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Abstract

We generalize two classes of statistical sequential incomplete information games: (1)
those resembling typical signalling games, in which a single agent represents each player,
allowing for information to be revealed about future play; and (2) those in which each
player is represented by a set of independent agents, where moves do not reveal private
information. The generalized model we develop, the Correlated Agent Model, relies on a
parameter, ρ, which denotes the correlation between two agents’ private information —
i.e., the extent to which a player knows the future private component of her preferences.
The independent agent and single agent models are special cases, where ρ = 0 and
ρ = 1, respectively. The model also allows 0 < ρ < 1, a class of games which have not
yet been considered. We apply the model to crisis bargaining and demonstrate how to
estimate ρ, as well as parameters associated with utilities.
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1 Introduction

How do state leaders, members of Congress, voters, or consumers know what their future

preferences will be? In most applications of game theory to political behavior, researchers

generally assume that decision makers know their own future preferences with complete

certainty. While this assumption seems reasonable in some cases (e.g., when a small number

of decisions will be made over a short period of time), there may be other situations where it

is implausible (e.g., when decisions will be made over a long period of time). In this paper,

we examine future preferences and signaling in the context of statistical games. We develop

a new approach (a Correlated Agent Model) that generalizes two major classes of models

with private information. We demonstrate how to conduct statistical estimation using this

new approach and apply these techniques to international crisis bargaining.

Current statistical models for crisis bargaining entail either traditional game-theoretic

assumptions (Lewis and Schultz 2003; Wand 2006; Whang 2010b; Whang, McLean and

Kubserski 2013) or “independent agent” assumptions(Signorino 2003; Leblang 2003; Sig-

norino and Tarar 2006; Gent 2007; Bas, Signorino and Walker 2008; McLean and Whang

2010; Carter 2010; Bas 2012). These approaches differ in what they assume about players’

uncertainty concerning their own preferences. Traditional game-theoretic models assume

that each player completely knows at every point in the game how much she will value the

outcomes in the model, no matter how far in the future those outcomes are. In contrast,

many recent stochastic games (e.g., McKelvey & Palfrey’s Quantal Response Equilibrium

(McKelvey and Palfrey 1995, 1998) and Signorino’s Nash-based strategic probit models (Sig-

norino 1999, 2003)) take an independent agent approach. Here, each player is represented

by a different agent for each information set. A player’s agents share the same average util-

ity for outcomes, but have different private components that are unobserved by her fellow

agents. This assumption makes intuitive sense when moves are temporally distant – e.g., I
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may not know exactly how, at some point in the future, I will value a given outcome. This

assumption is also realistic when we have a reason to expect changes in a player’s agents –

i.e., when we have reason to believe that a current agent and a successor agent will differently

value a given outcome. Finally, it is reasonable to have the independent agent assumption

when there are unexpected events or exogenous shocks in the course of the game that alter

the utility evaluation of players.

Crucially, these two models lead to distinct implications regarding the ability of players to

signal their resolve and learn from the actions of opponent players. The traditional Bayesian

models allow each player to update his/her initial beliefs in the game. Since players know

their own private information before the game begins, the informed player is capable of

signaling his/her true ‘type’ and the other players fully adjust their prior assessment of their

opponent’s type and actions accordingly. The independent agent assumption, on the other

hand, implies that players do not learn from each other’s moves, since private information

for each agent is unknown to, and independent of, that player’s other agents farther down

the tree.

In many important contexts – e.g., international conflicts involving territorial disputes,

economic sanctions, or military interventions – the extent to which actors have correct un-

derstanding of their own payoffs down the game tree remains an empirical question. Rather

than pitting these approaches against each other as the only two options, and as mutually

exclusive options, we develop a more general approach — the Correlated Agent Model —

that contains each as a special case and allows us to estimate the extent to which actors

know their future preferences.

The remainder of this paper proceeds as follows. In the next section, we set up a the-

oretical model that generalizes both the traditional Bayesian model and the independent

agent model. Following that, we derive equilibrium probabilities and develop a maximum
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likelihood estimator based on this more general model. We then present an application of

our statistical model to international crisis bargaining, using data from Lewis and Schultz

(2005).

2 Future Preferences and Correlated Agents

Game-theoretic models of signaling have been used extensively in the field of international

relations. Whether the topic is crisis bargaining (Morrow 1989; Ramsay 2004), deterrence

(Powell 1990; Fearon 2002), crisis escalation and inter-state conflict (Fearon 1997; Slantchev

2005), the role of domestic politics in foreign policy choices (Fearon 1994a; Mo 1995; Schultz

1998), terrorism (Overgaard 1994; Arce and Sandler 2010), or economic sanctions (Martin

1993; Drezner 1998), scholars have employed signaling models to develop theories regarding

the role uncertainty plays in strategic interactions, and what tools and mechanisms are

available for actors to reduce this uncertainty or to exploit it.

A very simple but functional version of a game involving signaling and belief updating

is presented in Figure 1. Due to the simplicity of this model and its ability to fully capture

the essence of signaling and belief updating, discrete-choice models with the same or very

similar game structures have been used extensively in the literature (Fearon 1994b; Smith

1999; Schwebach 2000; Schultz 2001; Fearon 2002; Lewis and Schultz 2003; Lacy and Niou

2004; Lewis and Schultz 2005; Kurizaki 2007; Esarey, Mukherjee and Moore 2008; Fey and

Ramsay 2010). Due to these desirable properties, we will also use this model to develop the

statistical estimator in the next section.

[Figure 1 about here.]

The game in Figure 1 (a) represents a simple interaction between two players, A and B.

There are three decision nodes and four possible outcomes. Each player’s utility for a given
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outcome has two components: an observable component that is visible to both players, and

a private information component that is only revealed to the player herself. Accordingly,

Player A’s utility for outcome k is written as Uk + υk, where Uk represents the observable

component and υk the private component. Similarly, Player B’s utility for outcome k is

written as Vk + νk. We assume that υk and νk follow probability distributions f(υ) and g(ν)

respectively.

The game proceeds as follows: Nature moves first, and draws υk and νk from their

corresponding distributions and selectively reveals them to A and B. Then Player A moves,

choosing between actions a1 and a2. If a1 is chosen, the game ends with Outcome 1.1 If a2

is chosen, then Player B chooses between a3 and a4. If B chooses a3, the game ends with

Outcome 3. If a4 is chosen, then Player A moves again, choosing between a5 and a6. a5 ends

the game with Outcome 5, and a6 results in Outcome 6.

This is a traditional two-player Bayesian game with two-sided incomplete information.

We call this game the Single Agent Model (SAM) as A moves twice in the game and possesses

perfect information about her utilities in both stages. Based on an appropriately specified set

of utilities {U, V} and the probability distributions f(υ) and g(ν), we can solve this game

for Perfect Bayesian Equilibria (PBE). For the purpose of developing the statistical estimator

later in the paper, we are especially interested in players’ probabilities of choosing each action

{p1, p2, . . . , p6}, and the probability distribution of outcomes that these probabilities imply.

We will now consider the two-agent version of the same game, shown in Figure 1 (b).

This is much like the game in Figure 1 (a), except now Player A is represented by two agents,

A1 and A2, who share the same observable utility Uk for an outcome k, while at the same

time each agent’s private component is not directly observable to the other agent.2 We will

denote the private components of A1 by υk as above, and A2’s private components by πk.

Like the private information components of A1 and B’s outcome utilities, πk is assumed
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to follow a continuous probability distribution, which we assume to be a standard Normal

distribution.

One can think of A1 and A2 as literally two separate agents for Player A – e.g., different

decision-making incarnations of A that emerge in the course of the game. Alternatively, one

could think of this as Player A making decisions over a somewhat more extended period of

time — where she has a sense at the first node what her utility is likely to be at the last

node, but realizes that it may change slightly by that point.

In the typical agent specification, which we will refer to as the Independent Agent Model

(IAM), the private components υk and πk are assumed to be independent and identically

distributed. In other words, A1 and B have the same amount of uncertainty about A2’s choice

at the end of the game. In this formulation, it is helpful to think of the game as consisting

of three different players, two of which (A1 and A2) share the same observable utilities for

outcomes. Therefore, once A1 moves, B learns nothing about A’s private information and

what A2 is likely to do at the last node. In this game, there is no belief updating by any

player. For A1, knowing her own outcome payoffs does not give any information about A2’s

payoffs because of the independence of private components. There is no belief updating on

the part of B either, because A1’s choice in the game does not give any information about

A2’s likely choice.

IAM and SAM are limit cases of a more general model. Suppose we maintain the con-

struct of agents A1 and A2, but now assume that cor(υk, πk) = ρ �= 0 for outcomes 5 and 6.3

In contrast to IAM, in this case, B may learn something about A2’s private information and

what A2 is likely to do by observing A1’s choice, because of the non-zero correlation between

the private information components of A1 and A2’s outcome payoffs. We refer to this more

general model as the Correlated Agent Model (CAM). IAM and SAM, with A moving twice

in the game, can now be seen as special cases of CAM. IAM corresponds to ρ = 0, while
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SAM represents the case ρ = 1. To find the equilibrium of this model, we need to take into

account the prior and posterior information A1 and B have about the distribution of πk.

The following section derives the PBE for this model by calculating the prior and posterior

probabilities that A1 and B assign to A2’s choice in the game.

2.1 Correlated Agent Model

Based on the setup of the model, we solve for the PBE of the game, which requires that

players’ strategies are sequentially rational given their beliefs, and their beliefs are derived

from the equilibrium strategies using the Bayes’ Rule whenever possible.

We first start with A2’s decision. In equilibrium, A2 chooses a6 if and only if it gives her

a higher expected utility than a5. In other words,

U6 + π6 ≥ U5 + π5 (1)

If we go up one decision node, B chooses a4 in equilibrium if and only if it gives her a better

expected payoff. Since B has uncertainty about what A2 will do if B chooses a4, he needs

to calculate A2’s probability of choosing a6 (p6) and a5 (p5) and weight his outcome utilities

V6 + ν6 and V5 + ν5 accordingly. In other words, B chooses a4 whenever

(
1− pB6

)
(V5 + ν5) + pB6 (V6 + ν6) ≥ V3 + ν3 (2)

where pB6 represents B’s estimate of A2’s action probability after observing a2 by A1. Finally,

in equilibrium, A1 compares her expected payoffs from a1 and a2 (right and left-hand sides

of inequality 3 below). Because of her uncertainty about B’s and A2’s outcome payoffs,

A1 needs to estimate their action probabilities and use these estimated probabilities in her
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utility comparison. More formally, A1 chooses a2 if and only if

(1− p4) (U3 + υ3) + p4
(
1− pA1

6

)
(U5 + υ5) + p4p

A1
6 (U6 + υ6) ≥ U1 + υ1 (3)

where p4 represents A1’s prediction of B’s probability of choosing a4. Similarly, pA1
6 represents

A1’s estimate of A2’s probability of choosing a6. Equilibrium conditions 1-3 satisfy the

sequential rationality requirement of PBE given players’ beliefs. We now need to make sure

the beliefs are consistent with the strategies using the Bayes’ Rule.

Note that in this game there are three different estimates for A2’s probability of choosing

a6. The first, denoted by p6, is based on A1 and B’s prior beliefs about the probability

distribution of A2’s private information components πi before any player makes a move. By

the assumptions of the game, this prior distribution is Normal(0,1). After Nature reveals

A1’s private information components υi to A1, knowing υi gives A1 information about πi,

due to the correlation ρ between the two. A1’s updated estimate for p6 is denoted by pA1
6 .

Since πi and νi are not correlated, knowing his own private information components does

not give B any more information about A2 choice than that is already summarized by the

prior distribution of πi. However, B updates his prior belief after observing A1’s action,

as A1’s action implicitly conveys information about the more and less likely values for A2’s

private payoffs. This posterior probability estimate B calculates after observing A1’s choice

is denoted by pB6 .

As derivations in the Appendix show, pA1
6 and pB6 will usually take different values. This

is because A1 possesses more information than B about A2’s choice due to the correlation

between A1 and A2’s private information components. After Nature reveals A1’s private

information components υi to A1, A1 uses this information to make more accurate inferences

about A2’s action probability. B, on the other hand, can only update his prior estimate of
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A2’s choice probability indirectly by observing A1’s action.

For ease of presentation, we define here the following three latent variables that capture

A1’s, B’s, and A2’s choices:

YA1 = (1− p4) (U3 + υ3) + p4
(
1− pA1

6

)
(U5 + υ5) + p4p

A1
6 (U6 + υ6)− U1 − υ1 (4)

YB =
(
1− pB6

)
(V5 + ν5) + pB6 (V6 + ν6)− V3 − ν3 (5)

YA2 = U6 − U5 + π6 − π5 (6)

Note that in equilibrium, A1 chooses a2 if and only if YA1 ≥ 0. Similarly, B chooses a4 if and

only if YB ≥ 0, and A2 chooses a6 if and only if YA2 ≥ 0. Defined this way, Yi are random

variables as they are functions of Normally distributed private information components of

each player. Proposition 1 below defines the relevant probabilities that characterize the PBE.

Proposition 1 The equilibrium of CAM is characterized by the following probabilities:

p6 = Pr (YA2 ≥ 0) (7)

pA1
6 = Pr (YA2 ≥ 0 | υ5, υ6) (8)

pB6 = Pr (YA2 ≥ 0 | YA1 ≥ 0) (9)

p4 = Pr (YB ≥ 0 | YA1 ≥ 0) (10)

p2 = Pr (YA1 ≥ 0 | YA1 ≥ 0;YB ≥ 0) (11)

where p6 represents A1’s and B’s prior estimates, and pA1
6 and pB6 their posterior estimates

respectively, of A2’s probability of choosing a6. p2 and p4 represent A1’s probability of choosing
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a2, and B’s probability of choosing a4, respectively. The exact probabilities are as follows:

p6 = Φ

(
U6 − U5√

2

)
(12)

pA1
6 = Φ

(
U6 − U5 + ρε√

2− 2ρ2

)
(13)

pB6 =

Eε

⎡
⎣Φ(

U6−U5+ρε√
2−2ρ2

)
Φ

⎛
⎝ (1−p4)U3+p4[(1−p̄

A1
6 )U5+p̄

A1
6 U6]−U1+

p4[2p̄A1
6 −1]ε
2√

(1−p4)
2+

p24
2
+1

⎞
⎠
⎤
⎦

p2
(14)

p4 = Φ

⎛
⎝(

1− pB6
)
V5 + pB6 V6 − V3√

(1− pB6 )
2
+ (pB6 )

2 + 1

⎞
⎠ (15)

p2 = Eε

⎡
⎣Φ

⎛
⎝(1− p4)U3 + p4

[(
1− p̄A1

6

)
U5 + p̄A1

6 U6

]− U1 +
p4[2p̄A1

6 −1]ε
2√

(1− p4)
2 +

p24
2
+ 1

⎞
⎠
⎤
⎦ (16)

where ε = υ6 − υ5 is a (normally distributed) random variable and Eε is the expectation

operator for ε.

Proof of Proposition 1 is in the Appendix. The following two claims establish that IAM

and SAM are special cases of CAM when ρ = 0 and ρ = 1, respectively, and are proved in

the Appendix.

Claim 1 When ρ = 0, the Correlated Agent Model reduces to the Independent Agent Model
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with the following action probabilities:

p6 = pB6 = pA1
6 = Φ

(
U6 − U5√

2

)
(17)

p4 = Φ

(
pB6 V6 + (1− pB6 )V5 − V3√
1 + (pB6 )

2 + (1− pB6 )
2

)
(18)

p2 = Φ

⎛
⎝(1− p4)U3 + p4

[(
1− pA1

6

)
U5 + pA1

6 U6

]− U1√
(1− p4)

2 + p24
(
1− pA1

6

)2
+ p24

(
pA1
6

)2
+ 1

⎞
⎠ (19)

Claim 2 When ρ = 1, the Correlated Agent Model reduces to the Single Agent Model with

the following action probabilities:

p4 = Φ

(
pB6 V6 + (1− pB6 )V5 − V3√
1 + (pB6 )

2 + (1− pB6 )
2

)
(20)

p2 = 1− Φ2

[
U1 − (1− p4)U3 − p4U5√

p24 + 1 + (1− p4)2
,
U1 − (1− p4)U3 − p4U6√

p24 + 1 + (1− p4)2
,

1 + (1− p4)
2

p24 + 1 + (1− p4)2

]
(21)

pB6 = Φ2

[
U6 − U5√

2
,
p4U6 − U1 + (1− p4)U3√

p24 + 1 + (1− p4)2
,

p4√
2(1 + (1− p4)2 + p24)

]
/p2 (22)

Before using CAM for empirical analysis, we need to know that it satisfies certain sta-

tistical properties. In the Appendix, we conduct two sets of Monte Carlo (MC) experiments

to establish the unbiasedness and consistency of CAM. For this purpose, we first gener-

ated simulated samples for a variety of outcome utility and correlation values, and for each

configuration, we approximated the sampling distribution of CAM estimation parameters.

Our results suggest that CAM provides unbiased estimates, and the standard errors of the

estimates approach zero as the sample size increases, indicating consistency. The second
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MC experiment provides a comparison of CAM, SAM, and IAM in a variety of situations

ranging from very low to very high correlation values, and aims to show that, overall, CAM

performs better than SAM and IAM. We find that CAM is a superior approach to both when

the underlying correlation between the private information components of Player A’s two

agents is not known. Second, CAM also does at least as well as IAM when this correlation

is very close to zero, and as well as SAM when the correlation is close to one. For moderate

correlation values, CAM clearly outperforms both.

We now turn to an empirical application of the CAM estimator we just developed.

3 Empirical Application

In this section, as an empirical application of CAM, we analyze factors that affect interstate

crisis initiation and escalation, using data from Lewis and Schultz (2005). Lewis and Schultz

(2005) analyze the factors that affect a state leader’s decision to initiate an international

crisis and escalate it militarily. In their analysis, they employ a fully structural statistical

model using a traditional Bayesian updating game that assumes ρ = 1, resembling SAM in

ways discussed above. Figure 2 displays the extensive form of the crisis bargaining game that

forms the basis of the coding of the dependent variable – outcome of the crisis interaction

– in their analysis. State A first decides either to challenge the status quo with an explicit

threat of using force in the case of the opponent state’s resistance, or to stay with the status

quo (Status Quo: SQ). Upon A’s challenge, State B decides either to make a concession

(Acquiescence: ACQ) or to resist the demand of A. If B resists, A has a final choice of either

backing down from the initial challenge (Back Down: BD) or fighting (Stand Firm: SF).

There are four mutually exclusive outcomes: SQ, ACQ, BD, and SF, and corresponding

utilities of A and B: SQA, ACQA, BDA, and SFA for A and SQB, ACQB, BDB, and SFB
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for B. [Figure 2 about here.]

[Table 1 about here.]

The data consist of 93 dyadic crisis cases from the period 1919 to 1931, comprising both

Militarized Interstate Dispute data (MID) and International Conflict Behavior data (ICB).

The number of observations is 2187 with the addition of SQ cases. The distribution of

crisis outcomes is SQ = 2094, ACQ = 44, BD = 12, and SF = 37 observations. Table 1

shows the variables and measures used in our empirical analysis, and their sources. To

briefly summarize the model specification in general terms, State A’s SQ utility is associated

with the maximum number of years since State 1 or 2 joined the international system after

WWI (measured by MaxAge). ACQ utilities of A and B are modeled by three variables: the

similarity of the two states’ strategic interests (Alliance), domestic stability in B (CivilWarB),

and whether the two states share a common land border or are separated by less than 150

miles of water (Contiguous). Following the democratic peace literature, A’s democracy level

(DemocracyA) is included in the BD utility of A. Three covariates are included in A’s and B’s

SF utilities. SFA is related to the democracy score of A (DemocracyA), the relative capability

ratio of A to B (CapShareA), and the economic development level of A (DevelopA), while SFB

is associated with capability ratio, democracy, and economic development of B (CapShareA,

DemocracyB, and DevelopB). All the variables are included in their corresponding utilities

using a linear functional form. For instance, the observable component of A’s SQ utility can

be expressed as U(A, SQ) = β0 + β1MaxAge, where β̂0 and β̂1 are estimated by the model.

Identification is an important concern here because the amount of information in the data

(i.e., four mutually exclusive outcomes) is less than the number of parameters to estimate

(i.e., theoretically eight utilities). An obvious way to address this problem is to assume that

each utility is a function of regressors and thereby to increase variation in the data. While we

enhance the model’s ability to distinguish outcomes with explanatory variables as displayed
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in Table 1, we also follow suggestions made in the Appendix of Lewis and Schultz (2003). In

particular, we use normalization of the utilities by addition and multiplication while keeping

them intact with optimal choices drawn from the equilibrium probabilities. We make an

assumption regarding State A’s utilities such that the constant terms of SQA and BDB are

equal to zero. Moreover, no regressor is included in all utilities of any state. Finally, SQB

is not estimated because it is not considered in equilibrium calculation. There is no loss of

generality as a result of these restrictions.4

CAM aims to improve SAM (e.g., Lewis and Schultz 2003) and IAM (e.g., Signorino 1999,

2003) by parameterizing ρ. In the data analysis, ρ is defined as the correlation between the

private information components of State A’s two agents in the first and third decision nodes.

In a SAM model, as in Lewis and Schultz (2003, 2005), State A knows her SF and BD payoffs

perfectly at any point in the game. In other words, in our model’s terms, ρ is assumed to be

one. The primary purpose of our estimation of CAM here is to find out if this assumption

of SAM is too restrictive in analyzing international crisis bargaining. In order to facilitate a

comparison between SAM and CAM, we borrow Lewis and Schultz’s main specification for

the utilities and add ρ as an additional parameter to be estimated. As noted previously, as ρ

approaches zero the data-generating process approximates IAM where no meaningful belief

updating occurs, while as ρ approaches one, the data generating-process behind international

crisis bargaining follows SAM, which permits signaling and belief updating.

We model ρ as a link function of regressors such that

ρ =
exp(Xγ)− 1

exp(Xγ) + 1
, (23)

where γ is a vector of coefficients of the regressors X. This way, ρ is well bounded between -1

and 1. We select two regressors, the log of A’s total population (PopulationA) and A’s level
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of democracy (DemocracyA). When we suppose, for instance, that the correlation between

the private information components of A’s agents is systematically associated with the level

of A’s total population, ρ becomes

ρ =
exp(γ0 + γ1PopulationA)− 1

exp(γ0 + γ1PopulationA) + 1
(24)

and we estimate γ̂0 and γ̂1. Then, the coefficient of PopulationA helps us infer how much

State A is certain about her own preference over crisis bargaining outcomes down the game

tree. We choose the population and democracy of the challenger state A to understand ρ

because they are good proxies to characterize traditional military power and international

crisis management in the interwar period.5 It is reasonable to hypothesize that, if State A

has a large population, the degree of uncertainty between A1 and A2 is likely to decline and,

hence, the private terms of two agents should be more correlated, compared with the cases

with small population challengers6. This reasoning leads us to expect a positive coefficient

for the population variable. On the other hand, DemocracyA is expected to have a negative

effect on ρ because elected officials responsible for foreign policies are unlikely to share

identical preferences in a democratic country where leadership changes on a regular basis.

DemocracyA and DemocracyB are also included in each state’s Stand Firm utilities to control

for the effect of regime type on states’ crisis preferences. We also include another indicator

of states’ power in their utilities, which is the state’s share of military capabilities in the

particular dyad (CapShareA).
7

[Table 2 about here.]

[Table 3 about here.]

The estimation findings are presented in Tables 2 - 3.8 The first, second and third

columns denote the outcomes, utilities, and regressors assigned to the utilities, followed by
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the estimation results, coefficients and standard errors of SAM (Lewis and Schultz 2005).9

CAM1 results in the sixth and seventh columns use the same data and utility specifications

of SAM except that the estimation model is now the correlated agent model where ρ is a

constant term. In CAM2, ρ is assumed to be a function of PopulationA, while CAM3 results

use PopulationA and DemocracyA.
10

The findings of CAM1, CAM2 and CAM3 confirm that most of the coefficients have the

same signs as those from SAM. First, the positive and significant coefficient of MaxAge im-

plies that younger states mostly created in the wake of WWI are more likely to be revisionist

challengers. Second, the negative and significant DemocracyA and constant term (except for

CAM2) of BDA implies that audience costs exist in that A is significantly worse off after

backing down than after maintaining the status quo. Audience costs also increase, or the

probability of BDA decreases, if A is democratic. Third, the positive CapShareA and nega-

tive DemocracyA coefficients imply that A’s utility SFA in the SF outcome increases as A’s

military advantage over B increases, and as A is less democratic. All three CAM results show

that DevelopA is statistically insignificant in contrast to SAM results. All three variables

and the constant term in SFB fail to pass conventional criteria for statistical significance.

Fourth, while SAM has no significant coefficients in ACQ, whether A or B, CAM1 finds some

of them significant at a 10% significance level. The negative coefficient of Alliance and the

positive coefficient for CivilWarB imply that A’s ACQ payoff, ACQA, increases as A and B

have less similarity in their alliance portfolios, and as B is involved in a civil war. Moreover,

the positive coefficient of Alliance implies that B’s ACQ payoff, ACQB, increases as A and

B have similar alliance portfolios. However, these variables lose significance in CAM2 and

only Alliance in ACQA survives in CAM3.

In order to compare the two models, we first conduct a Likelihood Ratio (LR) test

between SAM and CAM models to examine how much CAM models improve on the fit of
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the SAM model. LR test is an appropriate choice here as SAM is a special case of CAM

with a restriction of ρ = 1. The test aims to find out is relaxing this restriction results in

a significant improvement in model fit. The statistic follows a χ2 distribution with degrees

of freedom equal to the extra parameters used in modeling ρ. The LR statistic for the test

between SAM and CAM1 is −2 ∗ (−418.9+ 416.64) = 4.52 and the corresponding p-value is

0.0335. Thus, the results suggest that modeling ρ significantly increases the model fit and

our understanding of crisis bargaining. In addition, we compared the two approaches based

on their predictive performance. We find that CAM clearly outperforms SAM in terms of

the percentage of Resist and Fight decisions correctly predicted (SAM: 59% for Fight, 56%

for Resist; CAM 76-79% for Fight, 56-62% for Resist). For the initial Challenge decision,

both models correctly predict approximately the same percentage of cases (96%).

Turning to the estimation of ρ, CAM1 estimates ρ as a constant term. While the es-

timated ρ fails to be significant, this is not surprising. This specification is only meant to

serve as a baseline, as estimating ρ as a constant term supposes that all challenger states

in the data have on average the same level of information about their future preferences,

which is unrealistic. To capture the potential variations across challenger states in the level

of correlation between the two agents’ private information, CAM2 and CAM3 incorporate

PopulationA and DemocracyA into the ρ specification. CAM2 provides a positive and signifi-

cant coefficient of A’s level of total population, PopulationA (p-value = 0.0540). This positive

association implies that the correlation between private information of A1 and A2 increases

as A’s total population increases. When we plug in the average value of PopulationA while

all other variables are held constant at their mean values, the predicted value of ρ is only

0.26. However, the ρ prediction increases up to 0.99 at the maximum PopulationA value.

In the interwar period, there is no doubt that population was one of the most important

components of what is often called “hard power.” It stands to reason that the sheer size of a
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country’s manpower should be directly related to its economic output and military resources.

Therefore, a challenger state with a larger population should have better knowledge of what

she will prefer far down the game tree than a challenger with a smaller population. When

DemocracyA is added to the CAM2 specification, CAM3 also produces similar results. In

particular, PopulationA remains robust with a positive direction. The positive coefficient of

DemocracyA implies that as State A is democratic, the correlation of stochastic components

of SF utilities between its agents increases. While this does not seem to be consistent with

our expectation, it fails to reach statistical significance at conventional levels.

[Figure 3 about here.]

Figure 3 displays the effect of ρ on states’ predicted action probabilities, the predicted

probability of outcomes, and the amount of belief updating in international crises. We plot

the probability that State B resists upon receiving a challenge from State A (Pr(Resist):

solid line) and the probability that a final outcome of the crisis is ACQ (Pr(ACQ): dotted

line) as a function of PopulationA. Remaining variables are set to their mean values. We

select the estimates of CAM2 instead of those of CAM3 as DemocracyA also appears in SF

and BD outcome utilities. Because the democracy variable is included both in ρ and other

utilities in CAM3, it is difficult to separate out the effect of ρ on the choice and action

probabilities. The x-axis of Figure 3 display values within two standard deviations away

from the mean of PopulationA.

Figure 3 shows that as PopulationA increases, Pr(Resist) decreases and, hence, Pr(ACQ)

increases. As the log of State A’s total population increases from 5.41 (minimum) to 13.15

(maximum), the probability that State B opts for resistance upon a challenge decreases

on average by 11%, which in turn results in a decrease of 9% in the probability that the

ACQ outcome is reached. From Table 3, recall that the population of State A is positively

associated with ρ. Thus, we can interpret that ρ is also negatively associated with Pr(Resist)
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and positively associated with Pr(ACQ).

The role of ρ is critical in understanding the findings in Figure 3 since the effects of

PopulationA on state behavior works through ρ. This correlation parameter explains the

extent to which an informational mechanism is successfully established between State A and

B. We know that as the value of ρ increases, the crisis bargaining game gets closer to a

traditional Bayesian game, which involves knowledge being common to both State A and B.

As the agents of State A share their preferences and the crisis bargaining game reduces to

SAM, we expect that State B should take the act of challenge by the first agent of State A

seriously. That is, State B should pay more attention to the message conveyed by State A’s

challenge. State B is more likely to update her initial assessment of State A’s resolve than

in the case in which the bargaining game reduces to the independent agent game.

State B’s prior belief, her estimate of the challenger’s probability of standing firm be-

fore B observes a challenge, is given by p6 or equation (4) in Proposition 1. Upon ob-

serving a challenge, State B adjusts her prior belief and forms a posterior belief, which is

the conditional probability that State A will stand firm given that State A challenges, i.e.,

Pr(Fight|Challenge) = pB6 or equation (6) in Proposition 1. The difference between the

posterior and prior, Pr(Fight|Challenge) − Pr(Fight) = pB6 − p6, measures the amount of

belief updating by B. As Figure 3 depicts, the amount of belief updating tends to increase

as PopulationA increases and, hence, ρ increases. We also see that the positive relationship

between ρ and belief updating influences State B’s choice at her decision-making node. State

B is less likely to resist because State B knows that there is less uncertainty between the two

agents of State A (high ρ). Compared with the opposite case of low ρ in which State B has

little to learn from the challenge, signaling can be effective when the value of ρ is high. The

act of challenge is more likely to be credible in terms of revealing the challenger’s resolve.

This effective informational mechanism can affect state behavior, decreasing the probability
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of Resist and increasing the probability of ACQ. In sum, in this particular example we con-

sidered, the larger the population of State A, the larger the probability that State A achieves

concessions from B, because of more effective signalling.

4 Conclusion

In this paper, we developed a statistical estimator that integrates two existing models: a

model that makes traditional Bayesian updating assumptions (Single Agent Model) and

a model with no belief updating (Independent Agent Model). As Lewis and Schultz (2003)

argued, one notable difference between the single and independent agent models is the extent

to which belief updating is allowed. Because the former model assumes that players have no

uncertainty over their own utilities while having uncertainty over their opponent’s utilities,

the informed mover has a chance to signal her type. In the independent agent model, on

the other hand, signaling is impossible simply because each agent of the player has private

information that is not observed by the fellow agents. Under these conditions, opponents

are unable to update their prior beliefs and infer the type of the first player, because private

information components are independent from each other.

While the two models stem from distinct theoretical frameworks, their differences can

be summarized in terms of whether players have complete knowledge regarding their future

utilities in the game. Our Correlated Agent Model estimates the extent to which players

know their future preferences farther down the game tree. We do not assume, as is common

in traditional Bayesian signaling models, that players know all their future utilities before

the game begins. Rather, we estimate an additional parameter ρ that informs us about

the extent to which players know their future payoffs. Insofar as it makes no assumptions

regarding the value of ρ, the correlated agent model absorbs single agent models (where ρ =
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1) and independent agent models (where ρ = 0) into a single framework. Moreover, Monte

Carlo analyses demonstrate that the correlated agent model is unbiased and consistent, and

outperforms the other two models in a variety of situations with different levels of correlation

between actors’ private information at different points in time.

Finally, using our approach, we reanalyzed a recent study by Lewis and Schultz (2005) on

interstate crisis bargaining during the interwar period. While maintaining their specification

for actors’ utilities from the outcomes of the crisis interaction, we estimated ρ as a measure

of a challenger state’s knowledge of her future preferences if the target state resists her

challenge. In doing so, we assumed that the extent of this knowledge is a function of the

state’s economic development and total population. Our findings show that these factors have

significant effects on how much a state knows about its future preferences: as a challenger

state has a larger size of its manpower, it tends to have a clearer picture of its preferences

over what to do if its target decides to resist a challenge.

Notes

1We reference each outcome by the subscript of the action that leads to it.

2The assumption that the two agents of Player A share the same observable utility is

not crucial and can be relaxed without significantly changing any of the derivations. We

keep this assumption to facilitate a direct comparison of the three models we consider in this

paper.

3We assume that cor(υ5, π5) = cor(υ6, π6). Although a model with a more general cor-

relation structure can also be derived, we omit it here due to the additional complexity it
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introduces to the derivation of probabilities without providing new theoretical insights that

would justify the additional complexity. In addition, we do not consider correlations across

different outcomes for a given player. For models with within-player correlation, see Whang

(2010a).

4We also de-mean the variables used in analysis to (1) make our specification consistent

with that of Lewis and Schultz and (2) make it easier to interpret the results (e.g., the

constant terms will have intuitive meaning because they represent the average utility of

outcomes when all other variables are equal to their mean values).

5We also ran a number of different specifications for the correlation parameter using

alternative indicators for state power, which are not reported here. Our substantive findings

remain the same. These results are available upon request.

6If we view A1 and A2 as the representatives of the median position regarding the crisis

within state A, and if we assume that individual voters’ positions on the crisis issue can shift

randomly over time, the likelihood of resulting large shifts in the median voter’s position

(hence, the preferences of A2) over time will vary depending on the population size. In

particular, in larger populations, the median position will be more robust to random changes

and less likely to shift over time, and hence A1’s uncertainty about A2’s preferences will be

lower.

7In order to strengthen the identification of our model and help with convergence, we do

not include the same measure of power in both the utilities and the correlation parameter.

PopulationA and CapShareA are highly correlated, supporting our assumption that they

are proxies for the same concept. Our substantive results do not change if we include the

same measure of power in both parameters, but our estimates become more fragile. These

results are available upon request.
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8Two things are worth noting at this point. First, we numerically verified whether there

are multiple equilibria in any of our estimation results. For all estimated utilities, we found a

unique solution. Second, Lewis and Schultz (2005, 20) give additional preference restrictions

such that “the constant associated with ACQA to be greater than zero (or SQA) and the

constant associated with ACQB to be less than zero (or BDB).” While this may be a

sensible assumption from a theoretical perspective, we do not assume such restrictions. It is

not appropriate to suppose a priori that the counter-intuitive situations will not occur with

positive probability because they should not occur theoretically. It would be more sensible

to leave room for such cases in a statistical model. For detailed discussion regarding the

assumption of preference ordering in fully structural statistical models, see Whang (2009).

9Although not reported here, we also estimated an IAM model. The fit of IAM in our

sample was significantly worse than CAM and SAM, and therefore we chose not to include

it here for space reasons. The results are available upon request.

10While space constraints prevent us from reporting these results, when we include only

DemocracyA to model ρ, DemocracyA is not statistically significant at conventional levels.
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A Appendix

A.1 Proof of Proposition 1

First, A1 and B’s prior estimate of A2’s choice probability, p6, is equal to

p6 = P (U6 + π6 ≥ U5 + π5) (25)

= P (π5 − π6 ≤ U6 − U5) (26)

= Φ

(
U6 − U5√

2

)
(27)

because πi ∼ N(0, 1).

To calculate p4 = Pr(YB ≥ 0), observe that YB is a linear function of three independent

normally distributed variables ν3, ν5, and ν6, plus a constant. Therefore, YB is also normally

distributed, with mean
(
1− pB6

)
V5 + pB6 V6 − V3 and variance

(
1− pB6

)2
+ (pB6 )

2 + 1. Hence,

p4 = Φ

⎛
⎝(

1− pB6
)
V5 + pB6 V6 − V3√

(1− pB6 )
2
+ (pB6 )

2 + 1

⎞
⎠ (28)

The following proposition will be useful in deriving pA1
6 and pB6 :

11

Proposition 2 Let Z be a multivariate normal distribution and partition Z such that mean

and variance are defined as follows.

Z =

⎛
⎜⎝ Z1

Z2

⎞
⎟⎠ ∼ N

⎛
⎜⎝
⎛
⎜⎝μ1

μ2

⎞
⎟⎠ ,

⎛
⎜⎝V11 V12

V21 V22

⎞
⎟⎠
⎞
⎟⎠ . (29)
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Then, the conditional distribution of Z1 given Z2 is N(μ1|2, V1|2) where

μ1|2 = μ1 + V12V
−1
22 (Z2 − μ2) (30)

V1|2 = V11 − V12V
−1
22 V21. (31)

One way to calculate pA1
6 = Pr (YA2 ≥ 0 | υ5, υ6) is by deriving the conditional distribu-

tion Pr (YA2 | υ5, υ6).12 Using Proposition 2, we can calculate this conditional probability

distribution. To see why this is possible, observe that YA2 is a linear function of two inde-

pendent, normally distributed variables π5 and π6, and therefore it is distributed normally.

Since υ5 and υ6 are also normally distributed variables, Proposition 2 applies. Let

Z =

⎛
⎜⎜⎜⎜⎝
YA2

υ5

υ6

⎞
⎟⎟⎟⎟⎠

Note that Z is distributed as

Z =

⎛
⎜⎜⎜⎜⎝
YA2

υ5

υ6

⎞
⎟⎟⎟⎟⎠ ∼ N

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
U6 − U5

0

0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

2 −ρ ρ

−ρ 1 0

ρ 0 1

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ . (32)

From Proposition 2, we can calculate the mean and the variance of this conditional distri-
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bution as

E [YA2 | υ5, υ6] = U6 − U5 + (−ρ, ρ)

⎛
⎜⎝υ5

υ6

⎞
⎟⎠ (33)

= U6 − U5 + ρ (υ6 − υ5) (34)

V ar [YA2 | υ5, υ6] = 2− (−ρ, ρ)

⎛
⎜⎝−ρ

ρ

⎞
⎟⎠ (35)

= 2− 2ρ2 (36)

Hence,

pA1
6 = Pr (YA2 ≥ 0 | υ5, υ6)

= Φ

(
E [YA2 | υ5, υ6]√
V ar [YA2 | υ5, υ6]

)

= Φ

(
U6 − U5 + ρ (υ6 − υ5)√

2− 2ρ2

)
(37)

To find p2, we need to find Pr(YA1 ≥ 0). This is a bit more involved than finding

p4, because unlike YB, we cannot define YA1 as a linear function of independent normally

distributed random variables υ1, υ3, υ5, and υ6. This is due to the probability expression

pA1
6 that appears in YA1 as a non-linear function of υ5 and υ6. In particular, pA1

6 is a function

of υ6 − υ5.

We instead calculate this probability without deriving the exact distribution of YA1 .

We use two short-cuts. First, note that we can express the probability of an event as the

expectation of the indicator variable for that event. In other words, if we define a random

variable IY as
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IY =

⎧⎪⎨
⎪⎩

1 if YA1 ≥ 0

0 otherwise

Then, Pr(YA1 ≥ 0) becomes

Pr(YA1 ≥ 0) = E [IY ] (38)

Our second short-cut involves eliminating the υ6−υ5 term in pA1
6 that appears in Pr(YA1 ≥

0). We will do that by conditioning on υ6 − υ5. Intuitively, this means that if we knew

υ6 − υ5, then calculating Pr(YA1 ≥ 0) would no longer be a problem because YA1 would just

become a linear function of normally distributed independent variables υ1, υ3, υ5, and υ6.

To achieve this, we will use equality 38 and the Law of Iterated Expectations (LIE). For

ease of presentation, we define ε = υ6 − υ5. Using LIE, we can rewrite the right-hand side of

equation 38 as

E [IY ] = Eε [E [IY | ε]] (39)

Also, using the fact that the conditional probability of an event is equal to the conditional

expectation of the indicator variable of that event, we can replace the right-hand side with

the following:
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E [IY ] = Eε [E [IY | ε]] (40)

= Eε [Pr (YA1 ≥ 0 | ε)] (41)

Note that if we knew ε = υ6 − υ5, then YA1 would just become a linear function of

normally distributed independent variables. Call this variable Y ∗
A1

to differentiate it from

YA1 . Y
∗
A1

is normally distributed with

E
[
Y ∗
A1

]
= (1− p4)U3 + p4

(
1− p̄A1

6

)
U5 + p4p̄

A1
6 U6 − U1 (42)

V ar
[
Y ∗
A1

]
= (1− p4)

2 + p24
(
1− p̄A1

6

)2
+ p24(p̄

A1
6 )2 + 1 (43)

We use p̄A1
6 instead of pA1

6 to emphasize that p̄A1
6 is just a constant when we know ε. We can

rewrite Equation 41 as

E [IY ] = Eε [Pr (YA1 ≥ 0 | ε)] (44)

= Eε

[
Pr

(
Y ∗
A1

≥ 0 | ε)] (45)

Hence, within the expectation, we now have the probability of a normally distributed variable

conditional on another normally distributed variable. We can easily use Proposition 2 to

calculate this probability. Define

Z∗ =

⎛
⎜⎝Y ∗

A1

ε

⎞
⎟⎠ (46)
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Note that Z∗ is distributed as

N

⎛
⎜⎝
⎛
⎝(1− p4)U3 + p4

(
1− p̄A1

6

)
U5 + p4p̄

A1
6 U6 − U1

0

⎞
⎠ ,

⎛
⎜⎝(1− p4)

2 + p24

(
1− p̄A1

6

)2
+ p24(p̄

A1
6 )2 + 1 p4

(
2p̄A1

6 − 1
)

p4
(
2p̄A1

6 − 1
)

2

⎞
⎟⎠
⎞
⎟⎠ (47)

From this bivariate normal distribution, we calculate the mean and the variance of the

conditional distribution specified within the expectation argument in Equation 45 as:

E
[
Y ∗
A1

| ε] = (1− p4)U3 + p4
[(
1− p̄A1

6

)
U5 + p̄A1

6 U6

]− U1 +
p4

[
2p̄A1

6 − 1
]
ε

2
(48)

V ar
[
Y ∗
A1

| ε] = (1− p4)
2 +

p24
2

+ 1. (49)

We can now easily calculate the probability within the expectation in Equation 45 as

Pr
(
Y ∗
A1

≥ 0 | ε) = Φ

⎛
⎝(1− p4)U3 + p4

[(
1− p̄A1

6

)
U5 + p̄A1

6 U6

]− U1 +
p4[2p̄A1

6 −1]ε
2√

(1− p4)
2 +

p24
2
+ 1

⎞
⎠ (50)

Thus, finally, p2 is equal to

p2 = Eε [IY ] = Eε

⎡
⎣Φ

⎛
⎝(1− p4)U3 + p4

[(
1− p̄A1

6

)
U5 + p̄A1

6 U6

]− U1 +
p4[2p̄A1

6 −1]ε
2√

(1− p4)
2 +

p24
2
+ 1

⎞
⎠
⎤
⎦ (51)

Finally, we calculate pB6 , the probability that Player A2 chooses action a6 given that

Player A2 has chosen action a2. Note that

pB6 = Pr (YA2 ≥ 0 | YA1 ≥ 0) (52)

=
Pr(YA2 ≥ 0, YA1 ≥ 0)

p2
. (53)
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To characterize Pr(YA2 ≥ 0, YA1 ≥ 0), we make the following claim:

Claim 3 Given ε, Y ∗
A1

and YA2 are independent. That is,

Cov
[
Y ∗
A1
, YA2 | ε] = 0. (54)

Proof We already showed that Y ∗
A1
, YA2 , and ε are all normally distributed variables, as

they are linear functions of independent normally distributed variables. We can again use

Proposition 2 to derive the joint distribution of Y ∗
A1

and YA2 conditional on ε.

We first define a random vector Γ from a multivariate normal distribution:

Γ =

⎛
⎜⎜⎜⎜⎝
Y ∗
A1

YA2

ε

⎞
⎟⎟⎟⎟⎠ (55)

Then, E [Γ] and V ar [Γ] are as follows:

E [Γ] =

⎛
⎜⎜⎜⎜⎝
E

[
Y ∗
A1

]
E [YA2 ]

E [ε]

⎞
⎟⎟⎟⎟⎠ (56)

=

⎛
⎜⎜⎜⎜⎝
(1− p4)U3 + p4

(
1− p̄A1

6

)
U5 + p4p̄

A1
6 U6 − U1

U6 − U5

0

⎞
⎟⎟⎟⎟⎠ (57)

V ar [Γ] =

⎛
⎜⎜⎜⎜⎝
(1− p4)

2 + p24
(
1− p̄A1

6

)2
+ p24(p̄

A1
6 )2 + 1 p4ρ

(
2p̄A1

6 − 1
)

p4
(
2p̄A1

6 − 1
)

p4ρ
(
2p̄A1

6 − 1
)

2 2ρ

p4
(
2p̄A1

6 − 1
)

2ρ 2

⎞
⎟⎟⎟⎟⎠(58)
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From Proposition 2, we get the covariance of Y ∗
A1

and YA2 given ε as

Cov
[
Y ∗
A1
, YA2 | ε] = V ar [Γ]12 − V ar [Γ]13 V ar [Γ]32 /V ar [Γ]33 (59)

= p4ρ
(
2p̄A1

6 − 1
)− p4

(
2p̄A1

6 − 1
)
2ρ/2 (60)

= 0. (61)

Hence, given ε, Y ∗
A1

and YA2 are independent.

We can now write Pr(YA2 ≥ 0, YA1 ≥ 0) as

Pr(YA2 ≥ 0, YA1 ≥ 0) = Eε [Pr(YA2 ≥ 0, YA1 ≥ 0 | ε)] (62)

= Eε

[
Pr(YA2 ≥ 0, Y ∗

A1
≥ 0 | ε)] (63)

= Eε

[
Pr(YA2 ≥ 0 | ε) Pr(Y ∗

A1
≥ 0 | ε)] (64)

and pB6 as

pB6 = Pr (YA2 ≥ 0 | YA1 ≥ 0) (65)

=
Pr(YA2 ≥ 0, YA1 ≥ 0)

p2
(66)

=
Eε

[
Pr(YA2 ≥ 0 | ε) Pr(Y ∗

A1
≥ 0 | ε)]

p2
(67)

=

Eε

⎡
⎣Φ(

U6−U5+ρε√
2−2ρ2

)
Φ

⎛
⎝ (1−p4)U3+p4[(1−p̄

A1
6 )U5+p̄

A1
6 U6]−U1+

p4[2p̄A1
6 −1]ε
2√

(1−p4)
2+

p24
2
+1

⎞
⎠
⎤
⎦

p2
(68)
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A.2 Proofs of Claims 1 and 2

A.2.1 Equivalence of CAM and IAM when ρ = 0.

First, observe that when ρ = 0, pA1
6 in equation 13 reduces to Φ(U6−U5√

2
), which is equal

to the IAM probability p6 in equation 17. Second, observe that when ρ = 0, the first Φ()

argument inside the expectation in equation 14 is no longer a function of ε and therefore

can be taken out of the expectation. The remaining part of the expectation is equal to p2 in

equation 16, and p2 in the numerator and the denominator cancel each other out. Therefore,

p6 = pB6 = pA1
6 when ρ = 0. Third, p4 in equation 15 as a function of pB6 reduces to p4 in

equation 18 as p6 = pB6 . Finally, in calculating p2 when ρ = 0, note that we no longer need

to condition on ε = υ6 − υ5 and use the Law of Iterated Expectations, because YA1 is now a

linear function of independent normally distributed random variables and itself is normally

distributed. This results in the probability p2 as expressed in equation 19.

A.2.2 Equivalence of CAM and SAM when ρ = 1.

In this section, we show that CAM probabilities converge to SAM probabilities given in

Claim 2 when ρ → 1. Define an indicator function I6 that takes the value 1 when max{U6+

υ6, U5 + υ5} = U6 + υ6 and 0 otherwise. Thus, in the last node, A2 chooses a6 if and only

if I6 = 1. Also, since ρ = 1, define ε = υ6 − υ5 = π6 − π5. Thus, when ρ = 1, pA6 in CAM

converges to I6.

Observe that, when ρ = 1, derivation of p4 follows the identical steps as in the more

general CAM case as defined in equation 28. Moreover, A1 knows exactly what A2 will do

at the last decision node due to the perfect correlation. Thus, A1 chooses a2 if and only if

(1− p4)(U3 + υ3) + p4 max{U6 + υ6, U5 + υ5} ≥ U1 + υ1 (69)

35



Thus, one way to derive p2 is as follows:

p2 = Pr

(
max{U6 + υ6, U5 + υ5} ≥ U1 + υ1 − (1− p4)(U3 + υ3)

p4

)
(70)

= 1− Pr

(
U6 + υ6 <

U1 + υ1 − (1− p4)(U3 + υ3)

p4
∧ U5 + υ5 <

U1 + υ1 − (1− p4)(U3 + υ3)

p4

)
(71)

= 1− Φ2

[
U1 − (1− p4)U3 − p4U5√

p24 + 1 + (1− p4)2
,
U1 − (1− p4)U3 − p4U6√

p24 + 1 + (1− p4)2
,

1 + (1− p4)
2

p24 + 1 + (1− p4)2

]
(72)

Equivalently, we can calculate this probability by conditioning on ε and then calculating the

conditional probability using Proposition 2:

p2 = Eε

[
Pr

(
max{U6 + υ6, U5 + υ5} ≥ U1 + υ1 − (1− p4)(U3 + υ3)

p4
| ε

)]
(73)

= Eε

⎡
⎣Φ

⎛
⎝(1− p4)U3 + p4 [(1− I6)U5 + I6U6]− U1 +

p4[2I6−1]ε
2√

(1− p4)
2 +

p24
2
+ 1

⎞
⎠
⎤
⎦ (74)

which is also p2 for CAM when ρ = 1.

Finally, we can calculate pB6 as

pB6 = Pr (YA2 ≥ 0 | YA1 ≥ 0) (75)

=
Pr(YA2 ≥ 0 , YA1 ≥ 0)

p2
(76)

=
Pr(U6 + υ6 ≥ U5 + υ5 , (1− p4)(U3 + υ3) + p4 max{U6 + υ6, U5 + υ5} ≥ U1 + υ1)

p2
(77)

= Φ2

[
U6 − U5√

2
,
p4U6 − U1 + (1− p4)U3√

p24 + 1 + (1− p4)2
,

p4√
2(1 + (1− p4)2 + p24)

]
/p2 (78)

Equivalently, we can calculate this probability by again conditioning on ε and then calculating

the conditional probability Pr(YA2 ≥ 0 , YA1 ≥ 0 | ε) using Proposition 2. Conditioning on
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ε allows us to use Claim 3 to treat Pr(YA2 ≥ 0 | ε) and Pr(YA1 ≥ 0 | ε) as probabilities of

two independent events. Hence,

pB6 =
Eε [Pr (YA2 ≥ 0 , YA1 ≥ 0 | ε)]

p2
(79)

=
Eε [Pr(YA2 ≥ 0 | ε) Pr(YA1 ≥ 0 | ε)]

p2
(80)

=

Eε

⎡
⎣I6Φ

⎛
⎝ (1−p4)U3+p4[(1−I6)U5+I6U6]−U1+

p4[2I6−1]ε
2√

(1−p4)
2+

p24
2
+1

⎞
⎠
⎤
⎦

p2
(81)

which is identical to pB6 for CAM when ρ = 1.

B Monte Carlo Analysis

B.1 MC Analysis 1: Consistency of CAM

In this section, we evaluate the unbiasedness and consistency of estimates provided by CAM.

In terms of specifying the outcome utilities for the analysis, we look at two scenarios. In the

first scenario, we select the parameter values such that the amount of belief updating by B

about A2’s choice is expected to be minimal. In the second setting, we present a case where

we expect a larger amount of belief updating by B. Parameter values for the two scenarios

are presented in Table 4. What makes the second scenario permit more updating than the

first? First, player A does not have much to gain by choosing a2 rather than a1 in the second

setting because UA,3, A’s payoff when player B chooses a3, is only 0.5, while this value is

1 in the first case. Second, the second scenario indicates that A incurs substantial losses
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when B chooses a4, because UA,5 and UA,6 are -4 and -5 respectively, whereas they are only

-0.5 and -1 in the first setting. Third, the second specification gives B a relatively strong

incentive to choose a4 because UB,5 is much higher in the second case (5) than the first (1).

Consequently, the second scenario implies a situation where, on average, player A has less

incentive to choose a2 over a1 and player B has more incentive to choose a4 over a3. If player

A chooses a2, this implies that the private components of UA,1, UA,3, and UA,5 are likely to

be larger than expected a priori, and this causes Player B to update her beliefs by a larger

amount after observing a2.

[Table 4 about here.]

In addition to two configurations described above, we consider three correlation values

ρ ∈ {0, .5, .9} and four sample sizes N ∈ {250, 500, 1000, 5000}. For each parameter and

sample size combination, 1000 MC iterations are completed, which give us the approximate

sampling distributions of the CAM estimates.13

We estimate UA,1, UA,5, UA,6, UB,3, and ρ directly. The remaining three mean payoffs,

UA,3, UB,5, and UB,6, are assumed to be a linear combination of regressors:

UA,3 = XA,3βA,3 (82)

UB,5 = XB,5βB,5 (83)

UB,6 = XB,6βB,6, (84)

where XA,3, XB,5, and XB,6 are regressors randomly drawn from a standard normal

distribution. Thus, in each iteration of the MC analysis, we also estimate β̂A,3, β̂B,5, and
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β̂B,6.

Table 5 reports the mean coefficient estimates. The top half of the table is for coefficients

from the small updating scenario, and the bottom half is for a large updating case. Using

the same structure, Table 6 reports the root mean squared error (RMSE) of the estimated

coefficients:

√
E(θ̂ − θ)2, where θ denotes the true parameter value from the data generating

process, and θ̂ is the CAM parameter estimate. RMSE is the square root of the mean squared

error (MSE). MSE of an estimate is the sum of the variance and the squared bias of that

estimate, and in that sense, smaller MSE and RMSE values indicate a more precise estimator.

We chose to report RMSE, because it has the advantage of being on the same scale as the

estimated parameter.

In both small and large updating settings, all coefficients on average are estimated very

close to the true parameter values, and the accuracy of the estimates increases as the sample

size increases. For positive ρ, there seems to be a downward bias in small samples, which

disappears as the samples get larger. RMSE values also indicate that the precision of the

estimates get significantly better as the sample size increases. RMSE values approach zero

as the samples get larger, which means that any potential bias in the estimates disappear,

and the variance of the estimates approach zero, indicating consistency.

[Table 5 about here.]

[Table 6 about here.]

The MC analysis in this section has shown that CAM can be estimated in a variety of

parameter configurations and the estimates are unbiased and consistent. The analysis did not

determine, however, whether CAM has an advantage over SAM or IAM in providing correct

inferences. The next section provides such a comparison by evaluating the performances of

CAM, SAM, and IAM for different correlation values.
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B.2 MC Analysis 2: Comparison of CAM, SAM, and IAM

When should CAM be chosen over SAM or IAM? Are there cases in which the latter two

should be preferred? This section provides an answer to these questions by comparing the

three estimators across different correlation values. In this experiment, we set the parameter

values to UA,1 = 0, UA,5 = −4, UA,6 = −4.5, UB,3 = 0. The remaining three observable

payoff components, UA,3, UB,5, and UB,6 are assumed, as in the previous section, to be a

linear combination of regressors:

UA,3 = XA,3βA,3 (85)

UB,5 = XB,5βB,5 (86)

UB,6 = XB,6βB,6, (87)

where XA,3, XB,5, and XB,6 are randomly drawn from a standard normal distribution.

We set βA,3 = 6, βB,5 = 4, and βB,6 = −6. We chose this parameter configuration because

it permits significant belief updating by B. In addition, we consider ρ ∈ {.05, .35, .65, .95}.
ρ = .05 represents a scenario where the data-generating process is closer to IAM, and when

ρ = .95, the process approximates SAM.

Figure 4 plots CAM equilibrium action probabilities p2, p4, and pB6 as a function of ρ,

based on the data-generating process values for the outcome utilities. As the plot makes

clear, the action probabilities are not linear and can be non-monotonic in ρ. More strikingly,

depending on the value of ρ, action probabilities can shift from being very close to zero

to .40, which makes correctly estimating ρ a very important factor for achieving unbiased
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inferences.

[Figure 4 about here.]

Based on each possible combination of parameters specified above, we generated 1000

different samples of size N=10000. Having a larger sample size makes standard errors of the

estimated coefficients smaller and makes it possible to focus mainly on the potential bias in

the estimates. In each of the 1000 samples generated, we estimated CAM, SAM, and IAM

to approximate the sampling distributions of the seven outcome utility parameter estimates.

CAM also included an additional parameter ρ to be estimated.

Table 7 presents the means of estimated parameters. As in the previous MC analysis,

CAM on average successfully captures all the parameter values. IAM, on the other hand,

only produces unbiased estimates when ρ is .05, but fails to do so for larger ρ. Similarly,

SAM fails to provide unbiased estimates for most of the coefficient values, even when ρ = .95.

By themselves, the results presented in Table 7 do not provide enough information to

indicate CAM as a better choice over the other two estimators in terms of making inferences.

For one thing, the estimated coefficients in IAM and SAM might be calculated on a different

scale than the CAM estimates due to the differences in the variance-covariance structure.

Thus, it is possible that IAM and SAM coefficients are not actually biased, but rather

scaled differently. Action and outcome probabilities do not suffer from this scaling issue.

Second, in empirical analyses, scholars are more often interested in the action or outcome

probability estimates than in the exact coefficient estimates. Thus, if IAM and SAM provide

unbiased estimates of those probabilities for different correlation values, the usefulness of

CAM would be limited. For these reasons, Table 8 compares the three estimators based

on the action probability estimates they produce for each player, and how closely these

estimates approximate the probabilities specified by the data-generating process (DGP).

The table provides the mean estimates for p2, p4, p
B
6 , and p6 as well as their RMSE values.14

41



In all four correlation values considered, CAM on average provides very accurate estimates

of the action probabilities. Except when ρ = .05, IAM provides biased probability estimates,

with bias as large as .25 when ρ = .65. Although not as biased as IAM, SAM also provides

biased probability estimates, with bias as much as .08 for p4 when ρ = .65. Perhaps more

interestingly, CAM does better than SAM even when ρ = .95. RMSE values also produce

similar implications. Given the large sample size, a large RMSE is mainly an indication of

bias rather than the variance of the estimator. Both IAM and SAM produce RMSE values

significantly larger than CAM, except when ρ = .05 for IAM.

The main conclusion from this analysis is that, when the underlying correlation value is

unknown, CAM is clearly the appropriate choice of estimator over SAM or IAM, as it provides

unbiased utility and probability estimators without making a priori parametric assumptions

about ρ. Even when the correlation is suspected to be very small, or very close to one, CAM

fares at least as well as IAM and SAM. Given that it is very unlikely for a scholar to know

the approximate value of ρ without estimating it, our results suggest that CAM should be

preferred over the two other alternatives when the structure of the interaction indicates a

potential correlation between private components of the two actors.

[Table 7 about here.]

[Table 8 about here.]
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Variables Utilities Measures

MaxAge SQA The log of maximum age of the states in the dyad

Alliance ACQA and ACQB Tau-b score using alliances in the dyad’s region

CivilWarB ACQA and ACQB Dummy: was B involved in a civil war?

Contiguous ACQA and ACQB Dummy: do states share a land border or are

separated by less than 150 miles of water?

DemocracyA BDA, SFA, and ρ Dummy: was A democratic?

CapShareA SFA and SFB A’s share of capabilities in the dyad

DevelopA SFA The log of energy consumption per capita for A

DemocracyB SFB Dummy: was B democratic?

DevelopB SFB The log of energy consumption per capita for B

PopulationA ρ The log of total population of A

Table 1: Variables of Lewis and Schultz (2005) and CAM Application
The source of DemocracyA and DemocracyB is Polity IV data set and the rest of variables is
found from Correlates of War data set. All variables including PopulationA can be obtained
using EUGene (http://www.eugenesoftware.org).
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Estimation model: SAM CAM1

Est. SE Est. SE

SQ SQA Constant 0 0
MaxAge 0.12* (0.07) 0.23** (0.09)

ACQ ACQA Constant 1.77 (1.27) 0.76 (2.46)
Alliance -1.18 (0.89) -3.51* (2.06)
CivilWarB 1.07 (1.16) 5.43* (3.24)
Contiguous 0.72 (0.54) 1.33 (0.98)

ACQB Constant -1.41 (1.27) -1.19 (1.47)
Alliance 0.19 (0.89) 1.06* (0.59)
CivilWarB 0.15 (1.16) -0.25 (0.42)
Contiguous -0.09 (0.54) -0.08 (0.32)

BD BDA Constant -4.06** (1.08) -5.47** (1.92)
DemocracyA -0.76** (0.33) -1.20** (0.60)

BDB Constant 0 0
SF SFA Constant -3.62** (1.08) -4.94** (1.92) -

CapShareA 0.83** (0.31) 1.83** (0.88)
DemocracyA -0.79** (0.3) -1.35** (0.42)
DevelopA 0.02* (0.01) 0.06 (0.05)

SFB Constant -1.97 (1.96) -1.76 (2.10)
CapShareA 1.17 (0.77) 1.87 (1.39)
DemocracyB 0.1 (0.09) 0.28 (0.29)
DevelopB -0.02 (0.02) -0.05 (0.06)

ρ Constant 1.31 (4.06)
N 2187 2187
Log likelihood -418.90 -416.64

∗∗ = p < .05, ∗ = .05 < p < .1 (two-tailed)

Table 2: SAM and CAM Results on Lewis and Schultz (2005) Data Set (First Part)
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Estimation model: CAM2 CAM3

Est. SE Est. SE

SQ SQA Constant 0 0
MaxAge 0.38** (0.13) 0.55** (0.13)

ACQ ACQA Constant 3.56 (7.68) 3.09 (4.88)
Alliance -5.39 (4.12) -5.75* (3.28)
CivilWarB 4.31 (2.89) 7.27 (4.74)
Contiguous 4.16 (3.59) 3.01* (1.57)

ACQB Constant -4.32 (6.53) -4.38 (4.41)
Alliance 0.73 (0.64) 1.07 (0.71)
CivilWarB -0.10 (0.29) -0.56 (0.52)
Contiguous -0.58 (0.43) -0.34 (0.26)

BD BDA Constant -8.26 (7.20) -8.16 (5.52)
DemocracyA -1.77* (1.09) -1.59** (0.56)

BDB Constant 0 0
SF SFA Constant -7.42 (7.17) -7.60 (5.50)

CapShareA 1.13** (0.25) 0.31* (0.18)
DemocracyA -1.76* (0.99) -1.63** (0.54)
DevelopA 0.01 (0.01) 0.00 (0.01)

SFB Constant -5.90 (9.08) -6.23 (6.17)
CapShareA 2.69 (4.05) 1.17 (1.12)
DemocracyB 0.13 (0.24) 0.14 (0.20)
DevelopB 0.00 (0.02) 0.00 (0.02)

ρ Constant 0.53 (0.38) 0.78** (0.25)
PopulationA 0.51* (0.27) 1.15** (0.21)
DemocracyA 0.62 (0.46)

N 2187 2187
Log likelihood -399.81 -393.44

∗∗ = p < .05, ∗ = .05 < p < .1 (two-tailed)

Table 3: SAM and CAM Results on Lewis and Schultz (2005) Data Set (Second Part)
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Difference between Independent Agent
Model and Single Agent Model

Big Small
(Large Updating) (Small Updating)

UA,1 0 0
UA,3 0.5 1
UA,5 -4 -0.5
UA,6 -5 -1
UB,3 0 0
UB,5 5 1
UB,6 -1 -1
ρ 0, 0.5 and 0.9

Table 4: True Parameter Specification
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Parameter Setting 1: Small Updating

A’s Utilities B’s Utilities
N UA,1 UA,3 UA,5 UA,6 UB,3 UB,5 UB,6 ρ

0 1 -1/2 -1 0 1 -1

250 0.033 1.041 -0.490 -0.972 0.014 1.058 -1.063 0.031 ρ = 0
500 0.015 1.032 -0.498 -0.981 0.036 1.030 -0.932 0.022
1000 0.011 1.009 -0.500 -0.981 0.027 1.015 -0.953 0.003
5000 0.003 1.005 -0.499 -0.996 0.011 1.003 -0.978 -0.006

250 -0.031 1.036 -0.507 -1.020 -0.034 1.053 -1.201 0.368 ρ = .5
500 -0.025 1.011 -0.502 -1.005 0.003 1.026 -1.040 0.393
1000 -0.017 1.003 -0.502 -1.006 0.006 1.014 -1.007 0.451
5000 0.003 1.003 -0.500 -1.000 0.004 1.006 -0.994 0.503

250 -0.031 1.031 -0.513 -1.006 -0.015 1.045 -1.115 0.766 ρ = .9
500 -0.031 1.009 -0.505 -1.008 -0.002 1.022 -1.045 0.796
1000 -0.015 1.011 -0.502 -1.002 -0.001 1.008 -1.003 0.843
5000 -0.003 1.002 -0.501 -1.001 0.001 1.002 -1.004 0.886

Parameter Setting 2: Large Updating

A’s Utilities B’s Utilities
N UA,1 UA,3 UA,5 UA,6 UB,3 UB,5 UB,6 ρ

0 1/2 -4 -5 0 5 -1

250 0.004 0.531 -4.057 -5.133 -0.086 6.915 -1.098 -0.062 ρ = 0
500 -0.005 0.515 -4.031 -5.077 -0.023 5.623 -1.028 -0.037
1000 0.001 0.509 -4.005 -5.020 -0.012 5.246 -1.005 -0.023
5000 0.002 0.503 -3.991 -4.990 0.004 5.061 -0.995 -0.008

250 0.005 0.543 -4.126 -5.085 -0.106 6.837 -1.111 0.236 ρ = .5
500 -0.005 0.516 -4.059 -5.004 -0.051 5.542 -1.045 0.312
1000 -0.004 0.501 -4.035 -4.992 -0.009 5.289 -1.010 0.394
5000 0.000 0.503 -4.006 -4.993 0.003 5.055 -0.996 0.474
25000 0.000 0.501 -3.999 -4.997 0.001 5.015 -0.998 0.497

250 -0.019 0.531 -4.214 -5.307 -0.121 6.675 -1.147 0.835 ρ = .9
500 -0.007 0.515 -4.135 -5.176 -0.041 5.592 -1.059 0.872
1000 -0.006 0.504 -4.058 -5.075 -0.016 5.266 -1.021 0.888
5000 0.002 0.502 -4.011 -5.017 -0.002 5.053 -1.005 0.898

Table 5: Mean Parameter Estimates from CAM
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Parameter Setting 1: Small Updating

A’s Utilities B’s Utilities
N UA,1 UA,3 UA,5 UA,6 UB,3 UB,5 UB,6 ρ

0 1 -1/2 -1 0 1 -1

250 0.226 0.260 0.168 0.258 0.488 0.246 1.261 0.588 ρ = 0
500 0.174 0.174 0.118 0.188 0.279 0.177 0.671 0.494
1000 0.134 0.118 0.084 0.127 0.201 0.118 0.483 0.398
5000 0.069 0.054 0.035 0.054 0.087 0.051 0.208 0.209

250 0.223 0.257 0.164 0.247 0.471 0.250 1.220 0.565 ρ = .5
500 0.175 0.164 0.115 0.171 0.299 0.161 0.758 0.460
1000 0.132 0.117 0.079 0.118 0.198 0.117 0.486 0.361
5000 0.063 0.055 0.034 0.052 0.090 0.052 0.217 0.172

250 0.205 0.268 0.168 0.245 0.517 0.245 1.481 0.373 ρ = .9
500 0.145 0.171 0.113 0.163 0.315 0.172 0.801 0.305
1000 0.102 0.127 0.082 0.117 0.215 0.118 0.528 0.186
5000 0.041 0.053 0.035 0.050 0.095 0.051 0.231 0.064

Parameter Setting 2: Large Updating

A’s Utilities B’s Utilities
N UA,1 UA,3 UA,5 UA,6 UB,3 UB,5 UB,6 ρ

0 1/2 -4 -5 0 5 -1

250 0.218 0.258 0.641 1.055 1.169 6.969 1.182 0.407 ρ = 0
500 0.154 0.167 0.431 0.717 0.377 1.792 0.391 0.338
1000 0.111 0.112 0.295 0.495 0.213 0.857 0.236 0.284
5000 0.047 0.050 0.128 0.220 0.088 0.350 0.100 0.157

250 0.224 0.243 0.651 0.951 1.054 6.729 1.070 0.523 ρ = .5
500 0.159 0.165 0.431 0.603 0.411 1.778 0.423 0.401
1000 0.107 0.113 0.302 0.417 0.214 0.988 0.225 0.269
5000 0.050 0.048 0.128 0.179 0.090 0.353 0.097 0.102
25000 0.022 0.022 0.064 0.089 0.040 0.154 0.044 0.038

250 0.237 0.262 0.707 1.113 0.904 5.941 0.930 0.198 ρ = .9
500 0.157 0.162 0.491 0.726 0.362 1.889 0.382 0.106
1000 0.112 0.112 0.314 0.461 0.216 0.988 0.225 0.038
5000 0.048 0.048 0.130 0.193 0.091 0.360 0.096 0.010

Table 6: Root Mean Squared Error of CAM Parameter Estimates
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A’s Utilities B’s Utilities
N UA,1 UA,3 UA,5 UA,6 UB,3 UB,5 UB,6 ρ

0 6 -4 -4.5 0 4 -6

CAM 0.002 6.016 -3.994 -4.498 0.003 4.012 -6.051 0.057 ρ = .05
SAM -0.002 5.322 -3.826 -4.288 0.069 3.891 -5.677
IAM -0.002 6.022 -4.024 -4.525 0.003 4.027 -6.037

CAM 0.001 6.012 -3.998 -4.504 0.002 4.005 -6.059 0.367 ρ = .35
SAM -0.023 5.385 -3.972 -4.502 0.058 3.912 -6.151
IAM -0.028 6.030 -4.190 -4.681 -0.001 4.097 -5.960

CAM 0.004 6.025 -4.008 -4.518 0.000 4.004 -6.067 0.657 ρ = .65
SAM -0.039 5.430 -4.051 -4.600 0.050 3.958 -6.281
IAM -0.042 6.014 -4.265 -4.752 -0.016 4.112 -5.942

CAM -0.001 6.021 -3.989 -4.489 -0.007 4.003 -6.045 0.886 ρ = .95
SAM -0.041 5.408 -4.004 -4.526 0.030 3.958 -6.187
IAM -0.050 6.020 -4.218 -4.696 -0.034 4.097 -5.970

Table 7: Mean Parameter Estimate Comparisons from CAM, SAM, and IAM
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p2 RMSE p4 RMSE pB
6 RMSE p6 RMSE ρ

DGP 0.375 0.627 0.360 0.362 ρ = .05
CAM 0.375 0.035 0.628 0.012 0.358 0.017 0.361 0.016
SAM 0.352 0.092 0.659 0.052 0.348 0.049 0.373 0.040
IAM 0.382 0.034 0.623 0.011 0.361 0.017

DGP 0.206 0.697 0.336 0.362 ρ = .35
CAM 0.195 0.059 0.706 0.035 0.330 0.021 0.360 0.012
SAM 0.184 0.093 0.729 0.067 0.309 0.062 0.355 0.038
IAM 0.310 0.108 0.638 0.060 0.364 0.018

DGP 0.023 0.865 0.260 0.362 ρ = .65
CAM 0.031 0.026 0.858 0.039 0.261 0.028 0.359 0.010
SAM 0.094 0.100 0.786 0.100 0.285 0.065 0.350 0.041
IAM 0.279 0.257 0.644 0.221 0.366 0.018

DGP 0.129 0.762 0.311 0.362 ρ = .95
CAM 0.117 0.056 0.776 0.042 0.303 0.027 0.362 0.011
SAM 0.162 0.089 0.739 0.060 0.309 0.050 0.357 0.035
IAM 0.316 0.189 0.636 0.126 0.368 0.018

Table 8: Mean Probability Estimate and RMSE Comparisons from CAM, SAM, and IAM
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Figure 1: Two-Player Signalling Game
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Figure 2: Lewis and Schultz Model of Crisis Bargaining
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Figure 3: Estimated Probabilities of Resist, ACQ, and Belief Updating
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Figure 4: Action Probabilities as a Function of ρ
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