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Individual electrons in graphene behave as massless quasiparticles
1-7

. In surprising twist, it 

is inferred from plasmonic investigations
8-11

 that collectively excited graphene electrons 

must exhibit non-zero mass and its inertial acceleration is essential for graphene 

plasmonics. Despite such importance, this collective mass has defied direct unequivocal 

measurement. It may be directly measured by accelerating it with a time-varying voltage 

and quantifying the phase delay of the resulting current; this voltage-current phase 

relation would manifest as kinetic inductance, representing the collective inertia’s 

reluctance to accelerate. However, at optical (infrared) frequencies phase measurement of 

current is generally difficult and at microwave frequencies the inertial phase delay has 

been buried under electron scattering
12-14

. Here we directly, precisely measure the kinetic 

inductance, thus, collective mass, by combining innovative device engineering that reduces 

electron scattering and delicate microwave phase measurements. Particularly, 

encapsulation of graphene between hexagonal-boron-nitride layers
15

, one-dimensional edge 

contacts
16

, and a proximate top gate configured as microwave ground
17,18

 together enable 

resolving the inertial phase delay from the electron scattering. Beside the fundamental 

importance, the kinetic inductance demonstrated here to be orders-of-magnitude larger 
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than magnetic inductance can dramatically miniaturize radio-frequency integrated circuits. 

Moreover, its bias-dependency heralds a solid-state voltage-controlled inductor to 

complement the prevalent voltage-controlled capacitor.  

The collective excitation of massless fermions in graphene exhibits a non-zero mass. This 

fact is subsumed under the general theoretical framework of graphene plasmonics
8
 

[Supplemental Information (SI)], yet it can be simply seen as follows. Let electrons in graphene 

(width W, unit length) be subjected to an electric field along the length with a voltage difference 

V across the length. The resulting translation of the Fermi disk in two-dimensional k-space by Δk 

<<kF  (from disk A to B, Figs. 1a,b) yields a per-unit-length collective momentum, P = n0Wħk 

(n0: electron density). The corresponding per-unit-length collective kinetic energy E is obtained 

by subtracting the sum of single electron energies = ħvFk for disk A from that for disk B. Since 

E is minimal at Δk = 0, we must have E  (k)
2 
 P

2
 for small Δk (Fig. 1c). In fact, calculation 

to the lowest order of Δk (SI) shows E = WF/2π×(k)
2
 = P

2
/2M, where M = πWn0

2
ħ

2
/F is the 

collective mass per unit length. This remarkable emergence of non-zero collective mass with the 

quadratic E-Δk relation from massless individual electrons with the linear -k relation sharply 

contrasts with the case of typical conductors with quadratic single electron energy dispersion = 

ħ
2
k

2
/(2m*), where the collective mass is simply the sum of the non-zero individual electron 

masses m*. Incidentally, we note that the collective mass of graphene electrons is quantitatively 

related to an insightfully defined theoretical entity called ‘plasmon mass’ in graphene
9,11,19

; the 

former, which we set out to measure in this work, is an observable physical reality that proves 

the existence of the latter beyond a theoretical model. 
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The collective current I associated with the Fermi disk shift––that is, the inertial 

acceleration of the collective mass M––has an inductive phase relationship to the applied voltage 

V that causes the acceleration, where the associated inductance is kinetic inductance. The kinetic 

inductance can be evaluated by noting E  I
2
, given I  k for small k and E  (k)

2
; by 

analogy to magnetic inductance, this energy can be then expressed as E = LkI
2
/2, where 

Lk = πħ
2
/(We

2F) = ħ√π/(We
2
vF)×1/√n0                                              (1) 

is the per-unit-length kinetic inductance (SI). The same underlying physics, namely quadratic 

dependence of E on k, gives rise to both M and Lk, which are thus intimately related by M = 

(e
2
n0

2
W

2
) × Lk; in fact, the kinetic inductance represents the ‘inertial’ reluctance of the collective 

current to change. Incidentally, the peculiar Lk~1/√n0 dependence arising from graphene’s linear 

single-electron -k dispersion contrasts the Lk~1/n0 dependence
17,18,20

 in typical conductors with 

quadratic single-electron -k dispersion. 

To weigh M, we directly measure Lk essentially by interrogating the voltage-current phase 

relation in graphene via microwave transport experiment, where graphene acts as a lossy 

transmission line
17,18,20-22

 (Fig. 1d). This entails the per-unit-length kinetic inductance Lk 

modeling local collective mass and per-unit-length geometric capacitance C terminated to 

ground specific to device configuration. The magnetic inductance, which is orders of magnitude 

smaller
17,22

 than Lk expected in graphene (SI), and quantum capacitance
23

, whose effect is far 

weaker than that of C in our device geometry to be discussed, are both ignored. The per-unit-

length resistance R models electron scattering. 

While the graphene kinetic inductance can be implied from the plasmonic theory
8
 and has 

been considered in explicit theories
19,24,25

, its direct measurement has been evasive. In far-
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infrared intensity transmission spectroscopies, kinetic inductance can be indirectly inferred from 

the fitting parameter called Drude weight
9,11,19

, but as these experiments do not measure the 

phase progression of the collective current, they do not unambiguously prove the existence of the 

collective mass and its inertial acceleration. At microwave frequencies, while Lk can in principle 

be directly measured by probing the voltage-current phase relation, experimental attempts
12-14

 

have proven unfruitful because R is far larger than the inductive impedance iLk at microwave 

frequencies (i.e., the kinetic inductor’s quality factor Q = Lk/R is far smaller than 1) even in 

reasonably high-mobility graphene, although Lk is far larger than magnetic inductance.  

In our microwave measurements of Lk, we help overcome this difficulty by reducing 

electron scattering, thus, R, as much as possible. In particular, we encapsulate exfoliated 

graphene between two hexagonal boron nitride (h-BN) layers (Fig. 2) by a polymer-free 

assembly method
15,16

, which greatly reduces electron scattering by disorder. To reduce electron-

phonon scattering within graphene, the device is cooled to 30 K. Furthermore, to reduce 

additional electron scattering in the contact regions at both ends of graphene, we make one-

dimensional, edge-only contacts to the graphene by etching the stack of h-BN and graphene into 

a desired shape (W = 7.5 m; length l = 19.0 m) and depositing metal onto the side edges
16

 

(Figs. 2a-c). Graphene is connected to the signal (S) lines of on-chip coplanar electromagnetic 

waveguides (CPWs) to the left and right via the abovementioned edge-only contacts, and is 

placed under a top gate merged with the ground (G) lines of the CPWs. 

We first measure the DC resistance between the S lines using a lock-in technique, with the 

graphene and top gate kept at the same DC potential. The total device resistance Rdev , including 

the effect of both R and contact resistance, is measured as a function of the back gate potential Vb 

that sets the carrier density n0 (Fig. 2d). At 30 K, it shows a charge neutrality at Vb,0 = -0.5 V and 
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excellent performance in the electron-doped region (Vb>Vb,0), which is fit well by the widely-

adopted conductivity formula
15,26

 -1
 = (n0eC)

-1 
+ s, with C = 390,000 cm

2
/Vs representing the 

n0-independent mobility due to long-range scattering, and s = 80 Ω representing the short range 

scattering. We note that this is only a lower bound of the actual graphene mobility, because the 

estimation of conductivity in this two-probe measurement includes the contact effects. The hole-

doped region (Vb<Vb,0) shows similar results, but with slightly lower C = 320,000 cm
2
/Vs and 

higher s = 110 Ω due to the contact characteristics
16

. The room-temperature measurement 

shown for comparison (which exhibits a slightly shifted neutrality at Vb,0 = -0.9 V) has a ~4 times 

smaller C of 110,000 cm
2
/Vs in the electron-doped regime, which still is an excellent number. 

This high C at room temperature confirms the reduction in electron scattering by the h-BN 

encapsulation
15,16

, and its 4-fold increase at 30 K confirms the further scattering reduction at the 

low temperature.  

To measure Lk, a vector network analyzer launches microwaves (10-50 GHz) onto the 

CPWs, and records the amplitude and phase response of their transmission (s21, s12) and 

reflection (s11, s22) (Fig. 3a). The network analyzer connects to graphene via cables, probes, and 

the CPWs, whose phase delay and loss are calibrated out. The direct parasitic coupling between 

the left and right CPWs/probes bypassing the graphene channel is separately measured and de-

embedded. We extract Lk from the resulting s-parameters. This extraction, however, poses a stiff 

challenge for moderate-mobility graphene with Q << 1, which can be appreciated from the 

expression for the per-unit-length phase delay  through the graphene transmission line (Fig. 1d); 

 ≈ (RC/2)
1/2

 + (
3
/8)

1/2
(C/R)

1/2
×Lk ≡ 1 + 2, with only 2 containing Lk (SI), capturing the 

phase delay due to the collective mass acceleration. The ratio 2/1 = Lk/R/2 = Q/2; with Q << 
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1, extraction of Lk is challenging because 2 is entirely swamped by 1, which typically renders 

2 itself miniscule below the unavoidable phase measurement error––which we denote as e––

caused by imperfect calibration and non-ideal parasitic signal de-embedding.  

To enable Lk extraction from the measured s-parameters, we first reduce R via the 

aforementioned h-BN encapsulation of graphene and 30-K operation, which amplifies 2 and 

attenuates 1 with improved Q = 22/1. This crucial improvement alone, however, is 

insufficient with the improved Q still smaller than 1. A second improvement is to enhance C by 

proximate top gating. Although increasing C does not change Q = 22/1, it further increases 2 

to ensure 2 > e. Importantly, these improvements also make 2 more sensitive to Lk variation, 

as seen from the factor (C/R)
1/2

 in 2, thereby increasing the accuracy of Lk extraction (SI). To 

estimate the enhanced value of C in our device, we note that the proximate top gate merged with 

the CPWs’ G lines (Figs. 2a-c) serves as a well-defined microwave ground
17,18

 with per-unit-

length capacitance Cg between graphene and this grounded top gate. In contrast, the silicon back 

gate untapped to the G lines ‘floats’ in microwave signaling, largely because its connection to the 

DC bias line exhibits a very large inductive impedance and also because the silicon has a high 

resistivity. Therefore, the per-unit-length capacitance Cb between graphene and the back gate is 

irrelevant for microwave signaling, and C = Cg. As 44-nm thick top h-BN (≈ 7 [27,28]) and 

~150-nm thick hydrogen silsesquioxane (HSQ; ≈ 2.8~3.0 [29]) lie between graphene and the 

grounded top gate, Cg/W is estimated to be 0.15 fF/m
2
, which is far larger than the capacitance 

of ungated graphene
21

. Incidentally, we attribute the inability to observe
12,13

 Lk or its spurious 

measurement
14

 in prior works to their larger R with graphene on SiO2 and no proximate gate 

configured as a microwave ground.   
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 Figure 3b is a color map of the phase and amplitude of transmission (s21) and reflection (s11) 

parameters measured at 30 K as functions of Vb (thus n0) and frequency. The s21 [s11] amplitude 

exhibits a sharp drop [peak] near Vb,0 = -0.5 V. Fig. 3c shows s21 at three select Vb values in the 

electron-doped region to show that our device s-parameters are amenable to Lk extraction. Were 

it not for the R-reduction and C-enhancement, the measured s21 phase and its portion contributed 

by Lk––which are intimately related to and 2, respectively––would exhibit far smaller 

absolute values as well as far smaller differences with the variation of Vb (thus with the 

corresponding variation of Lk), hampering Lk extraction (SI).  

To determine Lk from the measured s-parameters for each bias, we use the microwave 

optimization method
17

; we add contact models to both sides of the transmission line model (Fig. 

1d with C = Cg), and alter the component values (e.g., Lk, Cg, R, and contact resistance) until the 

s-parameters calculated from the model best fit the measured s-parameters across the frequency 

range in the least-square method (SI). In this way, we determine Lk and other component values 

at each Vb. This method’s reliability is based on the model’s physicality and the fact that the 

limited number of model components must reproduce the vastly larger number of measured s-

parameters over the frequency range. Its cogency will be checked ultimately by the consistency 

amongst the extracted values and other measured parameters, and with the physical theory. The 

same experiment repeated on a completely different device led to almost identical results (SI), 

further attesting to the reliability of this approach.     

Figures 4a-c display Lk, Cg, and R so determined for each Vb at 30 K and 296 K. We first 

focus on the 30-K results in the electron-doped region (Vb>Vb,0) that showed the best DC 

characteristics (Fig. 2d), in particular in the region away from Vb,0 (unshaded region in Fig. 4). 

As expected, the extracted Cg/W stays nearly constant with negligible variation from quantum 
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capacitance effect
23

, and its value of ~0.15 fF/m
2
 is consistent with the value roughly estimated 

earlier. Also, the extracted Lk closely follows the theoretical curve given by equation (1) with vF 

= 10
6
 m/s. The slight discrepancy between the observed and theoretical Lk in this region is 

attributed dominantly to imperfect calibration and parasitic-signal de-embedding, but also 

potentially to variations of vF due to dielectric screening and impurities
28

,
 
and/or electron-

electron interaction effects
19

.  Further confirming the consistency of the technique, Rdev extracted 

from the s-parameters agrees well with Rdev measured at DC (Fig. 4c). Most importantly, from 

the measured Lk, we obtain the per-unit-length collective mass, M = Lk × e
2
n0

2
W

2
, or 

operationally defined collective mass per electron that Ref. 19 theorizes as ‘plasmon mass,’ m
*
c 

= M/(Wn0) = Lk × e
2
n0W, which closely follows the theoretical prediction (Fig. 4a, inset); m

*
c is a 

few percent of m0 = 9.1 × 10
-31

 kg. 

Near the charge neutrality point or in the hole-doped region (Vb<Vb,0) (shaded region, Fig. 

4), the extracted values of Lk, C, and m
*
c at 30 K exhibit more appreciable deviation from theory. 

The discrepancy near the charge neutrality is readily understood, because transmission amplitude 

is significantly smaller due to the sharply reduced n0 (Fig. 3b). In this region, the raw 

transmission s-parameters before removing the graphene-bypassing parasitic signal are 

dominated by the parasitic signal itself, making the parasitic-signal-de-embedded s-parameters 

highly distorted. The best-optimized model s-parameters then still poorly fit the distorted s-

parameters, for our model does not take into account the distortion effect (SI). The discrepancy 

in the hole-doped region is similarly explained, as the measured signal is distorted (SI) in a way 

that cannot be fully captured by the model in use. This distortion can be traced back to the 

asymmetric behavior caused by work function mismatch in our edge contacts, where the contact 
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between the metal and hole-doped graphene has been demonstrated to exhibit non-ideal 

behaviors
16

 that are difficult to capture with a passive linear model (SI).  

Back in the higher-fidelity electron-doped region (unshaded region in Fig. 4), the data at 

296 K result in more appreciable deviation from theory, due to the ~4× decrease in mobility (~4× 

increase in R), which reduces all of 2/1 2(C/R)
1/2

, and transmission amplitude. This 

highlights the challenge in measurements of sub-unit Q devices. Nonetheless, while not as 

quantitatively accurate as the 30-K data, the 296-K data still present a firm direct proof of Lk and 

collective dynamical mass, made possible by the h-BN graphene interface and the proximate 

gating. Thus even the 296-K data represent a significant leap from the prior works that have only 

failed to observe the kinetic inductance
12-14

.  

Beside its fundamental importance for graphene electrodynamics and plasmonics, our work 

may offer exciting technological vistas. The graphene kinetic inductance as a manifestation of 

the collective inertia effect is orders of magnitude larger than the magnetic inductance at similar 

dimensions (SI), and thus can be used in the future to substantially miniaturize inductors, as it 

allows one to obtain the same inductance value in orders of magnitude smaller area. Radio-

frequency integrated circuits, such as resonators, filters, oscillators, and amplifiers, prevalent in 

communication and computing systems, suffer from large chip areas due to magnetic inductors. 

Thus these high frequency applications may benefit greatly from harnessing the kinetic 

inductance of graphene revealed in this work. Better room temperature scalability and facile 

tunability as compared to traditional kinetic inductors from superconductors and semiconductor 

two-dimensional gases also bode well in this direction as the mobility of graphene continues to 

improve. Furthermore, the bias-dependency of graphene kinetic inductance renders graphene a 
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natural voltage-controlled tunable inductor as a counterpart to the prevalent voltage-controlled 

semiconductor capacitor.  

 Methods Summary  

We fabricated h-BN encapsulated graphene by mechanical exfoliation and polymer-free 

mechanical transfer of h-BN single crystals and graphene through optical alignment
16

. High 

resistivity (> 5000 Ω cm) silicon wafers coated with 285-nm thick thermal oxide were used as 

the substrate to minimize high-frequency substrate losses. Optical differentiation and Raman 

spectroscopy were used to confirm that graphene is single layered. Contacts
16

 and waveguides 

were created by thermal evaporation of Cr/Pd/Au (1/10/300 nm) with dimensions defined by 

electron beam lithography and inductively coupled plasma etching. 

Measurements took place in a Lake Shore Cryotronics cryogenic probe station at feedback-

controlled temperatures in the dark. DC resistance measurements were performed using a 

Stanford Research Systems SR830 lock-in amplifier and a DL Instruments 1211 current 

preamplifier. Microwave s-parameter measurements were performed using an Agilent E8364A 

vector network analyzer, where the calibration was performed using the NIST-style multiline 

TRL technique
30

 at each temperature just before the measurement. The parasitic coupling 

bypassing the graphene device was measured on a separate device with the identical CPW 

structures but with no h-BN encapsulated graphene, and was then de-embedded from the 

measured s-parameters of the main device
22

. 

The design of the CPWs was performed using a Sonnet frequency-domain electromagnetic 

field solver. The CPW dimensions were chosen to match the 50-Ω characteristic impedance of 

the network analyzer, cables, and probes
22

. 
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Figure 1 | Collective electrodynamics of graphene electrons. a, Collective motion of graphene 

electrons subjected to an electric field can be represented as a translation of Fermi disk in k-space. 

b, Alternative representation of the collective electron motion in the -k space, in conjunction 

with the massless single electron energy dispersion  = ħvFk near the Dirac point. c, The per-unit-

length collective kinetic energy E exhibits quadratic dependency on the per-unit-length collective 

momentum P = n0Wħk. The curvature is inversely proportional to the per-unit-length collective 

dynamical mass, M. d, Graphene as a lossy transmission line. 

 

Figure 2 | Device description and DC measurements. a, Optical image of the h-

BN/graphene/h-BN layered structure before etching (top-left), after etching (top-right), and after 

depositing the CPWs (bottom). b, False colored scanning electron micrograph of the central 

region of the device that contains the layered structure under the top gate. c, Schematic diagram 

of h-BN encapsulated graphene device with the front face corresponding to the vertical cut 

through the dotted line in b. d, Total device resistance Rdev, including both in-graphene electron 

scattering effect R and contact resistance, measured at 30 K and 296 K with Vb varied while 

graphene and the top gate are kept at the same DC potential. (inset: corresponding plot of 

(Rdev/(l/W))
-1

, a conductivity estimate including contact effects; n0 = Cb/W×(Vb-Vb,0)/e with Cb/W 

= 0.12 fF/m
2
 and Vb,0 = -0.5 V). Red solid curves are fits to -1

 = (n0eC)
-1

+s.  

 

Figure 3 | Microwave s-parameter measurements. a, Schematic diagram of the measurement 

setup. The s-parameters shown are after calibrating out the delay and loss of the cables, probes, 

and on-chip CPWs, and also after de-embedding the parasitic coupling bypassing graphene. b, 
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Phase (insets: amplitude) of the measured transmission (s21; left) and reflection (s11; right) 

parameters after the calibration and de-embedding at 30 K. The s-parameters with excitation 

from the opposite side (s12 and s22; not shown here) look almost identical to s21 and s11. c, Select 

data from b, specifically, transmission phase (∠s21; solid curves) and amplitude (|s21|; dashed 

curves) at three representative bias values Vb = 1, 4, and 20 V.  

 

Figure 4 | Extracted graphene kinetic inductance and collective electron mass. Kinetic 

inductance per square, LkW (a), graphene to top-gate capacitance per unit area, Cg/W (b), total 

device resistance, Rdev (c), and collective dynamical mass per electron, m
*
c (d), extracted from 

the measured s-parameters for various Vb at 30 K and 296 K. The solid curves in a, b, and d 

represent theoretical predictions. The solid curve in c is Rdev measured at DC (Fig. 2d). The 

shaded areas indicate bias regions where the extraction was less reliable (see text).  
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