 -0.049 Non-sig. 

50 -3.9 32.2 -0.041 0.291 0.001 -0.042 Non-sig. 

51 3.9 32.2 -0.021 0.397 0.001 -0.023 Non-sig. 

52 11.8 32.2 -0.005 0.457 0.003 -0.008 Non-sig. 

53 19.7 32.2 0.021 0.437 0.005 0.016 Non-sig. 

54 27.6 32.2 -0.013 0.432 0.004 -0.017 Non-sig. 

55 35.5 32.2 -0.038 0.327 0.003 -0.041 Non-sig. 

56 43.4 32.2 -0.041 0.296 0.003 -0.044 Non-sig. 

57 51.3 32.2 -0.008 0.432 0.004 -0.012 Non-sig. 

58 59.2 32.2 0.035 0.362 0.005 0.03 Non-sig. 

59 67.1 32.2 0.032 0.387 0.006 0.027 Non-sig. 

60 75 32.2 0.024 0.427 0.006 0.018 Non-sig. 

61 -75 38.3 0.051 0.271 -0.001 0.052 Non-sig. 

62 -67.1 38.3 0.051 0.256 0 0.051 Non-sig. 

63 -59.2 38.3 0.04 0.332 0.001 0.039 Non-sig. 

64 -51.3 38.3 -0.016 0.417 0 -0.016 Non-sig. 

65 -43.4 38.3 -0.058 0.251 -0.001 -0.058 Non-sig. 

66 -35.5 38.3 -0.08 0.176 0 -0.08 Non-sig. 

67 -27.6 38.3 -0.07 0.191 0 -0.071 Non-sig. 

68 -19.7 38.3 -0.057 0.221 0.001 -0.058 Non-sig. 

69 -11.8 38.3 -0.049 0.276 0.001 -0.05 Non-sig. 

70 -3.9 38.3 -0.044 0.291 0 -0.045 Non-sig. 

71 3.9 38.3 -0.025 0.412 0.001 -0.026 Non-sig. 

72 11.8 38.3 -0.007 0.477 0.002 -0.009 Non-sig. 

73 19.7 38.3 0.024 0.372 0.004 0.02 Non-sig. 

74 27.6 38.3 -0.018 0.387 0.003 -0.021 Non-sig. 

75 35.5 38.3 -0.051 0.236 0.002 -0.053 Non-sig. 

76 43.4 38.3 -0.064 0.216 0.002 -0.066 Non-sig. 

77 51.3 38.3 -0.034 0.302 0.004 -0.038 Non-sig. 

78 59.2 38.3 0.005 0.492 0.006 -0.001 Non-sig. 

79 67.1 38.3 0.027 0.412 0.006 0.021 Non-sig. 

80 75 38.3 0.037 0.372 0.005 0.032 Non-sig. 

81 -75 44.4 0.043 0.271 -0.001 0.044 Non-sig. 

82 -67.1 44.4 0.049 0.256 0 0.049 Non-sig. 

83 -59.2 44.4 0.048 0.307 0.001 0.047 Non-sig. 

84 -51.3 44.4 -0.001 0.492 0 -0.001 Non-sig. 

85 -43.4 44.4 -0.039 0.322 -0.001 -0.037 Non-sig. 

86 -35.5 44.4 -0.053 0.291 -0.001 -0.052 Non-sig. 

87 -27.6 44.4 -0.04 0.327 0 -0.04 Non-sig. 

88 -19.7 44.4 -0.024 0.392 0.001 -0.024 Non-sig. 

89 -11.8 44.4 -0.031 0.332 0.001 -0.033 Non-sig. 

90 -3.9 44.4 -0.036 0.307 0.002 -0.038 Non-sig. 

91 3.9 44.4 -0.023 0.402 0.002 -0.025 Non-sig. 

92 11.8 44.4 -0.001 0.477 0.002 -0.003 Non-sig. 

93 19.7 44.4 0.033 0.332 0.003 0.031 Non-sig. 

94 27.6 44.4 -0.007 0.462 0.002 -0.009 Non-sig. 

95 35.5 44.4 -0.038 0.302 0.002 -0.04 Non-sig. 

96 43.4 44.4 -0.054 0.241 0.003 -0.057 Non-sig. 

97 51.3 44.4 -0.033 0.332 0.004 -0.036 Non-sig. 

98 59.2 44.4 -0.004 0.467 0.005 -0.009 Non-sig. 

99 67.1 44.4 0.017 0.457 0.005 0.011 Non-sig. 

100 75 44.4 0.028 0.402 0.005 0.023 Non-sig. 

101 -75 50.6 0.022 0.362 -0.001 0.022 Non-sig. 

102 -67.1 50.6 0.035 0.332 0.001 0.034 Non-sig. 

103 -59.2 50.6 0.045 0.307 0.002 0.043 Non-sig. 



104 -51.3 50.6 0.008 0.457 0.001 0.008 Non-sig. 

105 -43.4 50.6 -0.019 0.417 -0.001 -0.019 Non-sig. 

106 -35.5 50.6 -0.026 0.392 -0.001 -0.025 Non-sig. 

107 -27.6 50.6 -0.013 0.432 -0.001 -0.013 Non-sig. 

108 -19.7 50.6 0.003 0.492 0 0.002 Non-sig. 

109 -11.8 50.6 -0.015 0.442 0.002 -0.017 Non-sig. 

110 -3.9 50.6 -0.028 0.352 0.003 -0.031 Non-sig. 

111 3.9 50.6 -0.019 0.402 0.003 -0.022 Non-sig. 

112 11.8 50.6 0.004 0.477 0.003 0.002 Non-sig. 

113 19.7 50.6 0.039 0.332 0.001 0.038 Non-sig. 

114 27.6 50.6 0.005 0.482 0.002 0.003 Non-sig. 

115 35.5 50.6 -0.022 0.362 0.002 -0.024 Non-sig. 

116 43.4 50.6 -0.038 0.307 0.003 -0.041 Non-sig. 

117 51.3 50.6 -0.021 0.367 0.004 -0.025 Non-sig. 

118 59.2 50.6 0.001 0.492 0.005 -0.004 Non-sig. 

119 67.1 50.6 0.011 0.477 0.005 0.005 Non-sig. 

120 75 50.6 0.015 0.482 0.005 0.01 Non-sig. 

121 -75 56.7 -0.002 0.497 0.001 -0.003 Non-sig. 

122 -67.1 56.7 0.018 0.407 0.002 0.017 Non-sig. 

123 -59.2 56.7 0.041 0.342 0.003 0.038 Non-sig. 

124 -51.3 56.7 0.02 0.412 0.001 0.018 Non-sig. 

125 -43.4 56.7 0.003 0.492 0 0.003 Non-sig. 

126 -35.5 56.7 0.005 0.472 0 0.006 Non-sig. 

127 -27.6 56.7 0.018 0.407 0 0.019 Non-sig. 

128 -19.7 56.7 0.033 0.352 0 0.034 Non-sig. 

129 -11.8 56.7 0.005 0.477 0.003 0.002 Non-sig. 

130 -3.9 56.7 -0.017 0.392 0.005 -0.021 Non-sig. 

131 3.9 56.7 -0.014 0.402 0.005 -0.019 Non-sig. 

132 11.8 56.7 0.011 0.437 0.003 0.008 Non-sig. 

133 19.7 56.7 0.046 0.291 0 0.046 Non-sig. 

134 27.6 56.7 0.017 0.412 0.002 0.016 Non-sig. 

135 35.5 56.7 -0.005 0.442 0.003 -0.007 Non-sig. 

136 43.4 56.7 -0.02 0.392 0.004 -0.023 Non-sig. 

137 51.3 56.7 -0.009 0.417 0.004 -0.012 Non-sig. 

138 59.2 56.7 0.005 0.492 0.004 0.002 Non-sig. 

139 67.1 56.7 0.004 0.482 0.005 -0.001 Non-sig. 

140 75 56.7 0 0.447 0.006 -0.005 Non-sig. 

141 -75 62.8 -0.025 0.372 0.003 -0.028 Non-sig. 

142 -67.1 62.8 -0.01 0.452 0.003 -0.013 Non-sig. 

143 -59.2 62.8 0.012 0.462 0.004 0.008 Non-sig. 

144 -51.3 62.8 0.019 0.417 0.003 0.016 Non-sig. 

145 -43.4 62.8 0.024 0.382 0.002 0.023 Non-sig. 

146 -35.5 62.8 0.042 0.291 0.001 0.041 Non-sig. 

147 -27.6 62.8 0.054 0.271 0.001 0.053 Non-sig. 

148 -19.7 62.8 0.067 0.236 0.001 0.066 Non-sig. 

149 -11.8 62.8 0.03 0.367 0.004 0.026 Non-sig. 

150 -3.9 62.8 0.001 0.472 0.006 -0.005 Non-sig. 

151 3.9 62.8 -0.005 0.452 0.006 -0.011 Non-sig. 

152 11.8 62.8 0.018 0.397 0.003 0.014 Non-sig. 

153 19.7 62.8 0.049 0.246 0 0.049 Non-sig. 

154 27.6 62.8 0.023 0.397 0.002 0.021 Non-sig. 

155 35.5 62.8 0.004 0.497 0.004 0 Non-sig. 

156 43.4 62.8 -0.011 0.417 0.005 -0.016 Non-sig. 

157 51.3 62.8 -0.004 0.467 0.004 -0.008 Non-sig. 

158 59.2 62.8 0.006 0.487 0.003 0.003 Non-sig. 



159 67.1 62.8 0.001 0.452 0.005 -0.004 Non-sig. 

160 75 62.8 -0.005 0.417 0.007 -0.011 Non-sig. 

161 -75 68.9 -0.022 0.367 0.004 -0.026 Non-sig. 

162 -67.1 68.9 -0.023 0.377 0.004 -0.027 Non-sig. 

163 -59.2 68.9 -0.019 0.407 0.004 -0.023 Non-sig. 

164 -51.3 68.9 0.004 0.492 0.003 0.001 Non-sig. 

165 -43.4 68.9 0.02 0.417 0.002 0.018 Non-sig. 

166 -35.5 68.9 0.045 0.286 0.002 0.043 Non-sig. 

167 -27.6 68.9 0.056 0.241 0.002 0.054 Non-sig. 

168 -19.7 68.9 0.068 0.221 0.003 0.065 Non-sig. 

169 -11.8 68.9 0.033 0.357 0.005 0.028 Non-sig. 

170 -3.9 68.9 0.007 0.482 0.006 0.001 Non-sig. 

171 3.9 68.9 -0.001 0.462 0.005 -0.006 Non-sig. 

172 11.8 68.9 0.018 0.417 0.004 0.014 Non-sig. 

173 19.7 68.9 0.043 0.271 0.002 0.042 Non-sig. 

174 27.6 68.9 0.014 0.462 0.003 0.011 Non-sig. 

175 35.5 68.9 -0.007 0.442 0.004 -0.011 Non-sig. 

176 43.4 68.9 -0.022 0.357 0.005 -0.028 Non-sig. 

177 51.3 68.9 -0.013 0.417 0.005 -0.017 Non-sig. 

178 59.2 68.9 0.001 0.492 0.004 -0.003 Non-sig. 

179 67.1 68.9 0.006 0.487 0.006 0 Non-sig. 

180 75 68.9 0.009 0.487 0.007 0.002 Non-sig. 

181 -75 75 -0.02 0.407 0.005 -0.024 Non-sig. 

182 -67.1 75 -0.035 0.327 0.005 -0.039 Non-sig. 

183 -59.2 75 -0.047 0.286 0.005 -0.052 Non-sig. 

184 -51.3 75 -0.01 0.442 0.003 -0.013 Non-sig. 

185 -43.4 75 0.017 0.457 0.003 0.015 Non-sig. 

186 -35.5 75 0.048 0.271 0.003 0.046 Non-sig. 

187 -27.6 75 0.058 0.231 0.004 0.054 Non-sig. 

188 -19.7 75 0.069 0.201 0.005 0.065 Non-sig. 

189 -11.8 75 0.036 0.347 0.005 0.03 Non-sig. 

190 -3.9 75 0.011 0.467 0.005 0.006 Non-sig. 

191 3.9 75 0.003 0.477 0.005 -0.002 Non-sig. 

192 11.8 75 0.018 0.437 0.004 0.014 Non-sig. 

193 19.7 75 0.038 0.286 0.003 0.036 Non-sig. 

194 27.6 75 0.006 0.482 0.004 0.002 Non-sig. 

195 35.5 75 -0.017 0.377 0.005 -0.022 Non-sig. 

196 43.4 75 -0.033 0.307 0.006 -0.038 Non-sig. 

197 51.3 75 -0.021 0.357 0.005 -0.026 Non-sig. 

198 59.2 75 -0.004 0.472 0.005 -0.009 Non-sig. 

199 67.1 75 0.011 0.462 0.006 0.005 Non-sig. 

200 75 75 0.021 0.432 0.008 0.013 Non-sig. 

        

(b) Toroidal shift null model 

cell xx yy Codispersion P.value null_mean diff P.value.cat 

1 -75 20 -0.048 0.286 -0.005 -0.043 Non-sig. 

2 -67.1 20 -0.039 0.337 -0.006 -0.032 Non-sig. 

3 -59.2 20 -0.027 0.442 -0.008 -0.019 Non-sig. 

4 -51.3 20 -0.032 0.407 -0.006 -0.026 Non-sig. 

5 -43.4 20 -0.036 0.347 -0.005 -0.031 Non-sig. 

6 -35.5 20 -0.047 0.312 -0.007 -0.04 Non-sig. 

7 -27.6 20 -0.055 0.256 -0.011 -0.045 Non-sig. 

8 -19.7 20 -0.065 0.256 -0.015 -0.051 Non-sig. 

9 -11.8 20 -0.046 0.276 -0.009 -0.037 Non-sig. 

10 -3.9 20 -0.034 0.317 -0.006 -0.028 Non-sig. 



11 3.9 20 -0.014 0.402 -0.004 -0.01 Non-sig. 

12 11.8 20 -0.003 0.487 -0.004 0.001 Non-sig. 

13 19.7 20 0.014 0.412 -0.004 0.019 Non-sig. 

14 27.6 20 -0.002 0.457 -0.005 0.003 Non-sig. 

15 35.5 20 -0.015 0.447 -0.006 -0.009 Non-sig. 

16 43.4 20 0.001 0.447 -0.006 0.007 Non-sig. 

17 51.3 20 0.039 0.251 -0.005 0.043 Non-sig. 

18 59.2 20 0.089 0.116 -0.003 0.093 Non-sig. 

19 67.1 20 0.042 0.261 -0.005 0.047 Non-sig. 

20 75 20 0.001 0.437 -0.006 0.006 Non-sig. 

21 -75 26.1 -0.008 0.432 -0.002 -0.006 Non-sig. 

22 -67.1 26.1 -0.003 0.467 -0.003 0 Non-sig. 

23 -59.2 26.1 0 0.487 -0.003 0.003 Non-sig. 

24 -51.3 26.1 -0.026 0.377 -0.004 -0.022 Non-sig. 

25 -43.4 26.1 -0.045 0.241 -0.004 -0.041 Non-sig. 

26 -35.5 26.1 -0.061 0.206 -0.007 -0.054 Non-sig. 

27 -27.6 26.1 -0.062 0.216 -0.009 -0.052 Non-sig. 

28 -19.7 26.1 -0.062 0.231 -0.013 -0.049 Non-sig. 

29 -11.8 26.1 -0.048 0.246 -0.009 -0.038 Non-sig. 

30 -3.9 26.1 -0.038 0.327 -0.007 -0.031 Non-sig. 

31 3.9 26.1 -0.019 0.412 -0.005 -0.013 Non-sig. 

32 11.8 26.1 -0.004 0.447 -0.005 0.001 Non-sig. 

33 19.7 26.1 0.018 0.362 -0.005 0.023 Non-sig. 

34 27.6 26.1 -0.009 0.492 -0.006 -0.002 Non-sig. 

35 35.5 26.1 -0.029 0.397 -0.007 -0.022 Non-sig. 

36 43.4 26.1 -0.025 0.417 -0.007 -0.018 Non-sig. 

37 51.3 26.1 0.01 0.402 -0.006 0.016 Non-sig. 

38 59.2 26.1 0.056 0.206 -0.004 0.06 Non-sig. 

39 67.1 26.1 0.036 0.302 -0.005 0.041 Non-sig. 

40 75 26.1 0.015 0.387 -0.005 0.021 Non-sig. 

41 -75 32.2 0.016 0.432 0 0.017 Non-sig. 

42 -67.1 32.2 0.02 0.412 0 0.02 Non-sig. 

43 -59.2 32.2 0.016 0.407 -0.001 0.017 Non-sig. 

44 -51.3 32.2 -0.022 0.362 -0.002 -0.02 Non-sig. 

45 -43.4 32.2 -0.05 0.246 -0.003 -0.047 Non-sig. 

46 -35.5 32.2 -0.069 0.176 -0.007 -0.062 Non-sig. 

47 -27.6 32.2 -0.065 0.206 -0.009 -0.057 Non-sig. 

48 -19.7 32.2 -0.059 0.261 -0.011 -0.048 Non-sig. 

49 -11.8 32.2 -0.048 0.271 -0.009 -0.039 Non-sig. 

50 -3.9 32.2 -0.041 0.332 -0.008 -0.033 Non-sig. 

51 3.9 32.2 -0.021 0.447 -0.006 -0.015 Non-sig. 

52 11.8 32.2 -0.005 0.447 -0.006 0.001 Non-sig. 

53 19.7 32.2 0.021 0.412 -0.005 0.026 Non-sig. 

54 27.6 32.2 -0.013 0.447 -0.007 -0.006 Non-sig. 

55 35.5 32.2 -0.038 0.332 -0.008 -0.03 Non-sig. 

56 43.4 32.2 -0.041 0.312 -0.008 -0.033 Non-sig. 

57 51.3 32.2 -0.008 0.482 -0.006 -0.002 Non-sig. 

58 59.2 32.2 0.035 0.302 -0.005 0.04 Non-sig. 

59 67.1 32.2 0.032 0.317 -0.005 0.037 Non-sig. 

60 75 32.2 0.024 0.377 -0.005 0.03 Non-sig. 

61 -75 38.3 0.051 0.286 0.002 0.049 Non-sig. 

62 -67.1 38.3 0.051 0.296 0.003 0.048 Non-sig. 

63 -59.2 38.3 0.04 0.352 0.003 0.037 Non-sig. 

64 -51.3 38.3 -0.016 0.367 0 -0.016 Non-sig. 

65 -43.4 38.3 -0.058 0.236 -0.002 -0.056 Non-sig. 



66 -35.5 38.3 -0.08 0.151 -0.006 -0.074 Non-sig. 

67 -27.6 38.3 -0.07 0.201 -0.008 -0.062 Non-sig. 

68 -19.7 38.3 -0.057 0.276 -0.01 -0.047 Non-sig. 

69 -11.8 38.3 -0.049 0.312 -0.009 -0.04 Non-sig. 

70 -3.9 38.3 -0.044 0.352 -0.009 -0.036 Non-sig. 

71 3.9 38.3 -0.025 0.392 -0.008 -0.017 Non-sig. 

72 11.8 38.3 -0.007 0.472 -0.007 0 Non-sig. 

73 19.7 38.3 0.024 0.392 -0.006 0.03 Non-sig. 

74 27.6 38.3 -0.018 0.397 -0.007 -0.011 Non-sig. 

75 35.5 38.3 -0.051 0.307 -0.008 -0.042 Non-sig. 

76 43.4 38.3 -0.064 0.256 -0.009 -0.055 Non-sig. 

77 51.3 38.3 -0.034 0.402 -0.007 -0.027 Non-sig. 

78 59.2 38.3 0.005 0.432 -0.005 0.011 Non-sig. 

79 67.1 38.3 0.027 0.327 -0.005 0.032 Non-sig. 

80 75 38.3 0.037 0.312 -0.005 0.042 Non-sig. 

81 -75 44.4 0.043 0.312 0.002 0.04 Non-sig. 

82 -67.1 44.4 0.049 0.322 0.003 0.046 Non-sig. 

83 -59.2 44.4 0.048 0.347 0.004 0.044 Non-sig. 

84 -51.3 44.4 -0.001 0.462 0.001 -0.002 Non-sig. 

85 -43.4 44.4 -0.039 0.296 -0.002 -0.037 Non-sig. 

86 -35.5 44.4 -0.053 0.261 -0.005 -0.048 Non-sig. 

87 -27.6 44.4 -0.04 0.322 -0.006 -0.034 Non-sig. 

88 -19.7 44.4 -0.024 0.397 -0.007 -0.016 Non-sig. 

89 -11.8 44.4 -0.031 0.382 -0.007 -0.024 Non-sig. 

90 -3.9 44.4 -0.036 0.367 -0.007 -0.029 Non-sig. 

91 3.9 44.4 -0.023 0.392 -0.006 -0.016 Non-sig. 

92 11.8 44.4 -0.001 0.477 -0.006 0.005 Non-sig. 

93 19.7 44.4 0.033 0.382 -0.005 0.038 Non-sig. 

94 27.6 44.4 -0.007 0.467 -0.006 -0.001 Non-sig. 

95 35.5 44.4 -0.038 0.327 -0.007 -0.031 Non-sig. 

96 43.4 44.4 -0.054 0.231 -0.008 -0.046 Non-sig. 

97 51.3 44.4 -0.033 0.337 -0.008 -0.025 Non-sig. 

98 59.2 44.4 -0.004 0.462 -0.007 0.003 Non-sig. 

99 67.1 44.4 0.017 0.352 -0.005 0.022 Non-sig. 

100 75 44.4 0.028 0.342 -0.004 0.032 Non-sig. 

101 -75 50.6 0.022 0.437 0.001 0.02 Non-sig. 

102 -67.1 50.6 0.035 0.377 0.002 0.032 Non-sig. 

103 -59.2 50.6 0.045 0.342 0.003 0.041 Non-sig. 

104 -51.3 50.6 0.008 0.467 0 0.008 Non-sig. 

105 -43.4 50.6 -0.019 0.387 -0.002 -0.017 Non-sig. 

106 -35.5 50.6 -0.026 0.367 -0.004 -0.022 Non-sig. 

107 -27.6 50.6 -0.013 0.427 -0.005 -0.008 Non-sig. 

108 -19.7 50.6 0.003 0.427 -0.006 0.008 Non-sig. 

109 -11.8 50.6 -0.015 0.447 -0.005 -0.01 Non-sig. 

110 -3.9 50.6 -0.028 0.402 -0.005 -0.022 Non-sig. 

111 3.9 50.6 -0.019 0.432 -0.005 -0.014 Non-sig. 

112 11.8 50.6 0.004 0.442 -0.004 0.009 Non-sig. 

113 19.7 50.6 0.039 0.322 -0.004 0.043 Non-sig. 

114 27.6 50.6 0.005 0.462 -0.005 0.01 Non-sig. 

115 35.5 50.6 -0.022 0.372 -0.006 -0.016 Non-sig. 

116 43.4 50.6 -0.038 0.291 -0.007 -0.031 Non-sig. 

117 51.3 50.6 -0.021 0.407 -0.008 -0.013 Non-sig. 

118 59.2 50.6 0.001 0.457 -0.009 0.009 Non-sig. 

119 67.1 50.6 0.011 0.412 -0.006 0.016 Non-sig. 

120 75 50.6 0.015 0.392 -0.004 0.019 Non-sig. 



121 -75 56.7 -0.002 0.432 0 -0.003 Non-sig. 

122 -67.1 56.7 0.018 0.422 0.001 0.017 Non-sig. 

123 -59.2 56.7 0.041 0.372 0.002 0.038 Non-sig. 

124 -51.3 56.7 0.02 0.397 0 0.019 Non-sig. 

125 -43.4 56.7 0.003 0.467 -0.002 0.005 Non-sig. 

126 -35.5 56.7 0.005 0.437 -0.004 0.009 Non-sig. 

127 -27.6 56.7 0.018 0.342 -0.004 0.022 Non-sig. 

128 -19.7 56.7 0.033 0.281 -0.004 0.037 Non-sig. 

129 -11.8 56.7 0.005 0.397 -0.003 0.008 Non-sig. 

130 -3.9 56.7 -0.017 0.437 -0.003 -0.014 Non-sig. 

131 3.9 56.7 -0.014 0.432 -0.003 -0.011 Non-sig. 

132 11.8 56.7 0.011 0.422 -0.003 0.014 Non-sig. 

133 19.7 56.7 0.046 0.271 -0.003 0.049 Non-sig. 

134 27.6 56.7 0.017 0.367 -0.004 0.021 Non-sig. 

135 35.5 56.7 -0.005 0.487 -0.004 0 Non-sig. 

136 43.4 56.7 -0.02 0.382 -0.006 -0.014 Non-sig. 

137 51.3 56.7 -0.009 0.482 -0.008 -0.001 Non-sig. 

138 59.2 56.7 0.005 0.427 -0.01 0.015 Non-sig. 

139 67.1 56.7 0.004 0.447 -0.006 0.01 Non-sig. 

140 75 56.7 0 0.467 -0.003 0.003 Non-sig. 

141 -75 62.8 -0.025 0.337 -0.001 -0.024 Non-sig. 

142 -67.1 62.8 -0.01 0.417 -0.001 -0.009 Non-sig. 

143 -59.2 62.8 0.012 0.452 -0.001 0.013 Non-sig. 

144 -51.3 62.8 0.019 0.372 -0.001 0.02 Non-sig. 

145 -43.4 62.8 0.024 0.357 -0.001 0.025 Non-sig. 

146 -35.5 62.8 0.042 0.276 -0.001 0.043 Non-sig. 

147 -27.6 62.8 0.054 0.241 -0.001 0.055 Non-sig. 

148 -19.7 62.8 0.067 0.206 -0.001 0.069 Non-sig. 

149 -11.8 62.8 0.03 0.302 -0.001 0.03 Non-sig. 

150 -3.9 62.8 0.001 0.457 0 0.001 Non-sig. 

151 3.9 62.8 -0.005 0.492 0 -0.005 Non-sig. 

152 11.8 62.8 0.018 0.382 -0.001 0.019 Non-sig. 

153 19.7 62.8 0.049 0.241 -0.002 0.05 Non-sig. 

154 27.6 62.8 0.023 0.362 -0.003 0.026 Non-sig. 

155 35.5 62.8 0.004 0.467 -0.003 0.007 Non-sig. 

156 43.4 62.8 -0.011 0.472 -0.005 -0.005 Non-sig. 

157 51.3 62.8 -0.004 0.457 -0.008 0.004 Non-sig. 

158 59.2 62.8 0.006 0.432 -0.01 0.016 Non-sig. 

159 67.1 62.8 0.001 0.482 -0.006 0.007 Non-sig. 

160 75 62.8 -0.005 0.487 -0.003 -0.002 Non-sig. 

161 -75 68.9 -0.022 0.362 -0.002 -0.02 Non-sig. 

162 -67.1 68.9 -0.023 0.357 -0.003 -0.02 Non-sig. 

163 -59.2 68.9 -0.019 0.372 -0.003 -0.016 Non-sig. 

164 -51.3 68.9 0.004 0.452 -0.002 0.005 Non-sig. 

165 -43.4 68.9 0.02 0.387 -0.001 0.021 Non-sig. 

166 -35.5 68.9 0.045 0.241 0 0.045 Non-sig. 

167 -27.6 68.9 0.056 0.236 0 0.056 Non-sig. 

168 -19.7 68.9 0.068 0.206 0 0.068 Non-sig. 

169 -11.8 68.9 0.033 0.296 0 0.033 Non-sig. 

170 -3.9 68.9 0.007 0.437 0 0.007 Non-sig. 

171 3.9 68.9 -0.001 0.452 0 0 Non-sig. 

172 11.8 68.9 0.018 0.367 -0.001 0.018 Non-sig. 

173 19.7 68.9 0.043 0.286 -0.001 0.044 Non-sig. 

174 27.6 68.9 0.014 0.392 -0.003 0.017 Non-sig. 

175 35.5 68.9 -0.007 0.482 -0.004 -0.003 Non-sig. 



176 43.4 68.9 -0.022 0.407 -0.006 -0.016 Non-sig. 

177 51.3 68.9 -0.013 0.487 -0.007 -0.005 Non-sig. 

178 59.2 68.9 0.001 0.432 -0.009 0.01 Non-sig. 

179 67.1 68.9 0.006 0.442 -0.006 0.012 Non-sig. 

180 75 68.9 0.009 0.482 -0.003 0.012 Non-sig. 

181 -75 75 -0.02 0.402 -0.002 -0.017 Non-sig. 

182 -67.1 75 -0.035 0.307 -0.004 -0.031 Non-sig. 

183 -59.2 75 -0.047 0.281 -0.005 -0.042 Non-sig. 

184 -51.3 75 -0.01 0.472 -0.002 -0.008 Non-sig. 

185 -43.4 75 0.017 0.387 0 0.017 Non-sig. 

186 -35.5 75 0.048 0.266 0.002 0.047 Non-sig. 

187 -27.6 75 0.058 0.226 0.002 0.056 Non-sig. 

188 -19.7 75 0.069 0.226 0.001 0.068 Non-sig. 

189 -11.8 75 0.036 0.312 0.001 0.035 Non-sig. 

190 -3.9 75 0.011 0.387 0 0.011 Non-sig. 

191 3.9 75 0.003 0.427 -0.001 0.003 Non-sig. 

192 11.8 75 0.018 0.372 -0.001 0.018 Non-sig. 

193 19.7 75 0.038 0.302 -0.001 0.039 Non-sig. 

194 27.6 75 0.006 0.457 -0.003 0.009 Non-sig. 

195 35.5 75 -0.017 0.462 -0.005 -0.012 Non-sig. 

196 43.4 75 -0.033 0.422 -0.007 -0.026 Non-sig. 

197 51.3 75 -0.021 0.437 -0.007 -0.014 Non-sig. 

198 59.2 75 -0.004 0.472 -0.008 0.003 Non-sig. 

199 67.1 75 0.011 0.442 -0.006 0.017 Non-sig. 

200 75 75 0.021 0.387 -0.004 0.025 Non-sig. 

 



APPENDIX C 

We tested the effects of detrending on the estimation of the observed and expected codispersion 

using a trend surface linear regression (abundance ~ X + Y) on the abundance rasters for two of 

the simulated abundance datasets (Figure 1). The residuals from these trend surface regressions 

were then used in a codispersion analysis. The results from this analysis show that detrending 

removes interesting spatial pattern from the data (Figure 2), which results in codispersion values 

near to zero (Figure 3). 

 

 

Figure 1. Simulated abundance patterns for two species in 20 × 20-m grid cells in a 300 × 300-m 

plot. 

  



 

Figure 2. Scatterplots showing the relationship between the (A) raw and (B) detrended simulated 

abundance values in 20 × 20-m grid cells in a 300 × 300-m plot. 



 

Figure 3. Codispersion plots for the simulated species co-occurrence patterns in 20 × 20-m grid 

cells in a 300 × 300-m plot. A: raw data; B: detrended data. 
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