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Abstract
Estimating the case-fatality risk (CFR)—the probability that a person dies from an infection

given that they are a case—is a high priority in epidemiologic investigation of newly emerg-

ing infectious diseases and sometimes in new outbreaks of known infectious diseases. The

data available to estimate the overall CFR are often gathered for other purposes (e.g., sur-

veillance) in challenging circumstances. We describe two forms of bias that may affect the

estimation of the overall CFR—preferential ascertainment of severe cases and bias from

reporting delays—and review solutions that have been proposed and implemented in past

epidemics. Also of interest is the estimation of the causal impact of specific interventions

(e.g., hospitalization, or hospitalization at a particular hospital) on survival, which can be

estimated as a relative CFR for two or more groups. When observational data are used for

this purpose, three more sources of bias may arise: confounding, survivorship bias, and

selection due to preferential inclusion in surveillance datasets of those who are hospitalized

and/or die. We illustrate these biases and caution against causal interpretation of differential

CFR among those receiving different interventions in observational datasets. Again, we dis-

cuss ways to reduce these biases, particularly by estimating outcomes in smaller but more

systematically defined cohorts ascertained before the onset of symptoms, such as those

identified by forward contact tracing. Finally, we discuss the circumstances in which these

biases may affect non-causal interpretation of risk factors for death among cases.

The case-fatality risk (CFR) is a key quantity in characterizing new infectious agents and new
outbreaks of known agents. The CFR can be defined as the probability that a case dies from the
infection. Several variations of the definition of “case” are used for different infections, as dis-
cussed in Box 1. Under all these definitions, the CFR characterizes the severity of an infection
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and is useful for planning and determining the intensity of a response to an outbreak [1,2].
Moreover, the CFR may be compared between cases who do and do not receive particular
treatments as a way of trying to estimate the causal impact of these treatments on survival.
Such causal inference might ideally be done in a randomized trial in which individuals are ran-
domly assigned to treatments, but this is often not possible during an outbreak for logistical,
ethical, and other reasons [3]. Therefore, observational estimates of CFR under different treat-
ment conditions may be the only available means to assess the impact of various treatments.

However, observational studies conducted in the early phases of an outbreak, when public
health authorities are appropriately concentrating on crisis response and not on rigorous study
design, are challenging. A common problem is that disease severity of the cases recorded in a
surveillance database will differ, perhaps substantially, from that of all cases in the population.
This issue has arisen in the present epidemic of Ebola virus disease in West Africa and in many
previous outbreaks and epidemics [4–9] and will continue to arise in future ones.

Here we outline two biases that may occur when estimating the CFR in a population from a
surveillance database, and three more biases that may occur when comparing the CFR between
subgroups to estimate the causal effect of medical interventions. We also briefly consider the
applicability of these biases to a different application: comparing the CFR across different
groups of people, for example, by geography, sex, age, comorbidities, and other “unchangeable”
risk factors. Such factors are “unchangeable” in the sense that they are not candidates for inter-
vention in the setting of the outbreak, though some could, of course, change over longer time-
scales. The goal of estimating the CFR in groups defined by such unchangeable factors is not to
understand the causal role of these factors in mortality, but to develop a predictive model for
mortality that might be used to improve prognostic accuracy or identify disparities. Such

Box 1. Definition of the CFR.

The CFR itself is an ambiguous term, as its definition and value depend on what qualifies
an individual to be a “case.” Several different precise definitions of CFR have been used
in practice, as have several imprecise ones. The infection-fatality risk (sometimes written
IFR) defines a case as a person who has shown evidence of infection, either by clinical
detection of the pathogen or by seroconversion or other immune response. Such individ-
uals may or may not be symptomatic, though asymptomatic ones may go undetected.
The symptomatic case-fatality risk (sCFR) defines a case as someone who is infected and
shows certain symptoms. Infection in many outbreaks is given several gradations, includ-
ing confirmed (definitive laboratory confirmation), probable (high degree of suspicion,
by various clinical and epidemiologic criteria, without laboratory confirmation), and
possible or suspected (lower degree of suspicion). This paper describes issues in estimat-
ing any of these risks or comparing them across groups, but does not go into the details
of each possible definition.

Furthermore, unlike risks commonly used in epidemiologic research (e.g., the 5-year
mortality risk), the length of the period during which deaths are counted for the CFR is
rarely explicit, probably because it is considered to be short enough to avoid ambiguity in
the definition of CFR. However, a precise definition of the CFR would need to include
the risk period, e.g., the 1-month CFR of Ebola. Clearly, the definition of CFR for a par-
ticular investigation should be specified as precisely as possible.
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predictions may be affected by survivorship bias and selection bias, but not by confounding, as
we discuss.

Biases Affecting the Estimation of the Overall CFR
Two biases that may affect the estimation of an overall CFR are presented in Table 1:

Preferential ascertainment of severe cases
For diseases that have a spectrum of clinical presentation, those cases that come to the attention
of public health authorities and are entered into surveillance databases will typically be people
with the most severe symptoms, who seek medical care, are admitted to hospital, or die. There-
fore, the CFR will typically be higher among detected cases than among the entire population
of cases, given that the latter may include individuals with mild, subclinical, and (under some
definitions of “case”) asymptomatic presentations. Laboratory confirmation as an inclusion cri-
terion may reduce this bias if it is able to detect a wider spectrum of presentations, or may exac-
erbate it if the probability of receiving a laboratory test is higher for more severe cases and/or if
test sensitivity is higher for more severe cases. The magnitude of this bias may be uncertain for
a long period because the spectrum of clinical presentations is itself uncertain at the start of an
outbreak of a new disease [12,26]. All proposed approaches to estimate and correct for this bias
(Table 1) require auxiliary data sources to estimate how the reported subset of cases compares
with the overall population of cases. The availability of such auxiliary data sources will depend
on the context of the outbreak.

Bias due to delayed reporting of death
During an ongoing epidemic, there is a delay between the time someone dies and the time their
death is reported. Therefore, at any moment in time, the list of cases includes people who will
die and whose death has not yet occurred, or has occurred but not yet been reported. Thus
dividing the cumulative number of reported deaths by the cumulative number of reported
cases at any moment will underestimate the true CFR. The key determinants of the magnitude
of the bias are the epidemic growth rate and the distribution of delays from case-reporting to
death-reporting; the longer the delays and the faster the growth rate, the greater the bias. Heu-
ristically, the underestimate will be proportionate to the expansion of the epidemic during the
delay between the time a case enters the database to the time the death of that case enters the
database (if it occurs). Fig 1 illustrates an example where the delay is 3 weeks, the epidemic
doubling time is 2 weeks, and the underestimate is by a factor of 23/2 � 2.8.

This bias may be corrected for in various ways, and to varying degrees, using information
on the growth rate of the epidemic, the distribution of times from case-report to death-report,
and the distribution of times from case-report to recovery-report (i.e., report that the case is no
longer at risk of dying of the infection). A simple approach is to limit analysis to those cases
with sufficiently long follow-up for a death to have been recorded had a death occurred, but
this approach may result in an exceedingly small sample size if applied early in the epidemic.
Several such strategies are described in Table 1.

Biases Affecting the Causal Interpretation of Relative CFR
Here, and in Table 2, we discuss the sources of three biases that threaten the validity of a causal
interpretation of a difference in CFR between groups who have received different interventions.
Such a difference might be measured as a risk ratio (RR), the ratio of CFR in group A to that in
group B, or as an odds ratio (OR), the ratio of the odds of dying in group A and group B, or as
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Table 1. Potential biases that can affect the estimation of CFR (and thereby also the comparison of CFR across groups).

Bias Direction Outbreaks in which analysts have noted this
bias may be operating

Possible solutions

Preferential ascertainment of severe cases: In
an infection with a range of manifestations from
relatively mild to highly severe, milder cases are
less likely to appear in surveillance databases
than more severe ones; therefore, the CFR among
ascertained cases will be higher than that among
all cases.

Spuriously
increases
estimate of CFR

Influenza H1N1pdm [10–12], Influenza H7N9
[6], Influenza H5N1 [7] (though this hypothesis
has been refuted [8]), Middle East Respiratory
Syndrome [4], Ebola (this article)[13]

Note: these solutions are listed in approximately
the temporal order in which they may be practical,
from early in the outbreak to later on; details will
depend on the epidemiology of the outbreak.

Use sentinel surveillance sites to estimate
multipliers between various levels of severity and
extrapolate to a larger population [6].

Survey- or health-facility–based surveillance for
symptomatic infection [14] in a defined population,
combined with enhanced surveillance for severe
outcomes (particularly death) in the same
population.

Use travelers from high-burden areas with low
ascertainment to low-burden areas with higher
ascertainment to estimate incidence of infection in
source population [15,16], thereby providing a
more accurate denominator for comparison to
deaths in source population.

Surveillance pyramid approaches: reconstruct
conditional probabilities of appearing at one
severity level conditional on reaching a lower
severity level; combine data sources that have
relatively complete ascertainment of higher
severity levels (e.g., hospitalization, ICU, death)
with those having relatively complete
ascertainment of lower levels (e.g., seeking
medical attention, hospitalization) [10,11]. CFR can
then be estimated as a product of conditional
probabilities with associated uncertainties [17].

Serologic ascertainment of infection [18,19] to
provide a population denominator for infections
regardless of symptoms, combined with active
surveillance for more severe outcomes.

Individuals ascertained by a different mechanism,
e.g., named healthy contacts of cases who
subsequently test positive, could be a more
representative group in whom to assess severity
[20].

Bias due to delayed reporting. During an
ongoing epidemic, at any week w the persons who
have died up to time w will not be the only ones to
die of the infection among those who became
cases by w. The denominator of the CFR (cases)
includes persons who have not yet died of the
infection, but will do so in the future. Thus the CFR
by w will be less than the true CFR. This bias will
be particularly severe for infections that are
increasing rapidly in incidence and for which the
infection–death time interval is long.

Spuriously
decreases
estimate of CFR

SARS [9], Influenza H1N1pdm [21], Ebola
[22,23]

Limit analysis to those cases with sufficiently long
follow-up for a death to have been recorded had a
death occurred. While this may lead to extremely
small sample sizes near the beginning of an
epidemic, this strategy is more feasible after a
local epidemic wave, including reporting delays,
has passed or nearly passed [10,11].

Limit analysis to those cases known either to have
died or recovered, but exclude those with unknown
outcome (biased if severity affects outcome
ascertainment)[22–24].

Apply a competing-risk Kaplan-Meier–like method
or a parametric mixture model to the full dataset
(biased if the times to death and time to recovery
have different distributions) [24,25].

Fit the distribution of times to death and to
recovery to estimate the true CFR [10,11], or
inverse-probability weight deaths using the
conditional probability of having survived by w,
given that one dies [21] (biased if the probability
distribution is incorrect).

doi:10.1371/journal.pntd.0003846.t001
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a risk difference (RD), the difference between the CFR in group A and group B. We use the
term relative CFR to refer to any of these measures, and call a relative CFR non-null when it
differs from 1 (ratio) or 0 (difference).

When these biases are present, a relative CFR, different from the null value in group B com-
pared with A does not imply a causal effect of group. For example, if group A is non-hospital-
ized patients and group B is hospitalized patients, an odds ratio of death less than 1 may not
imply a beneficial effect of hospitalization on the odds of death. Similarly, a relative CFR
greater than 1 may not imply that hospitalization is harmful. We use the estimation of the
causal impact of hospitalization on mortality as our example throughout this section. Note that
exactly the same reasoning applies to assessment of another intervention or to a comparison of
two interventions, for example, a comparison of treatment at Center A versus treatment at
Center B.

The first bias arises in a naïve comparison of mortality between those who have and those
who have not been hospitalized. If some individuals die before they can be admitted to a hospi-
tal, they will by definition not become hospitalized. Therefore, even in the absence of any effect
of hospitalization on the risk of death, there will be fewer deaths among those hospitalized than
among those not hospitalized. We will refer to this bias as “survivorship bias.”

Fig 1. Illustration of delayed reporting bias in an exponentially growing epidemic. In an ongoing epidemic, there will typically be a delay between the
reporting of a case and the reporting of the death of that case, if the infected person dies. Thus, at any moment, there will be some cases reported who will die
of the infection but who have not yet died, or whose deaths have not yet been reported. Simple division of the number of deaths reported by weekw (green),
by the number of cases reported by weekw (blue) will underestimate the CFR because the numerator does not include all those cases in the denominator
who will eventually die. With a reporting delay of 3 weeks for deaths compared to cases, the reported deaths curve will be shifted 3 weeks to the right, relative
to the curve of the total number of cases reported by weekw who will die (red). If the epidemic doubling time is 2 weeks, as shown here, the underestimate of
CFR will be by a factor of about 23/2 � 2.8, with the exponent being the number of epidemic doubling times that pass between case reporting and death
reporting. In reality, there will be a distribution of reporting delays rather than a fixed delay, making this a heuristic rather than exact approach. The problem is
ameliorated in an epidemic that grows more slowly or less than exponentially. For more details, see references in Table 1.

doi:10.1371/journal.pntd.0003846.g001
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This bias can be eliminated using data on the time d since the person became a case. The
analysis would then compare the risk of death between those individuals who became

Table 2. Potential biases that can affect the comparison of CFR across groups (relative CFR), using the example of comparing the CFR among
hospitalized and non-hospitalized persons to assess the relative CFR for hospitalization.

Bias Direction Outbreaks in which analysts
have noted this bias may be
operating

Possible solutions/means of
detecting the bias

Survivorship bias: Those who die before
being hospitalized cannot, by definition, be
hospitalized; a crude comparison of deaths
among hospitalized and non-hospitalized
cases will therefore reflect the “protective”
effect of death against hospitalization. This is
an example of reverse causality because for
these individuals, death prevented
hospitalization, rather than hospitalization
preventing death.

Spurious protective effect of
hospitalization on risk of death

Ebola (this article) Conditioning analysis on survival up
to day d of symptoms, and analyzing
hospitalization on day d as the
intervention, will avoid this bias, as
individuals who die before
hospitalization will not be included in
the analysis. This analysis can be
repeated for different values of d and
potentially combined in a parametric
model.

Individuals identified before
becoming cases (e.g., as healthy
contacts of infected persons) and
actively followed regardless of
clinical severity could be analyzed
separately as a prospective cohort
for whom the course of disease
could be observed and this
restriction readily made.

Confounding: if individuals are hospitalized
in response to predictors of poor prognosis,
hospitalization will be noncausally associated
with poor outcome. This problem is common
in the pharmacoepidemiology literature [27].
Alternatively, in situations of triage, when
beds or other resources are limited,
individuals with better prognosis may receive
hospitalization (or another intervention),
creating a spurious beneficial effect of
hospitalization.

May be in either direction,
depending on whether those
receiving the intervention have
better or worse prognosis.

Ebola (this article), H1N1pdm
(effect of antiviral treatment on
death) [28], Influenza H5N1
(effect of antiviral treatment on
death) [29,30,31]

In principle, analysis can adjust for
prognostic factors that also predict
hospitalization via matching,
stratification, or multivariable
analysis. In practice, such
information may be unavailable [27].

Such adjustments will be more
readily made if data are obtained
prospectively from a cohort of cases
identified before becoming cases.

Selection bias occurring because
mortality and hospitalization both affect
the probability a case will appear in the
database [32]: When inclusion in a database
can occur as a result of either of two (or
more) factors, the association between these
two factors within the database will be biased
relative to that in the source population. For
example, if death and hospital admission are
both means by which cases are ascertained
and enter a database, as may be the case
for Ebola datasets, hospitalization will be
spuriously associated with death in the
dataset even if hospitalization has no causal
effect in preventing death.

Direction of bias depends on
the probabilities of inclusion in
the dataset depending on
exposure and outcome.

Ebola (this article) Without knowledge of how cases
came to enter a dataset, the
magnitude of this bias cannot be
evaluated. Under assumptions about
the proportion of cases entering the
dataset for various reasons, a
sensitivity analysis could be
performed to assess the plausibility
of assigning any observed protective
effect to this bias [33].

This bias too may be avoided by
prospectively following a cohort of
individuals who are identified before
becoming cases.

doi:10.1371/journal.pntd.0003846.t002
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hospitalized on day d against those who did not, limiting analysis to those who were still alive
at day d. This estimate might be expected to differ for different values of d if, for example, early
hospitalization was more beneficial than late hospitalization. If not different, the estimates of
the causal effect of hospitalization for several values of d could be combined. Restriction to
those alive at the time from which we want to estimate the effect of hospitalization would elimi-
nate survivorship bias. However, two other biases, described below, could still affect the
inference.

The second source of bias is confounding. Severity of disease will likely affect the probability
of hospitalization and the probability of death. As a common cause of the exposure of interest
(hospitalization) and the outcome (death), disease severity is a confounder of the causal effect
of hospitalization on death. If hospitalization is offered to especially severe cases or—in the set-
ting of extreme triage—to especially mild cases, then hospitalization would spuriously appear
harmful (if hospitalization went to especially severe cases) or beneficial (if it went to especially
mild cases). There may be other confounders of this effect besides disease severity. Individuals
living in rural areas may be at greater risk of mortality (e.g., due to malnutrition) and also less
likely to be hospitalized (due to longer travel time to hospital). Place of residence (or travel
time to hospital) in this setting would be a confounder of the effect of hospitalization on death.
The standard approach to reducing confounding is to stratify, restrict, or adjust for prognostic
factors that affect the propensity to receive the treatment (in this case to be hospitalized) [27].
However, such information may frequently be limited or unavailable in databases compiled
during outbreaks, especially in resource-limited settings.

The third source of bias is selection occurring because mortality and hospitalization both
affect the probability a case will appear in the database. During an outbreak, many cases may
not appear in the database because they are not ascertained or because information about them
is not obtainable. In particular, cases who are not hospitalized, and cases who do not die, may
be less likely than other cases to appear in the database because they are less likely to come to
medical or public health attention.

If appearance in a database is the common effect of hospitalization and death, then the asso-
ciation between hospitalization and death among cases in the database may be non-null even if
hospitalization and death were independent in the population of all cases. The direction and
magnitude of the association between hospitalization and death among cases in the database
will then be the result of combining the association due to this selection bias, the association
due to a potential effect of hospitalization on mortality, and the association due to
confounding.

Hypothetical examples are shown in Tables 3–5. In these tables, the association in the popu-
lation between hospitalization on day 8 (an arbitrarily chosen day) and death is negative; indi-
viduals hospitalized on day 8 (an arbitrarily chosen day) of symptoms have a lower probability
of death than those who are not hospitalized on day 8 of symptoms. If we assume that this anal-
ysis has avoided survivorship bias by limiting analysis to cases still alive on day 8, then the pop-
ulation-level association would reflect a combination of the causal effect of hospitalization on
day 8 on risk of death, and confounding by severity or other factors. This population-level asso-
ciation is the same in Tables 3, 4, and 5, but different probabilities are assumed for inclusion in
the database, depending on whether an individual is hospitalized on day 8, dies, or both. Rela-
tive CFRs on the RR, OR, and RD scales for hospitalization on day 8 are calculated for each
hypothetical example.

The hypothetical data in these tables show that selection bias in such a circumstance may be
either positive or negative on each of the three scales, depending on the specific probabilities of
selection in each of the four states. Table 3 shows an example of negative bias on the RR, OR,
and RD scales (overestimating the protective effect of hospitalization on day 8 expressed as a
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lower value of each relative risk measure). Table 4 shows an example of a positive bias on the
RR and RD scales and a negative bias on the OR scale. Table 5 shows an example of positive
bias (underestimating the protective effect of hospitalization on day 8 expressed as a higher
value of each measure) on all three scales.

From experience, it seems that when databases are assembled in this way, it is rarely possible
to tell why an individual case has come into the database. In the absence of such information, it
is difficult to imagine how adjustments could be performed. However, sensitivity analyses
could be performed to assess how strong such biases are likely to be [33].

Addressing the Biases in Causal Interpretation of Relative CFR
We have stated already that survivorship bias can be avoided by limiting analyses of the inter-
vention to those who remain alive on a certain day after becoming a case. One strategy that
would help to resolve the other two sources of bias is to limit analysis to a cohort of cases who
were identified before they became cases; for example those who were identified as healthy con-
tacts of known cases, and were followed prospectively. Confounding occurs because individual
factors like severity of infection or place of residence (which could affect both the probability of
exposure—receiving the intervention—and the probability of the outcome—mortality) are not
accounted for in the analysis through stratification, restriction, or adjustment. Selection bias in
this setting occurs because the exposure and the outcome both affect the probability of inclu-
sion in the database. Follow-up of a cohort of contacts ascertained before becoming cases could
eliminate hospitalization and mortality as predictors of inclusion in the database, thus elimi-
nating the form of selection bias we have discussed. It would provide an opportunity for

Table 3. Effect of selection bias on estimates of relative CFR on the risk ratio (RR) and odds ratio (OR) scale.

Joint frequencies of hospitalization and death in the whole
population among those alive at day 8 of symptoms

Not hospitalized on day 8
of symptoms

Hospitalized on day 8 of
symptoms

Total

Survive 200 400 600 RRP = 0.75

Die 800 600 1,400 ORP = 0.375

Total 1,000 1,000 2,000 RDP = -0.20

Assumed probability of being in the database sample given
hospitalization and death

Not hospitalized on day 8
of symptoms

Hospitalized on day 8 of
symptoms

Average

Survive 5% 40% 28% ORS = 0.16

Die 40% 50% 44%

Average 33% 46% 40%

Frequencies of persons in the database

Not hospitalized on day 8
of symptoms

Hospitalized on day 8 of
symptoms

Total

Survive 10 160 170 RRD = 0.67

Die 320 300 620 ORD = 0.06

Total 330 460 790 RDD = -0.32

Subscript P represents the population values, while subscript D represents the values measured for those cases included in the data base; selection bias

produces the discrepancy. The extent of selection bias may be measured as ORs ¼ S00S11

S01S10
, where Sij is the probability a case with exposure (hospitalization

at day 8) i and outcome (mortality) j appears in the database. In this example, selection bias spuriously enhances the negative association between

hospitalization on day 8 and death, on all scales: RR, OR, and RD.

doi:10.1371/journal.pntd.0003846.t003
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gathering data on severity and other predictors of exposure and outcome, which would facili-
tate control of confounding, though not guarantee to eliminate it. Such a cohort would also
provide a natural setting for analyses that avoid survivorship bias. The cost of such improve-
ments in inference would be the need to ascertain such contacts and maintain surveillance of
those individuals, following them to obtain data on relevant covariates. Such a strategy–which
has been followed in cases of exposed health-care workers in settings with high resources and
few cases—would likely have benefits for the individuals followed (e.g., increasing the probabil-
ity they receive care if infected) and for reducing transmission (if such individuals were
promptly isolated upon evidence of infection). However, it has not been possible so far in the
large Ebola outbreaks in West Africa to do this routinely.

Biases in Predicting Outcomes without Causal Interpretation
It is often of interest to predict the probability of mortality for an individual case of an infec-
tious disease based on that individual’s demographic and clinical data, without placing any
causal interpretation on the factors used to predict outcome. For example, in 2009, there was
much interest in whether morbid obesity (or obesity in general) was predictive of worse out-
come in infection with the novel pandemic strain of influenza A/H1N1 [34].The primary goal
was to improve estimates of clinical prognosis, although observations about prognosis could
later be used to generate causal hypotheses for further testing. Similarly, observations of

Table 4. Effect of selection bias on estimates of relative CFR on the risk ratio (RR) and odds ratio (OR) scale.

Joint frequencies of hospitalization and death in the whole
population among those alive at day 8 of symptoms

Not hospitalized on day 8
of symptoms

Hospitalized on day 8 of
symptoms

Total

Survive 200 400 600 RRP

=
0.75

Die 800 600 1,400 ORP

=
0.375

Total 1,000 1,000 2,000 RDP

=
-0.20

Assumed probability of being in the database sample given
hospitalization and death

Not hospitalized on day 8
of symptoms

Hospitalized on day 8 of
symptoms

Average

Survive 20% 40% 33% ORS

=
0.88

Die 40% 70% 53%

Average 36% 58% 47%

Frequencies of persons in the database

Not hospitalized on day 8
of symptoms

Hospitalized on day 8 of
symptoms

Total

Survive 40 160 200 RRD

=
0.81

Die 320 420 740 ORD

=
0.33

Total 360 580 940 RDD

=
-0.16

In this example, selection bias spuriously enhances the negative association between hospitalization on day 8 and death on the RR and RD scales and

reduces it (biases toward a null association) on the OR scale.

doi:10.1371/journal.pntd.0003846.t004
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disparate rates of severe outcomes by geography within New York City did not initially involve
causal judgments about why certain areas had worse outcomes, although they could be used to
guide enhancement of services in areas with worse outcomes [35]. Even for a well-understood
disease like polio, it may be necessary to identify unusual demographic patterns of mortality in
order to understand and respond effectively to an outbreak [36].

Prognostic exercises such as these cannot suffer from confounding bias because no causal
interpretation is attached to the conclusions. They can, however, suffer from selection bias.
Returning to the Ebola context, one might wish to know whether pregnant women infected
with Ebola are at greater risk of death from Ebola infection than other cases [37], for example,
in order to give them greater supportive care. If the probability of entering the database
depends on whether an Ebola patient is pregnant and on whether she ultimately dies of the
infection, then the probability of death given pregnancy will likely differ in the database from
the value in the population of direct interest for a clinical or public health decision maker. If
the goal of analysis is to inform public health decision makers on the value of efforts to prevent
infection in pregnant women, then the population-wide CFR among pregnant women is the
value of direct interest. If, on the other hand, the goal of analysis is to inform health care pro-
viders at a treatment center to make a better clinical decision based on an accurate prognosis of
the patient presenting to them, the quantity of direct interest is the probability of death among
pregnant women in the population they encounter—those admitted to the treatment center.

Table 5. Effect of selection bias on estimates of relative CFR on the risk ratio (RR) odds ratio (OR) and risk difference (RD) scales.

Joint frequencies of hospitalization and death in the whole
population among those alive at day 8 of symptoms

Not hospitalized on day 8
of symptoms

Hospitalized on day 8 of
symptoms

Total

Survive 200 400 600 RRP

=
0.75

Die 800 600 1,400 ORP

=
0.375

Total 1,000 1,000 2,000 RDP

=
-0.20

Assumed probability of being in the database sample given
hospitalization and death

Not hospitalized on day 8
of symptoms

Hospitalized on day 8 of
symptoms

Average

Survive 20% 40% 33% ORS

=
1.13

Die 40% 90% 61%

Average 36% 70% 53%

Frequencies of persons in the database

Not hospitalized on day 8
of symptoms

Hospitalized on day 8 of
symptoms

Total

Survive 40 160 200 RRD

=
0.87

Die 320 540 860 ORD

=
0.42

Total 360 700 1060 RDD

=
-0.12

In this example, selection bias spuriously reduces the negative association between hospitalization on day 8 and death, on all three scales: RR, OR, and

RD.

doi:10.1371/journal.pntd.0003846.t005
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This value, again, will differ from that in the database, which may (in our running example)
have been enriched for individuals entered in the database because they died of the infection. It
will also differ from that in the overall population. The general point is that selection bias can
be operative if the population on which analysis is performed is not a representative sample of
the population for which the value of the CFR is sought, and selection bias of this form can
lead to spurious conclusions in prognostic estimates as well as in causal ones. As in the case of
causal inference, prognostic estimates will avoid selection bias to the extent they can be per-
formed on a randomly chosen cohort of cases, identified via tracing of healthy contacts, for
example.

Discussion
To determine the appropriate scope and magnitude of public health response to an infectious
disease outbreak, it is important to estimate the CFR and the determinants of its variation
[1,5]. For example, in the 2009 influenza pandemic, early point estimates of the CFR ranged
over orders of magnitude, from a value below that of seasonal influenza, which would have jus-
tified a modest response, to values around 1%, approximately half that of the 1918 pandemic,
which would have indicated the need for massive interventions to protect public health [12,15–
17,21]. To a large degree, this variation reflected judgments that one or the other of the biases
in Table 1 was more important, judgments that were difficult to make accurately and confi-
dently on the rapid timescale required for decision making [26].

In other situations, accurate assessment of the CFR is not as crucial for decisions about the
scale of response required; for example, in the ongoing 2014 Ebola epidemic in West Africa,
the uncertainty about the CFR is limited to a range between high values and very high values,
and it is not clear that any greater response would be indicated by a 90% CFR than a 60% CFR
[22]. Either way, a rapid and massive response is warranted.

Even when the overall CFR is not a key input to decision making, there is obvious value to
inferences about which conditions lead to a lower CFR, whether these be specific treatment,
particular types of supportive care, or hospitalization in general. Moreover, treatment facilities
might be evaluated by the proportion of their patients who survive; here the relative CFR calcu-
lated would be for treatment in one facility versus treatment in another. There will be a tempta-
tion to conclude that treatment facilities with higher CFR are doing a worse job—that is, to
apply a causal interpretation to observed differences in the CFR. Even in settings with more
resources to measure covariates, methods of risk-adjustment of comparative outcomes to
account for the mix of patients seen are complex and controversial [38]. In an emergency set-
ting, with few covariates available to characterize the “case mix” of a health care provider,
causal interpretation of differences in CFR would be particularly prone to error, potentially
producing conclusions that mislead and thereby damage control efforts. For instance, if
through confounding, larger referral treatment centers primarily receive patients who have sur-
vived infection for some time and are therefore less likely to die, independently of treatment,
this may be erroneously interpreted as more effective treatment in these centers. Similarly, if
certain treatment centers preferentially admit the most symptomatic patients, they may falsely
appear to be less effective or even harmful to patient outcome. With at least five separate
sources of bias in CFR or relative CFR estimates, and only imperfect solutions typically avail-
able for most due to lack of data, separating causal from non-causal factors in relative CFR esti-
mation seems extremely risky. This is not to deny that data should be gathered or analyzed; on
the contrary, the biases here suggest that more thorough data gathering is necessary before
analyses of such quantities as relative CFR are relied upon for any decision.
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There has been much debate, particularly in the area of Ebola treatments, about whether ran-
domized studies comparing a treatment to a placebo are ethical [3,39]. Whatever one’s view on
this debate, it seems likely that some observational (non-randomized) studies of the effectiveness
of particular therapies, or the comparative effectiveness of two or more therapeutic approaches
will occur, whether for ethical reasons, logistical reasons, or both. Such studies—in which a key
endpoint will be mortality—will be vulnerable to the sorts of biases described in this article, par-
ticularly in cases in which the true effect size of the treatment is limited. The biases described
here should be kept in mind when evaluating the conclusions of such studies, and wherever pos-
sible, studies should be designed to minimize them. Small studies conducted using systematic
approaches to enrollment and follow-up of patients may be more precise and less biased than
studies with larger sample sizes that use databases collected for other reasons. Similarly, there
may be situations in which efforts are made to administer scarce therapeutic agents to those
most likely to benefit from them. Such efforts rely on estimates, formal or informal, of the prog-
nosis of patients with and without the treatment, depending on variables such as the time since
they became symptomatic. These estimates, too, may be affected by the biases discussed.

In the current Ebola outbreak in West Africa, such data gathering has not routinely
occurred, for a number of reasons, including lack of health system infrastructure [40] and pri-
oritization of crisis response and other directly lifesaving activities. In future outbreaks of other
diseases, as in the past with pandemic influenza, setting up systematic approaches to gather
data useful for such assessments should be a priority [1,5]. Meanwhile, emphasis on recording
for each patient in a database the time, place, and circumstances (e.g., hospital, clinic, funeral,
contact tracing) under which the information is being gathered can substantially improve our
ability to account for biases induced by a database with unplanned entry criteria.

To reduce the impact of the biases identified on causal and (where applicable) prognostic
inference, it appears desirable when possible to limit analysis to a subset of cases who have
been followed prospectively since they became cases. These individuals might most likely be
identified by forward contact tracing, in which cases are asked to name healthy individuals
with whom they have had contact, and those individuals are followed to identify further infec-
tions. It has previously been noted that cases identified by contact tracing are more representa-
tive of cases in the general infected population than those identified because of symptoms,
medical need, or death [20,41]. Use of such a sample does not guarantee to eliminate biases, as
there may be residual confounding not adequately controlled in the analysis or subtler forms of
selection bias (e.g., differential loss to follow up within the sample) [32], but should signifi-
cantly reduce them.

We have emphasized the relevance of several biases to interpretation of datasets gathered in
an emergency, such as the early phases of an emerging infection. While the downward bias in
estimation of the CFR due to delayed reporting of deaths is most acute in rapidly growing epi-
demics, the other biases described may apply regardless of the overall trajectory of an epidemic,
and thus may apply to endemic diseases as well as emerging ones. Nonetheless, due to the
sense of urgency to gather data and scale-up a response simultaneously, datasets assembled
during infectious disease outbreak or emergency settings are especially prone to include
unplanned mixes of cases who enter the dataset for various reasons. Biases of the sorts
described here should be systematically considered whenever one attempts to extract causal
inferences from such observational data, and alternative, more systematic data collection
should be considered when possible.
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Key Learning Points

• Datasets available at the onset of new epidemics of infectious diseases are often col-
lected for reasons other than epidemiologic analysis of absolute and comparative case-
fatality risks (CFR), and estimates of such quantities based on these data may be subject
to biases, the relative magnitudes of which are difficult to ascertain and vary by
situation.

• Major sources of bias affecting the estimation of absolute CFR are differences in sever-
ity between all cases and the subset of cases who enter the dataset, typically leading to
inflated estimates of CFR, and more rapid reporting (less delay) in reporting cases than
in reporting the deaths of those cases, typically leading to underestimates of CFR.

• Biases affecting the causal interpretation of relative CFR (causal attribution of different
CFR in different groups to a particular intervention in one group, e.g., hospitalization)
may arise from survivorship bias, in which individuals who survive longer may be
more likely to receive the intervention; from confounding, in which a common factor
(e.g., disease severity) affects the probability of both the intervention and mortality;
and from selection bias, in which individuals are more or less likely to enter the dataset
as a function of whether they receive the intervention and whether they have the
outcome.

• These biases may be severe enough to lead to qualitatively mistaken inferences about
the severity of the infection or about the impact of interventions (such as hospitaliza-
tion) on mortality, and may be particularly misleading when comparing, for example,
the effect of hospitalization at different centers, given that cases hospitalized at differ-
ent centers may enter the dataset for different reasons.

• Methods exist to identify and reduce these biases. In particular, the use of small but
carefully defined cohorts of individuals who are followed from the time of infection or
symptom onset (perhaps those identified via contact tracing) may ameliorate many of
these biases.

Top Five Papers

1. Donnelly CA, Ghani AC, Leung GM, Hedley AJ, Fraser C, Riley S, et al. Epidemiologi-
cal determinants of spread of causal agent of severe acute respiratory syndrome in
Hong Kong. Lancet. 2003 May 24;361(9371):1761–6.

2. Greenland S. Basic methods for sensitivity analysis of biases. Int J Epidemiol. 1996
Dec;25(6):1107–16.

3. Garske T, Legrand J, Donnelly CA, Ward H, Cauchemez S, Fraser C, et al. Assessing
the severity of the novel influenza A/H1N1 pandemic. BMJ. 2009 Jul 14;339:b2840.

4. Hernan MA, Hernandez-Diaz S, Robins JM. A structural approach to selection bias.
Epidemiology. 2044;15:615–25.

5. Lipsitch M, Finelli L, Heffernan RT, Leung GM, Redd SC, 2009 H1N1 Surveillance
Group. Improving the evidence base for decision making during a pandemic: the
example of 2009 influenza A/H1N1. Biosecur Bioterror. 2011 Jun;9(2):89–115.

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003846 July 16, 2015 13 / 16



Acknowledgments
We thank Lina Nerlander for helpful suggestions on an earlier draft.

References
1. Van Kerkhove MD, Asikainen T, Becker NG, Bjorge S, Desenclos JC, et al. (2010) Studies needed to

address public health challenges of the 2009 H1N1 influenza pandemic: insights frommodeling. PLoS
Med 7: e1000275. doi: 10.1371/journal.pmed.1000275 PMID: 20532237

2. US Department of Health and Human Services (2007) Interim pre-pandemic planning guidance: Com-
munity strategy for pandemic influenza mitigation in the United States—Early targeted layered use of
nonpharmaceutical interventions. Department of Health and Human Services. Washington, DC.

3. Adebamowo C, Bah-SowO, Binka F, Bruzzone R, Caplan A, et al. (2014) Randomised controlled trials
for Ebola: practical and ethical issues. Lancet 384: 1423–1424. doi: 10.1016/S0140-6736(14)61734-7
PMID: 25390318

4. Cauchemez S, Fraser C, Van Kerkhove MD, Donnelly CA, Riley S, et al. (2014) Middle East respiratory
syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissi-
bility. Lancet Infect Dis 14: 50–56. doi: 10.1016/S1473-3099(13)70304-9 PMID: 24239323

5. Lipsitch M, Finelli L, Heffernan RT, Leung GM, Redd SC (2011) Improving the evidence base for deci-
sion making during a pandemic: the example of 2009 influenza A/H1N1. Biosecur Bioterror 9: 89–115.
doi: 10.1089/bsp.2011.0007 PMID: 21612363

6. Yu H, Cowling BJ, Feng L, Lau EH, Liao Q, et al. (2013) Human infection with avian influenza A H7N9
virus: an assessment of clinical severity. Lancet 382: 138–145. doi: 10.1016/S0140-6736(13)61207-6
PMID: 23803487

7. Wang TT, Parides MK, Palese P (2012) Seroevidence for H5N1 influenza infections in humans: meta-
analysis. Science 335: 1463. doi: 10.1126/science.1218888 PMID: 22362880

8. Van Kerkhove MD, Riley S, Lipsitch M, Guan Y, Monto AS, et al. (2012) Comment on "Seroevidence
for H5N1 influenza infections in humans: meta-analysis". Science 336: 1506; author reply 1506. doi:
10.1126/science.1221434 PMID: 22723396

9. Donnelly CA, Ghani AC, Leung GM, Hedley AJ, Fraser C, et al. (2003) Epidemiological determinants of
spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet 361: 1761–1766.
PMID: 12781533

10. Presanis AM, De Angelis D, Hagy A, Reed C, Riley S, et al. (2009) The severity of pandemic H1N1
influenza in the United States, from April to July 2009: a Bayesian analysis. PLoSMed 6: e1000207.
doi: 10.1371/journal.pmed.1000207 PMID: 19997612

11. Presanis AM, Pebody RG, Paterson BJ, Tom BD, Birrell PJ, et al. (2011) Changes in severity of 2009
pandemic A/H1N1 influenza in England: a Bayesian evidence synthesis. BMJ 343: d5408. doi: 10.
1136/bmj.d5408 PMID: 21903689

12. Baker MG, Wilson N, Huang QS, Paine S, Lopez L, et al. (2009) Pandemic influenza A(H1N1)v in New
Zealand: the experience from April to August 2009. Euro Surveill 14: pii = 19319.

13. Atkins KE, Wenzel NS, Ndeffo-Mbah M, Altice FL, Townsend JP, et al. (2015) Under-reporting and
case fatality estimates for emerging epidemics. BMJ 350: h1115. doi: 10.1136/bmj.h1115 PMID:
25779635

14. Iuliano AD, Reed C, Guh A, Desai M, Dee DL, et al. (2009) Notes from the field: outbreak of 2009 pan-
demic influenza A (H1N1) virus at a large public university in Delaware, April-May 2009. Clin Infect Dis
49: 1811–1820. doi: 10.1086/649555 PMID: 19911964

15. Fraser C, Donnelly CA, Cauchemez S, HanageWP, Van Kerkhove MD, et al. (2009) Pandemic poten-
tial of a strain of influenza A (H1N1): early findings. Science 324: 1557–1561. doi: 10.1126/science.
1176062 PMID: 19433588

16. Lipsitch M, Lajous M, O'Hagan JJ, Cohen T, Miller JC, et al. (2009) Use of cumulative incidence of
novel influenza A/H1N1 in foreign travelers to estimate lower bounds on cumulative incidence in
Mexico. PLoS One 4: e6895. doi: 10.1371/journal.pone.0006895 PMID: 19742302

17. Pelat C, Ferguson NM, White PJ, Reed C, Finelli L, et al. (2014) Optimizing the precision of case fatality
ratio estimates under the surveillance pyramid approach. Am J Epidemiol 180: 1036–1046. doi: 10.
1093/aje/kwu213 PMID: 25255809

18. Wu JT, Ho A, Ma ES, Lee CK, Chu DK, et al. (2011) Estimating infection attack rates and severity in
real time during an influenza pandemic: analysis of serial cross-sectional serologic surveillance data.
PLoS Med 8: e1001103. doi: 10.1371/journal.pmed.1001103 PMID: 21990967

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003846 July 16, 2015 14 / 16

http://dx.doi.org/10.1371/journal.pmed.1000275
http://www.ncbi.nlm.nih.gov/pubmed/20532237
http://dx.doi.org/10.1016/S0140-6736(14)61734-7
http://www.ncbi.nlm.nih.gov/pubmed/25390318
http://dx.doi.org/10.1016/S1473-3099(13)70304-9
http://www.ncbi.nlm.nih.gov/pubmed/24239323
http://dx.doi.org/10.1089/bsp.2011.0007
http://www.ncbi.nlm.nih.gov/pubmed/21612363
http://dx.doi.org/10.1016/S0140-6736(13)61207-6
http://www.ncbi.nlm.nih.gov/pubmed/23803487
http://dx.doi.org/10.1126/science.1218888
http://www.ncbi.nlm.nih.gov/pubmed/22362880
http://dx.doi.org/10.1126/science.1221434
http://www.ncbi.nlm.nih.gov/pubmed/22723396
http://www.ncbi.nlm.nih.gov/pubmed/12781533
http://dx.doi.org/10.1371/journal.pmed.1000207
http://www.ncbi.nlm.nih.gov/pubmed/19997612
http://dx.doi.org/10.1136/bmj.d5408
http://dx.doi.org/10.1136/bmj.d5408
http://www.ncbi.nlm.nih.gov/pubmed/21903689
http://dx.doi.org/10.1136/bmj.h1115
http://www.ncbi.nlm.nih.gov/pubmed/25779635
http://dx.doi.org/10.1086/649555
http://www.ncbi.nlm.nih.gov/pubmed/19911964
http://dx.doi.org/10.1126/science.1176062
http://dx.doi.org/10.1126/science.1176062
http://www.ncbi.nlm.nih.gov/pubmed/19433588
http://dx.doi.org/10.1371/journal.pone.0006895
http://www.ncbi.nlm.nih.gov/pubmed/19742302
http://dx.doi.org/10.1093/aje/kwu213
http://dx.doi.org/10.1093/aje/kwu213
http://www.ncbi.nlm.nih.gov/pubmed/25255809
http://dx.doi.org/10.1371/journal.pmed.1001103
http://www.ncbi.nlm.nih.gov/pubmed/21990967


19. Wu JT, Ma ES, Lee CK, Chu DK, Ho PL, et al. (2010) The infection attack rate and severity of 2009 pan-
demic H1N1 influenza in Hong Kong. Clin Infect Dis 51: 1184–1191. doi: 10.1086/656740 PMID:
20964521

20. Cauchemez S, Van Kerkhove MD, Riley S, Donnelly CA, Fraser C, et al. (2013) Transmission scenar-
ios for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and how to tell them apart. Euro
Surveill 18 18(24):pii = 20503.

21. Garske T, Legrand J, Donnelly CA, Ward H, Cauchemez S, et al. (2009) Assessing the severity of the
novel influenza A/H1N1 pandemic. BMJ 339: b2840. doi: 10.1136/bmj.b2840 PMID: 19602714

22. WHOEbola Response Team (2014) Ebola virus disease in West Africa—the first 9 months of the epi-
demic and forward projections. N Engl J Med 371: 1481–1495. doi: 10.1056/NEJMoa1411100 PMID:
25244186

23. Kucharski AJ, EdmundsWJ (2014) Case fatality rate for Ebola virus disease in west Africa. Lancet
384: 1260.

24. Ghani AC, Donnelly CA, Cox DR, Griffin JT, Fraser C, et al. (2005) Methods for estimating the case
fatality ratio for a novel, emerging infectious disease. Am J Epidemiol 162: 479–486. PMID: 16076827

25. Jewell NP, Lei X, Ghani AC, Donnelly CA, Leung GM, et al. (2007) Non-parametric estimation of the
case fatality ratio with competing risks data: an application to Severe Acute Respiratory Syndrome
(SARS). Stat Med 26: 1982–1998. PMID: 16981181

26. Lipsitch M, Riley S, Cauchemez S, Ghani AC, Ferguson NM (2009) Managing and reducing uncertainty
in an emerging influenza pandemic. N Engl J Med 361: 112–115. doi: 10.1056/NEJMp0904380 PMID:
19474417

27. Psaty BM, Koepsell TD, Lin D, Weiss NS, Siscovick DS, et al. (1999) Assessment and control for con-
founding by indication in observational studies. J Am Geriatr Soc 47: 749–754. PMID: 10366179

28. Muthuri SG, Venkatesan S, Myles PR, Leonardi-Bee J, Al Khuwaitir TS, et al. (2014) Effectiveness of
neuraminidase inhibitors in reducing mortality in patients admitted to hospital with influenza A
H1N1pdm09 virus infection: a meta-analysis of individual participant data. The Lancet Respiratory
Medicine 2: 395–404. doi: 10.1016/S2213-2600(14)70041-4 PMID: 24815805

29. Adisasmito W, Chan PK, Lee N, Oner AF, Gasimov V, et al. (2010) Effectiveness of antiviral treatment
in human influenza A(H5N1) infections: analysis of a Global Patient Registry. J Infect Dis 202: 1154–
1160. doi: 10.1086/656316 PMID: 20831384

30. Adisasmito W, Chan PK, Lee N, Oner AF, Gasimov V, et al. (2011) Strengthening observational evi-
dence for antiviral effectiveness in influenza A (H5N1). J Infect Dis 204: 810–811. doi: 10.1093/infdis/
jir398 PMID: 21844308

31. Chan PK, Lee N, ZamanM, AdisasmitoW, Coker R, et al. (2012) Determinants of antiviral effectiveness
in influenza virus A subtype H5N1. J Infect Dis 206: 1359–1366. doi: 10.1093/infdis/jis509 PMID:
22927451

32. Hernan MA, Hernandez-Diaz S, Robins JM (2004) A structural approach to selection bias. Epidemiol-
ogy 15: 615–625. PMID: 15308962

33. Greenland S (1996) Basic methods for sensitivity analysis of biases. Int J Epidemiol 25: 1107–1116.
PMID: 9027513

34. Van Kerkhove MD, Vandemaele KA, Shinde V, Jaramillo-Gutierrez G, Koukounari A, et al. (2011) Risk
factors for severe outcomes following 2009 influenza A (H1N1) infection: a global pooled analysis.
PLoS Med 8: e1001053. doi: 10.1371/journal.pmed.1001053 PMID: 21750667

35. Balter S, Gupta LS, Lim S, Fu J, Perlman SE (2010) Pandemic (H1N1) 2009 surveillance for severe ill-
ness and response, New York, New York, USA, April-July 2009. Emerg Infect Dis 16: 1259–1264. doi:
10.3201/eid1608.091847 PMID: 20678320

36. Gregory CJ, Ndiaye S, Patel M, Hakizamana E, Wannemuehler K, et al. (2012) Investigation of ele-
vated case-fatality rate in poliomyelitis outbreak in Pointe Noire, Republic of Congo, 2010. Clin Infect
Dis 55: 1299–1306. doi: 10.1093/cid/cis715 PMID: 22911644

37. Mupapa K, MukunduW, Bwaka MA, Kipasa M, De Roo A, et al. (1999) Ebola hemorrhagic fever and
pregnancy. J Infect Dis 179 Suppl 1: S11–12. PMID: 9988157

38. Majeed A, Bindman AB, Weiner JP (2001) Use of risk adjustment in setting budgets and measuring per-
formance in primary care II: advantages, disadvantages, and practicalities. BMJ 323: 607–610. PMID:
11557710

39. Joffe S (2014) Evaluating novel therapies during the Ebola epidemic. JAMA 312: 1299–1300. doi: 10.
1001/jama.2014.12867 PMID: 25211645

40. Bloom B (2014) Ebola: The Teaching and Learning Moment. Harvard International Review http://
hirharvardedu/archives/7500.

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003846 July 16, 2015 15 / 16

http://dx.doi.org/10.1086/656740
http://www.ncbi.nlm.nih.gov/pubmed/20964521
http://dx.doi.org/10.1136/bmj.b2840
http://www.ncbi.nlm.nih.gov/pubmed/19602714
http://dx.doi.org/10.1056/NEJMoa1411100
http://www.ncbi.nlm.nih.gov/pubmed/25244186
http://www.ncbi.nlm.nih.gov/pubmed/16076827
http://www.ncbi.nlm.nih.gov/pubmed/16981181
http://dx.doi.org/10.1056/NEJMp0904380
http://www.ncbi.nlm.nih.gov/pubmed/19474417
http://www.ncbi.nlm.nih.gov/pubmed/10366179
http://dx.doi.org/10.1016/S2213-2600(14)70041-4
http://www.ncbi.nlm.nih.gov/pubmed/24815805
http://dx.doi.org/10.1086/656316
http://www.ncbi.nlm.nih.gov/pubmed/20831384
http://dx.doi.org/10.1093/infdis/jir398
http://dx.doi.org/10.1093/infdis/jir398
http://www.ncbi.nlm.nih.gov/pubmed/21844308
http://dx.doi.org/10.1093/infdis/jis509
http://www.ncbi.nlm.nih.gov/pubmed/22927451
http://www.ncbi.nlm.nih.gov/pubmed/15308962
http://www.ncbi.nlm.nih.gov/pubmed/9027513
http://dx.doi.org/10.1371/journal.pmed.1001053
http://www.ncbi.nlm.nih.gov/pubmed/21750667
http://dx.doi.org/10.3201/eid1608.091847
http://www.ncbi.nlm.nih.gov/pubmed/20678320
http://dx.doi.org/10.1093/cid/cis715
http://www.ncbi.nlm.nih.gov/pubmed/22911644
http://www.ncbi.nlm.nih.gov/pubmed/9988157
http://www.ncbi.nlm.nih.gov/pubmed/11557710
http://dx.doi.org/10.1001/jama.2014.12867
http://dx.doi.org/10.1001/jama.2014.12867
http://www.ncbi.nlm.nih.gov/pubmed/25211645
http://hirharvardedu/archives/7500
http://hirharvardedu/archives/7500


41. Cauchemez S, Donnelly CA, Reed C, Ghani AC, Fraser C, et al. (2009) Household transmission of
2009 pandemic influenza A (H1N1) virus in the United States. N Engl J Med 361: 2619–2627. doi: 10.
1056/NEJMoa0905498 PMID: 20042753

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003846 July 16, 2015 16 / 16

http://dx.doi.org/10.1056/NEJMoa0905498
http://dx.doi.org/10.1056/NEJMoa0905498
http://www.ncbi.nlm.nih.gov/pubmed/20042753

