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Background: Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne infection caused by a virus (CCHFV) from
the Bunyaviridae family. Domestic and wild vertebrates are asymptomatic reservoirs for the virus, putting animal
handlers, slaughter-house workers and agricultural labourers at highest risk in endemic areas, with secondary
transmission possible through contact with infected blood and other bodily fluids. Human infection is charac-
terized by severe symptoms that often result in death. While it is known that CCHFV transmission is limited to
Africa, Asia and Europe, definitive global extents and risk patterns within these limits have not been well
described.

Methods: We used an exhaustive database of human CCHF occurrence records and a niche modeling framework
to map the global distribution of risk for human CCHF occurrence.

Results: A greater proportion of shrub or grass land cover was the most important contributor to our model,
which predicts highest levels of risk around the Black Sea, Turkey, and some parts of central Asia. Sub-Saharan
Africa shows more focalized areas of risk throughout the Sahel and the Cape region.

Conclusions: These new risk maps provide a valuable starting point for understanding the zoonotic niche of CCHF,
its extent and the risk it poses to humans.

Keywords: Crimean-Congo hemorrhagic fever, Crimean-Congo hemorrhagic fever virus, Ecological niche modeling, Infectious diseases,
Tick-borne diseases, Vector-borne diseases

Introduction
Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne viral
(Nairovirus, family Bunyaviridae) infection first identified in the
Crimean region in 1944.1,2 It was subsequently shown to be the
same virus as that causing similar hemorrhagic disease outbreaks
in the Congo basin, giving the virus its current name.3,4 CCHF is one
of the most widely distributed arboviral diseases in the world, ran-
ging from southern Russia and the Black Sea region to the southern
tip of Africa.4 The disease is considered as ‘emerging’ across the
globe, with many countries reporting new infections in humans in
recent decades, including Albania (2001),5 Turkey (2002)6 and
Georgia (2009).7 In some regions, human CCHF infection has also

been recently reported after long periods of absence, for example in
south-western Russia8 and Central Africa.9

While no apparent disease manifestation occurs in animals,10

both wild and domesticated animals represent an important link
in the disease transmission cycle, acting as reservoirs for contin-
ued tick re-infection (Figure 1). Many tick species have been asso-
ciated with CCHF virus (CCHFV), but members of the genus
Hyalomma are considered the primary vectors and are the most
common ticks known to transmit the virus to humans.11 These
ticks are adapted to hot and dry or semiarid environments, and
are found in many parts of Africa, Asia, and Europe.1,12–15

Infection of humans is a comparatively rare event, with those
living or working in close proximity to livestock (particularly cattle,
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sheep and goats) or tick vector habitats being particularly at risk of
infectious tick bites, and those working in animal slaughterhouses
being at risk for blood-borne exposure.16,17 Human-to-human
transmission is possible, typically amongst healthcare workers
or close relatives having close contact and exposure to infectious
blood or bodily fluids of those infected with CCHFV.16,18,19 There is
no widely available safe and effective vaccine against CCHF,
although a recombinant CCHFV vaccine candidate has shown
good in vivo efficacy.20 Currently, treatment for the potentially
fatal disease remains largely supportive.21,22 Personal protective
measures such as the use of pyrethroid acaricides and wearing
protective clothing are important, but generally there is little
knowledge about these measures in areas where current levels
of risk are ill-defined.11,23

Currently, spatial analyses of CCHF are few in number com-
pared to those for many other diseases and even other tick-borne
viruses.24,25 Still, several studies have elucidated the chief drivers
of CCHF geographic distribution patterns. Strong correlations have
been found in Turkey and Bulgaria between CCHF risk and suitable
environments for Hyalomma ticks, including grass and shrub
cover, as well as forested land fragmented by agricultural or
shrub cover.26–29 Non-irrigated agricultural land cover (e.g., pas-
ture and rangeland) has also been found to be associated with
CCHF incidence in Turkey and Greece.26,27,30 The CCHFV infection
rate in livestock was found to be a strong positive predictor of
CCHF incidence in humans in Iran and Mauritania,31,32 although
in Bulgaria where vaccination coverage is high amongst at-risk
populations (e.g., veterinarians and farm workers), livestock dens-
ity was not a significant driver of CCHF incidence in humans.29

Climate indicators have also been found as important predictors
of CCHF risk. Areas regularly experiencing long periods of low rain-
fall and humidity were associated with increased occurrence of
CCHF in Iran and Senegal,33,34 and higher temperatures were indi-
cators of CCHF occurrence in Turkey, Bulgaria, and Iran.28,29,33

Existing global distribution maps of CCHF are largely in the form
of national-level maps of vector presence or reported human
cases, such as that provided by WHO.35 Here we draw upon the
findings of several of the country-specific studies to model risk
for CCHF infection in humans at a global scale using an ecological
niche modeling approach. This approach enables us to better
identify at-risk areas by using environmental correlations found
in areas of good CCHF reporting to predict risk in those areas
where less is known about transmission of the disease. While a
preliminary CCHF risk map was produced using a similar statistical
approach in the past,36 the current paper offers a more recent and
refined global geographic estimation of the distribution of CCHF.
This was made possible by the addition of new data for the loca-
tions of disease occurrence, an evidence-based consensus layer
for background data sampling, and high-resolution environmen-
tal layers alongside newer methodologies. Because the geo-
graphic distribution of CCHF is taken into account when patients’
travel histories are considered during differential diagnosis of
hemorrhagic fevers,37 an up-to-date and high-resolution map of
the global distribution of the disease is essential. As the maps we
provide define regions not only where CCHF has been reported but
also where transmission is possible, successful identification of
both locally acquired and imported cases38–40 may be expedited,
therefore reducing the likelihood of further secondary human-
to-human transmission. The recent Ebola virus outbreak in West
Africa has highlighted the critical nature of such considerations.41

In several African countries, the risk of CCHF is poorly defined
meaning infection with CCHFV is more likely to go undiagnosed
or unreported in this region. An improved understanding of the
geographic extents of CCHF and the true level of risk within
these extents is vital for increasing awareness about the disease,
advocating for improved individual protection from Hyalomma
tick bites, and promoting safe practices for slaughterhouse and
healthcare workers. Finally, this work contributes to a wider initia-
tive to better map the ecological niche of several of the viral hem-
orrhagic fevers occurring in Africa which not only pose the risk of
zoonotic transmission, but also of secondary nosocomial and
community-level transmission.37,42,43

Methods
We used boosted regression trees (BRT), a method for modeling
species distributions, to create maps of environmental suitability
for CCHF occurrence. Our particular approach has been successfully
employed in similar disease mapping efforts,44,45 and requires the
generation of: a layer assessing the strength of evidence for CCHF
presence or absence, termed evidence consensus, at a national
and sometimes sub-national level46 (Figure 2A); a comprehensive
database of the locations of CCHF reports in humans (Figure 2B);
and a suite of globally gridded environmental and socioeconomic
covariates known or hypothesised to affect CCHF transmission.
The output map presents a probabilistic surface of environmental
suitability of CCHF occurrence (‘CCHF risk’) within its global geo-
graphic extents at a 5 km×5 km spatial resolution (Figure 2C).

Definitive extents

We carried out a process consisting of four components
(described below) to evaluate the certainty of presence or
absence of CCHF for each country and certain select sub-national

Figure 1. Transmission cycle of Crimean-Congo hemorrhagic fever virus
(CCHFV) where te, tl, and tn represent the eggs, larvae, and nymphs of
competent tick vectors, respectively. Nymphs (tn) transmit CCHFV to
small mammals and birds (a), whereas transmission to ruminants and
other large animals (A) is by adult ticks (T). Primary human infections
(H1) occur as a result of being directly bitten by adult ticks or squashing
ticks between the fingers (T), or through contact with the blood of infected
animals, usually livestock (A). The comparatively rarer human-to-human
transmission (represented by the dashed line from H1 to H2) is typically
between infected individuals and healthcare workers or close relatives
having exposed to their infectious blood and/or bodily fluids.88
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regions at the edges of its distribution. The methodology used to
generate the definitive extents of CCHF was adapted from that
used for dengue and is termed evidence consensus.45,46 The infor-
mation used to determine the final score for each country or sub-
national region is provided in Supplementary Table 1.

Health reporting organization evidence (max+3)

Evidence from WHO35 and the Global Infectious Diseases and
Epidemiology Online Network (GIDEON)47 was used. WHO places
each nation into one of five categories of evidence for CCHF:

absent; Hyalomma ticks present; CCHF virological or serological
evidence and vector present; 5–49 CCHF cases reported per
year; and 50 or more CCHF cases reported per year. GIDEON listed
each country as either endemic or non-endemic; if the country was
not listed, the entry was recorded as unspecified. Quantitative
scores for each unique permutation are laid out in Table 1.

Peer-reviewed evidence (max +6)

We conducted a country-specific search on PubMed and Web of
Science using the terms ‘[country] CCHF’ or ‘[country] Crimean

Figure 2. Maps of A: definitive extents as determined by evidence consensus; B: recorded occurrence and generated background points used in the BRT
procedure; and C: probability of occurrence of Crimean-Congo haemorrhagic fever (CCHF). A: shows the consensus on CCHF presence globally, ranging
from dark green (complete consensus on absence) to purple (complete consensus on presence). Countries in yellow are those where evidence was
inconclusive or contradictory for CCHF presence. B: shows the probability of CCHF occurrence in humans. Areas in purple are those most suitable for
transmission, with areas in green least suitable.
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Congo Hemorrhagic Fever’ or ‘[country] Crimean Hemorrhagic
Fever’ or ‘[country] Congo Hemorrhagic Fever’. Reported cases in
the literature were evaluated based upon their contemporariness
and diagnostic accuracy. Contemporariness was evaluated in three
categories: 2006–2013¼3, 1998–2005¼2, 1997 and earlier¼1.
Different diagnostic techniques were scored in a similar banding sys-
tem, with PCR techniques, or genotyping achieving 3 points, 2
awarded for the use of IgM- and IgG-based ELISA or other sero-
logical techniques, and with 1 point for cases that were just reported
or referred to an unspecified ‘laboratory diagnosis’.

Case data (max+6)

Data on reported outbreaks of CCHF, with a threshold of five cases,
were obtained from GIDEON datasets and the literature.
Outbreaks above this threshold were scored for their contempor-
ariness with outbreaks before 1998¼+2, 1998–2005¼+4, 2006–
2013¼+6. If there were no reported outbreaks, healthcare
expenditure as reported by the WHO was used as a proxy for diag-
nostic capacity in an attempt to differentiate genuine absence or
sporadic cases from inability to adequately diagnose CCHF.
Expenditure was stratified annually per capita at average US$
exchanges rates (2011 US$ WHO Health Statistics) with three cat-
egories defined: HE Low (,US$100), HE Medium (US$100 to
,US$500) and HE High (.US$500). These measures are used
as a proxy for the quality of healthcare reporting, as it is unlikely
that vast numbers of CCHF infections have gone undetected in
countries where healthcare expenditure is high (e.g., in northern
European countries).

Supplementary evidence (max+3)

In cases where contradictory evidence led to uncertainty in the
presence or absence of CCHF, supplementary evidence was sup-
plied. Here, seroepidemiological surveys, or the presence of
CCHFV in ticks or livestock were evaluated and scored. Country-
specific scoring is outlined in Supplementary Table 1 where
appropriate.

Assembly of the occurrence database

An occurrence database comprising point (e.g., town or city) or
polygon (e.g., county or province) locations of confirmed CCHF
infection presence was compiled from peer-reviewed literature,
Genbank records, and HealthMap alerts.48,49 A literature search
was conducted on PubMed and Web of Science using the terms
‘CCHF’ or ‘Crimean Congo Hemorrhagic Fever’ or ‘Crimean
Hemorrhagic Fever’ or ‘Congo Hemorrhagic Fever’. The same
terms were used in our Genbank search. An occurrence was
defined as one or more laboratory or clinically confirmed infec-
tion(s) of CCHF occurring at a unique location (the same adminis-
trative area or 5 km×5 km pixel for points) within one calendar
year. All occurrence data underwent manual review and quality
control to ensure information fidelity and precise geo-positioning.
Reports of autochthonous (locally transmitted) cases or out-
breaks were entered as an occurrence within the country in
which transmission occurred. If imported cases were reported
with information about the site of infection, they were geo-
positioned to the country where transmission occurred. If
imported cases were reported with no information about the
site of contagion, they were not entered into the database. In
addition, polygons greater than one square degree in area at
the equator were removed from the database, as their inclusion
in niche modeling would introduce a large amount of bias. This
database has been made publicly available for download.50

Explanatory covariates

We assembled gridded global data (5 km×5 km) for a set of five
explanatory covariates. The covariates were chosen based on fac-
tors known or hypothesised to contribute to suitability for CCHF
transmission based upon the national-level studies described in
the introduction. These included annual mean precipitation inter-
polated from global meteorological stations51 and mean land sur-
face temperature derived from NASA’s moderate resolution
imaging spectrometer (MODIS) imagery,52 intended to capture
the generally warm and arid climate zones where CCHFV is trans-
mitted. We also included a 5 km×5 km resolution measure of the
mean annual Enhanced Vegetation Index (EVI; also from
MODIS)53 (computed from the original 1 km×1 km data set), as
well as the SD of this mean, which is intended to serve as a
proxy for landscape diversity and habitat fragmentation. All
these surfaces were parsed through a gap-filling algorithm prior
to inclusion in the analysis.54 The proportion of each 5 km×5 km
grid cell covered by shrub or grass land cover types was also
derived using the MODIS MCD12Q1 dataset which was originally
obtained at 1 km×1 km resolution. To do this, we computed the
proportion of 1 km×1 km grid cells within the larger 5 km×5 km
cells that were classified as either grass, open shrub or closed
shrub. The International Geosphere-Biosphere Programme

Table 1. Derivation of quantitative scores for health-reporting
organization evidence

GIDEON WHO Score

Endemic 50+ CCHF cases reported per year +3
5–49 CCHF cases reported per year +2.5
CCHF virological or serological evidence

and vector present
+2

Hyalomma tick vector present +1.5
Absent 0

Unspecified 50+ CCHF cases reported per year +2
5–49 CCHF cases reported per year +1.5
CCHF virological or serological evidence

and vector present
+1

Hyalomma tick vector present +0.5
Absent 22

Non-endemic 50+ CCHF cases reported per year 20.5
5–49 CCHF cases reported per year 21
CCHF virological or serological evidence

and vector present
21.5

Hyalomma tick vector present 22
Absent 23

CCHF: Crimean-Congo hemorrhagic fever; GIDEON: Global Infectious
Diseases and Epidemiology Online Network.
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(IGBP) land cover classification scheme was utilized.55 No covari-
ate grids were shown to be adversely affected by multicollinearity
and were standardised to ensure identical spatial resolution,
extent, and boundaries. Maps for each covariate are provided in
Supplementary Figure 1.

Modeling risk for CCHF occurrence

We used a boosted regression tree (BRT) approach to establish a
multivariate empirical relationship between the probability of
CCHF presence and the environmental conditions (as determined
by the set of covariates described above) sampled at each occur-
rence location. This method combines regression trees56 with gra-
dient boosting,57 whereby an initial regression tree is fitted and
iteratively improved upon in a forward stagewise manner (boost-
ing) by minimising the variation in the response not explained by
the model at each iteration. It has been shown to fit complicated
response functions efficiently, while guarding against over-fitting,
and has thus been applied in the past for vector and disease dis-
tribution mapping.42,44,45,58–61

A large proportion of the point-level records in our occurrence
database were geo-positioned to urban areas where cases are
more likely to have been diagnosed rather than acquired (based
on the ecology of CCHF tick vectors). Because of this, there is
uncertainty about where in the vicinity CCHFV transmission actu-
ally took place. In an effort to reduce spatial bias, we thus
assumed that when a location was recorded as a point, transmis-
sion could have taken place anywhere within the larger adminis-
trative corresponding to the FAO’s Admin2-level Global
Administrative Unit Layers (GAUL),62 which typically represents
counties or municipalities. We then calculated the mean of all
covariates within these polygons and for any records which
were originally recorded as polygons. While this approach reduced
bias toward urban areas in our models, it is limited in its assump-
tion that Admin2 units are correct for sampling environmental
correlates of CCHF and in its disregard for variation in covariate
values within polygons.

Like other ecological niche-mapping approaches, the BRT mod-
els require not only presence data but also background data defin-
ing areas of potentially unsuitable environmental conditions at
unsampled locations, since data on absence of disease are rarely
reported. No consensus approach has been developed to optimise
the generation of background data and we therefore created an
evidence-based probabilistic framework for generating pseudo-
data. To represent the environmental conditions in locations
where the disease has not been reported, 10 000 background
points63–65 were randomly generated and weighted based on a
continuous raster surface derived from the national (and some-
times sub-national) CCHF evidence consensus scores. As such,
more background points were located in areas with high consen-
sus on absence.

To increase the robustness of model predictions and quantify
model uncertainty, we fitted an ensemble66 of 100 BRT models
to separate bootstraps of the data. We then evaluated the central
tendency as the mean across all 100 BRT models (see Bhatt
et al.44). Each of the 100 individual models was fitted using the
gbm.step subroutine in the dismo package in the R statistical pro-
gramming environment.67 All other tuning parameters of the
algorithm were held at their default values (tree complexity¼4,
learning rate¼0.005, bag fraction¼0.75, step size¼10, cross-

validation folds¼10). One 5 km×5 km pixel was randomly
selected from within each polygon for each individual model in
order to account for the environmental uncertainty associated
with imprecise geographic data. In order to improve the weighting
capacity of each of the 100 models, weightings were applied to
the background dataset such that the sum of the weighted back-
ground data equalled the weighted sum of the occurrence
records.68 Each of the 100 models predicts environmental suit-
ability on a continuous scale from 0 to 1, with a final prediction
map then being generated by calculating the mean prediction
across all models for each 5 km×5 km pixel. Cross-validation
was applied to each model, whereby 10 subsets of the data com-
prising 10% of the presence and background observations were
assessed based on their ability to predict the distribution of the
other 90% of records using the mean area under the curve
(AUC) statistic. This AUC value was then averaged across the 10
sub-models and finally across all 100 models in the ensemble
in order to derive an overall estimate of goodness-of-fit.
Additionally, to avoid AUC inflation due to spatial sorting bias, a
pairwise distance sampling procedure was used,69 resulting in a
final AUC which is lower than would be returned by standard pro-
cedures but which gives a more realistic quantification of the
model’s ability to extrapolate predictions to new regions.70

Results
In total, 1721 occurrence records were included in our final data-
set after performing all quality control procedures. These included
1470 county or district-level occurrences and 251 province-level
occurrences spanning 1953 to 2012. We assumed that any
recorded location of CCHF occurrence, regardless of the date of
the record, represented an environment permissible for the
disease.

The evidence consensus map (Figure 2A) showed 47 countries
to have an indeterminate status in terms of CCHF presence or
absence (scores between 215 and +15), as well as certain parts
of China and Russia. Those with particularly poor evidence (score
of zero) are mostly located in sub-Saharan Africa, but also include
Cambodia, Laos, Myanmar, Vietnam, Nepal and Arunachal
Pradesh in Asia, as well as Azerbaijan, Bhutan, Yemen, Moldova
and Macedonia in the region spanning eastern Europe to central
Asia. More information is needed about the possible occurrence of
CCHF in these places, as well as the presence of any ticks that have
been proven as competent vectors of CCHFV. Yunnan province in
China is classified as having some evidence for CCHF presence due
to CCHFV seropositivity having been found in humans,71 although
the overall evidence is weak since no cases of human disease have
been reported in the province. According to our evidence consen-
sus measure, the five countries currently having the strongest evi-
dence for CCHF presence are Turkey, Iran, Afghanistan, Tajikistan,
and Pakistan.

The average of the ensemble of BRT models predicted high
levels of risk for CCHF in the Black Sea region and some parts of
central Asia, with more focalized areas of risk being found in the
Sahel and Cape regions of Africa (Figure 2C). The countries with
the largest areas of high risk for CCHF occurrence are Turkey,
Iran, Romania, Moldova and Ukraine, with some parts of south-
west Russia, Syria, Iraq and central Asia demonstrating high prob-
abilities of occurrence as well (Figure 3). Although the evidence
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consensus for CCHF presence is strong for many countries in
sub-Saharan Africa, our model predicts that areas with the high-
est probability of occurrence are overall much smaller in area and
more irregularly distributed in this region than in the Black Sea
region (see Figure 4). However, this may be an artefact of
the small number of occurrence observations available for CCHF
in Africa, as can be seen in Figure 2B (see also Burt and
Swanepoel72). For example, while CCHF occurrences have been
reported in central Africa and therefore consensus on presence
is relatively high for some countries such as the Democratic
Republic of the Congo, the areas of predicted suitability within
this region are actually quite sparsely distributed.

Our models showed CCHF risk to be particularly determined by
the proportion of grass and shrub land cover within a 5 km×5 km
grid cell, contributing 62% to the ensemble of models. Land sur-
face temperature had the second most important effect, contrib-
uting 19% to the models, followed by the standard deviation
of mean EVI (8%), mean annual precipitation (6%), and mean
EVI (5%). Effect plots for each covariate are provided in
Supplementary Figure 2. Validation statistics indicated high pre-
dictive performance of the BRT ensemble mean map with area
under the receiver operating characteristic (AUC) of 0.923
(+0.051 SD).

Discussion
Temperature, precipitation and moisture indices have been found
to be important drivers of CCHF infection in past studies29, 34; how-
ever, in this model, land cover types were more important in pre-
dicting the global ecological niche for CCHF transmission to
humans. When considered together, these land cover types are
generally reflective of the environments where wild and/or
domestic herbivore CCHF hosts exist and enable tick survival and

virus circulation. While shrub and grass land cover types are
effective for delineating global risk patterns, variations in climate
and moisture availability may be more important in predicting
heterogeneity in finer-scale prevalence patterns. It is also well
understood that those living or working in close proximity to live-
stock are at the greatest risk for infection with CCHF, yet livestock
population layers had minimal influence in predicting human dis-
ease occurrence. It is, therefore, possible that the abundance of
CCHF livestock reservoirs is more important in driving prevalence
patterns within endemic areas rather than as a predictor of overall
transmission at a global scale.

We have strived to be exhaustive in the assembly of contem-
porary data on CCHF occurrence and have applied new modeling
approaches to maximise the predictive power of these data. The
consideration of a range of biogeographic factors alongside dis-
ease occurrence information enabled us to infer risk in areas
with uncertainty about CCHF transmission, and the resulting
map thus presents sub-national refinements of the distribution
of risk without relying on national-level reporting systems.
Furthermore, the use of an evidence consensus layer allowed us
to limit our predictions to within the current CCHF transmission
extents in Africa, Europe and Asia. Due to phylogeographic evi-
dence that CCHFV genotypes tend to vary between Africa and
Eurasia more so than within each region,73 we did carry out an add-
itional model which distinguished between these two regions. This
distinction had a minimal effect and was thus excluded in our final
modeling procedures. Such a finding, however, does highlight that
while particular CCHFV strains may vary between Africa and
Eurasia, the ecological determinants of its zoonotic niche are con-
sistent between the two regions.

It is possible to highlight areas where surveillance is most
needed. The map in Figure 5 was created by defining ‘high-risk’
pixels as those for which the modelled probability of occurrence
(Figure 2C) was greater than or equal to 0.5. We then selected

Figure 3. The probability of occurrence of Crimean-Congo haemorrhagic fever (CCHF) in the Balkans region. Areas in purple are those most suitable for
transmission, with areas in green least suitable.
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those high-risk pixels which fell inside countries with low evidence
consensus scores (between 225 and +25). The result is a visual-
ization of areas where humans are predicted to be at potential risk
for CCHF yet where evidence is most lacking and thus where sur-
veillance is a priority. While there are many countries in Africa and
Eurasia that have small and sparse areas in need of surveillance,
several countries in Figure 5 stand out as having large and more
continuous areas in need of surveillance. These include Mali, Chad,
Somalia, Djibouti and Zimbabwe in Africa; Syria, Macedonia,
Azerbaijian, Armenia, Turkmenistan and Yemen in Eastern Europe
and Central Asia; and Kashmir, Nepal and the Yunnan province of
China in southern Asia.

For all viral hemorrhagic fevers, public health education about
disease vectors or reservoirs and behavioural risk factors for sec-
ondary infection is required in endemic areas, and many lessons
can be learned from past Marburg, Ebola and Lassa fever out-
breaks, for example.79–81 Specific to CCHF is the need for agricul-
tural workers and others working with animals to apply acaricidal
repellent to exposed skin and clothing, as well as to wear protect-
ive clothing and gloves while dealing with the blood or body fluids

of livestock. Crimean-Congo hemorrhagic fever does, however,
share with these other viral hemorrhagic fevers the risk for infec-
tion through contact with other infected humans, and failure to
avoid such contact has led to multiple nosocomial CCHF outbreaks
in recent years.82–86 Such outbreaks indicate that awareness is
lacking in many parts of the world about the presence of CCHF,
which represents the largest barrier to the rapid diagnosis required
for the prevention of nosocomial outbreaks. Healthcare workers in
at-risk areas must not only understand the intensive care needs of
infected patients, but also understand the precautions required to
prevent occupational exposure to CCHF when treating these
patients and handling infectious laboratory specimens.87

Preventing primary transmission of CCHF to humans also requires
strategic allocation of vector and/or reservoir control resources,
which are limited in many of the settings we have predicted to
be at risk for CCHF, particularly in Africa.

While we have emphasized that better information is still
needed in several regions, our map provides a baseline for moni-
toring change in the global distribution of CCHF going forward.
Further cartographic refinements are required in order to help

Figure 4. Probability of occurrence of Crimean-Congo haemorrhagic fever in Africa. Areas in purple are those most suitable for transmission, with areas in
green least suitable.
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differentiate endemic from epidemic-prone areas, particularly in
Africa where there is less certainty about the presence or absence
of CCHF overall. The occurrence database used in creating this
map can be updated with new information as necessary, and a
stronger global evidence base, particularly for the regions high-
lighted in Figure 5, would improve the accuracy of future iterations
of this mapping procedure. The ultimate aim is to provide more
useful information in evaluating control and prevention strategies
and their impact, and a refined map of the global risk for CCHF is a
first step towards reaching this goal.

Although our resulting map is an improvement on those which
have previously been produced, the abundance of information
about CCHF occurrence still comprises a weaker evidence base
than that available, for example, for Plasmodium falciparum74

and P. vivax malaria,75 for which a large amount of prevalence
information is available. Records of disease occurrence do not
easily translate to population-level metrics, and so as databases
of CCHF prevalence become more widespread, future approaches
should focus on using geostatistical methods to assess risk,76 as
with many other neglected tropical diseases.77,78

Conclusions

In this study, we have refined the map of the geographic extents
of CCHF and the level of risk within these extents using an exhaust-
ive assembly of known records of CCHF occurrence worldwide and

an ecological niche modeling framework. We hope that our
improved estimate of the spatial distribution of CCHF will serve
as a starting point for a wider discussion about the global impact
of CCHF. Not only can it encourage public health awareness in
areas we have defined as having a high probability of risk, but it
can also guide targeted distribution should an effective vaccine
or treatment become available.
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66 Araújo MB, New M; Ensemble forecasting of species distributions.
Trends Ecol Evol 2007;22:42–7.

67 Elith J, Leathwick JR, Hastie T. A working guide to boosted regression
trees. J Anim Ecol 2008;77:802–13.

68 Barbet-Massin M, Jiguet F, Albert CH et al. Selecting pseudo-absences
for species distribution models: how, where and how many? Methods
Ecol Evol 2012;3:327–38.

69 Hijmans RJ. Cross-validation of species distribution models: removing
spatial sorting bias and calibration with a null model. Ecology
2012;93:679–88.

70 Wenger SJ, Olden JD. Assessing transferability of ecological models: an
underappreciated aspect of statistical validation. Methods Ecol Evol
2012;3:260–7.

J. P. Messina et al.

512

http://www.who.int/csr/disease/crimean_congoHF
http://www.who.int/csr/disease/crimean_congoHF
http://www.who.int/csr/disease/crimean_congoHF
http://www.who.int/csr/disease/crimean_congoHF
http://www.gideononline.com
http://www.gideononline.com
http://www.gideononline.com
http://data.fao.org/ref/f7e7adb0-88fd-11da-a88f-000d939bc5d8.html?version=1.0
http://data.fao.org/ref/f7e7adb0-88fd-11da-a88f-000d939bc5d8.html?version=1.0
http://data.fao.org/ref/f7e7adb0-88fd-11da-a88f-000d939bc5d8.html?version=1.0
http://data.fao.org/ref/f7e7adb0-88fd-11da-a88f-000d939bc5d8.html?version=1.0
http://data.fao.org/ref/f7e7adb0-88fd-11da-a88f-000d939bc5d8.html?version=1.0
http://data.fao.org/ref/f7e7adb0-88fd-11da-a88f-000d939bc5d8.html?version=1.0
http://data.fao.org/ref/f7e7adb0-88fd-11da-a88f-000d939bc5d8.html?version=1.0
http://data.fao.org/ref/f7e7adb0-88fd-11da-a88f-000d939bc5d8.html?version=1.0


71 Xia H, Li P, Yang J et al. Epidemiological survey of Crimean-Congo
hemorrhagic fever virus in Yunnan, China, 2008. Int J Infect Dis
2011;15:e459–63.

72 Burt FJ, Swanepoel R. Molecular epidemiology of African and Asian
Crimean-Congo haemorrhagic fever isolates. Epidemiol Infect
2005;133:659–66.

73 Burt FJ, Paweska JT, Ashkettle B et al. Genetic relationship in southern
African Crimean-Congo haemorrhagic fever virus isolates: evidence for
occurrence of reassortment. Epidemiol Infect 2009;137:1302–8.

74 Gething PW, Patil AP, Smith DL et al. A new world malaria map:
Plasmodium falciparum endemicity in 2010. Malar J 2011;10:378.

75 Gething PW, Elyazar IRF, Moyes CM et al. A long neglected world
malaria map: Plasmodium vivax endemicity in 2010. PLoS Negl Trop
Dis 2012;6:e1814.

76 Anders KL, Hay SI; Lessons from malaria control to help meet the rising
challenge of dengue. Lancet Infect Dis 2012;12:977–84.

77 Brooker S, Hotez PJ, Bundy DAP. The global atlas of helminth infection:
mapping the way forward in neglected tropical disease control. PLoS
Negl Trop Dis 2010;4:e779.

78 Smith J, Brooker S, Haddad D et al. Mapping the global distribution of
trachoma: an updated atlas. Am J Trop Med Hyg 2010;83:160.

79 Allaranga Y, Kone ML, Formenty P et al. Lessons learned during active
epidemiological surveillance of Ebola and Marburg viral hemorrhagic
fever epidemics in Africa. East Afr J Public Health 2010;7:30–6.

80 Mccormick JB. Epidemiology and control of Lassa fever. Curr Top
Microbiol Immunol 1987;134:69–78.

81 Fisher-Hoch SP, Tomori O, Nasidi A et al. Review of cases of nosocomial
Lassa fever in Nigeria – the high price of poor medical practice. BMJ
1995;311:857–9.

82 Aradaib IE, Erickson BR, Mustafa ME et al. Nosocomial outbreak of
Crimean-Congo hemorrhagic fever, Sudan. Emerg Infect Dis
2010;16:837–9.

83 Naderi H, Sheybani F, Bojdi A et al. Fatal nosocomial spread of
Crimean-Congo hemorrhagic Fever with very short incubation period.
Am J Trop Med Hyg 2013;88:469–71.

84 Naderi HR, Sarvghad MR, Bojdy A et al. Nosocomial outbreak of
Crimean-Congo haemorrhagic fever. Epidemiol Infect 2011;139:862–6.

85 Patel AK, Patel KK, Mehta M et al. First Crimean-Congo hemorrhagic
fever outbreak in India. J Assoc Physicians India 2011;59:585–9.

86 Mardani M, Keshtkar-Jahromi M, Ataie B et al. Crimean-Congo
hemorrhagic fever virus as a nosocomial pathogen in Iran. Am J
Trop Med Hyg 2009;81:675–8.

87 Dixon J, Ong E. Clinical management of viral hemorrhagic fevers. In:
Current Treatment Options in Infectious Disease. Vol 6: Viral
Infections. 2014, p. 245–55

88 Bente DA, Alimonti JB, Shieh WJ et al. Pathogenesis and immune
response of Crimean-Congo hemorrhagic fever virus in a STAT-1
knockout mouse model. J Virol 2010;84:11089–100.

Transactions of the Royal Society of Tropical Medicine and Hygiene

513


