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Abstract

In many decision problems, agents base their actions on a simple objective

index, a single number that summarizes the available information about ob-

jects of choice independently of their particular preferences. The first chapter

proposes an axiomatic approach for deriving an index which is objective and,

nevertheless, can serve as a guide for decision making for decision makers with

different preferences. Unique indices are derived for five decision making set-

tings: the Aumann and Serrano (2008) index of riskiness (additive gambles),

a novel generalized Sharpe ratio (for a standard portfolio allocation problem),

Schreiber’s (2013) index of relative riskiness (multiplicative gambles), a novel

index of delay embedded in investment cashflows (for a standard capital

budgeting problem), and the index of appeal of information transactions

(Cabrales et al., 2014). All indices share several attractive properties in

addition to satisfying the axioms. The approach may be applicable in other

settings in which indices are needed.

The second chapter uses conditions from previous literature on complete

orders to generate partial orders in two settings: information acquisition and

segregation. In the setting of information acquisition, I show that the partial
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order prior independent investment dominance (Cabrales et al., 2013) refines

Blackwell’s partial order in the strict sense. In the segregation setting, I show

that without the requirement of completeness, all of the axioms suggested in

Frankel and Volij (2011) are satisfied simultaneously by a partial order which

refines the standard partial order (Lasso de la Vega and Volij, 2014).

In the third and fourth chapters, I turn to examine matching markets. Al-

though no stable matching mechanism can induce truth-telling as a dominant

strategy for all participants (Roth, 1982), recent studies have presented

conditions under which truthful reporting by all agents is close to optimal

(Immorlica and Mahdian, 2005; Kojima and Pathak, 2009; Lee, 2011). The

third chapter demonstrates that in large, balanced, uniform markets using the

Men-Proposing Deferred Acceptance Algorithm, each woman’s best response

to truthful behavior by all other agents is to truncate her list substantially.

In fact, the optimal degree of truncation for such a woman goes to 100%

of her list as the market size grows large. Comparative statics for optimal

truncation strategies in general one-to-one markets are also provide: reduction

in risk aversion and reduced correlation across preferences each lead agents

to truncate more. So while several recent papers focused on the limits of

strategic manipulation, the results serve as a reminder that without pre-

conditions ensuring truthful reporting, there exists a potential for significant

manipulation even in settings where agents have little information.

Recent findings of Ashlagi et al. (2013) demonstrate that in unbalanced

random markets, the change in expected payoffs is small when one reverses

which side of the market “proposes,” suggesting there is little potential gain

from manipulation. Inspired by these findings, the fourth chapter studies the
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implications of imbalance on strategic behavior in the incomplete information

setting. I show that the “long” side has significantly reduced incentives for

manipulation in this setting, but that the same doesn’t always apply to the

“short” side. I also show that risk aversion and correlation in preferences

affect the extent of optimal manipulation as in the balanced case.
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Chapter 1

Consistent Indices

1.1 Introduction

In many decision problems, agents base their actions on a simple objective

index, a single number that summarizes the available information about

objects of choice and does not depend on the agent’s particular preferences.1

Agents might choose to do this due to difficulties in attaining and interpreting

information, or due to an overabundance of useful information. For example,

the Sharpe ratio (Sharpe, 1966), the ratio between the expected net return

and its standard deviation, is frequently used as a performance measure for

portfolios (Welch, 2008; Kadan and Liu, 2014).

This paper proposes an axiomatic approach for deriving an index that

is objective and, nevertheless, can serve as a guide for decision making for

decision makers with different preferences. The approach is unifying and may

be used in a variety of decision making settings. I present five applications:
1As shown by Luca (2011), for the case of online restaurant star ratings.
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for a setting of additive gambles, which like lottery tickets change the baseline

wealth of the owner independently of its level (an index of riskiness); for a

standard portfolio allocation problem (a generalized Sharpe ratio); for a setting

of multiplicative gambles, which change the wealth of the owner proportionally

to its baseline level (an index of relative riskiness); for a standard capital

budgeting problem (an index of the delay embedded in investment cashflows);

and for a setting of information acquisition by investors in an Arrovian

(Arrow, 1972) environment (an index of appeal of information transactions).

In each of the settings I study, a unique index emerges that is theoretically

appealing and often improves upon commonly used indices. The approach

may be applicable in other settings in which indices are needed.2

In my setting, agents choose whether to accept or reject a transaction (a

gamble, a cashflow, etc.). The starting point of this paper is a given decision

problem and the requirement that (at least) small decisions can be made

based on the index. This is the content of the local consistency axiom. The

axiom states, roughly, that all agents can make acceptance and rejection

decisions for small, “local,” transactions using the index and a cut-off value

(which is the only parameter that depends on their preferences), without

knowing other details about the transaction, so that the outcomes of their

decisions will mirror the outcomes they would achieve by optimizing when

possessing detailed knowledge about the transaction.

Even though transactions are complex and multidimensional, I show that

a numeric, single dimensional, index can summarize all the decision-relevant
2A particular setting which seems promising in this regard is the measurement of

inequality, which has many similarities to the setting of risk (Atkinson, 1970).
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information for small transactions. I thus view local consistency as a minimal

requirement for an index to be a useful guide for decision making, and, as I

show, it is indeed satisfied by many well-known indices in various decision

making problems. However, while this property is desirable, I show that

many indices that have it also have normatively undesirable properties.3

The Sharpe ratio, for example, has such property outside the domain of

normal distributions. As shown in Example 1.10, the Sharpe ratio is not, in

general, monotonic with respect to first order stochastic dominance outside

that domain (Hodges, 1998).4

A second criterion for assessing the validity of an index, global consistency,

is therefore suggested. Global consistency extends local consistency by making

restrictions over large transactions, but it is actually quite a weak restriction.

Nevertheless, the combination of local and global consistency turns out to

be powerful. In the various decision making problems which are discussed

below, it pins down a unique order over transactions that has several desirable

properties in addition to local and global consistency.5 Since I use results

from the setting of additive gambles in my treatment of other decision making
3As stated here, the result follows trivially given the existence of one locally consistent

index, as one could change the values of large transactions without changing those of small,
local, ones. The exact statement makes further technical requirements which disqualify
such indices.

4This undesirable property is related to the fact that this index depends only on the
first two moments of the distribution. These moments are sufficient statistic for a normal
distribution, and therefore basing an index on them solely may be reasonable if returns
are assumed (or known) to be normally distributed. This assumption, however, is often
rejected in empirical tests in settings where the Sharpe ratio is used in practice (e.g. Fama,
1965; Agarwal and Naik, 2000; Kat and Brooks, 2001). Moreover, a large body of literature
documents the importance of higher order moments for investment decisions (e.g. Kraus
and Litzenberger, 1976; Kane, 1982; Harvey and Siddique, 2000; Barro, 2006, 2007; Gabaix,
2008).

5To be precise, additional mild conditions are required as well.
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environments, I begin by reviewing this setting and cover it in detail in order

to illustrate the general concepts.

The approach I take is different from the standard decision theoretic

approach. I start with a given objective index – a function that assigns to each

transaction some number, independently of any agent-specific characteristics.

In the case of additive gambles, a higher number is associated with a higher

level of riskiness. As different functions induce different orders, for a given

index Q, I refer to the Q-riskiness of a gamble. Only then I define the

aversion to Q-riskiness. I define the relation locally at least as averse to

Q-riskiness as follows: agent u with wealth w is locally at least as averse to

Q-riskiness as agent v with wealth w′ if, for all gambles with small support

(defined precisely in Section 1.3),6 when u at w accepts any small gamble

with a certain level of Q-riskiness, v at w′ accepts all small gambles which are

significantly less Q-risky. This definition assumes a certain kind of consistency

between the index and the aversion to the property it evaluates, as it implies

that agents that are less Q-riskiness averse would accept Q-riskier gambles.

This approach is the dual of the standard approach, since instead of starting

with an ordering over preferences and asserting that risk is “what risk-averters

hate” (Machina and Rothschild, 2008), I start with an ordering over the

objects of choice (an index of riskiness Q) and derive from it judgments on

preferences (Q-riskiness aversion).
6The need to restrict attention to small supports is nicely illustrated by a discussion

Samuelson (1963) describes having with with Stanislaw Ulam. Samuelson (1963) quotes
Ulam as saying “I define a coward as someone who will not bet when you offer him
two-to-one odds and let him choose his side,” to which he replied “You mean will not
make a sufficiently small bet (so that the change in the marginal utility of money will not
contaminate his choice).”
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In Section 1.3, I show that if Q is a locally consistent index which satisfies

an additional mild condition, then the relation “at least as averse to Q-

riskiness” induces the same order as the classic coefficient of absolute risk

aversion (ARA, Pratt, 1964; Arrow, 1965, 1971). This property is shown

to be satisfied by several well-known indices. However, it is also satisfied by

many other indices, including ones that are not monotonic with respect to

first order stochastic dominance (Hanoch and Levy, 1969; Hadar and Russell,

1969; Rothschild and Stiglitz, 1970).

As local consistency is insufficient for pinning down normatively accept-

able indices, in Section 1.4 I propose a second criterion — the generalized

Samuelson property. An index of riskiness has this property when no agent

accepts a large gamble of a certain degree of riskiness if he rejects small

ones of the same degree of riskiness at any wealth level, and no agent rejects

a large gamble of a certain degree of riskiness if he accepts small ones of

the same degree of riskiness at any wealth level. I also show that no agent

whose risk tolerance (the inverse of the coefficient of absolute risk aversion)

is always higher than the AS riskiness of g will reject g, and no agent whose

risk tolerance is always lower will accept it. Given an empirical range of

the degrees of risk aversion in a population, the model provides advice to

individuals and policy makers based on the index. It also allows researchers a

simple way to estimate bounds on the degree of risk aversion in the population

from observations of acceptance and rejection of different gambles.

In Section 1.5, I show that the generalized Samuelson property can

be replaced by a weaker condition that involves pairs of agents — global

consistency. I say that one agent is globally at least as averse to Q-riskiness
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as another agent, if he is locally at least as averse to Q-riskiness at any two

arbitrary wealth levels. In the additive gambles setting, global consistency

requires that if two agents can be compared using this partial order, then

the more Q-riskiness averse agent rejects gambles which are riskier than ones

rejected by the other agent. Note that the partial order on preferences which

is used to make this requirement of consistency is defined using the index

Q, and not based on preexisting notions of risk aversion. Global consistency

is a weak requirement, in the sense that it imposes no restriction for the

(common) case of a pair of agents who cannot be compared using this partial

order. However, I show that with additional mild conditions, the Aumann

and Serrano (2008) index of riskiness, which is monotonic with respect to

stochastic dominance, is the unique index that satisfies local consistency and

global consistency.

Section 1.6 addresses the ranking of performance of a market portfolio

in the presence of a risk-free asset. One well known index of performance is

the Sharpe ratio (Sharpe, 1966), the ratio between the expected net return

and its standard deviation. Using the approach from Section 1.5 I derive the

generalized Sharpe ratio, where the role of the standard deviation is taken by

the Aumann-Serrano (AS) index. This index of performance coincides with

the Sharpe ratio on the domain of normal distributions but differs from it in

general.7 Unlike the Sharpe ratio, it is monotonic with respect to stochastic

dominance, even when the risky return is not normally distributed, and it

satisfies other desirable properties.

Section 1.7 covers the setting of multiplicative gambles. The results are
7The index is increasing in odd distribution moments and decreasing in even ones.
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quite analogous to those of the additive gambles setting. The role of ARA

is replaced by the coefficient of relative risk aversion (RRA). I show that

with mild conditions, the index of relative riskiness of Schreiber (2013) is the

unique index which satisfies local consistency and global consistency (or the

generalized Samuelson property).

Section 1.8 considers a capital budgeting setting. Agents are proposed

investment cashflows, opportunities of investment for several periods with

return at later times. I label indices for this setting as indices of delay.

Paralleling results in previous sections, I show that local consistency, combined

with additional mild conditions, ensures that the local aversion to delay, as

defined by an index, is ordinally equivalent to the instantaneous discount rate.

Adding the requirement of global consistency (or the generalized Samuelson

property) is then shown to pin down a novel index for the delay embedded in

investment cashflows. The index is continuous and monotonic with respect

to time dominance (Bøhren and Hansen, 1980; Ekern, 1981), a partial order

on cashflows in the spirit of stochastic dominance.

Section 1.9 treats the setting of information acquisition by investors facing

a standard investment problem (Arrow, 1972). I show that the local taste for

informativeness, as defined by the index, coincides with the inverse of ARA for

any index which satisfies local consistency and another mild condition. These

include Cabrales et al. (2013) and Cabrales et al. (2014), but also indices

which have a normatively undesirable property: they are not monotonic

with respect to Blackwell’s (1953) partial order.8 I then show that the index
8One information structure dominates the other in the sense of Blackwell if it is

preferred to the other by all decision makers for all decision making problems.
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of Cabrales et al. (2014) is the unique index which satisfies the additional

requirement of global consistency.

1.1.1 Relation to the Literature

Apart from serving as input in decision making processes, indices are also used

to limit the discretion of agents by regulators (Artzner, 1999) or when decision

rights are being delegated (Turvey, 1963). For example, a mutual fund man-

ager may be required to invest in bonds that are rated AAA. Similarly, credit

decisions are frequently based on a credit rating, a number that is supposed

to summarize relevant financial information about an individual. Indices are

also used in empirical studies in order to evaluate complex, multidimensional,

attributes. Examples include the cost of living (Diewert, 1998), segregation

(Echenique and Fryer Jr., 2007), academic influence (Palacios-Huerta and

Volij, 2004; Perry and Reny, 2013), market concentration (Herfindahl, 1950),

the upstreamness of production and trade flows (Antràs et al., 2012), contract

intensity in production (Nunn, 2007), centrality in a network (Bonacich,

1987), inequality (Yitzhaki, 1983; Atkinson, 1983), poverty (Atkinson, 1987),

risk and performance (Sharpe, 1966; Artzner et al., 1999), political influence

(Shapley and Shubik, 1954; Banzhaf III, 1964), and corruption perceptions

(Lambsdorff, 2007).

Although indices are used extensively in economic research and in practice,

in many cases the index is not carefully derived from theory. Even in cases

where they make theoretical sense in a specific setting, they are often used in

larger domains. For example, risk has been evaluated using numerous indices
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including the standard deviation of returns, the Sharpe ratio, value at risk

(VaR), variance over expected return and the coherent measures of Artzner

et al. (1999).9 Some of these indices, like the Sharpe ratio, suffer from a

severe normative drawback: they are not monotonic with respect to first

order stochastic dominance outside specific domains.10 That is, increasing

a gamble’s value in every state of the world does not necessarily lead the

index to deem it less risky. Different indices have other undesirable properties.

For example, some indices are not continuous, which makes them hard to

estimate empirically. Some indices, like VaR, are independent of outcomes in

the tails. Finally, and key to this paper, some of the indices are not locally

consistent,11 so they may not be used to guide decisions. My approach is to

consider fairly general settings and concentrate on consistency.

This paper contributes to the growing literature, pioneered by Aumann

and Serrano (2008), which identifies objective indices for specific decision

making problems. For additive gambles, Aumann and Serrano present an

objective index of riskiness, based on a small set of axioms, including centrally

a “duality axiom,” which requires a certain kind of consistency. Roughly

speaking, it asserts that (uniformly) less risk-averse individuals accept riskier

gambles.12 Importantly, their definition of risk aversion takes the traditional

view, and does not refer to risk as defined by the index. Foster and Hart
9Even though all of the above indices are meant to measure “risk,” they were derived

with different decision making problems in mind: some take the point of view of a regulator,
and others of an investor; some assume the existence of a risk-free asset and others do not;
some allow agents to adjust their level of investment, and others assume indivisible assets.

10See Example 1.10.
11See Example 1.1.
12Agent i uniformly no less risk-averse than agent j if whenever i accepts a gamble at

some wealth, j accepts that gamble at any wealth.
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(FH, 2009) present a different index of riskiness with an operational inter-

pretation.13 Their index identifies for every gamble the critical wealth level

below which it becomes “risky” to accept the gamble.14 Schreiber (2013)

uses insights from this literature to develop an index of relative riskiness for

multiplicative gambles. Cabrales et al. (2013) and Cabrales et al. (2014) treat

the setting of information acquisition and the appeal of different information

transactions for investors.

My approach provides a unifying framework for the decision making

problems mentioned above, and it can also be applied to new settings. It

provides the first axiomatization for the index of delay and for the generalized

Sharpe ratio. All of the indices share several desirable properties, such as

monotonicity (e.g., with respect to stochastic dominance) and continuity.

The generalized Sharpe ratio, one of the two novel indices presented here, is

monotonic with respect to stochastic dominance in the presence of a risk-free

asset (Levy and Kroll, 1978), the analogue of stochastic dominance, of the

first and second degree. The index of delay is monotonic with respect to time

dominance (Bøhren and Hansen, 1980; Ekern, 1981), the analogous partial

order on cashflows.

The index of delay is closely related to a well-known measure of delay which

is used in practice: the internal rate of return (IRR). I discuss this relation

as well as the close connection of the index to the AS index of riskiness. Like

the generalized Sharpe ratio, this index treats a decision making environment
13Homm and Pigorsch (2012b) provide an operational interpretation of the Au-

mann–Serrano index of riskiness.
14Hart (2011) later demonstrated that both indices also arise from a comparison of

acceptance and rejection of gambles.
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which has not yet been treated by the recent literature on indices for decision

problems. These applications therefore underscore a strength of the proposed

approach: indices emerge from the same requirements in different decision

making environments.

This paper also contributes to the literature that attempts to extend

the partial order of Blackwell by restricting the class of decision problems

and agents under consideration (e.g. Persico, 2000; Athey and Levin, 2001;

Jewitt, 2007). Both Cabrales et al. (2014) and Cabrales et al. (2013) treat an

investment decision making environment with a known, common and fixed

prior. The order induced by their indices depends on this prior; there exists

pairs of information transactions which are ranked differently depending on

the prior selected. But an analyst cannot always observe the relevant prior.

Subsection 1.9.5 asks whether the index I derive has prior-free implications for

the way information transactions are ranked, which go beyond monotonicity

in Blackwell’s order and in price. The answer is shown to be positive: there

exist pairs of information structures such that neither dominates the other

in the sense of Blackwell, and when priced identically, one is ranked higher

than the other by the index of appeal of information transactions for any

prior distribution. A similar result is shown by Shorrer (2015) for the index

of Cabrales et al. (2013).

1.2 Preliminaries

In this section I provide some notation which will be required for the next

sections.
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A gamble g is a real-valued random variable with positive expectation

and some negative values (i.e., E[g] > 0 and Pr{g < 0} > 0); for simplicity,

I assume that g takes finitely many values. G is the collection of all such

gambles. For any gamble g ∈ G, L(g) and M(g) are respectively the maximal

loss and gain from the gamble that occur with positive probability. Formally,

L(g) ∶= max supp(−g) and M(g) ∶= max supp(g).

Gε is the class of gambles with support contained in an ε-ball around zero:

Gε ∶= {g ∈ G ∶ max{M(g), L(g)} ≤ ε} .

[x1,p1;x2, p2...;xn, pn] represents a gamble which takes values x1, x2, ..., xn

with respective probabilities of p1, p2, ..., pn.15

An index of riskiness is a function Q ∶ G → R+ which associates each

gamble with a positive real. Note that an index of riskiness is objective, in

the sense that its value depends only on the gamble and not on any agent-

specific attribute. An index of riskiness Q is homogeneous (of degree k) if

Q(tg) = tk ⋅Q(g) for all t > 0 and all gambles g ∈ G.

QAS(g), the Aumann-Serrano index of riskiness of gamble g, is implicitly

defined by the equation

E [exp(− g

QAS(g))] = 1.

QFH(g), the Foster-Hart measure of riskiness of g,16 is implicitly defined by

the equation
15This notation will not be used when it is important to distinguish between random

variables and distributions.
16I also refer to QFH as an index of riskiness.
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E [log(1 + g

QFH(g))] = 0.

Note that both QAS and QFH are homogeneous of degree 1. Additionally,

these indices are monotone with respect to first and second order stochastic

dominance;17 namely, if g is stochastically dominated by g′ then QAS(g) >

QAS(g′) and also QFH(g) > QFH(g′) (Aumann and Serrano, 2008; Foster

and Hart, 2009).

Value at Risk (VaR) is a family of indices commonly used in the financial

industry (Artzner, 1999; Aumann and Serrano, 2008). VaR indices depend on

a parameter called the confidence level. For example, the VaR of a gamble at

the 95 percent confidence level is the largest loss that occurs with probability

greater than 5 percent.

In this paper, a utility function is a von Neumann–Morgenstern utility

function for money. I assume that utility functions are strictly increasing,

strictly concave and twice continuously differentiable unless otherwise men-

tioned. The Arrow-Pratt coefficient of absolute risk aversion (ARA), ρ, of u

at wealth w is defined

ρu(w) ∶= −u
′′(w)
u′(w) .

The Arrow-Pratt coefficient of relative risk aversion (RRA), %, of u at wealth

w is defined

%u(w) ∶= −wu
′′(w)
u′(w) .

17A gamble g first order stochastically dominates h iff for every weakly increasing (not
necessarily concave) utility function u and every w ∈ R, E [u (w + g)] ≥ E [u (w + h)], with
strict inequality for at least one such function. A gamble g second order stochastically
dominates h iff for every weakly concave utility function u and every w ∈ R, E [u (w + g)] ≥
E [u (w + h)], with strict inequality for at least one such function.
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Note that ρu(⋅) and %u(⋅) are utility specific attributes and that both ρ and

% yield a complete order on utility-wealth pairs. That is, the risk aversion, as

measured by ρ (or %), of any two agents with two given wealth levels can be

compared.

A gamble g is accepted by u at wealth w if E [u(w + g)] > u(w), and is

rejected otherwise. Given an index of riskiness Q, a utility function u, a

wealth level w and ε > 0:

Definition. RεQ(u,w) ∶= sup{Q(g)∣ g ∈ Gε and g is accepted by u at w}

Definition. SεQ(u,w) ∶= inf {Q(g)∣ g ∈ Gε and g is rejected by u at w}

RεQ(u,w) is the Q-riskiness of the riskiest accepted gamble according

to Q, restricting the support of the gambles to an ε-ball. SεQ(u,w) is the

Q-riskiness of the safest rejected gamble according to Q, again restricting

the support of the gambles to an ε-ball.

Definition. u at w is (locally) at least as averse to Q-riskiness as v at w′ if

for every δ > 0 there exists ε > 0 such that SεQ(v,w′) ≥ RεQ(u,w) − δ.

The interpretation of u at w being at least as averse to Q-riskiness as v

at w′ is that, at least for small gambles, if u at w accepts any small gamble

with a certain level of Q-riskiness, v at w′ accepts all small gambles which

are significantly (by at least δ) less Q-risky. Alternatively, if v at w′ rejects

any small gamble with a certain level of Q-riskiness, u at w rejects all small

gambles which are significantly (by at least δ) Q-riskier.

The following definitions will also prove useful:

Definition. RQ(u,w) ∶= lim
ε→0+

RεQ(u,w)
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Definition. SQ(u,w) ∶= lim
ε→0+

SεQ(u,w).18

Roughly speaking, RQ(u,w) is the Q-riskiness of the Q-riskiest “local

gamble” that u accepts at w, and SQ(u,w) is the Q-riskiness of the Q-safest

“local gamble” that is rejected by u at w. The inverse of RQ and SQ is a

natural measure of the aversion to Q-riskiness.19 The reason is that RQ

is high for utility-wealth pairs in which Q-risky gambles are accepted, so

a reasonable Q-riskiness aversion measure should imply that the aversion

to Q-riskiness at such utility-wealth is low. Similarly, SQ is low at a given

utility-wealth pair when Q-safe gambles are rejected, so the measure of local

aversion to Q-riskiness must be high in this case.

The coefficient of local aversion to Q-riskiness of u at w is therefore

defined as

AQ(u,w) ∶= 1

RQ(u,w) ,

noting that unless otherwise mentioned, all of the results would hold for

1
SQ(u,w) as well. As is shown below, this definition makes it possible to discuss

the ordinal equivalence of the coefficient of local aversion to Q-riskiness, which

depends both on agents behavior and on the properties of the index Q, with

orders such as ARA or RRA, which depend on the preferences exclusively,

and are independent of the index.
18The existence of the limit in the wide sense is guaranteed by the fact that the suprema

(infima) in the definitions of Rε (Sε) are taken on nested supports.
19For our purposes, 0 =∞−1and ∞ = 0−1.
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1.3 Local Aversion to Q-Riskiness

Since no restrictions on Q were made (other then possibly homogeneity), at

this point coefficients of local aversion to Q-riskiness might look like a class

of arbitrary orderings over (u,w) pairs. However, I claim that its members

are connected to the standard concepts of local risk aversion. One reason is

that they induce orderings which refine the following natural partial order

(Yaari, 1969): u at w is locally no less risk averse than v at w′ (written

(u,w) ⋗ (v,w′)) if and only if there exists ε > 0 such that for every g ∈ Gε, if

u accepts g at w then so does v at w′. An order O refines the natural partial

order if for all g and h, g ⋗ h Ô⇒ gOh.

Lemma 1.1. For every index of riskiness Q, the order induced by AQ refines

the natural partial order.

Proof. Assume that (u,w) ⋗ (v,w′). Then there exists ε′ > 0 such that for

every g ∈ Gε′ if u accepts g at w then so does v at w′. As in the definition of

RQ we have ε → 0+, disregarding all ε ≥ ε′ will not change the result. Note

that for every ε < ε′

{Q(g)∣ g ∈ Gε and g is accepted by u at w} ⊆

{Q(g)∣ g ∈ Gε and g is accepted by v at w′} .

This means that for every ε < ε′, Rε(u,w) ≤ Rε(v,w′) as the suprema in

the definition of RεQ(v,w′) are taken on a superset of the corresponding sets

in the definition of RεQ(u,w). The result follows as weak inequalities are

preserved in the limit.
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Next, I show that the coefficient of local aversion to AS (FH) riskiness

gives rise to a complete order which coincides with the one implied by the

Arrow-Pratt ARA coefficient.

Lemma 1.2. For every utility function u and every w, RQAS (u,w) =

SQAS (u,w) and AQAS(u,w) = ρu(w).

Proof. First, observe that if u and v are two utility functions and there exists

an interval I ⊆ R such that ρu(x) ≥ ρv(x) for every x ∈ I, then for every

wealth level w and lottery g such that w+g ⊂ I, if g is rejected by v at w it is

also rejected by u for the same wealth level. Put differently, if g is accepted

by u at w it is also accepted by v at the same wealth level. The reason is

that the condition implies that in this domain, u is a concave transformation

of v (Pratt, 1964), hence by Jensen’s inequality u(w) ≤ E [u (w + g)] implies

that v(w) ≤ E [v (w + g)].

Keeping in mind that u′(x) > 0, we have that ρu(x) is continuous. Specif-

ically,

∀ δ > 0 ∃ ε > 0 s.t x ∈ (w − ε,w + ε)⇒ ∣ρu(x) − ρu(w)∣ < δ. (1.3.0.1)

Recall that a CARA utility function with ARA coefficient of α rejects all

gambles with AS riskiness greater than 1
α and accepts all gambles with AS

riskiness smaller than 1
α (Aumann and Serrano, 2008). For any δ < ρu(w),

given an ε-environment of w in which ρu ∈ (ρu(w) − δ, ρu(w) + δ), taking the

CARA functions with ARA of ρu(w) + δ and ρu(w) − δ, and applying the

first observation (where I is (w − ε,w + ε)) completes the proof.

Lemma 1.2 essentially shows that every utility function may be approxi-
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mated locally using CARA functions, which are well-behaved with respect to

the AS index. Given the ARA of u at a given wealth level, I take two CARA

utility functions, one with slightly higher ARA, and the other with slightly

lower ARA. For small environments around the given wealth level, ρu is

almost constant, so the two CARA functions “sandwich” the utility function

in terms of ARA. This implies that for small gambles, one CARA function

accepts more gambles than u, and the other less gambles, in the sense of

set inclusion. Since CARA functions accept and reject exactly according to

an AS riskiness cutoff, and since cutoffs are close for similar ARA values, it

follows that the coefficient of local aversion to AS-riskiness is pinned down

completely.

Lemma 1.3. For every utility function u and every w, RQFH (u,w) =

SQFH (u,w) and AQFH(u,w) = ρu(w).

Proof. According to Statement 4 in Foster and Hart (2009):

−L(g) ≤ QAS(g) −QFH(g) ≤M(g). (1.3.0.2)

Therefore, if g ∈ Gε then:

∣QAS(g) −QFH(g)∣ ≤ ε. (1.3.0.3)

From Inequality 1.3.0.3 one can deduce that RQFH(u,w) = RQAS(u,w) and

SQFH(u,w) = SQAS(u,w). Lemma 1.2 completes the proof.

The result of Lemma 1.3 is not surprising in light of Lemma 1.2, as

Foster and Hart (2009) already noted that the Taylor expansions around 0 of

the functions that define QFH and QAS differ only from the third term on.
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Roughly speaking, this means that for gambles with small supports QAS and

QFH are close.

Theorem 1.1 summarizes the results of Lemmata 1.1-1.3.

Theorem 1.1. (i) For any index of riskiness Q, AQ refines the natural

partial order. (ii) For every utility function u and every w, AQAS(u,w) =

AQFH(u,w) = ρu(w). Furthermore, RQAS (u,w) = SQAS (u,w) andRQFH (u,w) =

SQFH (u,w).

Corollary 1.1. For Q ∈ {QAS ,QFH} u at w is at least as averse to Q-

riskiness as v at w′ iff ρu(w) ≥ ρv(w′).

Note that part (i) of Theorem 1.1 states that the order induced by AQ

refines the weak, no-less risk averse, partial order, and not the strict one.

The strict version of this statement is not correct as the following example

demonstrates. The example also shows that it is not the case that for all

popular risk indices the coefficient of local aversion is equal to ρ or refines

the order it induces, and that the same is true for the relation at least as

averse to Q-riskiness.

Example 1.1. For any confidence level α ∈ (0,1), for all agents and wealth

levels, the coefficient of local aversion to Q (⋅) ∶= exp{VaRα(⋅)} is equal to 1,

and any agent at any wealth level is at least as averse to Q-riskiness as any

other agent.20

It is noteworthy that the example would go through with the exponent

of any coherent risk measure (Artzner et al., 1999). The fact that these
20The exponent is only used to assure that the index is positive. It has no ordinal effect.
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indices are not well suited for the task of comparing agents’ preferences is not

surprising. These indices are motivated by the problem of setting a minimal

reserve requirements for investors in a given position (Artzner, 1999), and so

they take the point of view of a regulator, not the investor.

Up until this point, I showed that the local aversion to AS and FH riskiness

induces the same order as the ARA coefficient, the standard measure of local

risk aversion, and that the coefficient of local aversion to AS and FH riskiness

is in fact equal to the ARA coefficient. This means that one can start with

a small set of axioms, namely Aumann and Serrano’s (2008) or Foster and

Hart’s (2013), and define a complete order of riskiness over gambles. Then,

the coefficient of local aversion of agents to riskiness can be derived, and

it will be equal to the well-known Arrow-Pratt coefficient. The relation at

least as averse to AS (FH)-riskiness will also induce the same order. Hence,

both AS and FH satisfy the desirable property that less risk averse agents

according to ARA accept riskier gambles according to AS or FH.

Theorem 1.1 and Corollary 1.1 might be interpreted as evidence that AS

and FH were “well-chosen” in some sense. However, I will show in Theorem 1.2

that while AS and FH satisfy the desirable properties mentioned above, there

are other indices which satisfy the same properties. Moreover, some of

these indices are not “reasonable” in the sense that they are not monotone

with respect to first order stochastic dominance, in clear violation of the

requirement that an index of riskiness should judge as riskier the alternative

risk-averse individuals less prefer. Theorem 1.3 further identifies sufficient

conditions on Q under which the coefficient of local aversion to Q-riskiness

and the relation at least as averse to Q-riskiness yield the same order as the
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Arrow-Pratt (local) absolute risk aversion. Before stating these results, I

must introduce a few key properties.

Axiom (Homogeneity). Q is homogeneous of degree k for some k > 0.

The homogeneity axiom has both cardinal and ordinal content. For the

case k = 1, its cardinal interpretation is that doubling the stakes doubles

the riskiness. The ordinal content is that doubling the stakes increases the

riskiness. When taking the point of view of an agent, not a regulator setting

a minimal reserve requirement, the cardinal part is not necessarily desirable.

In what follows, I assume it for its simplicity and since homogeneity of degree

1 appears in the original axiomatic characterization of the AS index, but later

I remove this axiom.

Axiom (Local consistency). ∀u ∀w ∃λ > 0 ∀δ > 0 ∃ε > 0 RεQ(u,w) − δ <

λ < SεQ(u,w) + δ.

Local consistency says that small gambles that are significantly Q-safer

than some cut-off level are always accepted, and that ones significantly

riskier than the cutoff are always rejected. Lemma A.2 in the appendix

shows that whenever homogeneity is satisfied, local consistency implies that

0 < SQ(u,w) = RQ(u,w) < ∞. This means, that for “small” gambles Q is

sufficient information to determine an agent’s optimal behavior. In other

words, the decisions of agents are consistent with the index, on small domains.

Definition (Reflexivity). The relation at least as averse to Q-riskiness is

reflexive if for all u and w, u at w is at least as averse to Q-riskiness as u at

w.
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Proposition. If Q satisfies local consistency, then the relation locally at least

as averse to Q-riskiness is reflexive.

Definition (Ordinally equivalent). Given an index of riskiness Q, AQ is ordi-

nally equivalent to the coefficient of absolute risk aversion ρ, if ∀u, v ∀w,w′

AQ(u,w) > AQ(v,w′) ⇐⇒ ρu(w) > ρv(w′).

Theorem 1.2. (i) There exists a continuum of locally consistent, homoge-

neous of degree 1, riskiness indices for which the coefficient of local aversion

equals the Arrow-Pratt coefficient.21 (ii) Moreover, some of these indices are

not monotone with respect to first order stochastic dominance.

(i) is proved in the appendix using the observation that for every a > 0 any

combination of the form Qa(⋅) ∶= QFH(⋅) + a ⋅ ∣QFH(⋅) −QAS(⋅)∣ is an index

of riskiness for which the coefficient of local aversion equals the coefficient of

local aversion to QFH . The reason this holds is that for small supports, the

second element in the definition is vanishingly small by Inequality 1.3.0.3,

and so Qa and QFH should be close. The following example demonstrates

(ii).

Example 1.2. TakeQ1(⋅) ∶= QFH(⋅)+∣QFH(⋅) −QAS(⋅)∣ and g = [1, e
1+e ;−1, 1

1+e].

QAS(g) = 1 and QFH(g) ≈ 1.26, hence Q1(g) < 1.6. Now take g′ = [1,1 −

ε;−1, ε]. For small values of ε, QAS(g′) ≈ 0 but QFH(g′) > 1, so Q1(g′) > 1.6.

Therefore, while g′ first order stochastically dominates g, Q1 (g) < Q1 (g′).
21Omitting the homogeneity of degree 1 requirement would yield a trivial statement as,

for example, an arbitrary change of the values of QAS for gambles taking values larger than
some M > 0 will result in a valid index. The requirement that that the local aversion to
the index coincides with the Arrow-Pratt coefficient, and not just with the order it implies,
is a normalization that rules out, for example, the use of positive multiples of QAS .
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Theorem 1.3. If Q satisfies local consistency and homogeneity of degree

k > 0, then AQ is ordinally equivalent to ρ, and the relation at least as averse

to Q-riskiness induces the same order as ρ.22

The proof is in the appendix. It extends the reasoning of Lemma 1.1.

Remark. Both axioms in Theorem 1.3 are essential: As the following examples

demonstrate, omitting either admits indices for which the coefficient of local

aversion is not ordinally equivalent to ρ, and the relation at least as averse

to Q-riskiness does not induce the same order as ρ.

Example 1.3. Q (⋅) ≡ 5 satisfies local consistency, but it does not satisfy

homogeneity of degree k > 0. The local aversion to this index induces the

trivial order and AQ ≡ 1
5 .

Example 1.4. Q(⋅) = E [⋅] is homogeneous of degree 1, but it violates local

consistency. The local aversion to this index induces the trivial order and

AQ ≡∞.

Later in the paper, homogeneity will sometimes no longer be required.

It will be replaced by a requirement of continuity and monotonicity with

respect to first order stochastic dominance (or mean preserving spreads). For

completeness, I present an example of a locally consistent index which satisfies

continuity and monotonicity with respect to first and second order stochastic

dominance but does not possess the ordinal content of homogeneity.

Definition (Continuity). An index of riskiness Q is continuous if Q(g) =
22To be precise, this statement means that u at w is at least as averse to Q-riskiness as

v at w′ if and only if ρu(w) ≥ ρv(w′).
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lim
n→∞

Q (gn) whenever gn are uniformly bounded gambles which converge to g

in probability.

Example 1.5. Q(⋅) = exp{QAS(⋅) −E [⋅]} inherits its positivity from the

exponent, it is continuous and monotonic with respect to first order stochastic

dominance as both QAS(⋅) and −E [⋅] are. It is monotonic with respect to

second order stochastic dominance as QAS(⋅) is increasing in mean-preserving

spreads and E does not vary with mean-preserving spreads (weakly increasing).

Q satisfies local consistency as for small supports it is almost equal to

exp{QAS(⋅)}, which is locally consistent. Finally, for g such that QAS(g) <

E [g] and λ > 1, Q(λg) < Q(g). For small ε > 0, gambles of the form

g = [−ε, 1
2 ; 1, 1

2
] satisfy the required inequality.

1.4 The Aversion to AS-Riskiness and the Demand

for Gambles

Samuelson (1960) shows that “if you would always refuse to take favorable

odds on a single toss, you must rationally refuse to participate in any (finite)

sequence of such tosses” (Samuelson, 1963). But Samuelson (1963) also warns

against undue extrapolation of his theorem saying “It does not say that one

must always refuse a sequence if one refuses a single venture: if, at higher

income levels the single losses become acceptable, and at lower levels the

penalty of losses does not become infinite, there might well be a long sequence

that it is optimal.” The following proposition shows that AS has properties

which generalize the property discussed by Samuelson.
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Proposition 1.1. A gamble g with QAS(g) = c is rejected by u at w only if

there exist some w′ ∈ [w −L(g),w +M(g)] such that small gambles with QAS

of c are rejected at w′. A gamble g with QAS(g) = c is accepted by u at w

only if there exist some w′ ∈ [w − L(g),w +M(g)] such that small gambles

with QAS of c are accepted at w′.

Proof. Omitted.

Corollary 1.2. If QAS(g) > sup
w

{A−1
QAS

(u,w)} = sup
w

{ρ−1
u (w)} then u rejects

g at any wealth level. If QAS(g) < inf
w

{A−1
QAS

(u,w)} = inf
w

{ρ−1
u (w)} then u

accepts g at any wealth level.

The corollary suggests a partition of the class of gambles into three: “risky”

gambles, which the agent never accepts, “safe” gambles which are always

accepted, and gambles whose acceptance is subject to wealth effects. Knowing

the distribution of preferences in a given population, the intersection of the

relevant “risky” and “safe” segments yields a partition which is mutually

agreed upon. Such a partition could be used as a simple tool for evaluating

policies, as I will show in Section 1.6. It may also be used as a simple tool for

providing bounds on risk attitudes, as illustrated in the following example.

Example 1.6. Say that a population of agents are observed making accep-

tance and rejection decisions on gambles. Say that A is the set of gambles

rejected by some agent, and B is the set of gambles accepted by some agent.

Then if, for some g ∈ B and for all u, QAS(g) > sup
w

{ρ−1
u (w)}, a contradiction

would be implied. So, for some u, max
g∈B

QAS(g) ≤ sup
w

{ρ−1
u (w)} . Similarly

min
g∈A

QAS(g) ≥ inf
w

{ρ−1
v (w)} for some v.
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The next result shows a property of the index which is in the spirit of

Samuelson’s argument, and in fact implies Samuelson’s theorem. It shows

that the sets of “risky” and “safe” gambles are closed under compounding of

independent gambles.

Definition (Compound gamble property). An index Q has the compound

gamble property if for every compound gamble of the form f = g+1Ah, where

1 is an indicator, A is an event such that g is constant on A (g∣A ≡ x for some

x) and h is independent of A, max{Q(g),Q(h)} ≥ Q(f) ≥ min{Q(g),Q(h)}.

Proposition 1.2. QAS satisfies the compound gamble property. Thus, if

g, h ∈ G are independent, and min{QAS(g),QAS(h)} > sup
w

{ρ−1
u (w)}, then a

compound gamble of g and h will also satisfy the inequality. Additionally, if

g, h ∈ G are independent, and max{QAS(g),QAS(h)} < inf
w

{ρ−1
u (w)}, then a

compound gamble of g and h will also satisfy the inequality.

Proof. See appendix.

Theorem 1.3 identifies conditions under which the coefficient of local

aversion to Q-riskiness and the relation at least as averse to Q-riskiness induce

the same order as the Arrow-Pratt ARA. But according to Theorem 1.2 and

Example 1.5 this property is not enough to characterize a “reasonable” index

of riskiness. These findings call for additional requirements from an index of

riskiness. I propose a generalized Samuelson property and show that with

reflexivity (local consistency), monotonicity and continuity it pins down

uniquely the AS index.
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Axiom (Generalized Samuelson property). ∀u, w′ S∞Q (u,w′) ≥ inf
w
SQ(u,w)

and R∞
Q (u,w′) ≤ sup

w
RQ(u,w).

The axiom says that no agent accepts a large gamble of a certain degree of

riskiness if he rejects small ones of the same degree of riskiness at any wealth

level, and no agent rejects a large gamble of a certain degree of riskiness if he

accepts small ones of the same degree of riskiness at any wealth level.

Theorem 1.4. (QAS)k is the unique index of riskiness that satisfies local

consistency, global consistency and homogeneity of degree k > 0, up to a

multiplication by a positive number.

Proof. See appendix.

As was discussed previously, the cardinal content of the homogeneity

axiom is not necessarily appealing for general indices of riskiness. In what

follows, this axiom will be removed and replaced with less demanding con-

ditions: monotonicity with respect to first order stochastic dominance and

continuity. The combination of the generalized Samuelson property, mono-

tonicity, continuity and reflexivity of the relation locally at least as averse to

Q-riskiness implies local consistency, and so the local consistency requirement

could be replaced with the weaker requirement of reflexivity.

Theorem 1.5. If Q satisfies the generalized Samuelson property, reflexivity,

monotonicity with respect to first order stochastic dominance and continuity,

then Q is ordinally equivalent to QAS.

Proof. See appendix.
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Claim 1.1. The monotonicity requirement in the theorem could be replaced

by each of the following conditions:

(a) Monotonicity with respect to mean-preserving spreads

(b) Satisfying the ordinal content of homogeneity

(c) Monotonicity with respect to increases in the lowest value of the

gamble, leaving the rest of the values unchanged

In such case, monotonicity with respect to first order stochastic dominance

will be a result, not an assumption.

Corollary 1.3. The FH index of riskiness does not satisfy the generalized

Samuelson property.

Example 1.7. g ∶= [1, 1
2 ;−1

2 ,
1
2
] has QFH (g) = 1. When compounding 3 i.i.d

gambles with this distribution, the largest loss that happens with positive

probability is -1.5. This implies that the FH-riskiness of the compound

gamble must be at least 1.5.

1.5 Global Consistency

The generalized Samuelson property implies that if for two agents, u and v,

inf
w′
SQ(v,w′) ≥ sup

w
RQ(u,w), then S∞Q (v,w0) ≥ R∞

Q (u,w1) at any two wealth

levels w0, and w1. In this section, I propose global consistency – a weaker

restriction on pairs of agents. The following definition is required in order to

state the condition.

Definition (Globally more averse to Q-riskiness). Let Q be an index of

riskiness. u is globally at least as averse to Q-riskiness as v is (written
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u ≿Q v) if, for every w and w′, u at w is at least as averse to Q-riskiness as

v at w′. u is globally more averse to Q-riskiness than v (written u ≻Q v) if

u ≿Q v and not v ≿Q u.23

Axiom (Global consistency). For every pair of utilities u and v, for every w

and every g and h in G, if u ≻Q v, u accepts g at w, and Q(g) > Q(h), then

v accepts h at w.

Claim 1.2. Global consistency is implied by the generalized Samuelson prop-

erty.

The axiom of global consistency is a weak requirement, in the sense that

it imposes no restriction for pairs of utilities which cannot be compared using

the partial order globally more averse to Q-riskiness. It is inspired by the

duality axiom of AS. For small gambles, it follows immediately from local

consistency. In fact, local consistency could have been stated in a very similar

way, had it been assumed that the relation at least as averse to Q-riskiness is

reflexive. It would state that if u at w is at least as averse to Q-riskiness as v

at w′ is, then there exists λ > 0 such that for all δ > 0 there exists ε > 0 with

RεQ(u,w) − δ < λ < SεQ(v,w′) + δ. Roughly, it states that if the risk averse

agent accepts a small gamble with a certain level of riskiness, the less risk

averse agent will accept small gambles which are Q-safer. The content of the

axiom of global consistency comes from the fact that it places no restriction

on the support of gambles, so that when two agents that can be compared

by the partial order “globally more averse to Q-riskiness,” the axiom requires
23The above definition is different from the AS definition of uniformly more risk-averse.

It is derived directly from the index Q and the utility function u. However, if the relation at
least as averse to Q-riskiness induces the same order as ρ the two definitions are equivalent.
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that the less averse agent accepts Q-riskier gambles, and the requirement

applies not only for small gambles.

Theorem 1.6. (QAS)k is the unique index of riskiness that satisfies local

consistency, global consistency and homogeneity of degree k > 0, up to a

multiplication by a positive number.

Proof. Let Q be homogeneous of degree 1. From Theorem 1.3, AQ is ordinally

equivalent to ρ, and the relation at least as averse to Q-riskiness induces the

same order as ρ. The AS duality axiom states that if u is uniformly more

averse to risk than v, u accepts g at w, and Q(g) > Q(h), then v accepts h at

w. That the relation at least as averse to Q-riskiness induces the same order

as ρ means that u is globally more averse to Q-riskiness than v if and only if

u is uniformly more risk averse than v. With global consistency, this implies

the duality axiom. But the only indices that satisfy homogeneity of degree 1

and the duality axiom are positive multiples of QAS (Aumann and Serrano,

2008). If Q is homogeneous of degree 0 < k ≠ 1, Q′ = (Q)
1
k is homogeneous of

degree 1, and still satisfies the other properties,24 so Q′ must equal C ⋅QAS

for some C > 0, and so Q is equal to Ck ⋅ (QAS)k. Finally, Theorems 1.1 and

1.3 and the discussion above imply that for all k > 0, (QAS)k satisfies the

axioms,25 and the same holds for its positive multiples.

Corollary 1.4. QFH , the FH index of riskiness, does not satisfy global

consistency.

24To verify this, note that f(x) = x
1
k is continuous, and Q and Q′ are ordinally

equivalent.
25In fact, this was shown only for the case k = 1, but it is clear that the other cases are

implied by this case.
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Example 1.8. Consider a gamble g = [1, e
1+e ;−1, 1

1+e], Q
AS(g) = 1 and

QFH(g) ≈ 1.26, and a gamble g′ = [2,1 − ε;−2, ε]. For small values of ε,

QAS(g′) ≈ 0 but QFH(g′) > 2. Hence QAS(g) > QAS(g′) yet QFH(g) <

QFH(g′). Since the local aversion to FH-riskiness is equal to the local

aversion to AS-riskiness by Theorem 1.1, any two CARA utility functions

with different ARA between 1
QAS(g) and

1
QAS(g′) together with the two gambles

violate global consistency.

In what follows, the homogeneity axiom will be removed and replaced with

less demanding conditions: monotonicity with respect to first order stochastic

dominance and continuity. Example 1.9 will show that these axioms will

not suffice for assuring that the coefficient of local aversion to Q-riskiness is

non-degenerate, or even to ensure that the index is monotonic with respect

to second order stochastic dominance, and so I will require a slightly stronger

version of global consistency. On the other hand, the combination of strong

global consistency, monotonicity, continuity and reflexivity of the relation

locally at least as averse to Q-riskiness implies local consistency, and so the

local consistency requirement could be replaced with the weaker requirement

of reflexivity.

Example 1.9. Let Q(⋅) = exp{−E [⋅]}. It is positive, continuous, monotonic

with respect to first order stochastic dominance and locally consistent. Addi-

tionally, every u is globally at least as averse to Q-riskiness as any v. Hence,

no agent is globally more averse to Q-riskiness than another, and so global

consistency is satisfied. The coefficient of local aversion to Q-riskiness is

equal to 1 identically. Finally, mean preserving spreads do not change the
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value of the index.

Axiom (Strong global consistency). For every pair of utilities u and v, for

every w and every g and h in G, if u ≿Q v, u accepts g at w, and Q(g) > Q(h),

then v accepts h at w.

The difference between the two axioms is that the weak version uses ≻Q

while the strong one uses ≿Q. The strong version, therefore, requires more,

as it has a bite for more pairs of utilities. Note that this axiom is violated

by the index from Example 1.9. To see this, observe that any two agents u

and v satisfy both u ≿Q v and v ≿Q u, so Q must be degenerate in order to

satisfy the axiom, but it is not.

Claim 1.3. Strong global consistency is implied by the generalized Samuelson

property.

Theorem 1.7. If Q is a continuous index of riskiness that satisfies mono-

tonicity with respect to first order stochastic dominance and strong global

consistency, and the relation at least as averse to Q-riskiness is reflexive, then

Q is ordinally equivalent to QAS.

Proof. See appendix.

Corollary 1.5. If Q is a continuous index of riskiness that satisfies mono-

tonicity with respect to first order stochastic dominance and strong global

consistency and the relation at least as averse to Q-riskiness is reflexive, then

Q satisfies local consistency and AQ is ordinally equivalent to ρ.

Claim 1.4. The monotonicity requirement in the theorem could be replaced

by each of the following conditions:
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(a) Monotonicity with respect to mean-preserving spreads

(b) Satisfying the ordinal content of homogeneity

(c) Monotonicity with respect to increases in the lowest value of the

gamble, leaving the rest of the values unchanged

In such case, monotonicity with respect to first order stochastic dominance

will be a result, not an assumption.26

1.6 A Generalized Sharpe Ratio

This section considers an investor facing the problem of asset allocation

between a risk-free asset, with return rf and a market portfolio.27 Fixing rf ,

a market return r is a real-valued random variable such that r − rf ∈ G. In

particular, the net return, r − rf has a positive expected value and a positive

probability to be negative. For each value of rf , let Rrf , or simply R when

there is no risk of confusion, denote the class of all such market returns. An

index of performance is a collection of functions Qrf ∶Rrf → R+, one for each

possible value of the risk-free rate.

One well known index of performance is the Sharpe ratio, the ratio between

the expected net return and its standard deviation.28 This measure of “risk

adjusted returns,” or “reward-to-variability” (Sharpe, 1966), is frequently used

as a performance measure for portfolios (Welch, 2008; Kadan and Liu, 2014).

Formally, it is defined by:
26The continuity assumption could also be relaxed, for example, by requiring continuity

in payoffs for fixed probabilities.
27rf may be negative but must be greater than −1.
28Note that σ (r − rf) ≠ 0 from the assumption that r − rf ∈ G.
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Shrf (r) =
E [r − rf ]
σ (r − rf)

.

The validity of this measure relies critically on several assumptions on the

distribution of returns as well as on agents’ preferences (Meyer, 1987). In

particular, for general distributions, the Sharpe ratio is not monotonic with

respect to first order stochastic dominance: portfolio r1 may have returns that

are always higher than portfolio r2 and yet it will be ranked lower according

to the index. This normatively undesirable property of the Sharpe ratio is

illustrated by the following example, which is based on an example from

Aumann and Serrano (2008):

Example 1.10. Let r1 = [−1, .02; 1, .98], r2 = [−1, .02; 1, .49; 2, .49] and rf =

0.

E [r1 − rf ] = .96, σ(r1 − rf) = .28,

hence,

Shrf (r1) =
.96

.28
≈ 3.43.

But,

E [r2 − rf ] = 1.45, σ(r2 − rf) =
7
√

3

20
,

hence,

Shrf (r2) =
1.45 × 20

7
√

3
≈ 2.39.

The result will continue to hold if we add some small ε > 0 to all of the payoffs

of r2.

This undesirable property of the Sharpe ratio is related to the fact that it

depends only on the first two moments of the distribution. These moments
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are sufficient statistic for a normal distribution, and therefore basing an

index on them solely may be reasonable under the assumption of normally

distributed returns. This assumption is, however, often rejected in settings

where the Sharpe ratio is often used (e.g. Fama, 1965; Agarwal and Naik,

2000; Kat and Brooks, 2001). Moreover, a large body of literature documents

the importance of higher order moments for investment decisions (e.g. Kraus

and Litzenberger, 1976; Kane, 1982; Harvey and Siddique, 2000; Barro, 2006,

2007; Gabaix, 2008).

Recognizing these limitations of the Sharpe ratio as a measure of perfor-

mance, Kadan and Liu (2014) propose a reinterpretation of the inverse of

the AS index of riskiness as a performance measure and show that it may

be more favorable than the Sharpe ratio in an empirical setting. Homm and

Pigorsch (2012a) propose a different index, which was mentioned originally

in AS: the expected net return divided by the AS riskiness. The index is not

derived from first principles but is motivated by a “reward-to-risk” reasoning,

where the AS riskiness takes the place of σ in the Sharpe ratio. This section

asks which of these indices, if any, does the consistency-motivated approach

suggest?

The findings of this section support the latter alternative, which coincides

with the Sharpe ratio on the domain of normally distributed returns. The

index possesses other desirable properties, importantly monotonicity with

respect to stochastic dominance and with respect to stochastic dominance

in the presence of a risk-free asset (Levy and Kroll, 1978),29 of the first and
29r1 first (second) order stochastically dominates r2 in the presence of a risk-free asset

rf if for every α ≥ 0 there exists β ≥ 0 such that αr2 + (1 − α) rf is first (second) order
stochastically dominated by βr1 + (1 − β) rf .
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second degree.

1.6.1 Preliminaries

Definition. A market transaction is a pair, (q, r) ∈ R+ ×R. Denote by T

the class of all market transactions.

Say that an agent with utility function u and initial wealth w accepts a

market transaction if

E [u ((w − q)(1 + rf) + q(1 + r))] > u(w(1 + rf)),

and rejects it otherwise.

I assume that it is only the net return that matters for the index. That is,

by shifting rf and all the possible values of r by a constant, the performance

does not change. This is a standard assumption which makes it possible to

compare market returns under different risk-free rates. All the results will

continue to hold without this assumption, fixing rf .

Axiom (Translation invariance). ∀λ > 0, ∀rf > −1, ∀r ∈Rrf Qrf+λ(r+λ) =

Qrf (r).30

The next axiom could be interpreted as saying that if the price of a unit

of the market portfolio decreases but it continues to yield the same proceeds,

then the market performs better. This intuitive notion is the ordinal content

of the axiom T of Artzner et al. (1999).

Axiom (Monotonicity). ∀rf > −1, ∀r ∈ Rrf , ∀λ > 0, if rf + λ ∈ Rrf then

Qrf (r + λ) > Qrf (r).
30If r is in Rrf then r + λ is in Rrf+λ.
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With translation invariance, monotonicity is equivalent to the requirement

that the same market return should be considered as better performing in

the face of a lower risk-free rate.

To motivate the next axiom, assume for a moment that the risk-free

rate is 0, and that agents are free to allocate their resources between the

market and a risk-free asset. A reasonable requirement is that an index of

performance be homogeneous of degree 0, since any portfolio that could be

achieved with market return r could be mimicked when the return is λg for

any λ > 0 by scaling the amount of investment by 1
λ . This reasoning clearly

extends to the net return, r − rf , for any rf and r.

Axiom (Homogeneity). ∀λ > 0, ∀rf > −1, ∀r ∈Rrf , Qrf (λ ⋅(r−rf)+rf) =

Qrf (r).

The Sharpe ratio is an example for a performance index that satisfies this

property. Unlike in the other settings presented in this paper, the homogeneity

axiom here is ordinal and has no cardinal implications.

Claim 1.5. A continuous index which satisfies translation invariance and

monotonicity but fails to satisfy homogeneity of degree 0 is not monotonic

with respect to stochastic dominance in the presence of a risk-free asset.31

Proof. For some λ > 0, say Qrf (λ ⋅ (r − rf) + rf) > Qrf (r). From translation

invariance, Q0(λ ⋅ (r − rf)) > Q0(r − rf). From continuity, it will also be the

case that Q0(λ ⋅ (r − rf)) > Q0(r − rf + ε) for some small ε > 0. But r − rf + ε

first order stochastically dominates λ ⋅ (r − rf) in the presence of a risk-free
31A precise definition of continuity appears later in this section.
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asset with 0 rate of return, as discussed in the argument motivating the

homogeneity axiom.

Corollary 1.6. The index of performance used by Kadan and Liu (2014)

violates monotonicity with respect to stochastic dominance in the presence of

a risk-free asset.

Example 1.11. Let r be a market return with E [r] = 1 and let rf = 0. The

index proposed by Kadan and Liu (2014) equals to 1
QAS(r) > 0. Their index

for 1
2r, under the same conditions, is 2

QAS(r) . From the continuity of their

index, this implies that for small ε > 0, 1
2r − ε performs better than r in the

Kadan-Liu sense.

For c ≥ 0 and rf > −1, define Rrfc ∶= {r ∈Rrf ∣ E [r] = rf + c}, the class of

market returns with expected net return of c. If Q satisfies homogeneity, it

is completely characterized by the restriction of Qrf to Rrf+1. If Q further

satisfies translation invariance, then there is no loss of generality in writing

Q(r − rf) ∶= Q0(r − rf) = Qrf (r). This means that it is sufficient to consider

the case that rf = 0 and to characterize Q ∶ R1 → R+. From this point on,

unless specifically mentioned, attention will be restricted to this case.

Denote the class of “local” market transactions by

Tε ∶= {(q, r) ∈ T ∣ max{qr} −min{qr} < ε, r ∈R1} .32

Definition. Given a performance index Q, say that u at w is locally at least

as inclined to invest in Q−performers as v at w′ if there exists q̄, such that
32The requirement that r ∈R1 will be important in this setting due to the assumption

of homogeneity of degree 0, since for any r with expected positive net returns, q > 0, and
any agent, there exists a small enough λ > 0 such that (q, λ ⋅ r) will be accepted.
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for all for all q̄ > q > 0 and δ > 0 there exists ε > 0 with

0 ≤ sup
(q,r)∈Tε

{Q (r) ∣ (q, r) is rejected by u at w}

≤ inf
(q,r)∈Tε

{Q (r) ∣ (q, r) is accepted by v at w′} + δ.

The interpretation is as follows: for transactions with expected net return

of q > 0, if v at w′ is willing to invest in some local transaction, then u at w

is willing to invest in any local transaction that performs significantly (by δ)

better according to Q.

Next, I require that the relation locally at least as inclined to invest in

Q-performers is reflexive.

Axiom (Reflexivity). For all u and w, u at w is locally at least as inclined

to invest in Q-performers as u at w.

Definition. u is globally inclined to invest in Q−performers at least as v if

for all w, w′, u is locally inclined to invest in Q−performers at wealth w at

least as v at wealth w′.

Axiom (Strong global consistency). For every w ∈ R, q > 0, for every u and

v, and every r, r′ ∈R1, if u is inclined to invest in Q-performers at least as v,

v accepts (q, r) at w, and Q(r′) > Q(r), then u accepts (q, r′) at w.

The axiom roughly says that if an agent that cares less aboutQ-performance

is willing to invests q in a market, it must be the case that an agent who

cares more about Q-performance would be willing to invest the same amount

when the market performs better.
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1.6.2 Results

Definition. The generalized Sharpe ratio is defined as

PASrf (r) ∶= PAS(r − rf) =
E [r − rf ]

QAS (r − rf)
.

Continuity. An index Q is continuous if for all rf > −1, Qrf (rn)→ Qrf (r)

whenever {rn} and r are uniformly bounded market returns, and {rn}

converges to r in probability.

Theorem 1.8. Q is a continuous index of performance that satisfies global

consistency, reflexivity, translation invariance, monotonicity and homogeneity

iff it is a continuous increasing transformation of PAS (⋅).

Proof. See appendix.

Remark. On the domain of normally distributed market returns, PAS is

ordinally equivalent to the Sharpe ratio.

Remark. PAS is increasing is increasing in odd distribution moments, and

decreasing in even distribution moments.

Proposition 1.3. PAS is monotonic with respect to stochastic dominance

in the presence of risk-free asset.

Proof. If r1 dominates r2 in the presence of rf , then there exist α,β > 0

such that αr1 + (1 − α) rf stochastically dominates βr2 + (1 − β) rf . There

is no loss of generality in assuming that rf = 0 and E [r1] = E [r2]. With

this assumption, the above implies αr1 stochastically dominate βr2. The

monotonicity of QAS thus implies that QAS(αr1) < QAS(βr2), and stochastic
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dominance implies E [αr1] ≥ E [βr2] . Altogether, these results imply

PAS0 (r1) =
E [r1]
QAS(r1)

= E [αr1]
QAS(αr1)

> E [βr2]
QAS(βr2)

= E [r2]
QAS(r2)

= PAS0 (r2)

as required.

Corollary 1.7. Q is a continuous index of performance that satisfies global

consistency, reflexivity, translation invariance, and monotonicity with respect

to stochastic dominance in the presence of risk-free asset iff it is a continuous

increasing transformation of PAS (⋅).

Proof. Follows from Claim 1.5 and Theorem 1.8.

1.6.3 The Demand for Market Transactions

The next proposition provides a partition of market transactions into three:

“attractive,” “unattractive” and ones about which the decision depends on

wealth effects.

Proposition 1.4. If q
PAS(g) > sup

w
{ρ−1

u (w}), then u rejects (q, g) at any

wealth level. If q
PAS(g) < inf

w
{ρ−1

u (w)}, then u accepts g at any wealth level.

Next, I show that diversification makes transactions more desirable and

that a property analogous to compound gambles holds.

Proposition 1.5. Fix rf . If g, h ∈Rrfrf+1 are such that (q, g) and (q, h) are

accepted by u at any wealth level, then u accepts (q,αg + (1 − α)h) for all

α ∈ (0,1) at any wealth level.

Proof. From proposition 1.4 as PAS (αg + (1 − α)h) ≥ min{PAS (g) , PAS(h)},

by the properties of QAS .
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Proposition 1.6. Fix rf , and let g, h ∈Rrfrf+1 be such that (q, g) and (q, h)

are accepted by u at any wealth level, then if g and h are independent then u

accepts (2q, 1
2g +

1
2h) at any wealth level.

Proof. From proposition 1.4 as PAS (1
2g +

1
2h) ≥ 2 ⋅min{PAS (g) , PAS(h)},

by the properties of QAS .

This proposition implies the analogue to Samuelson’s theorem for the

case where a risk-free asset exists.

Example. (The demand for market portfolios). Cabrales et al. (2014) use

the estimates of risk aversion from Dohmen et al. (2011) to deduce that

for relevant wealth levels a large fraction of the developed world population

(importantly, not the very poor or the very rich) could be characterized by

1.8 ⋅ 10−6 < ρu < 5 ⋅ 10−4 . Kadan and Liu (2014) use historical monthly return

data from the American market and estimate E [r − rf ] by .406 and 1
RAS

by .038 suggesting an estimated value of .406
.038 ≈ 10.69 for PAS . Based on

these estimates, a policy maker may inform individuals that if they do not

invest in the market they will (probably) be better-off by purchasing a well

diversified portfolio with expected return of q where q
10.69 < (5 ⋅ 10−4)−1 = 2000,

or, approximately, q < 20000. Finally, using the estimate for expected net

return, this bound suggests that an exposure of less then 20,000
.406 ≈ $50000 to

a well diversified portfolio of American shares is better than holding just

risk-free assets. An upper bound can also be suggested: investing more than
(1.8⋅10−6)−1⋅10.69

.406 ≈ $13.8 million is dominated by opting out of the market.33

33For the upper bound I make the standard assumption that utilities present (weakly)
decreasing absolute risk aversion.

42



Example. In the same setting, consider a policy maker who considers levying

a tax on risky investment. Using the above estimates for risk aversion, and

recalculating PAS for the after tax return, the policy maker can derive an

upper bound over possible tax revenues.

1.7 A Consistent Index of Relative Riskiness

This section presents an application for the setting of multiplicative gambles.

Define U ∶= {u ∶ R+ → R∣%u(w) > 1∀w > 0}, the set of (twice continuously

differentiable) utility functions with relative risk aversion higher than that

of the logarithmic utility function. Additionally, let H ∶= {g ∈ G∣QFH(g) < 1}

be the set of gambles with FH riskiness smaller than 1. The following is a

result of FH:

Fact 1.1. QFH(g) < 1⇐⇒∏
i
(1 + gi)pi > 1 ⇐⇒ E [log(1 + g)] > 0.

In what follows I will consider multiplicative gambles, so that now u accepts

g at w if u(w + gw) > u(w), and rejects g otherwise.34 The interpretation of

QFH(g) < 1 is that gambles of the form wg are accepted by a logarithmic

utility function at wealth w. Repeatedly accepting independent gambles with

QFH(g) > 1 would lead to bankruptcy with probability 1.

Adjusting the previous axioms to the current setting yields the following

axioms for an index of (relative) riskiness Q ∶H → R+:

Axiom (Scaling). ∀α > 0 ∀g ∈H, Q ((1 + g)α − 1) = α ⋅Q(g).35

34g can be interpreted as the return on some risky asset.
35Importantly, note that for every α > 0 if g ∈H then (1 + g)α − 1 ∈H by fact 1.1.
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Similar to the homogeneity axiom, the scaling axiom embodies a cardinal

interpretation.

Definition (Ordinally equivalent). Given an index of riskiness Q, AQ is

ordinally equivalent to the coefficient of relative risk aversion % if ∀u, v ∈

U ∀w,w′ > 0, AQ(u,w) > AQ(v,w′) ⇐⇒ %u(w) > %v(w′).36

Theorem 1.9. If local consistency and scaling hold, then AQ is ordinally

equivalent to %, and the relation at least as averse to Q-riskiness induces the

same order as %.

Proof. omitted.

Axiom (Global consistency). For every u and v in U , for every w > 0 and

every g and h in H, if u ≻Q v, u accepts g at w, and Q(g) > Q(h), then v

accepts h at w.

Lemma 1.4. For any g ∈ H there is a unique positive number S(g) such

that E [(1 + g)−
1

S(g) ] = 1.

Proof. See appendix.

Definition. The index of relative riskiness S of gamble g ∈H is implicitly

defined by the equation E [(1 + g)−
1

S(g) ] = 1.

Theorem 1.10. S is the unique index of riskiness that satisfies local con-

sistency, global consistency and scaling, up to a multiplication by a positive

number.
36Whenever the adaptation of a definition from the previous sections is clear, I omit it

for brevity.
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Proof. See appendix.

As before, scaling is not always a desirable property. In what follows I

omit this requirement.

Axiom (Strong global consistency). For every u and v in U , for every w > 0

and every g and h in H, if u ≿Q v, u accepts g at w, and Q(g) > Q(h), then

v accepts h at w.

Theorem 1.11. If Q is a continuous index of relative-riskiness that satisfies

monotonicity with respect to first order stochastic dominance and strong global

consistency, and the relation at least as averse to Q-riskiness is reflexive, then

Q is ordinally equivalent to S.

Proof. See appendix.

Corollary 1.8. If Q is a continuous index of relative-riskiness that satisfies

monotonicity with respect to first order stochastic dominance and strong global

consistency, and the relation at least as averse to Q-riskiness is reflexive, then

Q satisfies local consistency and AQ is ordinally equivalent to %.

Remark. The monotonicity and continuity requirements could be replaced by

other conditions as in Claim 1.4.

Proposition 1.7. A gamble g with S(g) = c is rejected by u at w only if

there exist some w′ such that small gambles with S-riskiness of c are rejected.

A gamble g with S(g) = c is accepted by u at w only if there exist some w′

such that small gambles with S-riskiness of c are accepted.

Proof. omitted.
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Corollary 1.9. If S(g) > sup
w>0

{A−1
S (u,w)} = sup

w>0
{%−1

u (w)} then u rejects g

at any wealth level. If S(g) < inf
w>0

{A−1
S (u,w)} = inf

w>0
{%−1

u (w)} then u accepts

g at any wealth level.

Proof. omitted.

Definition (Compound gamble property). An index Q has the compound

gamble property if for every compound gamble of the form f = (1 + g)(1 +

1Ah) − 1, where 1 is an indicator, A is an event such that g is constant on A

(g∣A ≡ x for some x) and h is independent of A, max{Q(g),Q(h)} ≥ Q(f) ≥

min{Q(g),Q(h)}.

Proposition 1.8. S satisfies the compound gamble property. Thus, if g, h ∈

H are independent, and min{S(g), S(h)} > sup
w

{%−1
u (w)} , then a compound

gamble of g and h will also satisfy the inequality. Additionally, if g, h ∈H are

independent, and max{S(g), S(h)} < inf
w

{%−1
u (w)} , then a compound gamble

of g and h will also satisfy the inequality.

Proof. omitted.

Axiom (Generalized Samuelson property). ∀u,w > 0 S∞Q (u,w) ≥ inf
w>0

SQ(u,w)

and R∞
Q (u,w) ≤ sup

w>0
RQ(u,w)

Theorem 1.12. S is the unique index of riskiness that satisfies the generalized

Samuelson property, local consistency and scaling, up to a multiplication by a

positive number.

Proof. omitted.
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Theorem 1.13. If Q satisfies the generalized Samuelson property, reflexivity,

monotonicity with respect to first order stochastic dominance and continuity

then Q is ordinally equivalent to S.

Proof. omitted.

1.8 Consistent Index of Delay

Similar to gambles, comparing cashflows which pay (require) different sums

of money over several points in time is not a simple undertaking. Some pairs

of cashflows may be compared using the partial order of time-dominance

(Bøhren and Hansen, 1980; Ekern, 1981), which is the analogue of stochastic

dominance in this setting. A cashflow c is first-order time dominated by c′ if

at any point in time the sum of money generated by c up to this point is lower

then the sum that was generated by c′.37 Bøhren and Hansen (1980) show

that if c is first-order time dominated by c′ then every agent with positive

time preferences prefers c′ to c. Positive time preferences mean that the agent

prefers a dollar at time s to a dollar at time s +∆ for all ∆ > 0. They also

show that if c is second-order time dominated by c′ then every agent with a

decreasing and convex discounting function prefers c′ to c.38

Time dominance is, however, a partial order. In this section, I use

the consistency-motivated approach to derive a novel index for the delay

embedded in an investment cashflow. The index I derive is new to the
37The sum may be negative, representing a required investment.
38As the definition of second-order time domination requires some notation, I choose

to omit it, noting that it is analogous to second order stochastic dominance from the risk
setting.
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literature but it is related to the well-known internal rate of return. The

index possesses several desirable properties similar to those of the AS index

of riskiness. In particular, it is monotone with respect to time dominance.

1.8.1 Preliminaries

An investment cashflow is a sequence of outflows (investment) followed by

inflows (return), and a sequence of times when they are conducted. Denote

by c = (xn, tn)Nn=1 such a cashflow.39 When xn is positive the cashflow pays

out xn at time tn, and when it is negative, an investment of ∣xn∣ is required

at tn. Assume, without loss of generality, that t1 < t2 < ... < tN . Further,

assume that x1 < 0 and ∑xn > 0, so that some investment is required, and the

(undiscounted) return is greater than the investment. This property implies

that an agent that does not discount the future will accept any investment

cashflow, while a sufficiently impatient agent will reject it. Let C denote

the collection of such cashflows, and Ct,ε be the collection of cashflows with

t1 ≤ t ≤ tN , and tN − t1 < ε.

An index of delay is a function T ∶ C → R+ from the collection of cashflows

to the positive reals. A cashflow c is said to be more T -delayed then c′ if

T (c) > T (c′).

I consider a capital budgeting setting in which agent i discounts using a

smooth schedule of positive instantaneous discount rates, ri(t).40,41 Similar

to ρ in the risk setting, r induces a complete order on all agent and time-point
39To keep notation simple, I avoid making the dependence of N on c explicit.
40An alternative interpretation may be a social planner with such time preferences

(Foster and Mitra, 2003).
41For a discussion of this condition, see Bøhren and Hansen (1980) and references

provided there.
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pairs.42 The net present value (NPV) of an investment cashflow c = (xn, tn)Nn=1

for the agent i at time t is

NPV (c, i, t) ∶=∑
n

e
−
tn

∫
t
ri(s)ds

xn.

If NPV (c, i, t) > 0 for some t, this inequality holds for any t. Agent i accept

cashflow c (at time t) if NPV (c, i, t) > 0 and rejects it otherwise. c could be

thought of as a suggested shift to a baseline cashflow.

The following two definitions are crucial for applying the consistency

motivated approach from the previous sections in order to present axioms for

an index of delay. Given an index of delay T , an agent i, a time t, and ε > 0:

Definition. RεT (i, t) ∶= sup{T (c)∣ c ∈ Ct,ε and c is accepted by i}

Definition. SεT (i, t) ∶= inf {T (c)∣ c ∈ Ct,ε and c is rejected by i}

RεT (i, t) is the T -delay of the most delayed cashflow according to T that

i is willing to accept, restricting the support of the cashflows to an ε-ball

around t. SεT (i, t) is the T -delay of the least delayed cashflow according to

T which i rejects, again restricting the support of the cashflows to an ε-ball

around t.

Definition. i at t is at least as averse to T -delay as j at t′ if for every δ > 0

there exists ε > 0 such that SεQ(j, t′) ≥ RεQ(i, t) − δ.

The interpretation of i at t being at least as averse to T -delay as j at t′ is

that, at least for cashflows with a short horizon, if i accepts any short-horizon

cashflow concentrated around t with a certain level of T -delay, j accepts all
42Importantly, r is not a common interest rates path as in Debreu (1972).
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short-horizon cashflows which are significantly (by at least δ) less delayed

according to T and are concentrated around t′. Alternatively, if j rejects any

short-horizon cashflow that is concentrated around t′ and has a certain level

of T -delay, i rejects all short horizon cashflows which are significantly (by at

least δ) more T -delayed and are concentrated around t.

The following definitions will also prove useful:

Definition. RT (i, t) ∶= lim
ε→0+

RεT (i, t)

Definition. ST (i, t) ∶= lim
ε→0+

SεT (i, t)

Roughly speaking, RT (i, t) is the T -delay of the most T -delayed short-

horizon cashflow that is concentrated around t and accepted by i, and

ST (i, t) is the T -delay of the least T -delayed short-horizon cashflow that is

concentrated around t and rejected by i at t. As before, the coefficient of

local aversion to T -delay of i at t is therefore defined as

AT (i, t) ∶=
1

RT (i, t)
,

noting that all of the results would hold for 1
ST (i,t) as well.

1.8.2 The Index

The following axioms are an adaptation of the axioms used in Theorem 1.3

for the current setting. They are used for presenting the analogue of this

theorem, as well as the analogue of Theorem 1.2. Theorem 1.14 provides

conditions under which there is only one order of local aversion to delay and

it corresponds to the instantaneous discount rate.
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Axiom (Translation invariance). T ((xn, tn + λ))Nn=1) = T ((xn, tn)Nn=1) for

any cashflow and any λ > 0.

Translation invariance of T means that T -delay is a time expression, like

“in a week” or “a year before,” and it does not depend on the start date. In

contrast, the interpretation of expressions such as “this Tuesday” depends

critically on whether they are said on Friday or Monday. This will be the

only “new” requirement in the current setting; all other axioms are adaptions

of the axioms from the risk settings to the current one.

Axiom (Homogeneity (of degree k in dates)). For any cashflow with t1 = 0,

for any λ > 0, T ((xn, λ ⋅ tn)Nn=1) = λk ⋅ T ((xn, tn)Nn=1) for some k > 0.

Homogeneity of degree 1 in dates, when combined with translation invari-

ance, represents the notion that if each payment in the cashflow is conducted

twice as late relative to the first period of investment, then the entire cashflow

is twice as delayed relative to that time. This is a strong cardinal assumption

and I later discuss its removal.

Axiom (Local consistency). ∀i ∀t ∃λ > 0 ∀δ > 0 ∃ε > 0 RεT (i, t) − δ < λ <

SεT (i, t) + δ.

Local consistency says that cashflows which are “local” with respect to t

that are significantly less T -delayed than some cut-off level are always accepted

by i, and that ones significantly more T -delayed than the cutoff are always

accepted. Lemma A.13 in the appendix shows that whenever homogeneity

is satisfied, local consistency implies that 0 < ST (i, t) = RT (i, t) < ∞. This

means, that for “local” cashflows T is sufficient information to determine
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an agent’s optimal behavior. In other words, the decisions of agents are

consistent with the index, on small domains.

Definition (Reflexivity). The relation at least as averse to T -delay is reflexive

if for all i and t, i at t is at least as averse to T -delay as i at t.

Proposition 1.9. If T satisfies local consistency, then the relation locally at

least as averse to T -delay is reflexive.

Definition (Ordinally equivalent). Given an index of delay T , AT is ordinally

equivalent to the instantaneous discount rate r if ∀i, j, ∀t, t′ AT (i, t) >

AT (j, t′) ⇐⇒ ri(t) > rj(t′).

Theorem 1.14. If T satisfies local consistency, homogeneity and translation

invariance, then AT is ordinally equivalent to r, and the relation at least as

averse to T -delay induces the same order as r.

Proof. See appendix.

Remark. All axioms in Theorem 1.14 are essential: As the following examples

demonstrate, omitting any admits indices to which the coefficient of local

aversion is not ordinally equivalent to r, and the relation at least as averse

to T -delay does not induce the same order as r.

Example 1.12. T ≡ 5 satisfies local consistency and translation invariance,

but it does not satisfy homogeneity of degree k > 0. The local aversion to

this index induces the trivial order and AT ≡ 1
5 .

Example 1.13. T ∶= t2 − t1 satisfies homogeneity and translation invariance,

as λt2 − λ ⋅ 0 = λ (t2 − 0) and t2 − t1 = (t2 + λ) − (t1 + λ). Local consistency is,
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however, violated. The local aversion to this index induces the trivial order

and AT ≡∞.

Example 1.14 will demonstrate that without translation invariance the

inference is not necessarily correct. The following two definitions prove useful

for the example as well as for the statement and proof of Theorem 1.16.

Definition. The internal rate of return (IRR) of an investment cashflow

c = (xn, tn)Nn=1, written α(c), is the unique positive solution to the equation

∑
n
e−αtnxn = 0.

Existence and uniqueness follow from Lemma A.12 which generalizes the

result of Norstrøm (1972) who had shown that investment cashflows have a

unique positive IRR in the discrete setting. For general cashflows, multiple

solutions to the equation defining the internal rate of return may exit.43

Definition. For a cashflow c, D(c) ∶= 1
α(c) is the inverse of the IRR of the

cashflow.

Example 1.14. Consider the index of delay

T (c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(c) if t1 < 3 or 5 < tN

(t1 − 2) ⋅D(c) if 3 ≤ t1 ≤ 4

(6 − t1) ⋅D(c) if 4 ≤ t1 ≤ 5.

It is homogeneous since it coincides with D on the relevant domain. It is

locally consistent since D is, a fact which will be proved later, and since for
43In addition, phenomena with the flavor of reswitching might arise (Levhari and

Samuelson, 1966), as discussed in Footnote 45.
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any t, in small environments of t the index is approximately equal to C ⋅D(⋅)

for some C = C(t). Now, consider an agent, i, with a constant discount rate

ri(t) ≡ r. For t = 4, the coefficient of T -delay aversion of the agent is not

equal to the coefficient of T -delay aversion for the same agent at at t = 1.

But ri (⋅) is constant by construction. It is also the case that i at t = 4 is not

at least as averse to T -delay as i at t = 1.

Theorem 1.15. (i) There exists a continuum of translation invariant, locally

consistent, homogeneous of degree 1 indices of delay to which the local aversion

equals to r. (ii) Moreover, some of these indices are not monotone with respect

to first order time dominance.44

Proof. See appendix.

Definition (Globally more T -delay averse). i is Globally at least as T -delay

averse as j (denoted j ≾
T
i) if for every t and t′, i at t is at least as averse

to T -delay as j at t′. i is globally more T -delay averse than j (denoted by

j ≺T i) if j ≾T i and not i ≾T j.

This definition generates a partial order over agents, based on their

preferences and on the index of delay. As before, global consistency is an

important part of the approach.

Axiom (Global consistency). If j ≺T i, T (c) < T (c′), and i accepts c′, then

j accepts c.45

44T satisfies monotonicity with respect to first order time dominance if T (c) < T (c′)
whenever c time dominates c′.

45The use of acceptance and rejection allows me to avoid the reswitching problem of the
famous Cambridge capital controversy (See Cohen and Harcourt (2003) for an extensive
review). In contrast to choices between two cashflows, which, in general, may not be
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Theorem 1.16. Dk (⋅) is the unique index of delay that satisfies local con-

sistency, global consistency, homogeneity of degree k > 0 and translation

invariance, up to a multiplication by a positive number.

Proof. See appendix.

The homogeneity axiom is not necessarily appealing in the current set-

ting. In what follows, it will be removed and replaced with less demanding

conditions: monotonicity with respect to first order time dominance and

continuity. As in previous sections, Example 1.15 below shows that these

conditions are not enough to pin down desirable indices. Hence, I will require

a slightly stronger version of global consistency but, as before, will replace

the local consistency requirement with the weaker requirement of reflexivity.

Definition (Continuity). An index of delay is continuous if T (cn)Ð→ T (c)

whenever {c} ∪ {cn} ⊂ C, random variables with distribution
⎛
⎝

∣xni ∣
∑

i∣xi>0
∣xni ∣

, tni
⎞
⎠

and
⎛
⎝

∣xni ∣
∑

i∣xi≤0
∣xni ∣

, tni
⎞
⎠
converge in probability to

⎛
⎝

∣xi∣
∑

i∣xi>0
∣xi∣ , ti

⎞
⎠
and

⎛
⎝

∣xi∣
∑

i∣xi≤0
∣xi∣ , ti

⎞
⎠

respectively if all random variables are uniformly bounded and ∑xni converges

to ∑xi.

Example 1.15. Consider the index

T (c) ∶= 1 + ∑
j∣xj>0

∣xj ∣ tj
∑

i∣xi>0
∣xi∣

− ∑
j∣xj≤0

∣xj ∣ tj
∑

i∣xi≤0
∣xi∣

.

It is well-defined and positive as the first summation is a weighted average of

greater numbers and both summations are non-degenerate, by the definition

monotonic in the discount rate, acceptance and rejection decisions of investment cashflows
are monotonic in these rates. This is shown in Lemma A.12 in the appendix.
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of investment cashflow. It is translation invariant since adding t to all

ti’s increases both summations by t. Continuity follows directly from the

definition. Homogeneity of degree 0 in payoffs holds as well, since weights

are not changed when all xi’s are multiplied by a positive number. Local

consistency holds since both summations converge to t, when considering

smaller and smaller environments of t, and so RT ≡ ST ≡ 1. Hence, the

coefficient of local aversion to T -delay is identically equal to 1, and every i

is globally at least as averse to T -delay as any j. Thus, the relation more

averse to T -delay is empty and global consistency is automatically satisfied.

Axiom (Strong global consistency). If j ≾T i, T (c) < T (c′), and i accepts c′,

then j accepts c.

Theorem 1.17. If T is a continuous index of delay that satisfies monotonicity

with respect to first order time dominance, translation invariance and strong

global consistency, and the relation at least as averse to T -delay is reflexive,

then T is ordinally equivalent to D.

Proof. See appendix.

Corollary 1.10. If T is a continuous index of delay that satisfies mono-

tonicity with respect to first order time dominance, translation invariance

and strong global consistency, then T is locally consistent and AT is ordinally

equivalent to r.

Remark. The monotonicity requirement in the theorem could be replaced by

each of the following conditions:

(a) Satisfying the ordinal content of homogeneity
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(b) Monotonicity with respect to delaying the first investment period,

leaving the rest of the periods unchanged

In such case, monotonicity with respect to first order time dominance will

be a result, not an assumption.46

Remark. The partial order globally at least as D-delay averse is refined by

the partial orders of delay aversion of Horowitz (1992) and Benoît and Ok

(2007).

1.8.3 D-Delay Aversion and the Demand for Investment Cash-

flows

Proposition 1.10. A cashflow c = (xn, tn)Nn=1 with D(c) = b is rejected by i

only if there exist some t ∈ [t1, tN ] such that small cashflows with D of b are

rejected. A cashflow c = (xn, tn)Nn=1 with D(c) = b is accepted by i only if there

exist some t ∈ [t1, tN ] such that small cashflows with D of b are accepted.

Proof. See appendix.

Corollary 1.11. If D(c) > sup
t

{A−1
D (i, t)} = sup

t
{r−1
i (t)} then i rejects any

translation of c. If D(c) < inf
t

{A−1
D (i, t)} = inf

t
{r−1
i (t)} then i accepts any

translation of c.

Similar to results in previous sections, the corollary suggests a partition

of the class of cashflows into three: ones which the agent never accepts, ones

which are always accepted, and ones whose acceptance or rejection may not

be determined.
46The continuity assumption could also be relaxed.
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Definition (Compound cashflow property). An index T has the compound

cashflow property if for every compound cashflow of the form f = c + c′,47

where c,c′ and f are investment cashflows max{T (c), T (c′)} ≥ T (f) ≥

min{T (c), T (c′)}.

Proposition 1.11. D satisfies the compound cashflow property. Thus, if

c, c′, c+c′ ∈ C and min{D(c),D(c′)} > sup
t

{r−1
i (t)} , then c+c′ also satisfies

the inequality; and if c, c′, c + c′ ∈ C and max{D(c),D(c′)} < inf
t

{r−1
i (t)}

then c + c′ also satisfies the inequality.

Proof. See appendix.

Axiom (Generalized Samuelson property). ∀i S∞T (i) ≥ inf
t
ST (i, t) and R∞

T (i) ≤

sup
t
RT (i, t).

Theorem 1.18. Dk (⋅) is the unique index of delay that satisfies the gener-

alized Samuelson property, local consistency, homogeneity of degree k > 0 and

translation invariance, up to a multiplication by a positive number.

Proof. Omitted.

Theorem 1.19. If T satisfies the generalized Samuelson property, translation

invariance, reflexivity, monotonicity with respect to first order time dominance

and continuity then T is ordinally equivalent to D.

Proof. Omitted.
47The interpretation of c + c′ is that all of the payoffs which are dictated by each of the

cashflows takes place at the times they dictate. If both require a payoff at the same time
point, the payoffs are added up.
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1.8.4 Other Properties of D and a Comparison with QAS

This section discusses some properties of the index of delay D and demon-

strates the close connection it has with the AS index of riskiness. The IRR is

a counterpart of the rate of return over cost suggested by Fisher (1930) as a

criterion for project selection almost a century ago. Later, some economists

dismissed this criterion, arguing that the NPV was superior in comparing

pairs of cashflows. Yet, others mentioned that this criterion has the benefit

of objectivity, in that it does not require the value judgment of setting the

future discount rates (Turvey, 1963). For example, Stalin and Nixon would

agree on the IRR of an investment even though they might disagree on its

NPV.48

Just like the AS-riskiness of a gamble depends “on its distribution only—and

not on any other parameters, such as the utility function of the decision maker

or his wealth” (Aumann and Serrano, 2008), D depends solely on the cashflow,

and not on any agent specific properties. In this sense, D is an objective

measure of delay. In particular, D is independent of the date when the

cashflow is considered. That is, the D-delay embedded in an investments

cashflow is independent of the time when it is considered.

D is homogeneous of degree 0 in payoffs and unit free. This means,

for example, that the D-delay of two cashflows denominated in different

currencies may be compared without knowledge of the exchange rate. This

stands in contrast to the AS index of riskiness which is homogeneous of degree
48This resembles the point made by Hart (2011) that in general there are many pairs of

agents and pairs of gambles such that each agent accepts a different gamble and rejects
the other – our axioms only compare very specific pairs of agents.
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1 in payoffs, but does not depend on timing. The property is analogous to the

property of QAS , according to which “diluted” gambles inherit the riskiness of

the original gamble. For p ∈ (0,1) a p-dilution of the gamble g takes the value

of the gamble with probability p and 0 with probability 1 − p, independently

of the gamble. The reason why this analogy is correct is that in the current

setting, times are the parallel of payoffs from the risk setting, while payoffs

are the parallel of probabilities, as demonstrated by the remark at the end of

this section.

Another property that D and QAS share is monotonicity. QAS is mono-

tonic with respect to first and second order stochastic dominance. The

analogous property for cashflows is time-dominance (Bøhren and Hansen,

1980; Ekern, 1981). Proposition 3 of Bøhren and Hansen (1980) implies that

D is monotonic with respect to time-dominance of any order.

There are other similarities between the measurement of delay and risk.

Value at Risk (VaR) is a family of indices commonly used in the financial

industry (Aumann and Serrano, 2008). VaR indices depend on a parameter

called the confidence level. For example, the VaR of a gamble at the 95

percent confidence level is the largest loss that occurs with probability greater

than 5 percent. Unlike the AS index, VaR is unaffected by tail events or

rare-disasters, extremely negative outcomes that occur with low probability.

In the context of project selection, Turvey (1963) mentions that “the Pay-off

Period, the number of years which it will take until the undiscounted sum

of the gains realized from the investment equals its capital cost,” was used

by practitioners in the West and in Russia. He adds that “[p]ractical men

in industries with long-lived assets have perforce been made aware of the
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deficiencies of this criterion and have sought to bring in the time element.”

The pay-off period criterion, unlike the index of delay, suffers from deficiencies

similar to those of VaR. For example, shifting early or late payoffs does not

change its value. In fact, recalling that times in the current setting are the

parallel of payoffs in the risk setting, the lesson learned by the investors in

long-lived assets should apply to investors in risky assets with distant tail

events.

QAS is much more sensitive to the loss side of gambles than it is to gains.

Analogously D is more sensitive to early flows than it is to later ones. This

follows from the properties of the exponential function in the definition of

the IRR. Additionally, both D and QAS are continuous in their respective

spaces.

Finally, to clarify the analogies I made between probabilities and payoffs,

and between payoffs and times, I present a reinterpretation of the AS index

of riskiness in terms of the delay embedded in a (non-investment) cashflow.

Remark. Given a gamble g ∶= (gj , pj), a cashflow which requires an investment

of one dollar at t = 0 and pays-out pj at time gj has a unique positive IRR

whose inverse equal to QAS(g).49

To see this, recall that for a cashflow c = (xn, tn)Nn=1 the (unique) positive

IRR is the (unique) positive solution to the equation ∑
n
e−αtnxn = 0, when it

exists. Noting that at t = 0, e−αt = 1 and that the above cashflow requires

an investment of one dollar at t = 0, the corresponding equation could be
49This is not the unique IRR as 0 is also a solution of the defining equation.
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written as

−1 +∑
n

e−αgnpn = 0,

which could be expressed as

E [e−αg] = 1.

But QAS(g) is the inverse of the unique positive α which solves the equation.

For general cashflows, multiple solutions to the equation defining the

internal rate of return may exit. Interestingly, both Arrow and Pratt took

interest in finding simple conditions that would rule out this possibility (Arrow

and Levhari, 1969; Pratt and Hammond, 1979). A corollary of the previous

remark is that cashflows of the above form have a unique positive IRR.

1.9 A Consistent Index of the Appeal of Informa-

tion Transactions

Similar to the previous settings, generating a sensible complete ranking of

information structures is an illusive undertaking. In some settings, certain

information may be vital, while in others it will not be very important. The

implication is that it is not possible to rank all information structures so that

higher ranked structures are preferred to lower ranked ones by all agents at

every decision making problem. Some pairs of information structures may,

however, be compared in this manner. Blackwell’s (1953) seminal paper

shows that one information structure is preferred to another by all agents in
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all settings if and only if the latter is a garbling of the prior,50 that is, if one

is a noisy version of the other. But this order is partial and cannot be used

to compare many pairs of information structures.

The difficulty in generating a complete ranking which is independent of

agents’ preferences is discussed by Willinger (1989) in his paper which studies

the relation between risk aversion and the value of information. Willinger

(1989) discusses his choice of using the expected value of information (EVI)

or “asking price” which was defined by LaValle (1968). The EVI measures a

certain decision maker’s willingness to pay for certain information, and so,

“... the difficulty of defining a controversial continuous variable representing

the ‘amount of information’ can be avoided.”

Cabrales et al. (2013) tackle this difficulty using an approach in the spirit

of Hart (2011). They restrict attention to a decision problem of information

acquisition by investors in a model a la Arrow (1972) and define an order

which they name uniform investment dominance, which turns out to be a

complete order over all information structures. In a separate paper, these

authors take an approach in the spirit of AS, and axiomatically derive a

different index for the appeal of information transactions (Cabrales et al.,

2014). Both approaches lead to orders which refine the order suggested by

Blackwell (1953), however, they depend on the (unique, fixed, common) prior

of the decision makers which are considered.

In this section, I study a problem of information acquisition by investors

using the same techniques as in previous sections. I show that the coefficient

of local taste for Q-informativeness is equal to the inverse of ARA when Q is
50A simple proof is provided in Leshno and Spector (1992).
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one of these two prominent indices, and that the unique index which satisfies

local consistency, global consistency, and a homogeneity axiom is the index

of appeal of information transactions (Cabrales et al., 2014). As always, an

ordinal version of this result, which does not assume homogeneity, is provided.

The section ends with a discussion of the prior-free implications of the index

of appeal of information transactions (which is prior-dependent).

1.9.1 Preliminaries

This section follows closely Cabrales et al. (2014). I consider agents with

concave and twice continuously differentiable utility functions who have some

initial wealth and face uncertainty about the state of nature. There are K ∈ N

states of nature, {1, ...,K},51 over which the agents have the prior p ∈ ∆ (K)

which is assumed to have a full support.

The set of investment opportunities B∗ = {b ∈ RK ∣ ∑
k∈K

pkbk ≤ 0}, consists

of all no arbitrage assets. In particular it includes the option of inaction.

The reference to the members of B∗ as no arbitrage investment opportunities

attributes to pk an additional interpretation as the price of an Arrow-Debreu

security that pays 1 if the state k is realized and nothing otherwise. Hence, p

plays a dual role in this setting. When an agent with initial wealth w chooses

investment b ∈ B∗ and state k is realized, his wealth becomes w + bk.

Before choosing his investment, the agent has an opportunity to engage

in an information transaction a = (µ,α), where µ > 0 is the cost of the

transactions, and α is the information structure representing the information
51With a slight abuse of notation, I also denote {1, ...,K} by K. The meaning of K

should be clear from the context.
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that a entails. To be more precise, α is given by a finite set of signals Sα

and probability distributions αk ∈ ∆ (Sα) for every k ∈K. When the state of

nature is k, the probability that the signal s is observed equals αk(s). Thus,

the information structure may be represented by a stochastic matrix Mα,

with K rows and ∣Sα∣ columns, and the total probability of the signals is

given by the vector pα ∶= p ⋅Mα. For simplicity, assume that pα(s) > 0 for all

s, so that each signal is observed with positive probability. Further, denote

by qsk the probability the agent assigns to state k conditional on observing

the signal s, using Bayes’ law. Note that although my notation does not

indicate it, (qsk)
K

k=1
= qs ∈ ∆ (K) depends on α and the prior p.

The transaction a is said to be excluding if for every s there exists some k

such that qsk = 0. This means that for every signal the agent receives, he knows

that some states will not be realized (allowing him to generate arbitrarily

large profits with certainty). Throughout, I will assume that information

transactions are not excluding.

Agents are assumed to optimally choose an investment opportunity in B∗

given their belief, q. Therefore, the expected utility of an agent with utility

u, initial wealth w and beliefs q is

V (u,w, q) ∶= sup
b∈B∗

∑
k

qku (w + bk) .

In case that the agent acquires no information, his beliefs are given by the

prior p. Since the agent is risk averse, in such case his optimal choice is

inaction. Hence,

V (u,w, p) = u(w).
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Accordingly, an agent accepts an information transaction if

∑
s

pα(s)V (u,w − µ, qs) > V (u,w, p) = u(w)

and rejects it otherwise.

Denote by A the class of information transactions described above. Addi-

tionally, denote by Aε the sub-class of these information transactions such

that ∥p − qs∥∞ < ε for all s. An index of appeal of information transactions

is a function from the class of information transactions to the positive reals

Q ∶ A → R+. The index of appeal A suggested by Cabrales et al. (2014) is

defined by

A(a) = − 1

µ
log(∑

s

pα(s) exp (−d (p∣∣qs))) ,

where

d (p∣∣q) =∑
k

pk log
pk
qk

is the Kulback-Leibler divergence (Kullback and Leibler, 1951).

Cabrales et al. (2013) suggest the entropy reduction as a measure of

informativeness of an information structure for investors. It is defined by

Ie(α) =H(p) −∑
s

pα(s) ⋅H(qs),

where,

H(q) = −∑
k∈K

qk log(qk).

In the current context, consider the index Je, the cost adjusted entropy

reduction defined by

Je(µ,α) =
Ie(α)
µ

.
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To apply the techniques from the previous sections, some more definitions

are required. Given an index of informativeness Q, a utility function u, a

wealth level w and ε > 0:

Definition. RεQ(u,w) ∶= inf {Q(a)∣a ∈ Aε and a is accepted by u at w}

Definition. SεQ(u,w) ∶= sup{Q(a)∣a ∈ Aε and a is rejected by u at w}

RεQ(u,w) is the Q-informativeness of the least informative accepted trans-

action according to Q, which is in Aε. SεQ(u,w) is the Q-informativeness of

the most informative rejected transaction according to Q, again restricting

the support of the transactions to Aε.

u at w has at least as much taste for Q-informativeness as v at w′ if for

every δ > 0 there exists ε > 0 such that SεQ(u,w) ≤ RεQ(v,w′) + δ.

The interpretation of u at w having at least as much taste for Q-

informativeness as v at w′ is that, at least for small transactions, if v at w′

accepts any small transactions with a certain level of Q-informativeness, u at

w accepts all small transactions which are significantly (by at least δ) more

Q-informative. The following definitions will also prove useful:

Definition. RQ(u,w) ∶= lim
ε→0+

RεQ(u,w)

Definition. SQ(u,w) ∶= lim
ε→0+

SεQ(u,w)

SQ(u,w) is the Q-appeal of the most Q-appealing transaction that is

rejected, and never provides a lot of information, in the sense that the

posterior and the prior are close.52 Finally, define the coefficient of local
52Note that in this setting the index is not independent of the prior p, even when the

dependence is not made explicit by the notation I use.
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taste for Q-informativeness of an agent u with wealth w as the inverse of

SQ(u,w).

1.9.2 The Index

Theorem 1.20 is the analogue of Theorem 1.1 in the current context. It shows

that the coefficient of local taste for Q-informativeness coincides with the

inverse of ρ for the two indices of informativeness discussed above.53

Theorem 1.20. (i) For every u and w, RA (u,w) = SA (u,w) = ρu(w). (ii)

For every u and w, RJe (u,w) = SJe (u,w) = ρu(w).

Proof. See appendix.

Corollary 1.12. For Q ∈ {A,Je} u at w has at least as much taste for

Q-informativeness as v at w′ iff ρu(w) ≤ ρv(w′).

The following two theorems are the analogues of Theorems 1.2 and 1.3.

Axiom (Homogeneity). There exists k > 0 such that for every information

transaction a = (µ,α) and every λ > 0, Q (λ ⋅ µ,α) = 1
λk
⋅Q(a).

The homogeneity axiom states that Q is homogeneous of degree −k in

transaction prices. This axiom entails the cardinal content of the index. It is

particularly interesting if k = 1. In this case, the units of the index could be

interpreted as information per dollar.

Axiom (Local consistency). ∀u ∀w ∃λ > 0 ∀δ > 0 ∃ε > 0 RεQ(u,w) + δ >

λ > SεQ(u,w) − δ.
53The relations between risk aversion and the taste for information have been discussed

extensively in the literature (e.g. Willinger, 1989).
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Definition (Reflexivity). The relation has at least as much taste for Q-

informativeness is reflexive if for all u and w, u at w has at least as much

taste for Q-informativeness as u at w.

Proposition 1.12. If Q satisfies local consistency, then the relation has at

least as much taste for Q-informativeness is reflexive.

Theorem 1.21. Fix k > 0. If Q satisfies local consistency and homogeneity

of degree −k in prices, then the coefficient of local taste for Q-informativeness

is ordinally equivalent to ρ−1, and the relation has at least as much taste for

Q-informativeness induces the same order as ρ−1.

Proof. See appendix.

Remark. Both axioms in Theorem 1.21 are essential: As the following exam-

ples demonstrate, omitting either admits indices to which the local taste is

not ordinally equivalent to ρ−1.

Example 1.16. Q ≡ 5 satisfies local consistency, but it does not satisfy

homogeneity of degree k < 0. The coefficient of local taste for this index

induces the trivial order.

Example 1.17. Q ∶= 1
µ satisfies homogeneity, but violates local consistency.

The coefficient of local taste for this index induces the trivial order.

Theorem 1.22. (i) Given k > 0, there exists a continuum of locally consistent

homogeneous of degree −k indices of appeal for which the coefficient of local

taste equals to the inverse of ρ. (ii) Moreover, some of these indices are not

monotone with respect to Blackwell dominance.54

54Q is monotone with respect to Blackwell dominance if for any cost µ > 0 and all
information structures α, β, if α Blackwell dominates β then Q(µ,α) > Q(µ,β).
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Proof. See appendix.

Definition (Q-informativeness globally more attractive). For an index Q,

say that Q-informativeness is globally at least as attractive for u as it is for

v (written v ≾Q u) if for all w, w′, u at w has at least as much taste for

Q-informativeness as v at w′ . Q-informativeness is globally more attractive

for u than to v (written v ≺Q u) if v ≾Q u and not u ≾Q v.

Axiom (Global consistency). For any w, any u, v, and any a, b ∈ A, if v ≺Q u,

A(a) < A(b) and v accepts a at w, then u accepts b at w.

Theorem 1.23. For a given k > 0, Ak (⋅) is the unique index that satisfies

local consistency, global consistency and homogeneity of degree −k in prices,

up to a multiplication by a positive number.

Proof. Let Q′ satisfy the conditions and consider Q = (Q′)1/k. It is homo-

geneous of degree −1 and still locally consistent, so by Theorem 1.21 the

relation has at least as much taste for Q-informativeness induces the same

order as ρ−1. This, in turn, implies that if v ≺
Q
u then v is uniformly more risk

averse than u. Combined with this fact, global consistency and homogeneity

of degree −1 in prices imply the two axioms that are uniquely satisfied by

positive multiples of A, according to Theorem 4 in Cabrales et al. (2012).

That A satisfies local consistency follows from Theorem 1.20. This implies

that Ak also satisfies local consistency. That other axioms are satisfied follows

from Cabrales et al. (2012) using Theorem 1.20. The same holds for positive

multiples of Ak.
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Corollary 1.13. Je, the cost adjusted entropy reduction index, does not

satisfy global consistency.

Example 1.18. (Based on Example 2 of Cabrales et al. (2012)). Let K =

{1,2,3} and fix a uniform prior. Consider the information structures

α1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ε1 ε1

1 − ε1 ε1

ε1 1 − ε1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, α2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ε2 ε2

0.1 0.9

ε2 1 − ε2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and the information transactions a1 = (1, α1) and a2 = (1, α2). It can be

shown that

A(a1) ≈ − log (2

3
ε
1/3
1 + 1

3
ε
2/3
1 ) ,

and

A(a2) ≈ − log (ε1/32 ) .

This means that the ordering of the two transactions according to A depends

on the choices of ε1, ε2 > 0. Even when they are both small, their relative

magnitude matters.

In contrast, the cost adjusted entropy reduction index, Je, ranks a2 higher

than a1 for small ε1, ε2 > 0. To see this, note that

Je (a1) ≈ ln 3 − 0.462,

and

Je (a2) ≈ ln 3 − 0.550.

This means that there exists a choice of small enough ε1, ε2 such that A(a1) <

A(a2) and Je(a1) > Je(a2). Hence, there exists two CARA functions with
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different ARA coefficients (between A(a1) and A(a2)), which both accept a2

but reject a1, demonstrating that Je violates global consistency.

As discussed previously, the homogeneity axiom has some cardinal con-

tent. In what follows, it will be removed and replaced with less demanding

conditions: monotonicity in prices, and continuity with respect to prices.

Example 1.19 will show that these conditions do not suffice to ensure that

the local taste for Q-informativeness does not induce the trivial order or

even that the index is monotonic with respect to Blackwell’s order. As in

previous sections, with a stronger version of global consistency, these con-

ditions will suffice to pin down a unique index of informativeness (up to

a monotonic transformation), and this index will have all of the desirable

properties mentioned above.

Definition (Continuity). An index of informativeness is continuous (in price)

if for every α, Q(⋅, α) is a continuous function from R+ to R+.

Example 1.19. Q (µ,α) ∶= 1 − exp{− (1 + 1
µ)} is positive and continuous.

It satisfies local consistency, but the relation has at least as much taste

for Q-informativeness applies to any two utilitiy-wealth pairs. Hence, for

any u and v, Q-informativeness is not more attractive for u than it is for

v, and so global consistency is satisfied. The coefficient of local taste for

Q-informativeness is equal to 1 for all agents at all wealth levels. Since Q is

independent of the signal structure, it is clearly not monotonic with respect

to Blackwell’s order.

Axiom (Strong global consistency). For any w, any u, v, and any a, b ∈ A,

if v ≾Q u, A(a) < A(b) and v accepts a at w, then u accepts b at w.
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Strong global consistency is clearly violated by the index from Exam-

ple 1.19, as any two utilities u, v satisfy v ≾Q u.

Theorem 1.24. If Q is a continuous index of the appeal of information

transactions that satisfies monotonicity in price and strong global consistency,

and the relation has at least as much taste for Q-informativeness is reflexive,

then Q is ordinally equivalent to A.

Proof. See appendix.

Corollary 1.14. If Q is a continuous index of the appeal of information

transactions that satisfies monotonicity in price and strong global consistency,

and the relation has at least as much taste for Q-informativeness is reflexive,

then Q satisfies monotonicity with respect to Blackwell dominance and local

consistency, and the coefficient of local taste for Q-informativeness is ordinally

equivalent to ρ−1.

1.9.3 The Demand for Information Transactions

Proposition 1.13. An information transaction a with A(a) = b is rejected

by u only if there exist some w such that local transactions with A of b are

rejected. An information transaction a with A(a) = b is accepted by u only if

there exist some w such that local transactions with A of b are accepted.

Proof. Omitted.

Corollary. (Cabrales et al., 2014, Theorem 2) If A(a) > sup
w

{ρu(w)} then

u rejects a at any wealth level. If A(a) < inf
w

{ρu(w)} then u accepts a at any

wealth level.
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Remark. Cabrales et al. (2014) derive a result on sequential transactions,55

which could be generalized to a result in the spirit of compound gamble

property. Since this result requires some notation, I do not provide it here.

Axiom (Generalized Samuelson property). ∀u,w′ S∞Q (u,w′) ≤ sup
w
SQ(u,w)

and R∞
Q (u,w′) ≥ inf

w
RQ(u,w).

Theorem 1.25. For a given k > 0, Ak (⋅) is the unique index that satisfies

the generalized Samuelson property, local consistency and homogeneity of

degree −k in prices, up to a multiplication by a positive number.

Proof. Omitted.

Theorem 1.26. If Q satisfies the generalized Samuelson property, reflexivity,

monotonicity with respect to first order time dominance and continuity then

Q is ordinally equivalent to A.

Proof. Omitted.

1.9.4 Properties of the Index A

The setting of information transactions is somewhat different than other

settings that are discussed in this paper, in that the index depends on the

prior, and is therefore not completely objective. Example 1.20 below shows

that the order induced by A is different for different priors. Thus, the prior

is a relevant part of the specification of the decision making problem that the

index is derived from. The fact that in the setting presented here the prior
55Section 7.3 of Cabrales et al. (2014).
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and the prices (which are more likely to be observable) coincide is comforting

in this regard.56

An important property of the index A is that it is monotonic with respect

to Blackwell’s (1953) partial ordering of information structures (Cabrales

et al., 2014). According to Blackwell’s order, one information structure is more

informative than another if the latter is a garbling of the prior. Blackwell

(1953) proved that one information structure is more informative than another

according to this partial ordering if and only if every decision maker prefers

it to the other. Cabrales et al. (2014) show that if α is more informative than

β in the sense of Blackwell, then A(µ,α) > A(µ,β) for every µ > 0 and every

prior.57 As Blackwell’s ordering is the parallel of stochastic dominance and

time dominance, this property is analogous to the properties of the indices

presented in previous sections. It is important to note that monotonicity

with respect to Blackwell dominance was not one of the requirements in

Theorem 1.24. Other desirable properties of the index include monotonicity

in prices and being jointly continuous in p, µ, and qs. For an extensive

discussion of the properties of this index see Cabrales et al. (2014).

Finally, the cardinal interpretation of the index A is relatively more

compelling, as the homogeneity (of degree -1) axiom may be interpreted

as stating that the index measures information per dollar payed. If this

interpretation is taken seriously, then the index may be used in practice for

comparing different information providers, charging a fixed fee.
56See also the next subsection which discusses the prior-free implications of A.
57Recall that A depends on the prior p, even though this fact is not reflected in the

notation I use.
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1.9.5 Prior-Free Implications

In this section I make the dependence of A on the prior, p, explicit and write

A(⋅, p). First, I note that the order induced by the index of the appeal of

information transactions depends on the prior in the strict sense. This can

be seen easily in the following example:

Example 1.20. Let K = {1,2,3} and let p1 = (.5 − ε, .5 − ε,2ε) and p2 =

(2ε, .5 − ε, .5 − ε). Consider the information structures

α1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ε ε

ε 1 − ε

.5 .5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, α2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.5 .5

1 − ε ε

ε 1 − ε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for some small ε, and the information transactions a1 = (1, α1) and a2 = (1, α2).

It is easy to verify that A(a1, p1) > A(a2, p1), but A(a1, p2) < A(a2, p2).

Informally, this is true since, given pi, αi reveals almost all of the information

that an investor could hope for, but α−i could be improved upon significantly.

The upshot of the example is that without knowledge of the prior, an ana-

lyst cannot deduce the “correct” complete order which was derived previously.

But some comparisons could still be made, even in the absence of knowledge

about the prior. For example, since A is monotonic with respect to Blackwell

dominance for all p, whenever one structure, α, Blackwell dominated another,

β, it is the case that A ((µ,α) , p) ≥ A ((µ,β) , p) for all prices, µ, and all

prior beliefs, p. The same holds for comparisons of structures that differ only

in price.

Definition. An information transaction a is at least as appealing as b inde-
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pendently of the prior if A(a, p) ≥ A(b, p) for all prior beliefs, p.

As explained above, the order prior-independent at least as appealing is

strictly partial, but it includes all the comparisons that could be made by

Blackwell’s partial order and monotonicity in prices. I now turn to show

that it could compare strictly more pairs of information transactions. I base

my proof on an example used in Shorrer (2015) to show that, even though

the index Ie of Cabrales et al. (2013) depends on the prior, it can compare

strictly more pairs of information structures than Blackwell’s order.

Theorem 1.27. There exists information transactions a = (1, α) and b =

(1, β), such that α does not dominate β in the Blackwell sense, yet a is at

least as appealing as b independently of the prior, and b is not at least as

appealing as a independently of the prior.58

This result suggests that, even though the prior-independent order is

partial, it still improves upon the more general Blackwell ordering. Thus,

restricting attention to the particular decision making problem of invest-

ment, allows to derive a more complete order than Blackwell’s, even without

specifying a prior. This result, therefore, contributes to the literature which

attempts to extend partial order of Blackwell by restricting the class of

decision problems and agents under consideration (e.g. Persico, 2000; Athey

and Levin, 2001; Jewitt, 2007).

Proof. Follows from the example.
58Cabrales et al. (2014) disentangle the roles of p, and propose an index that depends

on both security prices and the prior. The theorem will continue to hold in this setting,
even if independence of both the prior and prices is required.
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Example 1.21. Let K = {1,2} and and consider the information structures

α1 =
⎡⎢⎢⎢⎢⎢⎣

.3 .7

.7 .3

⎤⎥⎥⎥⎥⎥⎦
, α2 =

⎡⎢⎢⎢⎢⎢⎣

.3 .7

.1 .9

⎤⎥⎥⎥⎥⎥⎦
,

and the transactions a = (1, α1), b = (1, α2).

I claim that A(a, p) ≥ A(b, p) for all p. Identify p with the probability of

state 1, which lies in [0,1]. Fixing the two information structures, define a

function φa,b ∶ [0,1]Ð→ R as follows:

φa,b (⋅) ∶= exp{−A(b, ⋅)} − exp{−A(a, ⋅)} .

For p ∈ {0,1}, A (⋅, p) ≡ 0, hence φa,b (p) also equals zero. φa,b (⋅) is also

a continuous function (this follows from the properties of A) and twice

continuously differentiable in (0, 1) with a strictly positive second derivatives.

This implies that φa,b (⋅) is a convex and continuous function with φa,b (0) =

φa,b (1) = 0. But this means that φa,b (p) ≤ 0 for all p ∈ [0,1] which means

that A(b, p) ≤ A(a, p) for all p ∈ [0,1], hence a is at least as appealing as b

independently of the prior. It is not hard to verify that b is not at least as

appealing as a (by example, or using the strict convexity of φa,b).

Finally, it remains to check that the comparison is not due to monotonicity

in price or Blackwell’s order. The first is obvious, as a and b involve the

same price. It is not very hard to verify that α1 does not dominate α2 in

the Blackwell sense. To do this, note that the set of all 2 × 2 information

structures which are dominated by α1 is

78



Conv

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

1 0

1 0

⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝

0 1

0 1

⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝

.3 .7

.7 .3

⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝

.7 .3

.3 .7

⎞
⎟⎟
⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,

where Conv denotes the convex hull of the four matrices. α2 is not included

in this set, as Figure 1.1 illustrates.

α1

[1 0
1 0

]

α1 [
0 1
1 0

]

[0 1
0 1

] [1 0
0 1

]

α2

Figure 1.1: The figure depicts the two dimensional space of 2 × 2 information

structures. These matrices could be written as [ x 1 − x
y 1 − y ] , where both x and y are

in [0,1]. In the figure, x is represented by the horizontal axis and y is represented
by the vertical axis. The shaded area are the matrices which represent information
structures which are dominated by α1 in the Blackwell sense. The point α2 is outside
the shaded area.
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1.10 Discussion

This paper presented an axiomatic approach for deriving an objective index

which could serve as a guide for decision making for different decision makers.

The approach was shown to pin down a unique index with desirable properties

in five settings, demonstrating its generality and applicability for different

decision making settings. This approach could potentially be used in other

settings in which indices are needed. A particular setting which seems

promising in this regard is the measurement of inequality, which has many

similarities to the setting of risk (Atkinson, 1970). Future research should

focus on characterizing the class of decision making problems to which the

approach is applicable.
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Chapter 2

More Complete Incomplete

Orders of Informativeness and

Segregation

2.1 Introduction

Understanding the demand for information is crucial for understanding

many important economic environments. Yet, comparing the desirability of

different information structures in a sensible way is an illusive undertaking.

The reason is that in some settings certain pieces of information may be vital

for some agents, while in other settings, or for different agents, other pieces

of information will be more important.1 The implication is that it is not
1The difficulty in generating a ranking which is independent of agents’ preferences is

discussed by Willinger (1989) in his paper which studies the relation between risk aversion
and the value of information. Willinger (1989) discusses his choice of using the expected
value of information (EVI) or “asking price” which was defined by LaValle (1968). The
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possible to rank all information structures so that higher ranked structures

are preferred to lower ranked ones by all agents at every decision making

problem and for all prior beliefs. Some pairs of information structures may,

however, be compared in this manner. In his seminal paper, Blackwell (1953)

showed that one information structure is preferred to another by all agents

in all settings if and only if the latter is a garbling of the former.2 That is, if

one is a noisy version of the other. But this order is partial and cannot be

used to compare many pairs of information structures.3

Cabrales et al. (2013) use an approach of total rejections in the spirit of

Hart (2011) to make such comparisons.4 They restrict attention to investment

decision problems, in a model a la Arrow (1972), and define a relation which

they name uniform investment dominance. This turns out to be a complete

order over all information structures, which refines the order suggested by

Blackwell (1953). Their order, however, depends on the (unique, fixed,

common) prior of the decision makers which are considered, and so they get,

in fact, a continuum of orders, one for each prior. These orders are indeed

different from each other; there exists pairs of information structures which

are ranked differently depending on the prior selected. This means that prior

EVI measures a certain decision maker’s willingness to pay for certain information, and so,
“... the difficulty of defining a controversial continuous variable representing the ‘amount of
information’ can be avoided.”

2A simple proof is provided in Leshno and Spector (1992).
3Lehmann (1988); Persico (2000); Athey and Levin (2001); Jewitt (2007) and others,

have extended this partial order by restricting the class of decision problems and agents
under consideration.

4In fact, they follow Hart’s utility uniform rejections which leads in his setting to the
index suggested in Foster and Hart (2009). Hart (2011) Also suggested wealth uniform
rejections which lead in his setting to the in his setting to the index suggested in Aumann
and Serrano (2008). Cabrales et al. (2014) Later followed this second approach and
suggested the index of appeal of information transactions.
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independent investment dominance is a partial order.

The first part of this paper treats a question which was left unanswered in

Cabrales et al. (2013): is prior independent investment dominance the same

as Blackwell’s partial order, or does it provide further insights for prior-free

comparisons of information structures in investment settings. This question

is important since an analyst cannot always observe the priors of agents in

the market. My answer is that the latter is correct. I prove that there exist

(many) pairs of information structures that could be compared by the partial

order of prior independent investment dominance, and cannot be compared

using Blackwell’s order. I provide a complete characterization for these pairs

of structures restricting attention to information structures with two states

of the world and two signals.

In the second part of the paper, I turn to the measurement of segregation,

another topic of interest for economists and other social scientists, which raises

similar difficulties. Massey and Denton (1988) enumerate several dimensions

of segregation. Much of the literature, including this paper, focuses on what

they call evenness, the (dis)similarity of the distributions of different social

groups among different locations. The standard model compares lists of

locations and their group composition. Examples include measures of racial

segregation where locations are physical locations and groups correspond to

different ethnicities (Massey and Denton, 1988), and occupational gender

segregation where locations correspond to different occupations and the

groups correspond to genders (Flückiger and Silber, 1999).

One strand of the literature concentrates on partial orders. Duncan and

Duncan (1955) treated the case of two groups (whites and non-whites), using
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segregation curves. Segregation curves are analogous to Lorenz curves, where

one race takes the role of the population, and the other takes the role of

income. The members of the “population” who are located in locations with

a lower proportion of the other race are treated as lower income individuals.

Lasso de la Vega and Volij (2014) recently demonstrated the close connection

of this literature to Blackwell’s order over information structures. They use

an axiomatic approach to propose a (partial) order over cities according to

the informativeness (in the sense of Blackwell) of neighborhoods about the

ethnic groups of its residents. They show that for the case of two ethnic

groups this order coincides with the one induced by segregation curves.5

Another strand of the literature is focused on complete orders and indices

(see for example Massey and Denton, 1988; Flückiger and Silber, 1999; Rear-

don and Firebaugh, 2002; Hutchens, 2004). Frankel and Volij (2011) present

a sequence of ordinal axioms and show that different subsets of these axioms

pin down different (classes of) indices, and that no complete order satisfies

all of the axioms. One of the orderings they characterize is represented by

the mutual information index, which is closely related to the index Cabrales

et al. (2013) use to represent uniform investment dominance. I use this close

relation and results from the first part of the paper to show that there exists

a partial order that satisfies all of their axioms (except for completeness) and

which strictly refines the partial orders of Lasso de la Vega and Volij (2014)

and of Hutchens (2015).
5Hutchens (2015) later proposed a refinement of this order.
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2.2 Preliminaries

I use the model and notation of Cabrales et al. (2013). I review it here briefly,

as a complete discussion could be found in their paper.

I consider agents with a concave and twice continuously differentiable util-

ity function for money, who have some initial wealth, w, and face uncertainty

about the state of nature. There are K ∈ N states of nature,6 {1, ...,K}, over

which the agents have the prior p ∈ ∆ (K) which is assumed to have a full

support.

I identify agents and utility functions, and denote the Arrow-Pratt coeffi-

cient of relative risk aversion of agent u at wealth w as (Pratt, 1964; Arrow,

1965, 1971):

%u(w) ∶= −wu
′′(w)
u′(w) .

I restrict attention to agents with relative risk aversion that is increasing

in their wealth (IRRA). This means that %u(⋅) is non-decreasing for all

agents considered. Justifications for this assumption include: theoretical

considerations (Arrow, 1971), observed behavior in the field (Binswanger, 1981;

Post et al., 2008) and laboratory experiments (Holt and Laury, 2002). IRRA

utility functions include constant absolute risk aversion (CARA) utilities, as

well as constant relative risk aversion (CRRA) utilities (Hart, 2011). I further

focus on agents that are ruin averse, namely, that satisfy lim
w→0+

u(w) = −∞. I

denote by U∗ the class of these utility functions.
6With a slight abuse of notation, I also denote {1, ...,K} by K. The meaning of K

should be clear from the context.
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The set of investment opportunities B∗ = {b ∈ RK ∣ ∑
k∈K

pkbk ≤ 0}, consists

of all no arbitrage assets.7 When an agent with initial wealth w chooses

investment b ∈ B∗ and state k is realized, his wealth becomes w + bk. Hence,

B∗ includes in particular the option of inaction. The reference to the members

of B∗ as no arbitrage investment opportunities attributes to pk an additional

interpretation as the price of an Arrow-Debreu security that pays 1 if the

state k is realized and nothing otherwise. Hence, p plays a dual role in this

setting.

Agents may choose their investment, but I do not allow for bankruptcy

(the possibility of negative wealth). I say that an investment b is feasible

at wealth w when w + bk ≥ 0 in every state k ∈ K. Before choosing a

feasible investment, the agent has an opportunity to engage in an information

transaction a = (µ,α), where µ > 0 is the cost of the transactions, and α is the

information structure representing the information that a entails. To be more

precise, α is given by a finite set of signals Sα and probability distributions

αk ∈ ∆ (Sα) for every k ∈K. When the state of nature is k, the probability

that the signal s is observed equals αk(s). Thus, the information structure

may be represented by a stochastic matrixMα, with K rows and ∣Sα∣ columns,

and the total probability of the signals is given by the vector pα ∶= p ⋅Mα.

For simplicity, assume that pα(s) > 0 for all s, so that each signal is observed

with positive probability. Further, denote by qsk the probability that the agent

assigns to state k conditional on observing the signal s, using Bayes’ law.

Note that although the notation does not indicate it, (qsk)
K

k=1
= qs ∈ ∆ (K)

7I present a simplified version of Cabrales et al. (2013). Simplifications are for exposition
purposes only, and have no effect on any of my results.
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depends on α and the prior p.

Agents are assumed to choose the optimal feasible investment opportunity

in B∗ given their belief, q. Therefore, the expected utility of an agent with

utility u, initial wealth w and beliefs q is

V (u,w, q) = sup
b∈B∗, feasible

∑
k

qku (w + bk) .8

In case that the agent acquires no information, his beliefs are given by the

prior p. Since the agent is risk averse, in such case his optimal choice is

inaction. So,

V (u,w, p) = u(w).

Accordingly, an agent accepts an information transaction if

∑
s

pα(s)V (u,w − µ, qs) > V (u,w, p) = u(w)

and rejects it otherwise.

The entropy reduction is defined by:

I(α, p) =H(p) −∑
s

pα(s) ⋅H(qs),

where,9

H(q) = −∑
k∈K

qk ln(qk),

and x lnx = 0 by continuity.
8Throughout, I use the convention that (−∞) ⋅ 0 = 0.
9Note that qs is not independent of the prior p, even though the dependence is not

made explicit by the notation I use.
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2.3 Results

Definition. For a fixed prior p information structure α uniformly investment-

dominates (or investment dominates, for short) information structure β

whenever, for every wealth w and price µ < w such that (µ,α) is rejected

by all agents with utility u ∈ U∗ at wealth w, β is also rejected by all those

agents.

Theorem. [Cabrales, Gossner and Serrano] For a fixed prior p, information

structure α investment-dominates information structure β if and only if

I(α, p) ≥ I(β, p).

Corollary. If α Blackwell dominates β then I(α, p) ≥ I(β, p) for all p.

Definition. An information structure α investment-dominates β indepen-

dently of the prior (or prior-independently investment-dominates), whenever

α investment-dominates β for any prior p.

Theorem. [Cabrales, Gossner and Serrano] There exists no linear ordering

that orders information structures according to the ordering of investment

dominance independently of the prior.

Example 2.1. Let K = {1,2,3} and let p1 = (.5 − ε, .5 − ε,2ε) and p2 =

(2ε, .5 − ε, .5 − ε). Consider the information structures

α1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ε ε

ε 1 − ε

.5 .5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, α2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.5 .5

1 − ε ε

ε 1 − ε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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It is easy to verify that I(α1, p1) > I(α2, p1), but I(α1, p2) < I(α2, p2). This

is intuitive since, given pi, αi contains (almost) all the information that an

investor could hope for, but α−i could be improved upon significantly.

While information structures cannot be linearly ordered according to

investment dominance independently of the prior, the previous corollary

suggests that this relation is not vacuous. There are some cases where one

information structure investment-dominates another information for any prior,

for example, when the former Blackwell-dominates the latter. A natural

question that was left unanswered in Cabrales et al. (2013) is whether these

are the only cases. Namely, are prior-independent investment-dominance and

Blackwell-dominance the same? I answer this question in the negative.

Theorem 2.1. There exists α and β such that α investment-dominates β

independently of the prior, but α does not dominate β according to Blackwell’s

order.10

Proof. Follows from Example 2.2.11

Example 2.2. Let K = {1,2} and consider the information structures

α1 =
⎡⎢⎢⎢⎢⎢⎣

.3 .7

.7 .3

⎤⎥⎥⎥⎥⎥⎦
, α2 =

⎡⎢⎢⎢⎢⎢⎣

.3 .7

.1 .9

⎤⎥⎥⎥⎥⎥⎦
.

I claim that I(α1, p) ≥ I(α2, p) for all p. I identify p with the probability

of state 1, which lies in [0,1]. Fixing the two information structures I define
10Using Example 2.2, Shorrer (2014) shows that the same applies to the index of appeal

of information transactions (Cabrales et al., 2014).
11I am grateful to Yufei Zhang for providing Example 2.2.
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a function φα1,α2 ∶ [0,1]Ð→ R as follows:

φα1,α2 (⋅) ∶= I(α2, ⋅) − I(α1, ⋅).

For p ∈ {0,1}, I (⋅, p) ≡ 0, hence φα1,α2 (0)=φα1,α2 (1) = 0. It is not hard to

verify that φα1,α2 (⋅) is a continuous function (this follows from the properties

of I). φα1,α2 (⋅) is also twice continuously differentiable, and

φ
′′

α1,α2
(p) = 0.0252 − 0.0192p

(−0.3 − 0.4p)(0.7 − 0.4p)(0.3(−1 + p) − 0.1p)(1 + 0.3(−1 + p) − 0.1p) .

(2.3.0.1)

This expression is always positive for p ∈ (0,1), which implies that φα1,α2 (⋅)

is a strictly convex and continuous function with φα1,α2 (0) = φα1,α2 (1) =

0. But this means that φα1,α2 (p) < 0 for all p ∈ (0,1) which means that

I(α2, p) − I(α1, p) ≤ 0 for all p ∈ [0,1], hence α1 investment-dominates α2

independently of the prior.

It remains to show that α1 does not Blackwell-dominates α2. Let us

look at the geometry of Blackwell dominance more generally. Given a K × S

information structure α, the set of all K×S information structures dominated

by α is defined as Dom(α) = {αM ∶M ∈ (∆(S))S}. Namely, M ranges over

all S × S stochastic matrices. Being a linear image of the polytope (∆(S))S ,

Dom(α) is a polytope whose vertices are images of the vertices of (∆(S))S .

Namely,

Dom(α) = conv

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

α

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ei1

⋮

eiS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∶ eijare vertices of ∆(S)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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The case of just two states (K = 2) and two signals (S = 2) is particularly

simple. The set of all 2× 2 information structures dominated by a given 2× 2

information structure form a parallelogram,

Dom

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

x 1 − x

y 1 − y

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
= conv

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

x 1 − x

y 1 − y

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

y 1 − y

x 1 − x

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0 1

0 1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1 0

1 0

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

From Figure 2.1, it is easily seen that the information structure α2 from the

example is not Blackwell dominated by α1.

α1

[1 0
1 0

]

α1 [
0 1
1 0

]

[0 1
0 1

] [1 0
0 1

]

α2

Figure 2.1: The figure depicts the two dimensional space of 2 × 2 information

structures. These matrices could be written as [ x 1 − x
y 1 − y ] , where both x and y are

in [0,1]. In the figure, x is represented by the horizontal axis and y is represented
by the vertical axis. The shaded area are the matrices which represent information
structures which are dominated by α1 in the Blackwell sense. The point α2 is outside
the shaded area.
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The above counterexample extends to any number of states and signals.

I now focus on the case of 2 × 2 information structures (2 states of the world

and 2 signals), and provide a complete characterization of comparable pairs.

Definition 2.1. Given two 2×2 information structures α and β, the function

φα,β ∶ [0,1]Ð→ R is defined as follows:

φα,β (⋅) ∶= I(β, ⋅) − I(α, ⋅).

Theorem 2.2. For 2 × 2 information structures α and β, α investment-

dominates β independently of the prior if and only if

φ′α,β (0+) ≤ 0, and

φ′α,β (1−) ≥ 0.

Furthermore, α and β are comparable using this partial order if and only if

φ′α,β (0+)φ′α,β (1−) ≤ 0.

Proof. By definition, α investment-dominates β independently of the prior

if and only if φα,β is non-positive on the interval [0,1]. My proof is a

generalization of the investigation of the function φα1,α2 in the proof of

Theorem 2.1. The main step is to show that [0, 1] could be divided into two

intervals, [0, t] and [t, 1] (with t possibly equal to 0 or 1), such that in one of

these intervals φα,β is convex and the other is concave. In other words: φα,β

is either convex, concave, or “S-shaped”: convex on one side of t and concave

on the other side. From this analysis and the fact that φα,β(0) = φα,β(1) = 0,

one readily concludes the first part of the theorem. The second part follows
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from the first, since φα,β = −φβ,α.

I turn now to proving that for every 2 × 2 structures α and β, there exist

t ∈ [0, 1] such that φα,β is either convex or concave in each one of the intervals

[0, t] and [t,1] separately.

Denote

α =
⎡⎢⎢⎢⎢⎢⎣

x 1 − x

y 1 − y

⎤⎥⎥⎥⎥⎥⎦
, β =

⎡⎢⎢⎢⎢⎢⎣

a 1 − a

b 1 − b

⎤⎥⎥⎥⎥⎥⎦
,

for some x, y, a, b ∈ [0,1]. The function φα,β is continuously twice differen-

tiable on [0,1]. Assume first that neither of the information structures is

degenerate, that is, equals

⎡⎢⎢⎢⎢⎢⎣

1 0

1 0

⎤⎥⎥⎥⎥⎥⎦
or

⎡⎢⎢⎢⎢⎢⎣

0 1

0 1

⎤⎥⎥⎥⎥⎥⎦
. Direct computation shows

that

φ′′α,β (p) = (x − y)2pβ(1)pβ(2) − (a − b)2pα(1)pα(2)
pα(1)pα(2)pβ(1)pβ(2)

. (2.3.0.2)

The denominator is positive on (0,1), as a multiplication of four positive

factors. The nominator is an affine function in p: it is the difference of two

quadratic polynomials that have the same quadratic term. This implies that

the entire expression could change signs at most once. This concludes the

proof in the non-degenerate case.

If both α and β are degenerate, then φα,β ≡ 0; if only α is degenerate,

then

φ′′α,β (p) = −(a − b)2

pβ(1)pβ(2)
;

and if only β is degenerate, then

φ′′α,β (p) = (x − y)2

pα(1)pα(2)
.
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In all of the three degenerate cases φ′′α,β has the same sign throughout the

interval (0,1).

The following theorem provides a sufficient condition which is much

simpler to verify and illustrate than the condition of Theorem 2.2.

Theorem 2.3. For a non-degenerate information structure α =
⎡⎢⎢⎢⎢⎢⎣

x 1 − x

y 1 − y

⎤⎥⎥⎥⎥⎥⎦

and an information structure β =
⎡⎢⎢⎢⎢⎢⎣

a 1 − a

b 1 − b

⎤⎥⎥⎥⎥⎥⎦
, α investment-dominates β

independently of the prior if

(x − y)2a(1 − a) − (a − b)2x(1 − x) ≥ 0,

and

(x − y)2b(1 − b) − (a − b)2y(1 − y) ≥ 0.

Note that Theorem 2.1 follows from Theorem 2.3. The condition in

Theorem 2.3 specifies an intersection of two ellipses which is a strictly convex

set; therefore any non-extreme point on the relative boundary of dom(α) is

an internal point of the set of information structures investment-dominated

by α independently of the prior.

Proof. (of Theorem 2.3) With the notation of the proof of Theorem 2.2 it

is sufficient to show that φα,β is convex in [0,1], or equivalently, φ′′α,β is

non-negative in (0,1). As seen through (2.3.0.2), since the denominator is

always positive, it is sufficient to show that the nominator is non-negative.
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Namely,

L(p) = (x − y)2pβ(1)pβ(2) − (a − b)2pα(1)pα(2) ≥ 0 ∀p ∈ (0,1).

Since L(p) is a linear function of p, one needs only verify that the two end

points, at p = 0,1, are non-negative, which is exactly the condition of the

theorem.

Remark 2.1. Using this sufficient condition, one can show that two 2 × 2

information structures drawn uniformly at random are comparable with

probability greater than .84, compared with a 2/3 probability that they are

comparable using Blackwell’s criterion.

2.4 Segregation

In this section I use the previous results to show that all of the axioms

suggested by Frankel and Volij (2011), with the exclusion of completeness,

are satisfied simultaneously by a partial order which refines the ones of Lasso

de la Vega and Volij (2014) and of Hutchens (2015). In particular, for the

two ethnic groups case it refines the order induced by the segregation curves

criterion.

2.4.1 Preliminaries

I use the model and notation of Frankel and Volij (2011). I review it here

briefly, as a complete discussion could be found in their paper.

Population is assumed to be a continuum. I refer to groups as ethnic

groups and to locations as schools. The objects to be ranked are (school)
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districts, which are defined as follows:

Definition. A district X = ⟨N,G, (Tng )g∈G,n∈N⟩ ≡ ⟨N(X),G(X), T (X)⟩ is a

triplet where N is a finite non-empty set of schools, G is a finite non-empty

set of ethnic groups, and for each g ∈ G and n ∈ N , Tng is a non negative real

number representing the number of members of ethnic group g attending

school n.

When there is no risk of confusion, I will sometime just write the ethnic

composition of the schools in the district. For example, ⟨(1,3), (2,2)⟩ repre-

sents a district with two schools, and two ethnic groups (labeled black and

white). The first has one black student and three white students, and the

second has two students from each ethnic group.

For any scalar α > 0, αX denotes a district in which for all n ∈ N and

g ∈ G the number of students of ethnicity g in school n is multiplied by α. For

any two districts X,Y with the same ethnic groups X ⊎Y denotes their union

into a single district. For example, if X = ⟨(1,2), (5,5)⟩ and Y = ⟨(3,4)⟩ then

2X = ⟨(2,4) , (10,10)⟩ and X ⊎ Y = ⟨(1,2), (5,5), (3,4)⟩.

Some more notation will prove useful.

Tg = ∑
n∈N

Tng : the number of students of ethnic group g in a district,

Tn = ∑
g∈G

Tng : the number of students attending school n,

T = ∑
n∈N g∈G

Tng : the total number of students in the district,

Pg = Tg
T : the proportion of group g students in the district,

πn = Tn

T : the fraction of the population attending school n,

png =
Tng
Tn (when Tn > 0, and 0 otherwise): the proportion group g students

in school n,
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tng =
Tng
Tg

(when Tg > 0, and 0 otherwise): the fraction of group g students

attending school n.

A general class of districts is denoted by C. Sometimes, a class of districts

with K ethnic groups will be considered. Such class will be denoted by CK .

Additionally, CA = ∪
K≥2
CK .

Given a class of districts C, an ordering of segregation, or a segregation

ordering, is a binary relation on that class which is transitive and reflexive.

I denote such ordering by ≿ and interpret the statement X ≿ Y to mean

“district X is at least as segregated as district Y .” ≻ and ∼ are derived in the

usual way. Throughout attention will be restricted to orderings that treat

schools symmetrically.12

The Mutual Information index is equal to the difference between the

entropy of a district’s ethnic distribution and the weighted average entropy

of the ethnic distributions of its schools:

M(X) =H(P ) − ∑
n∈N(X)

πnH(pn).

Restricting attention to districts with two ethnic groups {W,B}, it is

possible to associate each district with a Lorenz segregation curve, the equiv-

alent of a Lorenz curve where individuals from one race takes the role of the

“population” and the role of “income” is taken by the proportion of members

of the other race in their school. If the Lorenz segregation curve of X is

always below that of Y we say that Y at least as segregated as X according

to the Lorenz criterion (written Y ≿L X). Lasso de la Vega and Volij (2014)
12That is, any permutation on the set of schools in X induces a district which is exactly

as segregated.
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show that Y ≿L X if and only if the information structure given by the

matrix p(Y ) (with p(Y )n,g = png (Y )) Blackwell dominates the one given by

p(X). Thus, the Blackwell criterion could be viewed as a generalization

of the Lorenz criterion that is applicable even when more than two ethnic

groups are present. Hutchens (2015) proposes a refinement of this orders

which allows to permute the labels of the ethnic groups in one of the districts

before applying the Lorenz criterion. I refer to his criteria as Symmetric

Lorenz and symmetric Blackwell respectively.

2.4.2 Axioms

The following axioms are taken from Frankel and Volij (2011). As they discuss

extensively, most of them also appear elsewhere in the segregation literature.

Axiom (Completeness (C)). For all X,Y ∈ C, X ≿ Y or Y ≿X.13

Axiom (Nontriviality (N)). There exists X,Y ∈ C, such that X ≻ Y .

Axiom (Continuity (CONT)). For any district Z ∈ C, the set of districts

that have the same groups and schools as Z and are at least as segregated as

Z is closed, as is the set that have the same groups and schools as Z and are

no more segregated than Z.

Axiom (Scale Invariance (SI)). For any district Z ∈ C and any scalar α > 1,

αZ ∼ Z.

Axiom (Symmetry (SYM)). The segregation ordering is invariant to per-

mutations of the groups in the district. For any X = ⟨N,G,T ⟩ ∈ C and any
13The paper by Frankel and Volij (2011) only considers complete orders, and so this

axiom is not stated explicitly.
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permutation σ on G, the district Xσ = ⟨N,G, T̄ ⟩ such that T̄ng = Tnσ(g) satisfies

Xσ ∼X.

Axiom (Independence (IND)). Let X,Y ∈ C have equal populations and equal

group distributions. Then for any Z ∈ C, X ⊎Z ≿ Y ⊎Z if and only if X ≿ Y .

Axiom (School Division Property (SDP)). Let X ∈ C be a district and n a

school in X. Let X ′ be the district that results from splitting school n into

two schools, n1 and n2. Then X ′ ≿X. Furthermore, if one of the new schools

is empty, or the two schools have the same ethnic distribution (pn1 = pn2)

then X ′ ∼X.

Axiom (Composition Invariance (CI)). For any district X ∈ C, group g ∈

G(X), and scalar α > 0, let X ′ be the district resulting from multiplying the

number of group g students in each school in X by α. Then X ′ ∼X.

Axiom (Group Division Property (GDP)). Let X ∈ C be a district in which

the set of ethnic groups is G = G(X). Let X ′ be the result of partitioning

some group g ∈ G into two subgroups, g1 and g2, such that either one subgroup

is empty (Tgi = 0 for some i ∈ {1,2}) or the two subgroups have the same

distribution across schools (tng1
= tng2

for all n ∈ N(X)). Then X ′ ∼X.

2.4.3 Results

Theorem. [Frankel and Volij] An ordering on CA satisfies C, SI, IND, SDP,

N, GDP, SYM and CONT if and only if it is represented by the Mutual

Information index.

Corollary. [Frankel and Volij] No ordering on CA satisfies C, SI, IND, SDP,

N, GDP, SYM and CONT and CI.
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Proof. The indexM is not invariant to the transformation described in Axiom

CI.

Example. [Frankel and Volij] letX = ⟨(10,0), (0,1000)⟩ andX ′ = ⟨(1000,0), (0,1000)⟩.

CI requires that X ∼X ′. but M(X) ≠M (X ′), as the entropy of a district’s

ethnic distribution is greater under X ′ and the weighted average entropy of

the ethnic distributions of schools is the same for both.

Theorem. An order which satisfies SDP and SI is monotonic with respect

to Blackwell’s criterion.

Proof. Frankel and Volij (2011) provide a proof assuming C, and their proof

generalizes to this case as well.

Definition 2.2. X ∈ CA is at least as segregated as Y ∈ CA according to

the ordering ≿∗ if there exists a permutation matrix Π such that t(X) prior

independently investment dominates Πt(Y ).

That is, I allow permuting the names of races in one of the districts

before comparing the matrices t(X) and t(Y ) using the prior independent

investment dominance criterion.

Theorem 2.4. The (partial) ordering on CA ≿∗ strictly refines the symmetric

Blackwell criterion and satisfies SI, IND, SDP, N, GDP, SYM and CONT

and CI.

The theorem says that ≿∗ satisfies all of the axioms stated above with

the exclusion of completeness (C), and that it refines the orderings of Lasso

de la Vega and Volij (2014) and Hutchens (2015).
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Proof. Recall that M(X) =H(P ) − ∑
n∈N(X)

πnH(pn) satisfies all axioms but

CI. Now, observe that I(t(X), P (X)) = H(P ) − ∑
n∈N

πn ⋅H(pn) =M(X). It

is not hard to verify that this implies that ≿∗ satisfies all the axioms but CI

and C.

Furthermore, for any district X ∈ C, group g ∈ G(X), and scalar α > 0, if

X ′ is the district resulting from multiplying the number of group g students

in each school in X by α, then t(X) = t(X ′) (but P (X) ≠ P (X ′)). Thus,

X ≿∗ Y if and only if X ′ ≿∗ Y . Hence, ≿∗ satisfies CI.

From Example 2.2 there exists α and β such that I(α, p) ≥ I(β, p) for all

p, and α does not Blackwell dominates β, not even allowing for permutations

as in the symmetric Blackwell criterion.14 Thus, any two districts X and

Y in CA with T (X) = T (Y ) = 1 and t(X) = α and t(Y ) = β have that X is

more segregated than Y according to ≿∗ but not according to the symmetric

Blackwell criterion.

Finally, the fact that the definition of ≿∗ allows for any permutation of

t(Y ), combined with that fact that I is monotonic with respect to Blackwell

dominance, implies that ≿∗ refines the symmetric Blackwell criterion.

Corollary 2.1. The restriction of ≿∗ to C2 strictly refines the symmetric

Lorenz ordering.

14This part could be verified quickly using Theorem 2.3.
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Chapter 3

Optimal Truncation in

Matching Markets1

3.1 Introduction

One of the great success stories in economic theory is the application of

matching theory to two-sided markets. A classic example is the National

Resident Matching Program (NRMP), in which medical school students are

matched to residency positions in hospitals. Rather than hospitals pursuing

students via a decentralized series of offers, refusals and acceptances, matching

occurs via a centralized mechanism. In this mechanism, each student ranks

the hospital programs, and each hospital ranks the students. They submit

these lists to an algorithm, which determines which students will be matched

to which programs.

Such a centralized process has a number of advantages. First and foremost,
1Co-authored with Peter Coles
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the algorithm on which this and many similar centralized processes are based

produces an outcome that is stable with respect to reported preferences.2 In

a stable matching, no two agents mutually prefer each other to their assigned

match, nor does any matched participant prefer to be unmatched. A second

advantage is that eliminating a decentralized offer process may save time and

other resources. Finally, as Roth and Xing (1994) have shown, a centralized

mechanism can successfully halt the unraveling of a market.3 Centralized

matching mechanisms also power a variety of other markets, including the

public school systems in New York, Boston, Singapore and other cities, as

well as numerous specialized medical fellowships.

These centralized markets all employ versions of an algorithm proposed

by Gale and Shapley (1962). The algorithm, which in one-to-one markets

is often referred to as the Men-Proposing Deferred Acceptance Algorithm

(MP-DA), takes as its inputs preference lists reported by agents, and outputs

a stable matching. When agents are asked to report preference lists for

submission to MP-DA, this begs the question: Do all agents have an incentive

to report truthfully? Dubins and Freedman (1981) and Roth (1982) provide

the answer: they do not. In fact, Roth showed that no mechanism that

produces stable matchings will induce truth-telling as a dominant strategy

for all agents. However, in the preference list submission game induced by
2In 1998, the algorithm used in the NRMP was altered to accommodate student couples

and allow for specialized hospital positions, so that the outcome is “close to” a stable
matching (see Roth and Peranson, 1999).

3Before the NRMP was introduced in the 1950s, offers and interviews were made as
early as the fall of students’ third year in medical school, which was undesirable for a
number of reasons. The willingness of both hospitals and students to participate argues
strongly in favor of the program’s effectiveness. The NRMP enjoys participation rates of
close to 100% of eligible students, with over 38,000 students participating in the March
2012 match.
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MP-DA, for all participants on one side of the market, the “men,” truth-telling

is a dominant strategy.4 But this leaves open the question of how participants

on the other side of the market, the “women,” might benefit by strategically

misrepresenting their preferences.

Recent work has examined conditions under which gains to strategic ma-

nipulation are limited for all participants in the market, not just those on one

side. One approach in the literature concerns large markets. Roth and Per-

anson (1999) observe that in the data from the NRMP, very few participants

could have improved their outcomes by reporting different preferences. They

show via simulations that when the length of preference lists is held fixed

and the number of participants grows, the size of the set of stable matching

shrinks (a property they term “core convergence”), so that opportunities for

manipulation are reduced. Immorlica and Mahdian (2005) demonstrate this

result theoretically, finding that in large marriage markets where preference

list length is bounded, nearly all players have an incentive to truthfully report

preferences. Kojima and Pathak (2009) generalize this result, showing that in

many-to-one markets, preference list manipulation, as well as other modes of

strategic manipulation such as non-truthful reporting of capacities (see also

Sönmez, 1997), are again limited. Lee (2011) considers one-to-one matching

markets where agent utilities are drawn from distributions with bounded

support that have both a common and an independent component. He shows

that when all agents report truthfully, the proportion of participants who can
4This is true in one-to-one, or “marriage” markets, where each agent has the capacity

to match with at most one other agent. In many-to-one settings, e. g. students matching to
hospitals, truth-telling is no longer a dominant strategy when, in the Deferred Acceptance
Algorithm, the “hospitals” side makes the offers (see Roth, 1985).
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achieve a significant utility gain from manipulation vanishes as the market

grows large.5

Our approach takes a different tack. We do not require preference lists

to be short, and ask: how should players optimally misrepresent preferences

in markets that do not satisfy non-manipulability conditions? How “far”

could optimal behavior be from truthfulness? We wish to study optimal

manipulation, along with payoffs and market-wide welfare effects, and ask

how strategic behavior and outcomes change as we vary market conditions.

The particular form of strategic misrepresentation we focus on is preference

list truncation; that is, listing in order the first several partners from one’s true

preference list, and identifying all other partners as unacceptable. Truncation

has an intuitive logic: by listing less-preferred partners as unacceptable, the

probability of being matched with these partners drops to zero. Agents using

this strategy might hope that correspondingly, the likelihood of being matched

to a partner who remains on the truncated list will go up. In the context

of MP-DA, this intuition is confirmed: submitting a truncated preference

list weakly increases the likelihood of being matched to some agent on the

truncated list, regardless of beliefs about the lists other agents submit. But

submitting a truncated preference list is a risky strategy. Limiting acceptable

partners also increases the likelihood of ending up with no match. Analysis

of this tradeoff is the crux of the results in this paper.

While always a method for weakly increasing the likelihood of matching
5In a very different approach, Featherstone and Mayefsky (2010) run lab experiments

in 5×5 marriage markets, and find that participants have trouble learning to find beneficial
deviations under MP-DA, even if there are potential gains (though participants have more
success in finding successful manipulation when facing “priority” mechanisms).
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with better-ranked opponents, in some uncertain settings, truncation is

optimal: Roth and Rothblum (1999) show that when agents’ beliefs satisfy

a form of symmetry termed “M-symmetry,” they can do no better than to

truncate. Ehlers (2004) demonstrated that this result holds under somewhat

more general conditions.

Whether optimal or not, we analyze truncation, both in symmetric and

general settings. We ask: to what degree should players truncate, if at all?

(Note that submitting one’s true preference list is also a form of truncation.)

Can a participant realistically gain from truncation when she is extremely

uncertain about what opponents might report? If players anticipate that

others may be truncating, how does this affect their behavior? Do participants

truncate in equilibrium? What are the welfare implications in a truncation

equilibrium?

To evaluate the consequences of truncation, we first characterize the

payoff from truncation for a woman with general beliefs over the preference

lists other agents will submit in terms of the distributions of her most and

least preferred achievable mates. In a market with N men and N women,

when a woman believes submitted preferences of others are uniformly chosen

from the set of all full-length preference lists, she may safely truncate a

large fraction of her list with low risk of becoming unmatched. Further, as

there is a large gap between the expected rank of the mate she receives from

truthful revelation and her most preferred achievable mate (Pittel (1989)

shows these asymptote to N/ logN and logN respectively), truncation can

lead to gains. The optimal degree of truncation can be significant. We

demonstrate that in large, balanced, uniform markets the optimal level of
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truncation approaches 100%.6 That is, when there are many agents in the

market, a woman optimally submits an extremely short list relative to her

full preference list – in the limit, the fraction of men that she leaves on her

list goes to zero.

The two sides of the market diverge in their tastes for truncation equilibria.

Compared to the outcome from truthful reporting, women prefer any equilib-

rium in which they all use truncation strategies; for men the opposite is true.

Furthermore, if there are two truncation equilibria that can be compared

in the degree of truncation, women prefer the equilibrium in which they

truncate more, while men prefer the equilibrium in which women truncate

less. Under uniform preferences, we demonstrate the existence of a symmetric

equilibrium where all women use the same truncation strategy. However,

even under uniform preferences, asymmetric equilibria, where women vary in

their degrees of truncation, may also exist. In such equilibria, and in contrast

to the across-equilibria results, the women who truncate least are best off.

Intuitively, while women benefit from truncation by other women, they would

prefer not to bear the risk of truncation themselves.

Relaxing the uniform preferences assumption and returning to the envi-

ronment where players have arbitrary beliefs, we examine comparative statics.

We find that optimal truncation levels vary with risk preference: regardless

of beliefs over reported opponent preferences, the less risk-averse a player,

the more she should truncate.
6Recently, Ashlagi et al. (2013) have shown that the requirement that the number of

men and women is balanced is crucial for the existence of the large gap in expected ranks.
We discuss the robustness of our results to imbalances in the number of men and women
in Chapter 4.
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We then turn to correlation in players’ preferences. The correlated

preferences we consider are meant to capture the notion that in many settings,

agents largely agree in their preferences over partners on the other side of

the market, but that an individual’s preferences may idiosyncratically depart

from common opinion. We find that the higher the likelihood a participant

places on opponents having preferences similar to her own, the less she should

truncate. Our findings largely corroborate the simulation results of Roth and

Peranson (1999), who find that when preferences are correlated, the set of

stable matchings is small, and therefore the set of submitted preference lists

that could lead to gains is minimal. An important difference between our

correlation setting and Roth and Peranson’s is that we consider incomplete

information, where realized matchings may be unstable with respect to true

preferences (even while stable with respect to reported preferences).

To place this analysis in context, several comments are in order. While, for

the reasons stated earlier, we believe truncating the bottom of one’s list is an

intuitive manipulation in the preference list submission problem, in different

environments eliminating better-ranked members from one’s preference list

might be a reasonable strategy. For example, in the job market for economists,

departments may choose not to interview certain highly-accomplished can-

didates, reasoning that these candidates will receive offers they prefer more

(see Coles et al., 2010). In efforts to best use costly and scarce interview slots,

departments may effectively “top-truncate” their preferences lists, focusing

instead on candidates more likely to ultimately accept an offer. In general,

it is when market frictions generate costs that this behavior arises. Lee and

Schwarz (2012) consider a setting where information acquisition is costly, so
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that firms prefer to interview workers who have a high likelihood of accepting

(and likelihood is based on the number and identity of other firms interviewing

a worker). Coles et al. (2013) consider a setting where workers can signal

their preferences to firms, so that firms may choose not to make offers to

better-ranked candidates, and instead make offers to candidates who have

indicated likeliness to accept. In our paper, the analysis is performed after

any costly information gathering has taken place, so these considerations do

not arise.

The rest of the paper is organized as follows: Section 3.2 lays out the

stable marriage setting and illustrates the fundamental tradeoff associated

with truncation. In Section 3.3 we characterize the return to truncation,

first for general beliefs, then in a uniform setting. In Section 3.4, we prove

the existence of a truncation equilibrium in symmetric settings, and explore

equilibrium welfare implications. Based on this existence result, we provide

simulation evidence for a significant degree of truncation in equilibrium.

Section 3.5 and Section 3.6 examine how truncation behavior relates to risk

preferences and correlation of agent preferences, respectively. Section 3.7

concludes.

3.2 Matching Markets Background

We begin by setting out the basic model of matching. In contrast to some

of the well-known matching papers, we approach the notion of preferences

of participants from a cardinal rather than an ordinal perspective, which
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allows us to discuss choice under uncertainty.7 Note, however, that standard

matching results involving ordinal preferences also apply as we may infer

preference orderings from cardinal utilities.

3.2.1 Marriage Markets and Stability

A marriage market of size N consists of a triplet (M,W, u), whereM is the

set of men, W is the set of women, ∣M∣ = ∣W ∣ = N , and u = ∏
i∈M∪W

ui is the

profile of preferences for men and women.8

Preferences um ∶ W ∪ {m} → R for man m ∈ M are given by a von

Neumann-Morgenstern utility function in which m derives utility um(w) from

matching with woman w and um(m) from remaining single. For simplicity,

we assume that um is one-to-one, so that m is never indifferent between any

two certain options. Preferences uw for woman w ∈W are defined similarly

onM ∪ {w}.

As um is one-to-one,m’s preferences um induce a strict preference ordering

Pm overW∪{m}.We refer to Pm asm’s preference list. For example, if N = 3,

um(w1) > um(w3) > um(w2) > um(m) yields preference list (w1,w3,w2,m),

meaning m prefers woman w1 to w3 to w2 to being single. Note that men may

prefer bachelorhood over some of the women. For example, (w1,w3,m,w2)

indicates that m prefers w1 to w3 to remaining single to w2. We say that man

m finds w acceptable if m prefers w to remaining single. When convenient, we
7Some matching papers do manage to study choice under uncertainty even when

agents have only ordinal preferences. For example, Ehlers and Massó (2007) and Roth and
Rothblum (1999) use the related concepts of “Ordinal Bayesian Nash Equilibrium” and
“Pw-stochastic dominance,” respectively.

8The assumption ∣M∣ = ∣W ∣ was made for technical and notational convenience. How-
ever, it plays an important role in Theorem 4.1, as discussed in the Chapter 4.
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list only a man’s acceptable women. Preference lists for women are defined

similarly, and we let P denote the profile of preference lists.

A matching is a pairing of men and women, so that each woman is

assigned at most one man and each man at most one woman. Formally,

a matching µ is a mapping from M ∪W to M ∪W such that for every

m ∈M, µ(m) ∈ W ∪ {m}, and for every w ∈ W, µ(w) ∈M ∪ {w}, and also

for every m,w ∈M ∪W, µ(m) = w if and only if µ(w) =m. When µ(x) = x,

agent x is single or unmatched under matching µ. For agents that are not

single, we refer to µ(m) as m’s wife and µ(w) as w’s husband. The terms

partner and mate are also used. In a matching, each agent cares only about

his or her partner, and not about the partners of other agents, so that we

may discuss agent preferences over matchings.

Given preferences, a matching is stable if no agent desires to leave his

or her mate to remain single, and no pair of agents mutually desire to leave

their mates and pair with each other. Formally, given a matching µ, we say

that it is blocked by (m,w) if m prefers w to µ(m) and w prefers m to µ(w).

A matching µ is individually rational if for each x ∈M ∪W with µ(x) ≠ x,

x finds µ(x) acceptable. A matching µ is stable if it is individually rational

and is not blocked. In general, more than one stable matching may exist for

given preferences.

Given preferences, a woman w is achievable for m if there is some stable

matching µ in which w = µ(m). Achievable mates of women are defined

similarly.
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3.2.2 The Men-Proposing Deferred Acceptance Algorithm

In their seminal 1962 paper, Gale and Shapley prove that in any marriage

market there exists a stable matching. To demonstrate this result, they

propose an algorithm – the Men-Proposing Deferred Acceptance Algorithm

(MP-DA) – to generate a stable matching given any profile of preferences

lists.

MP-DA takes as its input a preference list profile P for agentsM ∪W,

and the output is a matching µM [P ]. When P is clear from the context, we

write µM to denote µM [P ].9 The algorithm works iteratively as follows:

• Step 1. Each man proposes to the first woman on his preference

list. Each woman then considers her offers, rejects all men deemed

unacceptable, and if any others remain, rejects all but her most preferred

mate.

• Step k . Each man who was rejected in step k− 1 makes an offer to the

next woman on his preference list. If his preference list is exhausted,

or if he prefers bachelorhood to the next woman on his list, he makes

no offer. Each woman behaves as in step 1, considering offers in hand

(including any man she has retained from the previous step) and rejects

all but her most preferred acceptable suitor.

• Termination. If in any step k, no man makes an offer, the algorithm

terminates. Each woman is paired with her current mate and this

matching is final.
9In one-to-one markets, the women-proposing version of the algorithm (WP-DA) has

identical but reversed properties, with output denoted by µW [P ].
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Gale and Shapley show that this algorithm must terminate in finite time,

and they provide a remarkable characteristic of the resulting outcome.

Theorem. (Gale-Shapley) The matching µM resulting from MP-DA is stable.

Furthermore, for any other stable matching µ, every man weakly prefers µM

to µ and every woman weakly prefers µ to µM .

The stability of the matching produced by MP-DA offers numerous

advantages, as outlined in the introduction. But men are particularly satisfied

with this outcome. For the men, the algorithm produces the optimal stable

matching, based on reported preferences. For the women, however, this is

not the case. As we will see, this feature may mean some women prefer

to strategically misreport preferences, causing the algorithm to produce a

different matching.

3.2.3 The Preference List Submission Problem for Men

We now turn to the incentive properties of MP-DA. That is, in a setting

where agents are asked to submit preference lists to the algorithm, we ask if

they have an incentive to report something other than the truth. We will see

that women may, while men do not.

Consider a set of agentsM ∪W. Agent i ∈M ∪W with preferences ui

must submit a preference list P̂i to MP-DA, where P̂i is chosen from the set

of i ’s possible preference lists Pi. The agent’s beliefs about what preference

lists others will report are represented by the random variable P̃−i, which

takes as its range P−i, the set of all possible preference list profiles for others.

Note that since ui is a von Neumann-Morgenstern utility function, agent i
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may compare outcomes in this incomplete information setting.

Agent i solves the Preference List Submission Problem:

max
P̂i∈Pi

E[ui(µM [P̂i, P̃−i](i))].

Dubins and Freedman (1981) and Roth (1982) have shown that for any

man m with preferences um and beliefs P̃−m, it is optimal for m to submit

his true preference list Pm (which corresponds to um).

Theorem. (Dubins and Freedman; Roth) In the Preference List Submission

Problem,

Pm ∈ arg max
P̂m∈Pm

E[um(µM [P̂m, P̃−m](m))].

3.2.4 The Preference List Submission Problem for Women

For women submitting preference lists to MP-DA, truth-telling may not be

optimal. One way a woman w might misrepresent preferences is by submitting

a truncation of her true preference list; that is, listing in order the first several

men from her true preference list and declaring all other men unacceptable.

Truncation generates a tradeoff: it may cause a woman to match with the

better-ranked men she leaves on her list, but may also cause her to be left

unmatched. In this section we demonstrate this tradeoff, pose the problem

of optimal truncation, and describe conditions so that in the Preference List

Submission Problem, among all possible preference list submission strategies,

truncation is optimal.

The following example demonstrates the tradeoff at hand.
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Example 3.1. Strategic Truncation. Suppose men and women have the

following preference lists:

m1 m2 m3 w1 w2 w3

w3 w2 w1 m1 m1 m1

w1 w1 w2 m2 m3 m2

w2 w3 w3 m3 m2 m3

.

We consider the strategic incentives of woman 1, assuming all other agents

report truthfully. First, suppose w1 submits her true preference list. In this

case, MP-DA stops after one step and w1 is matched tom3, her least preferred

mate. The stable matching is indicated above in bold.

Now suppose that w1 misrepresents her preferences and submits the

truncated list (m1,m2). In this case, she will reject man m3’s first round

offer in the MP-DA. Man m3 must then make an offer to w2 in the next

round. Woman w2 will accept m3 over m2, who made her an offer in the

previous round. Man m2 then finds himself single, and must make an offer

to w1. Woman w1 accepts m2’s offer and MP-DA terminates, yielding the

matching in bold below:

m1 m2 m3 w1 w2 w3

w3 w2 w1 m1 m1 m1

w1 w1 w2 m2 m3 m2

w2 w3 w3 m2 m3

.

Therefore, by truncating her list, w1 improves her outcome.

To see how truncation can be dangerous, suppose w1 truncates her list
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even more and submits (m1) only. In this case, the algorithm will leave her

unmatched, as shown in bold below:

m1 m2 m3 w1 w2 w3

w3 w2 w1 m1 m1 m1

w1 w1 w2 m3 m2

w2 w3 w3 m2 m3

.

Remark 3.1 characterizes woman w’s match when she submits a truncated

version of her preference list, demonstrating generally how truncation can

lead to the three outcomes in our example. For k ∈ {0, . . . ,N}, we denote by

P kw the preference list which includes in order only w’s k most preferred men,

and call this the k-truncation of her true preference list Pw. If fewer than k

men are acceptable to w, then P kw ≡ Pw.

Remark 3.1. Let P be the preference list profile of all agents inM∪W . Then

µM [P kw, P−w](w) is w’s least preferred achievable mate under P with rank

≤ k. Should no such mate exist, µM [P kw, P−w](w) = w.

The example illustrates a general principle; given the preference lists sub-

mitted by others, truncation by woman w can have one of three consequences:

1. No effect. Woman w has truncated below her least preferred achievable

mate.

2. Improvement. Woman w truncates above her least preferred mate, and

is matched with her least preferred achievable mate above the point of

truncation.

3. Unmatched. Woman w has over-truncated, truncating above her most
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preferred achievable mate.

If woman w is certain of the preference lists P−w others are submitting, her

truncation decision is simple: she calculates her most preferred achievable

mate under P = (Pw, P−w) and truncates her list to just include him. If

instead w believes her opponents will submit preference lists according to

some probability distribution, then truncating her list at k generates a lottery

over outcomes in which either her partner will be among her k most preferred

men, or else she will be unmatched. This tradeoff, between improvement and

becoming unmatched, will guide our analysis in this paper.

Optimality of Truncation

Truncation is not the only possible misrepresentation of preferences. A woman

could reverse two men in her preference list, list men as acceptable who are

in fact unacceptable, drop men from the middle of her list, or use some

combination of these. However, under some conditions, truncation is optimal.

The next proposition states that under certainty, women can do no better

than to truncate (Roth and Vande Vate, 1991).

Proposition. (Roth and Vande Vate) Suppose woman w has preferences uw

and knows others will report preference lists P−w to MP-DA. Then truncating

such that µW (w) is the last acceptable partner on her list is an optimal

strategy for w.

Perhaps surprisingly, when a woman has very little information about

the preference lists others might report, she again can do no better than to

truncate. In order to gain from non-truncation misrepresentations, such as
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swapping the positions of two men in her reported preference list, a woman

must have very specific information about the preference lists others report.

Without such information, it is best to leave the men in their correct order.

Roth and Rothblum (1999) demonstrate this principle using the following

framework.

Let woman w’s beliefs about reported preference lists of others be rep-

resented by P̃−w, a random variable taking on values in P−w. If P−w is a

preference list profile for agents −w, define Pm↔m′

−w to be the preference list

profile in which m and m′ swap preference lists, and all women swap the

positions of m and m′ in their lists. We say that woman w’s beliefs are

(m,m′)-symmetric if Pr(P̃−w = P−w) = Pr(P̃−w = Pm↔m′

−w ) for all P−w ∈ P−w.

For a subset M′ ⊆M, beliefs P̃−w are M′-symmetric if they are (m,m′)-

symmetric for all m,m′ ∈M′.

Theorem. (Roth and Rothblum) Suppose w’s beliefs about reported preference

lists of others areM-symmetric. Then any preference list P̂w she might submit

to MP-DA is weakly Pw-stochastically dominated by some truncation of her

true preference list.10

Hence, when w is certain about reported preference lists of her opponents,

or when she has extreme, symmetric uncertainty, truncation is optimal.
10P̂w is Pw-stochastically dominated by P̂ ′

w iff for any vNM utility function that
corresponds to Pw, the expected utility from submitting P̂ ′

w is at least as great as the
expected utility from submitting P̂w.
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The Truncation Problem

Even when truncation is not optimal, we may sometimes wish to restrict the

choice set for women to truncations of her true preference list. We define

the Truncation Problem for woman w with preferences uw and beliefs P̃−w

on others’ submitted preference lists as

max
k∈{0,...,N}

E[uw(µM [P kw, P̃−w](w))].

For convenience, whenever we consider the Truncation Problem for a woman

w, we will relabel men so that w has uw(m1) > uw(m2) > . . . > uw(mN).

3.3 Characterizing Truncation Payoffs

In this section we explore a woman’s payoff from submitting a truncation

of her true preference list. We first derive a formula for her payoff from

truncating at any point in her list in terms of the distribution of her most

and least preferred achievable mates. When a woman believes that reported

preference lists of her opponents are distributed symmetrically over the set

of all preference lists, we can say more about her gains from truncation:

conditional on truncation yielding an improvement, w ’s expected partner

rank will be exactly half of (1 + her point of truncation). Further, in uniform

markets, it is highly likely that for an individual woman, some degree of

truncation will yield an improvement, and that, in fact, she may safely and

beneficially truncate a large fraction of her list. We demonstrate that as

the market grows large, the length of a woman’s optimal reported list, as a

fraction of her full preference list length, goes to zero. Hence, even in a setting
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where agents possess very little information about opponent preferences, there

is room for significant strategic misrepresentation.

3.3.1 Truncation in Two Stages: Match, then Divorce

To aid us in our analysis, we show that when woman w submits a k -truncation

of her preference list to MP-DA, the outcome is identical to that from a two

stage Divorcing Algorithm. In the first stage of the algorithm, agents submit

preference lists to MP-DA. In the second stage, w ‘divorces’ her mate and

declares all men with rank ≥ k unacceptable. This sets off a chain of new

offers and proposals, ending in a new match.11

The Divorcing Algorithm takes as its input a set P of preference lists, a

woman w, and a truncation point k ∈ {0, . . . ,N}, and generates a matching

µDIV [P, k,w].

The Divorcing Algorithm

• Step 0. Initialization. Run MP-DA to find the men-optimal matching

µM [P ]. If w is single or if w’s mate has rank ≤ k in Pw, terminate.

Otherwise, divorce w from her mate. Declare candidates with rank ≥ k

unacceptable for w.

Iteration over steps 1 and 2:

• Step 1. Pick an arbitrary single man who has not exhausted his

preference list. If no such man exists, terminate.
11Our Divorcing Algorithm is closely related to the techniques used in McVitie and

Wilson (1971), where a “breakmarriage” operation is used to generate all the stable
matchings for a given marriage market.
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• Step 2. The man chosen in the previous step makes an offer to the most

preferred woman on his preference list who has not already rejected

him. If this woman finds the man acceptable and she prefers him to

her current mate (or is single), she divorces (if necessary) and holds the

new man’s offer. Return to step 1.

The Divorcing Algorithm yields a matching identical to the output from w’s

submission of a k -truncated list to MP-DA:

Proposition 3.1. For all k ∈ {0, . . . ,N}, P ∈ P and w ∈ W, we have

µDIV [P, k,w] = µM [P kw, P−w].

With this equivalence in hand, when we consider the submission of a

truncated preference list, we can think of it as a two stage process, focusing

on the chain of offers (if there is one) in the Divorcing Algorithm. We will be

interested in whether a chain will end with i) a new acceptable man proposing

to woman w, or with ii) a single man making an acceptable offer to a single

woman in W /w, or else exhausting his list. These outcomes correspond to

truncation yielding an improvement over truthful reporting, and truncation

leaving w unmatched, respectively. Knowing that following a “divorce,” w

will receive at most one more offer will enable us to calculate the returns to

truncation, conditional on truncation yielding an improvement.

3.3.2 Truncation under General Beliefs

In this section, we characterize woman w’s payoff from submitting a truncated

version of her true preference list in terms of the distributions of her most

and least preferred achievable mates. The results build on Remark 3.1, which
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illustrates how in settings of certainty, a woman may gain, lose or see no

change from truncation.

We consider the Truncation Problem for woman w with preferences uw

and beliefs P̃−w about reports of other agents. Throughout the section, uw

(and hence, Pw) is fixed, so we can denote w’s payoff from k-truncation when

others submit preference lists P−w as

v(k,P−w) ≡ uw(µM [P kw, P−w](w)).

Note that v(N,P−w) gives w’s payoff if she reports truthfully, and v(k,P−w) =

uw(w) if k-truncation leaves w unmatched. The Truncation Problem then

becomes

max
k∈{0,...,N}

E[v(k, P̃−w)].

To evaluate E[v(k, P̃−w)], we condition on the three possible effects of trun-

cation: no effect, improvement, and causing w to become unmatched.

Define kl(P−w) and kh(P−w) to be w’s rank of her mate under µM [P ]

and µW [P ], respectively. That is, kl(P−w) (kh(P−w)) gives the rank of w’s

least (most) preferred achievable mate when −w report preference lists P−w.

Set kl(P−w) = kh(P−w) = N + 1 when w has no achievable mate. Let f(⋅) be

the probability mass function of the random variable kl(P̃−w) so that

f(x) = Pr(kl(P̃−w) = x)

for x ∈ {1, . . . ,N + 1}. Let F (⋅) be the associated cumulative distribution

function. Similarly, let g(⋅) be the probability mass function and G(⋅) be the

cumulative distribution function of the random variable kh(P̃−w).
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Using F (⋅), G(⋅), and Remark 3.1, we can express w’s expected payoff

from k-truncating her list by using the law of conditional expectations:

E[v(k, P̃−w)] = F (k) ⋅ ∑ki=1
f(i)
F (k)uw(mi)

+ [G(k) − F (k)] ⋅ E[v(k, P̃−w) ∣ P̃−w ∈ P2(k)]

+ [1 −G(k)] ⋅ uw(w),
(3.3.2.1)

where the set P2(k) ≡ {P−w ∣ v(k,P−w) > v(N,P−w)} gives the cases when

truncation yields an improvement, compared to truthful reporting. When

truncation causes w to be unmatched, her payoff is clearly uw(w), and

when truncation has no effect, the likelihood of being matched with x is

f(x)/F (x).12

In the next two sections, we will focus on the middle term of the sum in

3.3.2.1; that is, the cases where truncation yields improvement. We will first

see that when there are gains, the improvement can be significant. We will

see later that in large markets, these gains may outweigh the risk of being

left unmatched.

3.3.3 Truncation under M-Symmetric Beliefs

In this section, we examine the Truncation Problem when woman w has

M-symmetric beliefs. We show that conditional on w’s truncation yielding an

improvement compared to truthful reporting, her mate is equally likely to be

any man she lists as acceptable. This is somewhat surprising, because when

w has unconditional M-symmetric beliefs and submits preferences in the

MP-DA, we would certainly not expect w’s mate to be uniformly distributed;
12If F (k) = 0, the first term in the sum is zero.
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because of the stability requirement, she is far more likely to be matched

with her more preferred mates.

Lemma. (Truncation underM-Symmetric Beliefs) Suppose woman w’s be-

liefs P̃−w about the reported preference lists of her opponents areM-symmetric.

Then according to her beliefs,

Pr{µM [P kw, P̃−w](w) =mi ∣P̃−w ∈ P2(k)} = Pr{µM [P kw, P̃−w](w) =mj ∣P̃−w ∈ P2(k)}

for all k ∈ {1, . . . ,N}, i, j ∈ {1, . . . , k}. Hence,

E[v(k, P̃−w) ∣ P̃−w ∈ P2(k)] =
∑ki=1 uw(mi)

k
.

The intuition in this result comes from the Divorcing Algorithm. Consider

the settings where k -truncation will yield an improvement for w (P−w ∈

P2(k)). By first reporting her true preferences and then divorcing her mate,

we know that there will ensue a chain of offers. This chain ends when exactly

one man – ranked better than her former mate – will make an offer to w. By

the symmetry of w’s beliefs, this is equally likely to be any of these men.

Crucial to the reasoning is that since we know truncation will yield an

improvement, this corresponds to an algorithmic outcome where exactly one

new superior offer is made to w. In MP-DA generally, multiple offers may

be made to w, making it difficult to pinpoint the distribution of her mate’s

rank.13

13This result is related to the Principle of Deferred Decisions (“don’t do today what
you can put off until tomorrow”), which was applied to the stable marriage problem in
Knuth (1976). We may think of woman w as deferring her views on her preferences over
men {1, . . . , k} until she actually receives an offer from one of them. When the first one
arrives, only then does she assign the man a rank, which in expectation will be 1+k

2
.
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With our Lemma in hand, we can now express w’s expected payoff from

truncation at k as

E[v(k, P̃−w)] = F (k) ⋅ ∑ki=1
f(i)
F (k)uw(mi)

+ [G(k) − F (k)] ⋅ ∑ki=1 uw(mi)
k

+ [1 −G(k)] ⋅ uw(w).

(3.3.3.1)

3.3.4 Optimal Truncation in Large Markets

We now investigate optimal truncation for women when the market size grows

large. We will focus on the special case of uniform beliefs. That is, when

facing the Truncation Problem, w believes reported preference lists P−w of her

opponents to be chosen uniformly and randomly from the set of all possible

full preference list profiles P−w (where a full preference list profile is a profile

in which each agent prefers any possible mate to being unmatched). Uniform

beliefs are a special case ofM-symmetric beliefs.14 Hence, under uniform

beliefs, we can be sure that truncation is optimal.

The stable marriage problem under uniform beliefs has received attention,

especially in the mathematics and computer science literature, in large part

because this setting facilitates average and worst case analyses (see Dzierzawa

and Oméro, 2000; Knuth, 1976; Pittel, 1989). But for our purposes, uniform

beliefs offer a tractable incomplete information setting where agents know

little about the preferences of others.
14But uniformity is not equivalent to M-symmetry. Under M-symmetric beliefs, a

woman may have specific knowledge about how the men rank her. For example, she may
know that all the men prefer her to w2. With uniform beliefs, such knowledge is ruled out.
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Suppose that woman w has preferences uw(⋅) linear in the rank of her

match (where being unmatched is treated as rank N + 1), or else has any

strictly increasing, convex transformation of such preferences. Suppose further

that w has uniform beliefs. Define

k∗(N) ≡ max
⎛
⎝

arg max
k∈{0,...,N}

E[uw(µM [P kw, P̃−w](w))]
⎞
⎠
.

For a market of size N, k∗(N) describes woman w ’s optimal point of trunca-

tion, given that the other women submit their true preference lists. If there

are multiple optima, we conservatively select that which involves the least

truncation. We now have the following theorem.

Theorem 3.1. Let woman w have uniform beliefs and preferences linear in

rank (or any strictly increasing, convex transformation of such preferences).

Then lim
N→∞

k∗(N)
N = 0.

Theorem 4.1 states that as the market size grows large, the fraction of

the list that an individual woman optimally truncates goes to 100%.15 Note

that under uniform beliefs, Roth and Rothblum’s optimality theorem applies.

Hence, the aggressive truncation strategies described in the theorem are the

best overall strategies, not just the optimal truncation strategies.

The intuition behind this theorem can be gleaned from statistical facts

about the most and least preferred achievable mates for women. In large

markets where preferences are uniform, the expected rank of the most pre-

ferred achievable mate of a woman (which is the same as the expected rank
15We thank a referee for pointing out that this theorem will continue to hold if all

agents drew uniformly at random preferences of length αN for α ∈ (0,1). We omit formal
proof of this statement which would require slight adaptations to the theorems that we
cite in our own proof.
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of her mate under WP-DA) is very low relative to the length of her list; it

asymptotes to logN (Pittel, 1989). This suggests that a woman may safely

truncate a large fraction of her list with little risk of becoming unmatched.

Furthermore, the expected rank of a woman’s match under MP-DA is signifi-

cantly worse, asymptoting to N
logN (Pittel, 1989). In fact, for large markets,

Pittel (1992) proved that the worst-off wife will be matched with a husband

at the bottom of her list with probability approaching 1. This large gap in a

woman’s expected most and least preferred achievable mates suggests that

not only is it safe to truncate a large fraction of one’s list in large markets,

but that a woman will also generate gains from such a truncation. See the

appendix for the details of the proof, and Chapter 4 for a discussion of the

unbalanced case in which these properties cease to hold (Ashlagi et al., 2013).

To get a sense of the impact of truncation and to see examples of optimal

truncation levels, we simulate markets of size N = 10, 100, 1, 000, and 10, 000

(Figure 3.1). In each market, we randomly generate a full preference list for

each agent, and calculate an individual woman’s payoff from truncating at

each point in {0, . . . ,N}, where a woman’s payoff is given by (N + 1)− her

partner’s rank. We then iterate 100,000 times and average her payoffs.16

Observe that under truthful reporting, w ’s payoff (given by the right hand

side intercepts) is very close to N
logN , the asymptotic limit found in Pittel

(1989). Even in the largest market we simulated, N = 10,000, w ’s payoff at
16Formally, we are estimating E[v(k, P̃−w)], the expectation of a random variable, by

averaging many independent draws of v(k, P̃−w). With 100,000 draws, the 95% confidence
intervals around each estimate of E[v(k, P̃−w)] are so small that they are imperceptible
when drawn on the graphs. For example, when N = 1,000 and k = 500, the estimate of
E[v(500, P̃−w)] is 874.5, and the 95% confidence interval is (873.8, 875.2).
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Figure 3.1: Simulation Results for Truncation Payoffs. The graphs display
(N + 1)− an individual woman’s expected partner rank from truncating her list at
each point k ∈ {0, . . . ,N} and submitting these preferences to MP-DA. Preference
lists of the other agents are uniformly random, selected from the set of all possible
full length preference list profiles, and payoffs are averaged over 100,000 draws.
Markets are of size 10, 100, 1,000 and 10,000.

the peak is roughly 10% higher than her payoff from truthful reporting. Note

further that in each market, peak utility is lower than N + 1 − logN , the

asymptotic expected rank of a woman’s most preferred achievable mate. A

woman will never be able to do better than this, even with perfect information

about reported preferences of others.

In each of the graphs in Figure 3.1, and especially when N = 1,000 and

N = 10,000, there is a flat area on the right hand side. These lower levels of
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truncation are unlikely to have any impact on payoffs – indeed establishing

this is a crucial step in the proof of Theorem 4.1. Additional truncation can

generate better mates, but still bears little risk of over-truncation. Finally,

for extreme levels of truncation there is a high probability of over-truncation,

leading to a steep dropoff in payoffs. As N grows larger, the “safe range”

increases: we obtain larger flat zones and peaks moving to the left.

3.4 Truncation Equilibria and Welfare

In this section we consider the Bayesian game in which agents must submit

preference lists to MP-DA. We demonstrate that in equilibria in truncation

strategies, compared to outcomes from truthful preference list reporting,

welfare for men is lower, welfare for women is greater, and the expected

number of matches is lower. When there are multiple equilibria that can

be compared in degree of truncation, women prefer the equilibrium where

they truncate most, while men prefer the equilibrium where they truncate

least. In uniform markets, we demonstrate the existence of a symmetric

equilibrium in truncation strategies, but asymmetric equilibria may also

exist. In a truncation equilibrium where some women truncate more than

others, the women who truncate less receive higher payoffs. That is, while

across equilibria women prefer to see higher degrees of truncation, within an

equilibrium, they prefer not to be the ones bearing the risk of truncating.
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3.4.1 Equilibria under General Preferences

Define the Preference List Submission Game as follows: Let U be a finite

subset of the set of all possible utility profiles for I =M ∪W and φ(⋅) be

a distribution over U . Let the message space of any agent i ∈ I be Pi, the

set of all possible strict preference lists for player i, with P =∏
i

Pi. Recall

that µM [P ] gives the MP-DA matching for reported preference lists P . The

Preference List Submission Game is the Bayesian game described by

⟨I,P, µM [⋅], U, φ(⋅)⟩ .

A pure strategy for agent i is a mapping si ∶ Ui →Pi, and a mixed strategy

for i is a mapping σi ∶ Ui → ∆(Pi) which describes a randomization over

submitted preference lists for each possible type. Define a truncation strategy

for woman w as a strategy in which w mixes over truncations of her true

preference list. For any two truncation strategies σw and σ′w for a woman

w, we say that σw involves more truncation than σ′w if the distribution over

truncation points induced by σw first order stochastically dominates the

distribution induced by σ′w.

We will restrict attention to equilibria where men report preferences

truthfully, an assumption motivated by the dominant-strategy result of

Dubins and Freedman (1981) and Roth (1982).17 Define a Bayesian Nash

equilibrium σ = (σm1 , . . . , σmN , σw1 , . . . , σwN ) in which men report truthfully

and women mix over truncation strategies as an equilibrium in truncation

strategies. The following theorem describes welfare in such equilibria.
17If we ignore this requirement, there is always a trivial equilibrium in which all players

submit an empty list.
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Theorem 3.2. Let σ and σ′ be equilibria in truncation strategies in which

each woman truncates more under σ than under σ′. Then compared to the

outcomes in σ′, under σ,

i) welfare for women is weakly greater

ii) welfare for men is weakly lower

iii) the expected number of matches is weakly lower.

Furthermore, under both σ and σ′, i), ii) and iii) hold in comparison to the

outcomes from truthful reporting of preferences to MP-DA.

The results of Theorem 3.2 can be obtained by considering the effect of

incremental truncations in light of Proposition 3.1. An incremental truncation

by a woman w can only negatively affect the welfare of men: a “divorced” man

will receive a worse mate, and the chain of offers that follows can only lead

to worse mates for the other men as well. Since the chain will end in an offer

accepted by some woman, or else in no match, the incremental truncation

weakly decreases the number of matches. This logic underpins results ii) and

iii). At the same time, incremental truncation by a woman has a (weakly)

positive spillover on the welfare of other women: rejection of a man can only

lead to more offers for other women. The spillover from the truncation of

other women, together with her best response requirement, imply that each

woman weakly prefers the equilibrium with more truncation, and that any

truncation equilibrium is preferred to truthful reporting.

Theorem 3.2 is similar in spirit to Kojima (2006) and Konishi and Ünver

(2006) who show that in games of capacity manipulation in hospital-intern

markets, every hospital prefers a Nash equilibrium to any reported profile

131



of larger capacities. Theorem 3.2 also brings to mind the welfare result

in Coles et al. (2013), in which signaling equilibria with varying cutoffs are

compared. In each of these settings, actions by one side of the market –

capacity reduction in Kojima (2006) and Konishi and Ünver (2006), signaling

by women in Coles et al. (2013), and truncation in this paper – serve to “shift

the balance of power.” When there are equilibria with varying degrees of

action, the sides of the market are at odds over which equilibrium is preferred,

and whether any action is desirable at all.18

3.4.2 Equilibria in Uniform Markets

Let a uniform market be the setting in which each agent is equally likely

to have any full preference list. Additionally, agent utility depends on

partner rank, agents identically value a match with their rth ranked choice

∀ r ∈ {1, . . . ,N}, and have identical value to being unmatched.

Theorem 3.3. In uniform markets, there exists a symmetric equilibrium

((σm)N , (σw)N) where men each use the strategy σm of truthful reporting and

women each use the strategy σw, which is a mixture over truncation strategies.

Proof. We begin by constructing an auxiliary game. In this game, the

set of players is the same as in the original game, the set of pure strategies

for each woman is {0,1, ...,N}, and men all have one strategy, {N}. States

of the world are profiles of preferences, which are realized with the same
18Another paper that bears mention is Ashlagi and Klijn (2012), which considers “group

manipulations in truncation strategies” by women in the MP-DA. Such manipulations
weakly benefit other women and harm other men. The results in Ashlagi and Klijn (2012)
differ from ours, as we focus on equilibria and on incomplete information.
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probability distribution as in the original game, but now players learn neither

the preferences of others, nor their own preferences. Payoffs are defined

according to the same utility function as in the original game, where each

player receives the payoff from being matched to his stable partner under the

profiles truncated at levels corresponding to the pure strategies chosen.

A standard argument due to Nash (1951) shows that the auxiliary game

has an equilibrium, symmetric with respect to women. It is easy to see that

this remains an equilibrium in the game where players observe their own

preferences (but not the preferences of others) before choosing an action

(truncation). Finally, returning to the unrestricted game, we recall Roth

and Rothblum’s optimality of truncation theorem from Section 4.2.3. Since

men are playing dominant strategies, and since the strategies yield M-

symmetric beliefs, we conclude that the profile of strategies that we found

is an equilibrium in the game where strategies are unrestricted. If it were

not, then some woman could do strictly better by using a non-truncation

strategy. But since each woman w’s beliefs in this setting areM-symmetric,

a truncation strategy weakly dominates this non-mixed strategy, which yields

a contradiction.19 ◻

In addition to symmetric equilibria, asymmetric equilibria may exist. The

following example illustrates this.

19Using the same proof technique and following Ehlers (2008), we can also prove
that in uniform matching markets that use an anonymous mechanism satisfying positive
association, individual rationality, and independence of truncations, there exists a non-
trivial equilibrium in which all men play the same truncation strategy and all women play
the same truncation strategy. This class of mechanisms includes all priority mechanisms
and all linear programming mechanisms introduced in British entry-level medical markets
and in public school choice in some American cities.
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Example 3.2. Consider a 2×2 uniform market. Suppose each woman derives

utility 10 from being matched to her top choice, 1 from being matched to her

second choice, and 0 otherwise. We first calculate the probability of three

events:

A = {There is a unique stable matching, and in this matching w1 is

matched to her top choice}

B = {There is a unique stable matching, and in this matching w1 is

matched to her second choice}

C = (A ∪B)c = {There are two stable matchings}

A simple calculation shows that P (A) = 5
8 , P (B) = 2

8 and P (C) = 1
8 .

Now suppose agents report preferences to MP-DA. If the other agents

are truthful, w1 should truncate her list to include only her most preferred

man (thus earning 6
8 × 10 > 5

8 × 10+ 3
8 × 1). But if w1 truncates her list in this

manner, w2 has no incentive to truncate at all. Even if it turns out there

was room for beneficial truncation (event C ), w1 has already done the “hard

work” of truncating. She bears the risk of becoming unmatched, but also

shifts the outcome from one matching to the other, improving payoffs for

both women. ◻

Several observations can be made from this example. First, payoffs are

higher in this equilibrium than under truthful reporting, as predicted by

Theorem 3.2. Second, when w1 truncates more, w2 prefers to truncate less.

While we don’t have a result that truncation under uniform preferences is a

case of strategic substitutes, this example (and simulation evidence in Figure

3.3) stand in contrast to the complete information world where truncation
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strategies are strategic complements. There, when some woman wi truncates,

this can only improve (or leave unchanged) the most preferred achievable

mate for each wj . Under complete information, this translates to a (weakly)

greater optimal degree of truncation.

Another observation from the example is that w2’s utility is 6
8 × 10+ 2

8 × 1,

which is greater than the utility of w1, which is 6
8 × 10. That is, the agent

who truncates less has greater utility than the agent who truncates more.

In uniform markets, this result generalizes: within asymmetric truncation

equilibria, we have a crisp preference among women against truncation.

Theorem 3.4 encapsulates this.

Theorem 3.4. Consider any asymmetric equilibrium in a uniform market

where w1 truncates more than w2 (in the sense of first order stochastic

dominance). Then i) if w1 and w2 swap strategies, the resulting profile will

also be an equilibrium and ii) w2 prefers the original equilibrium, in which

she truncates less.

Intuitively, w1 and w2 face the same opposition except for one feature:

each woman “competes” with the other, but not with herself. Woman 2, who

truncates less, benefits from facing competition in which the other woman

truncates more. Given that w1 is willing to take the risk of this truncation,

w2 no longer feels compelled to do so herself.20

20A more general version of Theorem 3.4 also holds. For any Preference Submission
Game with two “symmetric” women, i) and ii) remain valid.
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3.4.3 Simulations: Finding a Symmetric Equilibrium

In this section we run simulations to explore equilibria in a uniform market.

We assume that agents care about the rank of their partners (as in Figure

3.1, graphed as N + 1−rank, so that the graphs display maxima rather than

minima), and we examine a market with N = 30. The simulations suggest that

under these assumptions, there is a pure strategy symmetric equilibrium with

a common truncation point that involves a non-trivial degree of truncation.
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Figure 3.2: Woman w’s expected payoff in a uniform market as a function of
her truncation point when women W /{w} truncate at j. N = 30. Iterations =
1,000,000.

We first examine how returns to truncation for w change when other

women also truncate their lists. In Figure 3.2 we examine the effect on w’s

payoffs when womenW /{w} all truncate at a common point j, where j takes
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on various values. For lower j, curves for w are higher. This follows from

the positive spillover of truncation: when W /{w} truncate their lists, this

benefits woman w.

In Figure 3.2 it is also apparent that as w’s opponents truncate more,

e.g., from j = 30 to j = 25 to j = 15, etc., w should truncate less: as j

increases, peaks move to the right. As in Example 3.2, this stands in contrast

to the complete information result where truncation strategies are strategic

complements. Note that at the extreme, when j = 1, w can never benefit from

truncation. Since truncation still bears risk, her optimal degree of truncation

in this case is N = 30.

Observe also that whenW /{w} submit very short lists, e.g., j ∈ {1, 5, 10},

w’s optimal truncation point is hard to observe because her payoff curve

becomes very flat. The reasons for this flatness are two-fold: When other

women submit very short lists, the expected number of stable matchings is

known to be small (see Immorlica and Mahdian, 2005). Hence, there are

minimal opportunities for beneficial truncation. At the same time, when other

women truncate, the expected partner rank for w is very low (favorable). This

leaves little danger that moderate levels of truncation will leave w unmatched.

The minimal rewards and risks to truncation lead to the flatness of payoff

curves.

By running a very large number of iterations, we identify the peaks of

the curves in Figure 3.2. This exercise corroborates the hypothesis that

under uniform preferences, truncation is a case of strategic substitutes. As

illustrated in Figure 3.3, the optimal truncation point for w is inversely

related to j, the common truncation point of women W /{w}. Of course, due
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to the flatness of the expected payoff graph, optimal truncation points for

small j are “just barely” optimal.
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Figure 3.3: Optimal truncation point of woman w in a uniform market as a
function of the common truncation point j of women W /{w}. N = 30. Iterations =
10,000,000.

By overlaying the 45○ line, we identify the point of truncation in a pure

strategy symmetric equilibrium to be 14, more than a 50 percent truncation

of the entire list.21 When all women truncate at this common point, no single

woman sees significant gains from truncation compared to truthful reporting.

However, since truncation has a positive externality on other women, the
21To test whether this is indeed a symmetric equilibrium, we “guess and verify.” We

repeatedly sample w’s payoffs under (k, j) where k is w’s truncation point and j is the
common truncation point of W /{w}, and establish that w ’s payoffs under (14,14) are
sufficiently distant from those under (15,14), (13,14), and other profiles. To do this, we
construct confidence intervals around (14,14) and, using different draws, around other
profiles. We observe that these intervals have an empty intersection.
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equilibrium payoff is non-trivially greater than the payoff should all women

report truthfully (see Figure 3.2).

This equilibrium potentially leads to ex-post instability with respect to

true preferences. Some women might over-truncate and be left unmatched.

More subtly, when other women truncate, woman w may be paired with a

mate that is not achievable under the true preferences.

These instabilities suggest a possible application of these results: the

impact of strategic behavior on a post-market “scramble” for positions. Since

truncation can lead to unmatched participants following the match, a second,

organized match might be helpful to find partners for these agents. Indeed,

post-market scrambles have been organized in both the market for medical

residents as well as in the job market for new economists.22

At first observation, an organized scramble would reduce the downside

to remaining unmatched in the primary match. But this might induce

additional risk-taking behavior (more truncation) by participants. Such

behavior would increase the pool size in the second match, raising the value

of being unmatched, inducing even more truncation. A secondary match might

ultimately enjoy high participation levels, but only because it has drawn

participants away from the primary match, complicating overall welfare

analysis.
22The NRMP offers the “Supplemental Offer and Acceptance Pro-

gram” (SOAP), which replaced a somewhat less orderly scramble (see
http://www.nrmp.org/2012springmeeting.pdf). The American Economic Associa-
tion organizes the “Scramble” in which candidates seeking jobs and employers with
positions open late in the job market can announce their availability on the AEA website
(see http://www.aeaweb.org/joe/scramble).
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3.5 Truncation and Risk Aversion

While gains to truncation can be significant, truncation is nevertheless a risky

strategy. When w’s opponents truncate, truncation for w is particularly risky:

compared to truthful reporting, optimal truncation offers minimal benefit,

and over-truncating can lead to large losses. One might expect agents with

more conservative attitudes toward risk to shy away from this proposition.

In this section, we ask how a woman’s truncation behavior varies as we vary

her attitude towards risk.

We consider a general setting, with arbitrary preferences for woman w

and beliefs about reported preferences of others. Let ψ(⋅) be any strictly

increasing, concave transformation. We will show that for any beliefs about

others, woman w with preferences uw(⋅) will truncate more than a woman

wψ who has identical beliefs, but preferences given by ψ(uw(⋅)).

Recall that when we fix w′s preferences to be uw(⋅), we defined shorthand

v(k,P−w) ≡ uw(µM [P kw, P−w](w)),

her payoff from submitting truncated preference list P kw. Now define

vψ(k,P−w) ≡ ψ(uw(µM [P kw, P−w](w)),

the payoff from submitting truncated preference list P kw for a woman wψ with

preferences ψ(uw(⋅)).

The following theorem states that if w prefers truncating less to more,

then wψ definitely prefers truncating less to more.

Theorem 3.5. Let P̃−w be any random variable distributed over P−w. Then
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∀k ∈ {1, . . . ,N − 1},∀t ∈ {1, . . . ,N − k} we have

E [v(k, P̃−w)] ≤ E [v(k + t, P̃−w)] ⇒

E [vψ(k, P̃−w)] ≤ E [vψ(k + t, P̃−w)] .

Furthermore, if i) ψ(⋅) is strictly concave, and ii) under P̃−w, each man is

achievable for w with positive probability, then the second inequality is strict.

The constructive proof nicely illustrates incremental truncation analysis,

so we provide it in-text.

Proof. We begin with the proof for t = 1. An analogous argument works for

all other t in the given range, with necessary proof adjustments described

at the end. Our technique focuses on two lotteries over outcomes. Let Qk+1

be the lottery over mates for w when she truncates at k + 1, and let Qk be

the lottery when she truncates at k. Our goal is now to show that if Qk

is mean-decreasing as compared to Qk+1 from w’s perspective (in terms of

her von Neumann-Morgenstern utility), then it will be mean-decreasing from

wψ’s perspective as well.

Distributions Qk+1 and Qk are shown in Figure 3.4. Recalling Proposition

3.1, k-truncating is equivalent to (k + 1)-truncating followed by k-truncating.

That is, lottery Qk is equivalent to starting with lottery Qk+1, then rolling

the die again if w receives her (k + 1) ranked choice. Hence,

qki ≥ qk+1
i ∀i ∈ {1, .., k} ∪ {w}.

Let shorthand ui(Q), i ∈ {w,wψ} describe i’s expected utility from lot-

tery Q. Suppose first that uw(Qk) = uw(Qk+1), that is, E [v(k, P̃−w)] =
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Figure 3.4: k-Truncation is equivalent to (k + 1)-truncation followed by an extra
gamble: divorcing man k + 1.

E [v(k + 1, P̃−w)], so that from w’s perspective, Qk is a mean-preserving

spread of Qk+1. Then by Jensen’s inequality, uwψ(Qk) ≤ uwψ(Qk+1) . If

ψ(⋅) is strictly concave and Qk ≠ Qk+1 (which follows from ii) ), then

uwψ(Qk) < uwψ(Qk+1).

Now suppose that uw(Qk) < uw(Qk+1), so that from w’s perspective,

Qk is mean-decreasing as compared to Qk+1. We will now construct an

intermediate lottery Q′ such that

1. Qk+1 Pw-stochastically dominates Q′ and

2. From w’s perspective, Qk is a mean preserving spread of Q′.

Define lottery Q′ so that Q′ is identical to Qk+1, except that we replace

outcome k + 1 (w’s (k + 1) ranked choice) with lottery α(k + 1) + (1 − α)w.

Choose α ∈ [0,1] such that w has uw(Q′) = uw(Qk). Such an α must exist:
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when α = 1, Q′ = Qk+1, and when α = 0, uw(Q′) ≤ uw(Qk). Our desired α

follows from the Intermediate Value Theorem.

By construction, Qk+1 Pw-stochastically dominates Q′. With respect to

w’s utility, we also have that Qk is second order stochastically dominated by

Q′. To see this, observe that Q′ was constructed to have the same mean as

Qk, and that compared to Q′, Qk shifts probability mass to the extremes:

qkj ≥ q′j for j ∈ {1, .., k} ∪ {w}.

Since Pw = Pwψ , by Pw-stochastic dominance, wψ also strictly prefers

Qk+1 to Q′. By Jensen’s inequality, wψ weakly prefers Q′ to Qk. Hence,

uwψ(Qk) < uwψ(Qk+1),

so the theorem is proved for t = 1.

When t > 1, we may again construct an intermediate lottery Q′ , this time

that transfers weight from {k + 1, k + 2, . . . , k + t} to the unmatched option

w. Just as before, we can construct Q′ to ensure that Qk+1 Pw-stochastically

dominates Q′ , and that from w’s perspective, Qk is a mean preserving spread

of Q′. The key insight is that truncation transfers probability mass to the

extremes: the most preferred mates, as well as the unmatched option. ◻

We can now use Theorem 4.5 to sort optimal truncation points based on

degree of concavity.

Corollary 3.1. Let kli be the minimum optimal truncation point (by rank)

and let khi be the maximum optimal truncation point for woman i ∈ {w,wψ}.

Then klw ≤ klwψ and khw ≤ khwψ . Furthermore, if conditions i) and ii) from

Theorem 4.5 hold, then khw ≤ klwψ .
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Proof. If klw is w’s minimum optimal truncation point, then w strictly

prefers truncation at klw to truncation at any k < klw. Following the reasoning

of Theorem 4.5, wψ must then prefer truncation at klw to truncation at any

k < klw. Hence, klw ≤ klwψ . A similar argument can be used to show khw ≤ khwψ .

If khw is w’s maximum optimal truncation point, then w (weakly) prefers

truncation at khw to truncation at any k < khw. If conditions i) and ii) hold,

then wψ must strictly prefer truncation at khw to truncation at any k < khw.

Hence, khw ≤ klwψ . ◻

Thus, when facing the same environment, players who are more risk averse

truncate less, with the set of optimal truncation points overlapping at the

very most at one point.

The key insight in the analysis is the interpretation of truncation as a risky

lottery, and then mapping the additional risk associated with incremental

truncation to an extra lottery a woman must face. If a woman doesn’t like to

face the extra lottery, then certainly a woman with more concave preferences

will not want to face it.

Note that despite pertaining to risk aversion, the results in this section do

not restrict the structure of uw(⋅) in any way. For example, we do not require

uw(⋅) to be “concave.” Rather, it is the relative concavity that is crucial. For

example, if we restrict ourselves to the class of functions that are s-shaped

in rank, we know that within this class, concave transformations induce less

truncation.

In a general sense, this result can be taken as advice to participants.

Players can observe the patterns of behavior of others, size up their own
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attitudes toward risk, and truncate more or less accordingly. In markets where

there is a steep dropoff in utility from a woman’s most preferred partner to

her second choice, a smaller dropoff from choice two to three, and so forth, we

may anticipate more aggressive truncation. On the other hand, if participants

are largely content with any of the available choices, but see great disutility

from being unmatched, truncation is not advisable.

This result can also offer advice to a market designer. If an objective is

to maximize the number of matches, a market designer may wish to choose

the less risk averse side to be the “proposers” in the Deferred Acceptance

Algorithm. If the two sides of the market are identical in all regards except for

their risk preferences, the more risk averse side will be less likely to truncate,

even if manipulations increase their expected partner rank. Lower levels of

truncation will increase the number of realized matches, and consequently,

reduce the number of participants left unmatched. However, in making

this choice, the market designer should take other market features into

consideration as well, as we demonstrate in the next section.

3.6 Correlated Preferences

In the Preference List Submission Problem for Women, we now let woman

w believe other women in the market have preferences similar to hers. We

consider how woman w should vary her degree of truncation as the degree of

similarity varies. We provide evidence, both theoretical and simulation-based,

that the greater the similarity in the preferences of other women to her own,

the less woman w should truncate.
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3.6.1 Perfectly Correlated Preferences

We consider first the case of perfectly correlated preferences on the women’s

side of the market.

Remark. When women have identical preferences, there is a unique stable

matching.

To see this, note that the top-ranked man, as agreed upon by all women,

must be matched with his most preferred partner in any stable matching,

or else these two would constitute a blocking pair. The second-ranked man

must then be matched to his most preferred remaining woman, and so on.

MP-DA reduces to a serial dictatorship, determined by the common ranking

of the men.

Since there is a unique stable matching in this setting, an individual

woman’s misrepresentation of her preference list can never improve her match.

In fact, if a woman is certain that other women share her preferences (and

are reporting truthfully), but is uncertain about what men will submit to

the algorithm, truncation can very well lower her outcome by leaving her

unmatched.

3.6.2 Partially Correlated Preferences

In this section, we introduce a notion of partial correlation of preferences

indexed by a single parameter α. We will show that the greater the degree of

correlation, the less a woman should truncate.

Consider the Preference List Submission Problem for woman w with

preferences uw and beliefs P̃−w about reported preference lists of opponents.
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Let p(⋅, ⋅) be the probability mass function for w’s beliefs. That is,

p(PM, PW /{w})

gives the likelihood that the men will report preference lists PM and women

W /{w} will report preference lists PW /{w}. Define the marginal probability

over mens’ preference profiles by pM(⋅).

Given p(⋅, ⋅), define beliefs pC(⋅, ⋅) by

pC(PM, PW /{w}) ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

pM(PM) if Pŵ = Pw ∀ŵ ∈W /{w}

0 otherwise
.

pC(⋅, ⋅) is the distribution that preserves the marginal distribution over men’s

preferences pM(⋅), but where the other women share the preferences of w.

Define beliefs pα(⋅) by

pα(P−w) ≡ (1 − α)p(P−w) + αpC(P−w).

Hence, as α varies from 0 to 1, pα ranges from p to pC . The marginal

distribution over men’s preferences remains fixed, while the correlation of

women’s preferences steadily increases (the distribution remains constant if

p = pC).

The set of optimal truncation points for woman w with preferences uw

and beliefs indexed by α is given by

k∗(α, p, uw) ≡ arg max
k∈{0,...,N}

Epα[v(k, P̃−w)].

Notice that since the choice set is finite, k∗(⋅, ⋅) will be non-empty.

Let kh(α, p, uw) = max[k∗(α, p, uw)] and kl(α, p, uw) = min[k∗(α, p, uw)],
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the optimal choices involving the least and most truncation respectively.

The following proposition states that for any preferences uw and beliefs

p, as we increase the degree of correlation α, woman w should truncate less.

Proposition 3.2. Let α,α′ ∈ [0,1] with α′ > α. Then kl(α′, p, uw) ≥

kl(α, p, uw) and kh(α′, p, uw) ≥ kh(α, p, uw).

The proof relies on the fact that when there is a unique stable matching,

it can never hurt to submit a full list. Using this fact, we can show that if

under low correlation, w prefers truncating less to more, then under high

correlation w definitely prefers truncating less to more. This is enough to

sort optimal truncation points.

Intuition for this result is related to the size of the set of stable match-

ings. Truncation can yield improvement only when there are multiple stable

matchings. The greater the degree of correlation, the smaller this set, and

the lower the likelihood that a window for gain from truncation exists.

The anticipated level of correlation in the environment might influence

the advice a market designer offers participants. If correlation is high, the

designer can safely advise participants to report truthfully, and it is in

their best interest to do so. With low correlation (sufficiently heterogeneous

preferences), players may anticipate gains from truncation, which if acted on,

could lead to unstable matchings.

3.6.3 Noisy Preferences

In Section 3.6.2, a woman believes it is possible that opponents have prefer-

ence lists identical to hers. In this section, woman w believes women have

148



preference lists similar to hers, but not necessarily identical. We model such

beliefs for women by generating noisy deviations from a common preference

list. By performing simulations, we corroborate the theoretical results in

Section 3.6.2; more correlation means a woman should truncate less.

We generate correlated preferences as follows. Each man mi is assigned a

random number ri ∼ U[0, 1], and this value is agreed upon by all women. For

each man mi, each woman wj also assigns an idiosyncratic (noise) component,

qij ∼ U[0, 1]. Woman wj ’s rankings over men are then determined by the sum

α ⋅ ri + (1 − α)qij , where α ∈ [0,1] is a parameter that we will vary. Observe

that from the perspective of any woman w, the preferences of other women

are noisy versions of her own rankings. Values of α close to one imply low

noise, so α measures the degree of correlation. Men are assumed to have

uniformly random rankings over the women.23

The process just described is used only to determine preference orderings.

We further assume that w ’s payoff is given by (N + 1 − partner rank), and

being unmatched is just worse than being matched to her least preferred

man, so we can compare outcomes to those depicted in Figure 3.1.

Figure 3.5 graphs the return to truncation for various values of α. For

each value, we randomly generated 100,000 preference list profiles and for

each k, we graph woman w ’s average payoff from k-truncation, when other

agents are truthful.

When α = 0 (the top curve), this corresponds to uniform beliefs for w,
23The common starting point for preferences might be an aggregate ranking based

on available data, like the US News and World Report’s annual ranking of universities.
Caldarelli and Capocci (2000) simulate preferences in a one-to-one model similarly. In
their model, the common component ri is a man’s “beauty,” which in their view, evidently,
is not in the eye of the beholder.
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Figure 3.5: The graphs display (N + 1)− an individual woman’s expected partner
rank from truncating her list at each point k ∈ {0, . . . ,N} and submitting these
preferences to MP-DA. Preference lists of men are uniformly random, and lists for
women are randomly generated using the procedure described in the text. Payoffs
are averaged over 100,000 draws.

the case studied in Section 3.3.4. When α = 1, all women rank men the same

way, the stable matching will be unique, and truncation cannot be helpful

(as in Section 3.6.1).

From Figure 3.5, we make two key observations. First, woman w dislikes

correlation. This fact is easy to explain. If all women agree on who the top

men are, they “compete” for them as mates. The lower the correlation, the

less the competition, and the better the expected mate for w. Second, w’s

optimal truncation point increases as correlation increases. This corroborates
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the result in Section 3.6.2: when there is more correlation, w should truncate

less.

3.7 Discussion and Conclusion

In this paper, we study optimal strategic behavior in one-to-one matching

markets that are based on the Deferred Acceptance Algorithm, when agents

have incomplete information about the preferences of others. We focus

on truncation strategies. Among classes of strategies for preference list

misrepresentation, truncation is an attractive option because it is guaranteed

to weakly increase the likelihood of matching with one’s more preferred

partners. By contrast, more complicated strategies, such as swapping the

order of agents in a preference list, may require detailed information about

the preferences reported by others, and their outcomes are more difficult to

predict.

Recent work by Immorlica and Mahdian (2005), Kojima and Pathak

(2009) and others demonstrate that in large markets where agents submit

short preference lists, opportunities for manipulation are limited. Lee (2011)

presents a random utility model and shows that, in some sense, gains from

manipulation become small in large markets.24 In light of these findings one

may ask whether agents – especially agents with little detailed information

– can ever substantially gain from manipulation. Our paper answers in the

affirmative. When agents view reported preference lists of others as being
24Lee’s model is more general than ours, in many respects. Note, however that his

model requires agent utilities to be bounded, while our model does not exclude unbounded
functions.
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drawn uniformly from the set of all possible full length preference lists, they

may truncate their lists with little risk of being unmatched, but with the

potential to see large gains in terms of the expected partner rank. Importantly,

we show that while according to Lee (2011), utility gain from manipulation

may be small, the optimal truncation may still be substantial. This finding

provides an essential qualification to his results.

For many of the settings in which the Deferred Acceptance Algorithm

has been successfully applied, notably in the NRMP and in the Boston and

New York school systems, the markets do reflect large numbers and short

preference lists. But the high levels of optimal truncation demonstrated in

this paper raise a key issue: in large markets where agents submit short

preference lists, can we be sure that the short lists were not simply the result

of optimization? Costliness of information discovery often places natural

limits on the length of submitted preference lists. Flyouts are costly for

medical students; perhaps somewhat less so for hospitals. Nevertheless, this

paper illustrates the theoretical possibility that even with full information

about one’s own preferences, substantial truncation (submission of short lists)

may simply be utility-maximizing strategic behavior.
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Chapter 4

Strategic Behavior in

Unbalanced Matching

Markets1

4.1 Introduction

A great success story in economic theory is the application of the Deferred

Acceptance Algorithm (DAA), proposed by Gale and Shapley (1962), to real

world two-sided matching markets. The DAA and its variants have been used

extensively in school choice settings (Abdulkadiroğlu et al., 2005), and most

famously in the National Resident Matching Program (Roth and Peranson,

1999). The advantages of mechanisms using DAA over other mechanisms

have been discussed extensively (See for example (Roth, 1990)). Importantly,
1Co-authored with Peter Coles
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it was shown that while no stable matching mechanism is strategy proof,

mechanisms applying the DAA have truthful reporting as a dominant strategy

for the proposing side (Dubins and Freedman, 1981; Roth, 1982). The choice

of the proposing side has received some attention in the public domain and in

the literature (Roth and Peranson, 1999), but the general message that has

emerged from this body of literature is that the choice of the proposing side

has a small effect over agents’ utilities (Roth and Peranson, 1999; Immorlica

and Mahdian, 2005; Kojima and Pathak, 2009; Lee, 2011; Ashlagi et al., 2013;

Azevedo and Leshno, 2012).

This paper takes a different perspective on this issue. We look for the

(exact) best responses of agents, and consider the degree of manipulation

expected in the market. To do this, we restrict attention to truncation

strategies, which are endowed with a natural metric for measuring the extent

of manipulation (how many acceptable partners were declared unacceptable).

This class of strategies was shown to be optimal in symmetric low-information

settings (Roth and Rothblum, 1999; Ehlers, 2004). We derive comparative

statics on the extent of manipulation as a function of risk aversion and

correlation, and show that more risk averse agents submit longer lists (so

they are “more truthful”) and that correlation in preferences also reduces the

incentives to manipulate. These results are similar to the findings of Coles

and Shorrer (2014), but they are more general as we do not assume that the

markets are balanced.

The main innovation in this paper is inspired by the results of Ashlagi et al.

(2013). In contrast to the findings of Roth and Peranson (1999) regarding the

“large core” of markets when agents have long preference lists, and the related
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findings of Pittel (1989), Ashlagi et al. (2013) show that if the number of

agents on each side of the market is not balanced, the core becomes small in

the typical case. So while the gap between men (women) expected partner

ranks under the men and women proposing versions of the DAA is high in

a balanced marked, even a slight imbalance “shrinks” this gap significantly.

In light of this finding we ask: What are the effects of imbalance on the

incentives to misrepresent one’s preferences? The answer is: it depends!

Under the men-proposing version of the DAA, if there are more women than

men, women optimally submit “long” lists. When the sides of the market

are balanced, a woman facing truthful opponents should submit a short

list; asymptotically she truncates 100% of her list. When women are over

demanded (on the short side), we provide simulation evidence that extreme

truncation is still optimal. We also show that truncation is “safe” when

women are on the short side, but not when they are on the long side of

the market. To summarize, the extent of optimal truncation may crucially

depend on whether the strategic agents (the ones not on the proposing side)

are on the long side or the short side of the market.

A market designer may prefer that agents submit either long or short

lists. She may be concerned about the incentives for truthfulness for several

reasons. For one, she may wish to advise participants that being truthful will

not harm them, so as to “level the playing field” between savvy and naive

agents (Pathak and Sonmez, 2008; Featherstone and Mayefsky, 2010). The

number of matched agents and the (ex-post) stability of the match may also

be affected (Featherstone and Niederle, 2011). An additional reason why

designers may want to induce truthful reporting is that the submitted profiles
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may provide a signal as to the desirability of agents on the two sides of the

market. In school choice settings, for example, truthful reporting allows

school districts to learn about the actual desirability of different schools (??).

But market designers may also have reasons to favor shorter lists. From a

computational perspective, running the DAA on shorter lists is faster. More

importantly, the designer may think that there is a cost (actual or mental)

to the system or to participants on one side of the market for generating

a long preference list. For example, a school may be required to give each

applicant a tour, paperwork may be required for each school that appears

on an applicant’s list, and a student may simply find it hard to compare his

100th and 101st choices. We take no stand on whether ensuring truthfulness

or promoting short lists is more desirable, but merely wish to provide advice

to the market designer given objectives regarding list length.

4.2 Preliminaries

We begin by setting out the basic model of matching. Following Coles and

Shorrer (2014), and in contrast to some of the well-known papers in the field

of matching, we endow agents with cardinal rather than ordinal preferences.

4.2.1 Marriage Markets and Stability

In this paper, only one-to-one two sided matching markets will be considered.

We call these markets marriage markets for short, and label one side on the

market as men M, and the other as women W. Both men and women are

referred to as agents.
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The preferences of man m ∈M are given by a von Neumann-Morgenstern

utility function um ∶W ∪{m}Ð→ R. um(w) is the utility that man m derives

from being matched with woman w with certainty, and um(m) is his utility

from being unmatched. For simplicity, we assume that um is one-to-one, so

that there are no indifferences. Preferences for women are defined similarly.

We denote by u = Π
i∈M⊍W

ui the profile of agents preferences.

Since we have assumed that agents’ preferences are one-to-one, they

induce strict preference orderings on all possible partners and the possibility

of remaining unmatched. For a man m ∈M we denote by Pm the preference

list over W ∪ {m} that is induced by um. For example, Pm ranks w3 higher

than w1 if um (w4) > um (w1). We say that w ∈ W is acceptable for m if

um(w) > um(m), so m prefers being matched with w over remaining single.

We sometimes omit unacceptable mates fromm’s preference list for notational

convenience. Preference lists for women are defined similarly, and we denote

by P the profile of all preference lists.

A matching µ is a mapping from M ∪W to itself, such that for each

m ∈M we have that µ(m) ∈W∪{m}, for each w ∈W we have µ(w) ∈M∪{w}

and for each x ∈M⊍W µ2(x) = x. When µ(x) = x we say that x is single

or unmatched under the matching µ. Otherwise, we refer to µ(w) as w’s

husband and µ(m) as m’s wife under the matching µ. We also use the terms

partner and mate. The preferences over partners induce natural preference

order over matchings, where each agent ranks the matchings according to the

partner that is assigned to him.

A matching is individually rational if for every x ∈M⊍W, the agent x

weakly prefers µ(x) to remaining single. A matching is blocked by a pair
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(w,m) ∈W ×M if both w prefers m to µ(w) and m prefers w to µ(m). A

matching is stable if it is individually rational and not blocked by any pair.

There always exists a stable matching in a market, but in general there may

be more than one (Gale and Shapley, 1962). For given preferences, we say

that a woman w is achievable for a man m if there exists a stable matching

µ such that µ(w) =m. A symmetric definition applies to womens’ achievable

mates.

4.2.2 The Men-Proposing Deferred Acceptance Algorithm

To prove that every marriage market has a stable matching, Gale and Shapley

(1962) proposed the Men-Proposing Deferred Acceptance Algorithm (MP-

DA). It takes as an input a profile of preferences P of a set of agentsM⊍W

and outputs a stable matching µM [P ]. When P is clear form the contexts,

we sometimes omit it and write µM instead of µM [P ]. The following is a

description of the algorithm.

• Step 1. Each man proposes to the first woman on his preference

list. Each woman then considers her offers, rejects all men deemed

unacceptable, and if any others remain, rejects all but her most preferred

mate.

• Step k . Each man who was rejected in step k− 1 makes an offer to the

next woman on his preference list. If his preference list is exhausted,

or if he prefers bachelorhood to the next woman on his list, he makes

no offer. Each woman behaves as in step 1, considering offers in hand
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(including any man she has retained from the previous step) and rejects

all but her most preferred acceptable suitor.

• Termination. If in any step k, no man makes an offer, the algorithm

terminates. Each woman is paired with her current mate and this

matching is final.

Gale and Shapley show that this algorithm must terminate in finite time,

and they provide a remarkable characteristic of the resulting outcome.

Theorem. (Gale-Shapley) The matching µM resulting from MP-DA is stable.

Furthermore, for any other stable matching µ, every man weakly prefers µM

to µ and every woman weakly prefers µ to µM .

Since there is no actual content to gender (it is just a label), it is clear

that the women-proposing version of the algorithm (WP-DA) has identical

but reversed properties. We denote its output given an input P by µW [P ].

As discussed by Roth (1990), stability is a desirable property for a

matching mechanism. But the theorem illustrates a particular feature of the

stable matching produced by the MP-DA (WP-DA); it is the most desirable

stable matching for men (women), and the least desirable for women (men).

This paper focuses on the strategic incentives that emerge from this property

under incomplete information, and their effects on the realized matchings

given strategic reporting.
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4.2.3 The Preference List Submission Problem

We now turn to study the incentive properties of stable matching mechanism

which use the MP-DA. In a setting where agents are asked to report preferences

lists to the mechanism, we consider if they have an incentive to report

truthfully, or to submit a different preference list.

Consider a set of agentsM⊍W. Agent i ∈M⊍W with preferences ui

must submit a preference list P̂i to MP-DA, where P̂i is chosen from the set

of i ’s possible preference lists Pi. The agent’s beliefs about what preference

lists others will report are represented by the random variable P̃−i, which

takes as its range P−i, the set of all possible preference list profiles for others.

Note that since ui is a von Neumann-Morgenstern utility function, agent i

may compare outcomes in this incomplete information setting.

Agent i solves the Preference List Submission Problem:

max
P̂i∈Pi

E[ui(µM [P̂i, P̃−i](i))].

Dubins and Freedman (1981) and Roth (1982) have shown that for any

man m with preferences um and beliefs P̃−m, it is optimal for m to submit

his true preference list Pm (which corresponds to um).

Theorem. (Dubins and Freedman; Roth) In the Preference List Submission

Problem,

Pm ∈ arg max
P̂m∈Pm

E[um(µM [P̂m, P̃−m](m))].

This is not the case for women, as they may misrepresent their preferences

and get preferable outcomes in some settings (Roth, 1982). A natural way to

misrepresent one’s preferences is by submitting a truncated preferences list.
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A truncated preference list is identical to the original one, except that some

acceptable partners are declared unacceptable. Denote by P kw the preference

list which includes in order only w’s k most preferred men, and call this

the k-truncation of her true preference list Pw. If fewer than k men are

acceptable to w, then P kw ≡ Pw. Truncation generates a simple tradeoff which

is described by the following proposition:

Proposition. Let P be the preference list profile of all agents in M⊍W.

Then µM [P kw, P−w](w) is w’s least preferred achievable mate under P with

rank ≤ k. Should no such mate exist, µM [P kw, P−w](w) = w.

The proposition implies that when others’ submitted preferences lists

are known with certainty it is easy to find a truncation strategy that would

match the woman with her most preferred achievable partner, but also that

when there exists uncertainty about others’ submitted lists truncation may

yield each of the three possible results relative to truthful reporting:

1. No effect - when woman w has truncated below her least preferred

achievable mate

2. Improvement - when woman w truncates above her least preferred

achievable mate, and is matched with her least preferred achievable

mate above the point of truncation

3. Turning unmatched - when woman w has an achievable mate, but has

over-truncated by truncating above her most preferred achievable mate

Since the realized outcome depends on the realized profile that others submit,

each truncation yields a lottery given the beliefs P̃−w, and the problem of
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choosing the optimal truncation corresponds to choosing the most preferable

lottery.

Optimality of Truncation

Truncation is not the only possible misrepresentation of preferences. A woman

could reverse two men in her preference list, list men as acceptable who are

in fact unacceptable, drop men from the middle of her list, or use some

combination of these. However, under some conditions, truncation is optimal.

The next proposition states that under certainty, women can do no better

than to truncate (Roth and Vande Vate, 1991).

Proposition. (Roth and Vande Vate) Suppose woman w has preferences uw

and knows others will report preference lists P−w to MP-DA. Then truncating

such that µW (w) is the last acceptable partner on her list is an optimal

strategy for w.

Perhaps surprisingly, when a woman has very little information about

the preference lists others might report, she again can do no better than to

truncate. In order to gain from non-truncation misrepresentations, such as

swapping the positions of two men in her reported preference list, a woman

must have very specific information about the preference lists others report.

Without such information, it is best to leave the men in their correct order.

Roth and Rothblum (1999) demonstrate this principle using the following

framework.2

2Ehlers (2004) provides weaker conditions, in the same spirit, under which truncation
is still optimal.
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Let woman w’s beliefs about reported preference lists of others be rep-

resented by P̃−w, a random variable taking on values in P−w. If P−w is a

preference list profile for agents −w, define Pm↔m′

−w to be the preference list

profile in which m and m′ swap preference lists, and all women swap the

positions of m and m′ in their lists. We say that woman w’s beliefs are

(m,m′)-symmetric if Pr(P̃−w = P−w) = Pr(P̃−w = Pm↔m′

−w ) for all P−w ∈ P−w.

For a subset M′ ⊆M, beliefs P̃−w are M′-symmetric if they are (m,m′)-

symmetric for all m,m′ ∈M′.

Theorem. (Roth and Rothblum) Suppose w’s beliefs about reported preference

lists of others areM-symmetric. Then any preference list P̂w she might submit

to MP-DA is weakly Pw-stochastically dominated by some truncation of her

true preference list.3

Hence, when w is certain about reported preference lists of her opponents,

or when she has extreme, symmetric uncertainty, truncation is optimal.

The Truncation Problem

Even when truncation is not optimal, we may sometimes wish to restrict the

choice set for women to truncations of her true preference list. We define

the Truncation Problem for woman w with preferences uw and beliefs P̃−w

on others’ submitted preference lists as

max
k∈{0,...,N}

E[uw(µM [P kw, P̃−w](w))].

3P̂w is Pw-stochastically dominated by P̂ ′

w iff for any vNM utility function that
corresponds to Pw, the expected utility from submitting P̂ ′

w is at least as great as the
expected utility from submitting P̂w.
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4.3 Optimal Truncation in Unbalanced Markets

Following Coles and Shorrer (2014) and Ashlagi et al. (2013) we consider

a setting where each agent draws independently uniformly at random a

complete preference list (so that all mates are acceptable).4 We assume

further that for each agent i, ui (⋅) is linear in the rank of i’s match, where

being unmatched is treated as rank one below the lowest ranked mate. For a

balanced uniform market with N men and N women, define

k∗(N) ≡ max
⎛
⎝

arg max
k∈{0,...,N}

E[uw(µM [P kw, P̃−w](w))]
⎞
⎠
.

k∗(N) describes woman w ’s optimal point of truncation, given that the other

agents submit their true preference lists. If there are multiple optima, we

conservatively select that which involves the least truncation. Coles and

Shorrer (2014) prove the following theorem.

Theorem 4.1. Let woman w have uniform beliefs and preferences linear in

rank (or any strictly increasing, convex transformation of such preferences).

Then lim
N→∞

k∗(N)
N = 0.

Theorem 4.1 states that for balanced markets, as the market size grows

large, the fraction of the list that an individual woman optimally truncates

goes to 100%. The intuition behind this theorem can be gleaned from

statistical facts about the most and least preferred achievable mates for women.

In large balanced markets where preferences are uniform, the expected rank
4While this assumption is not very realistic for real markets, it may serve as an

approximation for the behavior of the top tiers in a tiered market. For example, it may be
the case that everyone agrees about the composition of the top tier of schools and students,
but personal tastes causes the orderings to vary (Ashlagi et al., 2013).
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of the most preferred achievable mate of a woman (which is the same as the

expected rank of her mate under WP-DA) is very low relative to the length

of her list; it asymptotes to logN (Pittel, 1989). This suggests that a woman

may safely truncate a large fraction of her list with little risk of becoming

unmatched. Furthermore, the expected rank of a woman’s match under

MP-DA is significantly worse, asymptoting to N
logN (Pittel, 1989). In fact, for

large markets, Pittel (1992) proved that the worst-off wife will be matched

with a husband at the bottom of her list with probability approaching 1.

This large gap in a woman’s expected most and least preferred achievable

mates suggests that not only is it safe to truncate a large fraction of one’s

list in large markets, but that a woman will also generate gains from such a

truncation.

Figure 4.1 presents simulation results for balanced markets of size 10, 100,

1,000 and 10,000. It is clear from the figures that, when all other agents are

truthful, the best response of a strategic woman is to submit a (very) short

list. It also appears that the gains from truncation may be significant. In

a market of size 10,000, the partner rank could potentially be reduced by

about 1,000 in expectation (10% of the market size).

The recent paper by Ashlagi et al. (2013) implies that the large gap

between the best and worst stable partners is a knife-edge case. When markets

are even slightly unbalanced, under any stable matching the rank of the mates

that an agent on the over demanded side of the market gets is approximately

logN in expectation, while the other side can expect approximately N
logN .5

5The approximations calculated by Ashlagi et al. (2013) involve multiplicative constants
and describe expected payoffs conditional on an agent being assigned a partner.
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Intuitively, these results imply that unbalanced matching markets typically

have a “small core.” In turn this suggests that submitting a long list may

constitute an optimal strategy in unbalanced uniform markets. In light of

their findings, we inspect strategic behavior in the unbalanced setting.
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Figure 4.1: Simulation Results for Truncation Payoffs. The graphs display
(N + 1)− an individual woman’s expected partner rank from truncating her list at
each point k ∈ {0, . . . ,N} and submitting these preferences to MP-DA. Preference
lists of the other agents are uniformly random, selected from the set of all possible
full length preference list profiles, and payoffs are averaged over 100,000 draws.
Markets are of size 10, 100, 1,000 and 10,000.

4.3.1 The Case of More Women Than Men

Given L ≥ 0, for a market with N men and N +L women define
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k∗(N,L) ≡ min

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

arg max
k∈{0,...,N}

E[uw(µM [P kw, P̃−w](w))]
⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
.

k∗(N,L) describes woman w ’s optimal point of truncation, given that the

other agents submit their true preference lists. If there are multiple optima,

we conservatively select that which involves the most truncation. Note that

for L = 0, k∗(N,0) ≤ k∗(N) so the results of Theorem 4.1 apply to k∗(N,0).

We now have the following theorem, which constitutes a partial converse

of Theorem 4.1. The theorem shows that the intuition from Ashlagi et al.

(2013) extends to the incomplete information setting when women are over

demanded.

Theorem 4.2. Given L > 0, consider a market with N men and N + L

women. Let woman w have uniform beliefs and preferences linear in rank

(or any strictly increasing, concave transformation of such preferences).

Then k∗(N,L)
N ≥ L

L+1 so lim
N→∞

k∗(N,L)
N ≥ L

L+1 . In particular k∗(N,L)
N ≥ 1

2 and

lim
N→∞

k∗(N,L)
N ≥ 1

2 .

Proof. Recall that a truncation by woman w could lead to one of three results:

1. No effect: woman w has truncated below her least preferred achievable

mate

2. Improvement: woman w truncates above her least preferred mate,

and is matched with her least preferred achievable mate above the point of

truncation

3. Becoming unmatched: woman w has an achievable mate, but has

over-truncated, truncating above her most preferred achievable mate
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(e) 110 women
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Figure 4.2: Simulation Results for Truncation Payoffs. The graphs display
101– an individual woman’s expected partner rank from truncating her list at each
point k ∈ {0, . . . ,100} and submitting these preferences to MP-DA. Preference lists
of the other agents are uniformly random, selected from the set of all possible full
length preference list profiles, and payoffs are averaged over 100,000 draws. All
markets have 100 men, and the number of women varies between 90, 95, 99, 101,
105 and 110.
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In a balanced market, truncation worsened a woman’s outcome only

when MP-DA terminated with one man exhausting his list. But when women

outnumber men, truncation may causeMP-DA to terminate when a previously

unmatched woman receives an offer. Note that when agents are truthful, at

least one woman will have received no proposals prior to the truncation. Of

course improvement upon truncation is possible only if w does not end up

single.

Using the principle of deferred decisions, it is easy to see that conditional

on a truncation making a difference, the probability of improvement is less

than 1
L+1 ≤ 1

2 . To show this, recall that unmatched women have not received

any proposals. Hence, it follows from the principle of deferred decisions and

symmetry that, following truncation, any future proposal is at least as likely

to be directed at these women as to w. The algorithm terminates only when

such a proposal happens.

Now consider the marginal benefit to w from omitting the lowest-ranked

man from a list of length m+ 1. The most w can hope for is an improvement

in her match of m ranks (from m + 1 to the top).6 If this omission instead

leaves her unmatched, she drops N −m ranks (from m + 1 to N + 1). Since

the probability of becoming unmatched conditional on truncation having any

effect is at least L
1+L ≥ 1

2 , the expected gain cannot be positive if m < L
L+1N .

Hence, the optimal list length for w is at least L
L+1N ≥ 1

2N .

The left panels of Figure 4.2 illustrate our findings. We simulated markets

with 100 men and 99, 95 and 90 women. In each market we generate
6In fact, the gain is m+1

2
in expectation - the expected rank of the remaining partners.
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independently and at random a full preference list for each agent. We then

calculate an individual woman’s payoff, given that all other agents submit

their true lists, for each possible level of truncation. Payoffs are depicted by

101 – partner rank, and we report the average result over 100,000 iterations.

The simulations support the findings of Theorem 4.2, as the optimal list

length in all three markets is greater than 50. Indeed, the optimal list lengths

are higher than 50, 84 and 91, the respective lower bounds the theorem

indicates. In contrast to Figure 4.1, the balanced market case, it is almost

impossible to detect the peak of the graphs. That is, not only should women

submit long lists, but there is little to gain by truncating optimally. Note

that as one would expect, women do worse as the competition on their side

increases.

A few points related to Theorem 4.2 deserve attention. First, under

uniform beliefs, Roth and Rothblum’s optimality theorem applies whether

the market is balanced or not. This implies that the truncation strategies

described in Theorems 4.1 and 4.2 are the best overall strategies, not just

the optimal truncation strategies. Hence, we have a natural metric for the

“distance” between the optimal strategy and truthfulness. The importance

of Theorem 4.1 is in showing that the best response to straightforward

behavior of others could be “far” from truthful, and so provides an important

qualification to the literature which finds truthful reporting to be close to

optimal (Roth and Peranson, 1999; Immorlica and Mahdian, 2005; Kojima

and Pathak, 2009; Lee, 2011; Ashlagi et al., 2013). Theorem 4.2 qualifies this

previous finding. We show that our example relies heavily on the fact that

the number of women is not larger than the number of men.
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A second point worth noting is that our choice of k∗(N,L) was a con-

servative one. We could have instead chosen to state the theorem using

k∗(N,L) ≡ max

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

arg max
k∈{0,...,N}

E[uw(µM [P kw, P̃−w](w))]
⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
, breaking ties in fa-

vor of less truncation as in the definition of k∗(N), and the theorem would

of course still hold (since k∗(N,L) ≥ k∗(N,L) by definition).

Finally, in contrast to most of the results in this strand of the literature,

our theorem is not a “large market result”; our result holds for any N

and L. That is, manipulation opportunities are minimal (in the sense of

distance from truthful submission) whenever women outnumber men, for

unbalanced markets of any size. However, a simple corollary of our result is

that as imbalance in a market increases, manipulation opportunities vanish

altogether.

Corollary 4.1. Given a sequence {LN} with lim
N
LN =∞ and a sequence of

uniform markets with N men and N +LN women, if woman w has uniform

beliefs and preferences linear in rank (or any strictly increasing, concave

transformation of such preferences), then lim
N→∞

k∗(N,LN) = 1.

The simulation results presented in Figure 4.2 are consistent with the

results of Ashlagi et al. (2013). In contrast to the relatively large gain that

a woman may be able to realize by truncating in a balanced market, when

there are more women than men the graph of the expected payoff is much

flatter between the optimum and truthful reporting. It is also true that in

this case truncation is relatively risky. One can see from Figure 4.2 that,

for example, in a market with 101 women and 100 men, submitting a list of

length 30 exposes a woman to a significant risk of remaining unmatched. The
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following theorem formalizes this observation by providing a lower bound on

the probability of becoming unmatched following a relatively conservative

truncation.

Theorem 4.3. Fix L>0 and δ ∈ (0,1). For N large enough, in a uniform

market with N men and N +L women, if all other agents report truthfully

and woman w submits a truncation list of length less than δN , she will be

unmatched with probability at least .49+L
N+L .

Proof. From Pittel (1992, Theorem 6.2) we know that in a balanced uniform

market of size N , the probability that the worst-off woman gets a mate ranked

worse than δN approaches 1. This probability only increases when there are

more women than men (Kelso and Crawford, 1982). Now consider a woman

truncating her list shorter than δN while all other agents are truthful. From

Pittel’s theorem, for large N the probability that this truncation makes a

difference is at least 1
N+L+1 . For large enough N , this expression is greater

than .999
N . Conditional on the truncation making a difference, using the

principle of deferred decisions, the resulting chain of rejections is at least

as likely to terminate with a proposal to a woman that did not receive any

proposals until w divorced her partner, as it is to return to w. This implies

that even in the event that w is matched when she (and all others) report

truthfully, by truncating her list to a size smaller than δN she raises her

probability of being unmatched by at least L
1+L ×

.999
N > .49

N . Multiplying both

sides of the inequality by the probability of w being matched if she reports

truthfully, and adding the probability of w being unmatched if she reports
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truthfully, produces the lower bound:

L
N +L + (1 − L

N +L) .49

N
= L + .49

N +L .

Symmetry implies that w will remain unmatched with probability L
N+L

no matter what (full) list she reports. We are interested in the increase

in probability of being left unmatched relative to truthful reporting ( .49
N+L).

While the increase does not appear to be large at first glance, several facts

must be taken into account. First, this is a lower bound, and there is no

good reason to suspect that it is tight. Moreover, the lower bound for the

increase in probability is of the same order of magnitude as the probability

of remaining unmatched under truthful reporting. Second, the degree of

truncation of w may be minimal. The theorem allows w to submit 99% of her

list and the results will still hold. A third point is that these results should

be compared with the opposite case, where men outnumber women. This is

exactly what we do in the next section.

4.3.2 The Case of Fewer Women Than Men

The results of Ashlagi et al. (2013) regarding the small core apply regardless

of the direction of the imbalance. That is, no matter the size or direction

of the imbalance, the expected potential improvement is small. One might

therefore suspect that when men outnumber women, an analog to Theorem

4.2 would apply and room for manipulation would again be small. This,

however, does not appear to be the case. The simulation results presented in
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the right panel of Figure 4.2 indicate that when there are fewer women than

men, the optimal level of truncation may still be significant.

The figure depicts (simulated) truncation payoffs for men in markets with

100 men and 101, 105 and 110 women. In contrast to the case where women

outnumber men, in this case the peaks of all three graphs involve lists of

length shorter than 31.

Comparing the right and left panels of Figure 4.2, three additional facts

stand out. The first is that women do much better when the balance tips

slightly in their favor: payoffs with 99 women and 100 men are much higher

than when there are 101 women. This difference becomes starker as the

imbalance increase. This corroborates the findings of Ashlagi et al. (2013) in

the case when w reports truthfully. Also salient is that even though optimal

truncation may be far from the truth, such a manipulation increases payoffs

only minimally. This too could be deduced from their paper. The third

salient feature is not a direct consequence of their findings (though it is

related to techniques used in their proofs). The simulations suggest that

truncation is “safer” for women when they are over-demanded. That is, when

there are more men then women, women may submit relatively short lists

without facing a large risk of becoming unmatched, even if there is little gain

from doing so.

The next theorem shows that this third fact holds more generally.

Theorem 4.4. Fix L ≥ 0. For a uniform market with N + L men and N

women, a woman that submits a truncation containing more than L + (2 +

a) log2N men will be matched with probability at least 1 −O (N−c(a)), where
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c(a) = 2a [3 + (4a + 9)
1
2 ]
−1
. In particular a women that submits a truncated

list of more than L+10 log2N men will be unmatched with probability at most

O ( 1
N2 ) .

Proof. For notational simplicity we provide the proof for the case of L +

10 log2N , but analogous arguments would apply for all other cases. The

proof has two steps. First, recall that in a market that uses MP-DA, adding

men to the market makes the other men weakly worse-off and women weakly

better-off (Kelso and Crawford, 1982). Second, from Pittel (1992, Theorem

6.1) we know that in a balanced market of size N , submitting a truncated list

with 10 log2N men ensures being matched with probability 1 −O ( 1
N2 ). In a

market with all the women and an arbitrary subset of the men containing

N agents, by submitting a truncated list with L + 10 log2N men, a woman

submits a list containing, at least, her most preferred 10 log2N men in the

subset in order. By Pittel’s theorem, this ensures that the woman is matched

with probability at least 1 − O ( 1
N2 ). But the first point ensures that by

adding the other L men to the market all women are weakly better-off. In

particular, no woman that would have been matched in the smaller market

can become unmatched.

Remark. The statement of Theorem 4.4 is intentionally silent on the strategies

of women -w. The proof shows that the statement holds when all other women

are truthful. But the proof also holds whenever other women use truncation

strategies, or any anonymous strategies. The logic is simple: truncation by

other women only increases w’s probability of being matched given any list

she submits.
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Intuition for Theorem 4.4 may come from considering markets with large

imbalances. Consider, for example, uniform markets with N women and

(1 + λ)N men, for positive λ. In these markets, MP-DA terminates only

after λN men have proposed to all of the women. Since preferences are

independent, this implies (using the “principle of deferred decisions”) that

even in the men optimal stable matching, a woman is matched with a man

high on her list with high probability (her expected partner rank is lower

than N
λN = 1

λ).

Rather than being an analog, Theorem 4.4 stands in sharp contrast to

Theorem 4.3. The ratio between the length of the lists described in Theorem

4.4 and the ones described in Theorem 4.3 approaches 0 as N grows large

(since the lists from Theorem 4.4 are much shorter). Yet the ratio of the

increases in the probability of becoming unmatched approaches infinity if

the (short) list in the setting of Theorem 4.4 is chosen to be sufficiently long

(e.g. 11 log2N).

To illustrate Theorem 4.4, we present additional simulation evidence.

We simulated a market with 1000 men and 999 women, and estimated the

returns to truncation for a woman w given that all other agents are truthful,

reporting average results over 100,000 iterations. The results are summarized

in the left panel of Figure 4.3. While difficult to observe with the naked

eye, the maximum is attained at 89, so that in terms of list length, the best

response is still “far” from truthful reporting.
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Figure 4.3: Simulation Results for Truncation Payoffs. In markets with
1000 men and 999 or 1001 women, the graph displays 1001– an individual woman’s
expected partner rank from truncating her list at each point k ∈ {0, . . . ,1000} and
submitting these preferences to MP-DA. Preference lists of the other agents are
selected, uniformly at random, from the set of all possible full length preference list
profiles, and payoffs are averaged over 100,000 draws.

4.4 Other Aspects Impacting the Optimal Level of

Truncation

Coles and Shorrer (2014) provide several comparative statics for the optimal

level of truncation in the case of balanced markets. We demonstrate that

these hold in the unbalanced case as well.

4.4.1 Truncation and Risk Aversion

As discussed previously, truncation is a risky strategy. Compared to truthful

reporting, truncation may offer some benefit, but over-truncating can lead

to large losses depending on the profile of preferences that is submitted by

others. One might expect agents with more conservative attitudes toward

risk to shy away from this proposition. In this section, we formalize this
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intuition.

We consider a general setting, with arbitrary preferences for woman w

and beliefs about reported preferences of others. Let ψ(⋅) be any strictly

increasing, concave transformation. We claim that for any beliefs about

others, woman w with preferences uw(⋅) will truncate more than a woman

wψ who has identical beliefs, but preferences given by ψ(uw(⋅)).

We fix w′s preferences to be uw(⋅), and define the shorthand

v(k,P−w) ≡ uw(µM [P kw, P−w](w)),

w’s payoff from submitting truncated preference list P kw. Now define

vψ(k,P−w) ≡ ψ(uw(µM [P kw, P−w](w)),

the payoff from submitting truncated preference list P kw for a woman wψ with

preferences ψ(uw(⋅)).

The following theorem states that if w prefers truncating less to more,

then wψ definitely prefers truncating less to more.

Theorem 4.5. Let P̃−w be any random variable distributed over P−w. Then

∀k ∈ {1, . . . ,N − 1},∀t ∈ {1, . . . ,N − k} we have

E [v(k, P̃−w)] ≤ E [v(k + t, P̃−w)] ⇒

E [vψ(k, P̃−w)] ≤ E [vψ(k + t, P̃−w)] .

Furthermore, if i) ψ(⋅) is strictly concave, and ii) under P̃−w, each man is

achievable for w with positive probability, then the second inequality is strict.

We can now use Theorem 4.5 to sort optimal truncation points based on
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degree of concavity.

Corollary 4.2. Let kli be the minimum optimal truncation point (by rank)

and let khi be the maximum optimal truncation point for woman i ∈ {w,wψ}.

Then klw ≤ klwψ and khw ≤ khwψ . Furthermore, if conditions i) and ii) from

Theorem 4.5 hold, then khw ≤ klwψ .

We omit the proofs, as they are straightforward analogs of the proofs of

Theorem 5 and Corollary 1 in Coles and Shorrer (2014). The key insight in

the analysis is the interpretation of truncation as a risky lottery, and then

mapping the additional risk associated with incremental truncation to an

extra lottery a woman must face. If a woman doesn’t like to face the extra

lottery, then certainly a woman with more concave preferences will not want

to face it. Note that despite pertaining to risk aversion, the results in this

section do not restrict the structure of uw(⋅) in any way. For example, we do

not require uw(⋅) to be “concave.” Rather, it is the relative concavity that is

crucial.

This result can offer advice to a market designer. If she wishes to see

long lists, for example since her objective is to maximize the number of

matches, a market designer may wish to choose the less risk averse side to be

the “proposers” in the Deferred Acceptance Algorithm. If the two sides of

the market are identical in all regards except for their risk preferences, the

more risk averse side will be less likely to truncate, even if manipulations

increase their expected partner rank. Lower levels of truncation will increase

the number of realized matches, and consequently, reduce the number of

participants left unmatched. However, in making this choice, the market
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designer should take other market features into consideration as well, as we

demonstrate in the next section.

4.4.2 Truncation and Correlated Preferences

Coles and Shorrer (2014) provided theoretical and empirical evidence that,

in the balanced setting, correlation in preferences of agents on one side of

the market reduces their incentive to truncate. In this section, we show that

their findings generalize to unbalanced markets.

We consider first the case of perfectly correlated preferences on womens’

side of the market. In this case, there exist a unique stable matching, and so

women have no incentive to truncate their lists at all when all others report

truthfully. If women are uncertain about mens’ preferences, truncation may

only lead them to a worse outcome, provided that others are truthful.

While perfect correlation and independence are easy to model, partial

correlation may appear in many forms. In this paper, we focus on one simple

such form. Consider the Preference List Submission Problem for woman

w with preferences uw and beliefs P̃−w about reported preference lists of

opponents. Let p(⋅, ⋅) be the probability mass function for w’s beliefs. That

is,

p(PM, PW /{w})

gives the likelihood that the men will report preference lists PM and women

W /{w} will report preference lists PW /{w}. Define the marginal probability

over mens’ preference profiles by pM(⋅).
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Given p(⋅, ⋅), define beliefs pC(⋅, ⋅) by

pC(PM, PW /{w}) ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

pM(PM) if Pŵ = Pw ∀ŵ ∈W /{w}

0 otherwise
.

pC(⋅, ⋅) is the distribution that preserves the marginal distribution over men’s

preferences pM(⋅), but where the other women share the preferences of w.

Define beliefs pα(⋅) by

pα(P−w) ≡ (1 − α)p(P−w) + αpC(P−w).

Hence, as α varies from 0 to 1, pα ranges from p to pC . The marginal

distribution over men’s preferences remains fixed, while the correlation of

women’s preferences steadily increases (the distribution remains constant if

p = pC).

The set of optimal truncation points for woman w with preferences uw

and beliefs indexed by α is given by

k∗(α, p, uw) ≡ arg max
k∈{0,...,N}

Epα[v(k, P̃−w)].

Notice that since the choice set is finite, k∗(⋅, ⋅) will be non-empty.

Let kh(α, p, uw) = max[k∗(α, p, uw)] and kl(α, p, uw) = min[k∗(α, p, uw)],

the optimal choices involving the least and most truncation respectively.

The following proposition states that for any preferences uw and beliefs

p, as we increase the degree of correlation α, woman w should truncate less.

Proposition 4.1. Let α,α′ ∈ [0,1] with α′ > α. Then kl(α′, p, uw) ≥

kl(α, p, uw) and kh(α′, p, uw) ≥ kh(α, p, uw).
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The proof of the proposition is analogous to the proof of Proposition 2 in

Coles and Shorrer (2014), and is therefore omitted.

The anticipated level of correlation in the environment might influence

the advice a market designer can offers participants. If correlation is high,

the designer can safely advise participants to report truthfully, and it is in

their best interest to do so. With low correlation (sufficiently heterogeneous

preferences), players may anticipate gains from truncation, which if acted on,

could lead to unstable matching.

4.5 Conclusion

In this paper, we study optimal strategic behavior in unbalanced one-to-

one matching markets, where matchings are determined by the Deferred

Acceptance Algorithm and agents have incomplete information about the

preferences of others. We focus on truncation strategies, which are attractive

for agents as they are simple and always weakly increase the probability of

being matched with more-preferred mates. From a computational perspective,

this reduces significantly the dimensions of the strategy space, allowing us to

use simulations to pinpoint optimal behavior. This restriction also induces a

natural metric on the extent of manipulation: the shorter the lists submitted,

the further they are from truthfulness. This allows us to make relative

statements about optimal list.

The main innovation of this paper is in studying the effect of imbalance

in the number of agents on the two sides of a market on their potential

for manipulation. We study a stylized setting which we term a uniform
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market, and find that the degree of manipulation observed in this setting

critically depends on the direction of the imbalance. When women are on the

long side of the market (there are more women than men), we find that the

incentives for women to manipulate are significantly diminished compared to

a balanced market. This finding is consistent with the intuition of Ashlagi

et al. (2013), who find that the expected gap between an agent’s highest and

lowest achievable mates is small in unbalanced uniform markets.

By contrast, when men outnumber women, we provide evidence that a

woman’s best response to truthful behavior by others involves a significant

degree of truncation. This finding qualifies results that suggest opportunities

for manipulation in such settings are minimal (e. g. in terms of potential gain

in utility (Lee, 2011)). We further show that truncation is safe when women

are on the short side (more men than women) but not when they are on the

long side.

We also provide comparative statics regarding the extent of manipulation,

regardless of the direction of size of a market imbalance. When women are

more risk averse, they should be less aggressive in their degree of truncation.

Correlation in womens’ preferences also reduces their incentive to truncate.

Matching mechanisms based on the Deferred Acceptance Algorithm are

used extensively in a variety of entry level labor markets (Roth, 1990) and in

school choice (Pathak and Sonmez, 2008). One advantage of DAA is that it

induces truthful reporting as a dominant strategy for one side of the market

(Roth, 1982; Dubins and Freedman, 1981). This alone is an argument market

designers have used to decide which side will be the “proposing” one (Roth,

1990).

183



In addition to shedding light on strategic behavior in unbalanced markets

generally, our paper introduces a new factor that might be considered when

selecting the proposing side: direction of imbalance. By selecting the over-

demanded side to propose, potential for strategic manipulation is minimized.

Selecting the over-demanded side to receive offers leaves room for significant,

safe manipulation. While simplistic and stylized in many respects, our result

is a first effort to extend the logic market designers rely on in choosing the

proposing side. Future work should find more general environments in which

the extent of manipulation may be compared, and explore the interaction

between the different forces that determine the incentives to manipulate.
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Appendix A

Appendix to Chapter 1

A.1 Proofs

A.1.1 Fact A.1 and Lemmata A.1 and A.2

Definition (Full-image). An index of riskiness Q satisfies full-image if for

every ε > 0, ImQ (Gε) = R+.

full-image says that even when the support of the gambles is limited to an ε-

ball, the image of Q is all of R+. Both QAS and QFH satisfy full-image. This is

simply demonstrated by considering gambles of the form g = [ε, ecε

1+ecε ;−ε,
1

1+ecε ]

and g′ = [ε, 1
2 ;− ε

1+ε⋅c ,
1
2], as Q

AS(g) = 1
c and QFH(g′) = 1

c .

Fact A.1. If Q satisfies full-image then RQ(u,w) ≥ SQ(u,w) for every u

and w.

Proof. By the properties of the supremum, since
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{Q(g)∣ g ∈ Gε and g is accepted by u at w}

∪ {Q(g)∣ g ∈ Gε and g is rejected by u at w} = R+.

If the supremum of the first set is less than the infimum of the second,

then intermediate points do not belong to either in violation of full-image.

Lemma A.1. If Q satisfies homogeneity and 0 < SQ(u,w) <∞ for all u and

w, then Q satisfies full-image.

Proof. For some u and w, SQ(u,w) = c, 0 < c < ∞. Hence for some small

positive ε′, for every 0 < ε < ε′ there exists gambles in Gε with Q-riskiness

greater than c
2 . Since multiplying by 0 < λ < 1 keeps the gambles in Gε, there

are gambles with any level of Q-riskiness lower than c
2 in Gε. Since for λ > 1,

ε < ε′ implies that ε
λ < ε′, the same applies to G ε

λ
. But, using homogeneity,

this means that Gε includes gambles with any level of Q-riskiness lower than

λ ⋅ c2 . Since λ > 1 was arbitrary, the proof is complete.

Lemma A.2. If Q satisfies homogeneity and local consistency, then 0 <

SQ(u,w) = RQ(u,w) <∞ for all u and w.

Proof. Local consistency states that

∀u ∀w ∃λ > 0 ∀δ > 0 ∃ε > 0 RεQ(u,w) − δ < λ < SεQ(u,w) + δ,

which implies that

∀u ∀w ∃λ > 0 RQ(u,w) ≤ λ ≤ SQ(u,w).
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Since for any u, w, and ε > 0 the set {g∣ g ∈ Gε, g is rejected byuatw} is

non empty, there exists a sequence of gambles {gn} such that for each n

gn is rejected, gn ∈ G 1
n
and Q (gn) < (1 + 1

n) ⋅ S
1/n
Q (u,w). For small δ > 0

, let hn ∶= (1 − δ)gn for each n. For n large enough, hn are all accepted

since Q(hn) = (1 − δ)kQ(gn) < S1/n
Q (u,w) and hn is in G 1

n
. But this implies

that RQ (u,w) > (1 − δ)k SQ(u,w) since hn are almost always accepted and

lim
n→∞

Q(hn) = (1 − δ)k lim
n→∞

Q(gn) = (1 − δ)k SQ(u,w). Since δ was arbitrarily

small, this implies RQ (u,w) ≥ SQ(u,w). So, putting the results together,

gives

∀u ∀w ∃λ > 0 λ ≤ SQ(u,w) ≤ RQ(u,w) ≤ λ,

which completes the proof.

A.1.2 Theorem 1.2

Proof. (i) I first show that for every a > 0 any combination of the form

Qa(g) ∶= QFH(g) + a ⋅ ∣QFH(g) −QAS(g)∣ is an index of riskiness for which

the coefficient of local aversion equals the coefficient of local aversion to QFH .

The reason is that for small supports, the second element in the definition is

vanishingly small by Inequality 1.3.0.3, and so Qa and QFH should be close.

Fix a > 0. First, note that

∀g ∈ G 0 < QFH(g) ≤ QFH(g) + a ⋅ ∣QFH(g) −QAS(g)∣ ,

so Qa(g) ∈ R+. Additionally, for every δ > 0 there exists ε > 0 small enough

such that for every g ∈ Gε,

QFH(g) ≤ QFH(g) + a ⋅ ∣QFH(g) −QAS(g)∣ ≤ QFH(g) + δ. (A.1.2.1)
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Inequality A.1.2.1 stems from the small support combined with Inequality

1.3.0.3. It tells us that the coefficient of local aversion to Qa-riskiness cannot

be different from AQFH which equals AQAS according to Theorem 1.1. That

local consistency is satisfied follows from the same reasoning. The proof of

(i) is completed by recalling that QFH ≠ QAS , that both indices are locally

consistent (immediate from Theorem 1.1) and homogeneous.1

(ii) Follows from Example 1.2.

A.1.3 Theorem 1.3

Proof. I start with the first part. In one direction, ρu(w) > ρv(w′) implies

that (u,w) ⋗ (v,w′) (Yaari, 1969), so Lemma 1.1 implies that AQ(u,w) ≥

AQ(v,w′).

To see that AQ(u,w) ≠ AQ(v,w′), define c ∶= (ρu(w)+ρv(w
′)

2 )
−1
. Let

{gn}∞n=1 be a sequence of gambles such that gn ∈ G 1
n
and QAS(gn) = c. For a

small δ > 0 let hn = (1 + δ)gn. By Theorem 1.1, for large values of n, gn and

hn will be rejected by u at w and accepted by v at w′, so

SQ(v,w′) ≥ RQ(v,w′) ≥ (1 + δ)k ⋅ SQ(u,w) > SQ(u,w) ≥ RQ(u,w),

where the strict inequality follows from the fact that ∞ > SQ(u,w) > 0 by

Lemma A.2, the first and the last inequality follow from the local consistency

axiom, and the second inequality follows from the definitions of RQ and

1An alternative proof could use indices of the form:(QFH)α(QAS)1−α, α ∈ (0, 1). This
form may prove to be useful in empirical work, since it enables some flexibility in the
estimation. In addition, it allows us to put some weight on the FH measure that “punishes”
heavily for rare disasters (Barro, 2006).
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SQ and homogeneity, by the properties of gn and hn. This proves that

AQ(u,w) > AQ(v,w′).

In the other direction, if AQ(u,w) > AQ(v,w′) then, from homogene-

ity and the fact that ∞ > RQ(v,w′) > RQ(u,w) > 0, there exists a se-

quence of gambles {kn}∞n=1 such that kn ∈ G 1
n

and Q(kn) = c′, where

c′ ∶= (AQ(u,w)+AQ(v,w
′)

2 )
−1
. For a small δ > 0 let ln = (1 + δ)gn. A simi-

lar argument shows that

SQAS(v,w′) = RQAS(v,w′) ≥ (1+δ) ⋅SQAS(u,w) > SQAS(u,w) = RQAS(u,w),

where the strict inequality follows from the fact that SQAS(u,w) > 0

by Lemma 1.2, the equalities follow from the same lemma, and the weak

inequality follows from the definitions of RQAS and SQAS and the homogeneity

of QAS , by the properties of gn and ln. Using Lemma 1.2 once again, this

implies that ρu(w) > ρv(w′).

For the second part, recall that u at w is at least as averse to Q-riskiness as

v at w′ if for every δ > 0 there exists ε > 0 such that SεQ(v,w′) ≥ RεQ(u,w)− δ.

This implies that SQ(v,w′) ≥ RQ(u,w), which from Lemma A.2 implies that

RQ(v,w′) ≥ RQ(u,w).

In the other direction, if RQ(v,w′) ≥ RQ(u,w), then by Lemma A.2

∞ > SQ(v,w′) ≥ RQ(u,w) > 0. This means that for every δ > 0 there exists

ε > 0 such that SεQ(v,w′) ≥ RεQ(u,w) − δ, as SQ is the limit of SεQ and RQ is

the limit of RεQ.
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A.1.4 Proposition 1.2

Definition (Wealth-independent compound gamble (Foster and Hart, 2013)).

An index Q has the wealth-independent compound gamble property if for

every compound gamble of the form f = g + 1Ah, where Q(g) = Q(h), 1 an

indicator, A is an event such that g is constant on A (g∣A ≡ x for some x)

and h is independent of A, Q(f) = Q(g).

Proof. Foster and Hart (2013) show that QAS satisfies wealth-independent

compound gamble. If QAS(g) ≠ QAS(h), take the one with higher (lower)

level of AS riskiness, and increase (decrease) all its values be ε large enough

to equate the level of riskiness of the two gambles. Use wealth independent

compound gamble and monotonicity with respect to stochastic dominance to

deduce the required conclusion.

A.1.5 Theorems 1.4 and 1.5

Proof. The Theorems follow from Theorems 1.6 and 1.7 by Claims 1.2 and 1.3.

For a direct proof of Theorem 1.5, let Q be as in the statement. Take some

CARA function, u, and an arbitrary wealth level w0, and observe that

S∞Q (u,w0) ≥ inf
w
SQ(u,w) = SQ(u,w0) ≥ RQ(u,w0) = sup

w
RQ(u,w) ≥ R∞

Q (u,w0).

The equalities follow from the lack of wealth effects in CARA functions

acceptance and rejection decisions, and the middle inequality follows from

reflexivity.

The inequality suggests that all rejected gambles are (weakly) Q-riskier

than all accepted ones. Using monotonicity, continuity, and continuity of u,
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for each accepted gamble there exists ε > 0 small enough such that if reduced

from all the realizations of the gamble, the resulting gamble will still be

accepted. Hence, the ranking is in fact strict.

Iterating the above argument with all other possible (C)ARA values

proves that Q refines the order that QAS yields (recall that CARA functions

accept or reject according to a QAS riskiness cutoff, which is the inverse of

their ARA coefficient). Finally, continuity implies that the index must induce

the same order as QAS . That QAS satisfies the properties follows from the

discussion above.

A.1.6 Theorem 1.7

Proof. First, observe that for any CARA utility function u it must be the

case that u is globally at least as averse to Q-riskiness as u, by reflexivity and

the lack of wealth effects in CARA functions. Now consider two gambles g

and g′ with QAS(g) > QAS(g′). Consider u CARA with ρu ≡ 2
QAS(g)+QAS(g′) .

u accepts g′ and rejects g, implying that Q(g) ≥ Q(g′), since otherwise

strong global consistency will be violated (the violation would be the fact

that u is globally no less averse to Q-riskiness than itself, u accepts g′ with

Q(g′) > Q(g), but rejects g).

Next, I claim that if QAS(g) > QAS(g′), but Q(g) = Q(g′), then there

exists a gamble gε such that QAS(gε) > QAS(g′), but Q(gε) < Q(g′) in

contradiction to the above result. To see this note that from monotonicity

of Q, for any small ε > 0 a gamble gε = g + ε has Q(gε) < Q(g), and from

continuity of QAS , for small enough ε, QAS(gε) > QAS(g′).
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Finally, I claim that if QAS(g) = QAS(g′), but Q(g) > Q(g′), then there

exists a gamble gε such that QAS(gε) < QAS(g′), but Q(gε) > Q(g′). To see

this, apply the same argument from the previous paragraph, only this time

use the continuity of Q and the monotonicity of QAS .

The upshot of the above discussion is that QAS(g) > QAS(g′) ⇐⇒

Q(g) > Q(g′) as required.

A.1.7 Theorem 1.8

Lemma A.3. If Q is a continuous index of performance that satisfies global

consistency, reflexivity, translation invariance, monotonicity and homogeneity,

and u and v are two CARA utilities with ρu ≤ ρv, then u is globally inclined

to invest in Q-performers at least as v.

Proof. From reflexivity and the fact that there are no wealth effects for CARA

functions it follows that u is globally inclined to invest in Q-performers at least

as itself. The conclusion follows, as for any w,w′, v accepts less transactions

at w′ than u at w in the sense of set inclusion, so for all q̄ > q > 0 and δ > 0,

there exists ε > 0 such that

0 ≤ sup
(q,r)∈Tε

{Q (r) ∣ (q, r) is rejected by uat w}

≤ inf
(q,r)∈Tε

{Q (r) ∣ (q, r) is accepted by uat w′} + δ

≤ inf
(q,r)∈Tε

{Q (r) ∣ (q, r) is accepted by vat w′} + δ,

where q̄ is the value that is used for reflexivity at (u,w).
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Lemma A.4. The following are equivalent:

(i) u at w is locally inclined to invest in PAS-performers at least as v at

w′

(ii)ρu(w) ≤ ρv(w′)

Proof. ¬ (ii) Ô⇒ ¬ (i): By Theorem 1.1 if ρu(w) > ρv(w′), then for small

enough ε > 0 v at w′ accepts any local transaction such that QAS(q ⋅ r) =
3

2ρu(w)+ρv(w′) or Q
AS(q ⋅ r) = 3

ρu(w)+2ρv(w′) , and such transactions are rejected

by u at w. Such transactions have PAS(r) = q ⋅ 2ρu(w)+ρv(w′)
3 and PAS(r) =

q ⋅ ρu(w)+2ρv(w′)
3 respectively. This implies that

sup
(q,r)∈Tε

{PAS (r) ∣ (q, r) is rejected by u at w} ≥ q ⋅ 2ρu(w) + ρv(w′)
3

>

q ⋅ ρu(w) + 2ρv(w′)
3

≥ inf
(q,r)∈Tε

{Q (r) ∣ (q, r) is accepted by v at w′}

, for all ε > 0, so (i) does not hold (use δ = q̄
3 ⋅ ∣

2ρu(w)+ρv(w′)
3 − ρu(w)+2ρv(w′)

3 ∣

to get a contradiction).

(ii) Ô⇒ (i): By Theorem 1.1 and an argument as above, PAS satisfies

reflexivity. Thus, for some q̄1, for all q̄1 > q > 0 and all δ > 0 there exists ε > 0

with

0 ≤ sup
(q,r)∈Tε

{PAS (r) ∣ (q, r) is rejected by u at w} ≤

≤ inf
(q,r)∈Tε

{PAS (r) ∣ (q, r) is accepted by u at w} + δ.

By the same theorem, there exists q̄2 such that for all q̄2 > q > 0 and δ there

exists ε′ > 0 with

inf
(q,r)∈Tε′

{Q (r) ∣ (q, r) is accepted by u at w} ≤
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≤ inf
(q,r)∈Tε′

{Q (r) ∣ (q, r) is accepted by v at w′} + δ.

Thus, for all min{q̄1, q̄2} > q > 0 and all δ′(= 2δ) > 0, there exists min{ε, ε′} >

ε̄ > 0 such that

0 ≤ sup
(q,r)∈Tε̄

{Q (r) ∣ (q, r) is rejected by u at w} ≤

≤ inf
(q,r)∈Tε̄

{Q (r) ∣ (q, r) is accepted by v at w′} + δ′.

Lemma A.5. PAS is a continuous index of performance that satisfies reflexiv-

ity, global consistency, translation invariance, monotonicity and homogeneity.

Proof. Translation invariance is immediate as the index could be expressed

as a function of r − rf . From now on, assume without loss of generality that

rf = 0. For homogeneity, note that both the expectation operator and QAS

are homogeneous of degree 1, and so their ratio is homogeneous of degree

0. Continuity follows from the continuity of QAS and the fact that if rn

are bounded and converge to r, E [rn] converges to E [r] from the bounded

convergence theorem.

For any r if E [r] = c > 0 then for all λ > 0 E [(r + λ)] = c+λ ≡ (1 + ε)E [r]

for some ε > 0. From homogeneity of degree 1 and monotonicity with respect

to first order stochastic dominance of QAS one has

QAS ( r

E [r]) = QAS ( (1 + ε) r
E [(1 + ε) r]) = QAS ((1 + ε) r

c + λ ) >

> QAS ( r

c + λ) > Q
AS ((r + λ)

c + λ ) ,
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where the inequalities follows from monotonicity of QAS with respect to first

order stochastic dominance, and from the homogeneity of degree 1 of QAS .

The previous inequality implies that PASrf (r + λ) > PASrf (r).

Reflexivity was proved in Lemma A.4. Global consistency is implied by

the global consistency of QAS , by Lemma A.4.

Lemma A.6. If P is a continuous index of performance that satisfies reflexiv-

ity, global consistency, translation invariance, monotonicity and homogeneity

of degree 0, then it is ordinally equivalent to PAS.

Proof. Assume, by way of contradiction that P satisfies the conditions but is

not ordinally equivalent to PAS . There are three ways such violation happen:

1. There exist r, r′ ∈R1 with PAS(r) > PAS(r′) and P (r) < P (r′)

2. There exist r, r′ ∈R1 with PAS(r) > PAS(r′) and P (r) = P (r′)

3. There exist r, r′ ∈R1 with PAS(r) = PAS(r′) and P (r) < P (r′)

There is no loss of generality in treating only the first case. The reason is

that using monotonicity and continuity, we could slightly shift r and r′ to

break the equalities in the right direction while not effecting the inequalities.

Given a violation of type 1, consider an agent with CARA utility function,

u such that ρu ≡ .6PAS(r)+ .4PAS(r′). Note that u accepts (1, r) but rejects

(1, r′), and that u is globally inclined to invest in P -performers at least as u

by Lemma A.3. But this means that global consistency is violated by P .

Proof. (Of the theorem) Follows from the lemmata.

A.1.8 Lemma 1.4

Lemma A.7. g ∈H ⇐⇒ log(1 + g) ∈ G.
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Proof. In one direction, g ∈H⇒ g ∈ G andQFH(g) < 1. SinceQFH(g) ≥ L(g)

it follows that log(1+ g) is well-defined. As g ∈ G, it assumes a negative value

with positive probability and therefore so does log(1+g). Finally, QFH(g) < 1

implies that E [log(1 + g)] > 0. Hence, log(1 + g) ∈ G.

In the other direction, if log(1 + g) ∈ G we have that log(1 + g) assumes a

negative value with positive probability and therefore so does g. In addition,

we have ∑pi log(1 + gi) > 0. Hence, by Fact 1.1, g ∈H.

Proof. (of Lemma 1.4) Note that for every g ∈ H and S > 0, we have

E [(1 + g)− 1
S ] = E [e−

log(1+g)
S ]. Consequentially, Lemma A.7 and Theorem A

in AS imply that the unique positive solution for the equation is S(g) =

QAS (log(1 + g)).

A.1.9 Theorem 1.10

Lemma A.8. For all g ∈H, If u ∈ U has a constant RRA then %u(w)−1 < 1
S(g)

if and only if E [u(w +wg)] > u(w) ∀w > 0.

Proof. As positive affine transformations of the utility function do not change

acceptance and rejection, it is enough to treat functions of the form u(w) =

−w1−α. Now observe that:

E [u(w +wg)] > u(w) ⇐⇒ E [−w1−α(1 + g)1−α] > −w1−α ⇐⇒

⇐⇒ E [(1 + g)1−α] < 1 ⇐⇒ E [e(1−α)⋅log(1+g)] < 1 ⇐⇒

⇐⇒ QAS (log(1 + g)) < 1

α − 1
⇐⇒ α − 1 < 1

S(g) .
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Lemma A.9. For every u, v ∈ U , if inf
x
%u(x) ≥ sup

x′
%v(x′) then for every w,

if u accepts g at w so does v.

Proof. Without loss of generality, assume that v(w) = u(w) = 0 and that

v′(w) = u′(w) = 1. For every t > 1

log v′(tw) = log v′(tw) − log v′(w) =
t

∫
1

∂ log v′(sw)
∂s

ds =
t

∫
1

w
v′′(sw)
v′(sw) ds =

=
t

∫
1

1

s
⋅ (swv

′′(sw)
v′(sw) )ds ≥

t

∫
1

1

s
⋅ (swu

′′(sw)
u′(sw) )ds = logu′(tw)

log v′(w
t
) = log v′(w

t
) − log v′(w) =

t

∫
1

∂ log v′(ws )
∂s

ds =
t

∫
1

−w
s2

v′′(ws )
v′(ws )

ds =

=
t

∫
1

1

s
⋅ (−w

s

v′′(ws )
v′(ws )

)ds ≤
t

∫
1

1

s
⋅ (−w

s

u′′(ws )
u′(ws )

)ds = logu′(w
t
)

This means that for every t > 0:

v(tw) = v(tw) − v(w) =
t

∫
1

wv′(sw)ds ≥
t

∫
1

wu′(sw)ds = u(tw)

And so, if E [u(w +wg)] > u(w) = 0 then necessarily E [v(w +wg)] >

v(w) = 0 as E [v(w +wg)] ≥ E [u(w +wg)].

Lemma A.10. For every u ∈ U and every w > 0, RS (u,w) = SS (u,w) and

AS(u,w) = %u(w) − 1.

The proof of Lemma A.10 is analogous to the proof of Lemma 1.2 and is
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therefore omitted. Recalling that the CRRA utility function with parameter

α is often expressed as

−w1−α = −w−(α−1),

this transformation of %u(⋅) seems particularly natural.

Proof. (Of the theorem, sketch). First observe that for every α > 0

S ((1 + g)α − 1) = QAS (log(1 + g)α) = QAS (α ⋅ log(1 + g)) = α⋅QAS (log(1 + g)) = α⋅S(g),

so S satisfies Scaling. By Lemma A.10, ∞ > RS(u,w) = SS(u,w) = 1
%u(w)−1 >

0 (which implies that S satisfies local consistency).

To see that S satisfies global consistency, observe that the fact that AS

is ordinally equivalent to % implies that if v ≻ u then there exist λ ≥ 1 with

inf
w
%v(w) ≥ λ ≥ sup

w′
%u(w′). Therefore, by Lemma A.9 if v accepts g at w so

does an agent with a CRRA utility function with RRA equals λ. Furthermore,

by Lemma A.8, if S(h) < S(g) this agent will accept h at any wealth level.

Applying Lemma A.9 again implies that u accepts h at w.

For uniqueness, assume that Q̂ satisfies the requirements. By Lemma A.7

P̂ (g) ∶= Q̂(eg − 1) is an index of riskiness P̂ ∶ G → R+. For every α > 0, we

have P̂ (αg) = Q̂(eαg − 1) = Q̂ ((1 + eg − 1)α − 1) = α ⋅ Q̂(eg − 1) = α ⋅ P̂ (g), so

P̂ satisfies homogeneity. I next claim that Q̂(g) > Q̂(h) if and only if S(g) >

S(h). To see this, note that from Theorem 1.9 AQ̂ is ordinally equivalent to

% and that from local consistency and scaling 0 < SQ(u,w) = RQ(u,w) <∞

(see Lemma A.2 for a proof of the analogous case). From these facts it follows

that S and Q̂ order lotteries in the same manner (as before, using CRRA
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functions). Hence, P̂ and QAS also agree on the order of lotteries. Since

both P̂ and QAS are homogeneous, we have that P̂ = C ⋅QAS for some C > 0.

This in turn, implies that Q̂ = C ⋅ S, for some C > 0.

A.1.10 Theorem 1.11

Proof. First, observe that for any CRRA utility function u it must be the case

that u is globally at least as averse to Q-riskiness as u, by reflexivity and the

lack of wealth effects in CRRA functions. Now consider two gambles g and

g′ with S(g) > S(g′). Consider u CRRA with %u ≡ 1 + 2
S(g)+S(g′) . u accepts

g′ and rejects g, implying that Q(g) ≥ Q(g′), since otherwise strong global

consistency will be violated (the violation would be the fact that u is globally

no less averse to Q-riskiness than itself, u accepts g′ with Q(g′) > Q(g), but

rejects g).

Next, I claim that if S(g) > S(g′), but Q(g) = Q(g′), then there exists a

gamble gε such that S(gε) > S(g′), but Q(gε) < Q(g′) in contradiction to the

above result. To see this note that from monotonicity of Q, for any small

ε > 0 a gamble gε = g + ε has Q(gε) < Q(g), and from continuity of S, for

small enough ε, S(gε) > S(g′).

Finally, I claim that if S(g) = S(g′), but Q(g) > Q(g′), then there exists a

gamble gε such that S(gε) < S(g′), but Q(gε) > Q(g′). To see this, apply the

same argument from the previous paragraph, only this time use the continuity

of Q and the monotonicity of S.

The upshot of the above discussion is that S(g) > S(g) ⇐⇒ Q(g) > Q(g)

as required.
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A.1.11 Theorem 1.14

Lemma A.11. Let c = (xn, tn)Nn=1 be an investment cashflow. If rk(s) <

rj(s) for all s ∈ [t1, tN ] then, for all t, ∑
n
e
−
tn

∫
t
rk(s)ds

xn ≤ 0 implies that

∑
n
e
−
tn

∫
t
rj(s)ds

xn < 0.

Proof. Denote by n∗ the highest index with xn < 0. Then

∑
n

e
−
tn

∫
t
rk(s)ds

xn = ∑
n≤n∗

e
−
tn

∫
t
rk(s)ds

xn + ∑
n>n∗

e
−
tn

∫
t
rk(s)ds

xn = (A.1.11.1)

= −∑
n≤n∗

e
−
tn

∫
t
rk(s)ds

∣xn∣ + ∑
n>n∗

e
−
tn

∫
t
rk(s)ds

∣xn∣ ,

and

−∑
n≤n∗

e
−
tn

∫
t
rk(s)ds

∣xn∣ + ∑
n>n∗

e
−
tn

∫
t
rk(s)ds

∣xn∣ ≤ 0 ⇐⇒ (A.1.11.2)

⇐⇒ e

tn∗

∫
t
rk(s)ds

⋅
⎛
⎜
⎝
−∑
n≤n∗

e
−
tn

∫
t
rk(s)ds

∣xn∣ + ∑
n>n∗

e
−
tn

∫
t
rk(s)ds

∣xn∣
⎞
⎟
⎠
≤ 0,

and similar statements hold when rk is replaced with rj . But,

e

tn∗

∫
t
rk(s)ds

⋅
⎛
⎜
⎝
−∑
n≤n∗

e
−
tn

∫
t
rk(s)ds

∣xn∣ + ∑
n>n∗

e
−
tn

∫
t
rk(s)ds

∣xn∣
⎞
⎟
⎠
=

−∑
n≤n∗

e
−
tn

∫
tn∗

rk(s)ds
∣xn∣ + ∑

n>n∗
e
−
tn

∫
tn∗

rk(s)ds
∣xn∣ >

−∑
n≤n∗

e
−
tn

∫
tn∗

rj(s)ds
∣xn∣ + ∑

n>n∗
e
−
tn

∫
tn∗

rj(s)ds
∣xn∣

as positives are only multiplied by smaller numbers and negatives are multi-

plied by greater (positive) numbers.
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Lemma A.12. If c = (xn, tn)Nn=1 is an investment cashflow then there exists

a unique positive number r such that ∑
n
e−rtnxn = 0. Furthermore, if r̃(t) > r >

r̂(t) for all t ∈ [t1, tN ], then the NPV of c is negative using r̃, and is positive

using r̂.

For general cashflows, multiple solutions to the equation defining the

internal rate of return may exit. Interestingly, both Arrow and Pratt took

interest in finding simple conditions that would rule out this possibility (Arrow

and Levhari, 1969; Pratt and Hammond, 1979). Lemma A.12 generalizes the

result of Norstrøm (1972) who had shown that investment cashflows have a

unique positive IRR in the discrete setting.

Proof. Define the function f(α) ∶= ∑
n
e−αtnxn. Observe that f (⋅) is continuous,

and satisfies f (0) > 0 and f (α) < 0 for large values of α. Hence, continuity

implies the existence of a solution. Lemma A.11 implies its uniqueness, and

the second part of the claim.

Lemma A.13. If T satisfies translation invariance, homogeneity and local

consistency, then for all u, w, 0 < ST (i, t) = RT (i, t) <∞.

Proof. Local consistency requires that

∀i ∀t ∃λ > 0 ∀δ > 0 ∃ε > 0 RεT (i, t) − δ < λ < SεT (i, t) + δ,

which implies that

∀i ∀t ∃λ > 0 RT (i, t) ≤ λ ≤ ST (i, t).

Since for any i, t, and ε > 0 the set {c∣ c ∈ Ct,ε, c is rejected by i} is non-
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empty, there exists a sequence of cashflows {cn} such that for each n, cn ∶=

(xni , tni ) is rejected, cn ∈ Ct, 1
n

and T (cn) < (1 + 1
n) ⋅ S

1/n
T (i, t). For small

δ > 0 , let c′n ∶= (xni , (ti − t1) (1 − δ)) for each n. For n large enough, c′n

are all accepted since T (c′n) = (1 − δ)k T (cn) < S1/n
T (i, t) and c′n is in Ct, 1

n
.

But this implies that RT (i, t) > (1 − δ)k ST (i, t) since c′n are almost always

accepted and lim
n→∞

T (c′n) = (1 − δ)k lim
n→∞

T (cn) = (1 − δ)k SQ(i, t). Since δ was

arbitrarily small, this implies RT (i, t) ≥ ST (i, t). So, putting the results

together, gives

∀i ∀t ∃λ > 0 λ ≤ ST (i, t) ≤ RT (i, t) ≤ λ,

which completes the proof.

Proof. (of the theorem) For the first part, in one direction, if ri(t) > rj(t′) then

there exists a small ε′ > 0 such that for all x, y ∈ (−ε′, ε′) ri(t+x) > rj(t+ y).2

For a sequence of cashflows with small support and IRR of ri(t)+rj(t
′)

2 their

translations which start at t′ are almost always accepted, and the translations

which starts at t are almost always rejected. The same applies to these

translated cashflows with times tni replaced by (1−δ) (tni − t). By Lemma A.13,

homogeneity and translation invariance this implies that RT (i, t) < RT (j, t′).

In the other direction, assume RT (i, t) < RT (j, t′). From Lemma A.13

0 < RT (i, t) < RT (j, t′) < ∞. Consider a sequence of cashflows {cn} with

tnN < 1
n , t

n
1 = 0 and T (cn) = 2RT (i,t)+RT (j,t′)

3 . For small δ, let {c′n} be a

sequence of cashflows such that t
′n
i = tni ⋅ (1 − δ). The translations of both

{cn} and {c′n} which start at t’ are almost always accepted by j and both
2The proof follows closely the proof of Theorem 1.3, which provides more details.
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the translations that start at t are almost always rejected by i. This, in turn,

implies that ri(t) > rj(t′) using the previous Lemmata.

The second part follows from the first part and from Lemma A.13.

A.1.12 Propositions 1.10 and 1.11

Proof. (Proposition 1.10) Note that ∀i, t AD(i, t) = ri(t). The conclusion

follows from Lemma A.12.

Proof. (Proposition 1.11) Follows from Lemma A.11.

A.1.13 Theorem 1.15

Proof. To prove (i) I first identify one such index. The construction draws

upon the findings of previous sections. First, denote by C1 the class of

investment cashflows with ∣tN − t1∣ = 1. Restricting attention to this class of

cashflows, I define a function from C1 to G, the class of gambles, T ∶ C1 → G,

T (c) =
⎡⎢⎢⎢⎢⎣
1,

e
1

D(c)

1 + e
1

D(c)

;−1,
1

1 + e
1

D(c)

⎤⎥⎥⎥⎥⎦
.

Observe that QAS (T (⋅)) ≡ D(⋅). Now, given a cashflow c = (xn, tn)Nn=1, let

αc ∶= ∣tN − t1∣. Given t, define ĉt ∶= (xn, t + 1
αc

(tn − t))
N

n=1
. By construction,

ĉt is a member of C1. This allows defining a new index Z ∶ C → R+ in the

following way:

Z (c) ∶= QFH (αc ⋅ T (ĉt)) .

Z is homogeneous and translation invariant since QFH is homogeneous, and

T was constructed to assure these properties.
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Noting that for c ∈ Ct,ε

∣D(c) −Z (c)∣ = ∣QAS (αc ⋅ T (ĉt)) −QFH (αc ⋅ T (ĉt))∣ ≤ 2αc ≤ 2ε,

one observes that RZ (⋅, ⋅) = RD (⋅, ⋅) and SZ (⋅, ⋅) = SD (⋅, ⋅), so if D is locally

consistent so is Z.

D satisfies all the requirements of the theorem (proved later on) and

the coefficient of local aversion to D equals to r. Since the relation at least

as averse to D-delay induces the same order as r, the same applies to Z-

delay, as 0 < AD <∞. This implies that for a > 0 combinations of the form

Wa (⋅) = Z (⋅)+a ∣D (⋅) −Z (⋅)∣ also satisfy the requirements of (i). To see that

D ≠ Z, it is enough to consider a cashflow c with αc = 1 and D (c) = 1. For

this cashflow Z(c) ≈ 1.26. Together with the fact that Z and D are uniformly

close on small domains, the fact that the coefficient of local aversion to Z

equals to r (which is positive and finite) implies that the same holds for Wa,

which completes the proof of this part.

(ii) Follows from example A.1.

Example A.1. Consider W1 (⋅) and a cashflow c with αc = 1 for which

D(c) = 1. This implies that Z(c) ≈ 1.26, hence W1(c) < 1.6. Now consider

another cashflow, c′, with αc′ = 1, which first order time dominates c and

has D(c′) = ε for a small ε.3 Since Z(c) ≥ 1 from the properties of QFH

and T , W1(c′) > 1.6. Therefore, while c′ first order time dominates c,

W1 (c) <W1 (c′).
3This could be achieved by increasing xN .

214



A.1.14 Theorem 1.16

Proof. I provide the proof for the case k = 1, but the generalization is simple.

First, I check that D satisfies the axioms. Homogeneity is clearly satisfied as

∑
n

e−rtnxn = 0 ⇐⇒ ert∑
n

e−rtnxn = 0 ⇐⇒

∑
n

e−r(tn−t)xn = 0 ⇐⇒ ∑
n

e−
r
λ
⋅λ(tn−t)xn = 0 (∀t ∀λ > 0) .

Translation invariance is also satisfied as

∑
n

e−rtnxn = 0 ⇐⇒ ert∑
n

e−rtnxn = 0 (∀t) .

For local consistency, I use the smoothness of ri(⋅) to deduce that for

every t and small ε > 0 there exists δ > 0 such that if s ∈ (t − δ, t + δ) then

ri(t) − ε < ri(s) < ri(t) + ε. This fact, together with Lemmata A.11 and A.12,

implies that 0 < SD(i, t) = RD(i, t) <∞ and that AD(i, t) = ri(t), hence the

axiom is satisfied.

To see that global consistency is satisfied, first note that i is at least as

averse to D-delay as j if and only if sup
t
rj(t) ≤ inf

t
ri(t). Consider an agent

that discounts at the constant rate ν, with sup rj(t) ≤ ν ≤ inf ri(t). Label

this agent ν. Lemma A.11 implies that ν accepts any cashflow accepted by

i, Lemma A.12 implies that he also accepts cashflows with higher IRR, and

another application of Lemma A.11 implies that j accepts these cashflows.

I now turn to show that the only indices that satisfy the five axioms are

positive multiples of D. This is done in two steps. In the first step, I show

that indices that satisfy the axioms agree with the order induced by D. Then,

I show that they are also multiples of this index.
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For the first step, assume by way of contradiction that there exists another

index, Q, that satisfies the axioms but does not agree with D on the ordering

of two cashflows at some given time points. There are three possibilities:

1. Q(c) > Q(c′) and D(c) <D(c′) for cashflows c and c′.

2. Q(c) > Q(c′) and D(c) =D(c′) for cashflows c and c′.

3. Q(c) = Q(c′) and D(c) <D(c′) for cashflows c and c′.

There is no loss of generality in treating just the first case. To see this,

note that the second and third cases imply the existence of an example of

the first type. Such example in obtained by breaking the tie in the correct

direction, using translation invariance and homogeneity, while preserving the

strict inequality.

To obtain a contradiction, choose r1 and r2 such that

D(c) < 1

r2
< 1

r1
<D(c′),

and consider two agents that discount with the constant rates r1 and r2, and

are labeled accordingly r1 and r2 (with a slight abuse of notation). Using

Lemma A.12 both r1 and r2 accept c and rejects c′. Theorem 1.14 and

Lemma A.13 imply that r1 ≺
Q
r2. But this means that Q violates global

consistency, as r2, the impatient agent, accepts c, the Q-delayed cashflow,

but r1 does not accept c′ which is less Q-delayed. Thus, Q and D must agree

on the ordering of any two cashflows at any given time point.

For the second step, choose an arbitrary cashflow c0 = (xn, tn)Nn=1 and an

index that satisfies the axioms, T . For any cashflow c, there exists a positive

number λ > 0 such that T ((xn, t1 + λ ⋅ (tn − t1))Nn=1) = T (c). The first step
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implies thatD ((xn, t1 + λ ⋅ (tn − t1))Nn=1) =D (c). ButD ((xn, t1 + λ ⋅ (tn − t1))Nn=1) =

λ ⋅D (c0), and also T ((xn, t1 + λ ⋅ (tn − t1))Nn=1) = λ ⋅ T (c0). Altogether this

means that T (c) = T (c0)
D(c0)D (c) for every c.

A.1.15 Theorem 1.17

Proof. First, observe that for any agent with constant discount rate, it must

be the case that the agent is globally at least as averse to T -delay as himself,

by reflexivity and the invariance of the sign of the NPV of translations of a

cashflow when the discount rate is constant. Now consider two cashflows c and

c′ with D(c) >D(c′). Consider i with ri ≡ 2
D(c)+D(c′) . i accepts c

′ and rejects

c, implying that T (c) ≥ T (c′), since otherwise strong global consistency will

be violated (the violation would be the fact that i is globally at least as averse

to T -delay as itself, i accepts c′ with T (c′) > T (c), but rejects c).

Next, I claim that if D(c) >D(c′), but T (c) = T (c′), then there exists a

cashflow cε such that D(cε) > D(c′), but T (cε) < T (c′) in contradiction to

the above result. To see this note that from monotonicity of T , for any small

ε > 0, given c = (xi, ti)Ni=1, a cashflow cε = (xi + ε, ti)Ni=1 has T (cε) < T (c), and

from continuity of D, for small enough ε, D(cε) >D(c′).

Finally, I claim that if D(c) =D(c′), but T (c) > T (c′), then there exists

a cashflow cε such that D(cε) <D(c′), but T (cε) > T (c′). To see this, apply

the same argument from the previous paragraph, only this time use the

continuity of T and the monotonicity of D.

The upshot of the above discussion is that D(c) > D(c′) ⇐⇒ T (c) >

T (c′) as required.
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A.1.16 Theorem 1.20

Proof. (i) The proof is similar to the proof of Theorem 1.1. First, note that

if {an = (µn, αn) ∈ A 1
n
}
∞

n=1
are accepted it must be the case that µn Ð→

n→∞
0.

To see this, assume by way of contradiction that there is a sub-sequence of

such transactions where the price does not converge to 0, without loss of

generality an = (µn, αn), and lim
n→∞

µn = µ̂ ∈ (0,∞]. Let µ ∶= min{µ̂,1}. Then,

there exits N such that for all n > N ln ∶= (µ
2 , αn) is accepted. Lemma 2 of

Cabrales et al. (2014) proves that as 1
n approaches 0, so does the scale of the

optimal investment ∥bn∥. Therefore, for 1
n small enough, w − µ

2 + b
n
k is in a

small environment of w − µ
2 < w for all k, a contradiction.

For the second step, from the discussion above it follows that for 1
n small

enough, w − µn + bnk is in a δ-environment of w for all k, if a = (µ,α) ∈ Aε

is accepted. ρu(w) is continuous, and so for every γ > 0 there exists a δ > 0

small enough such that x ∈ (w − δ,w + δ) implies ∣ρu(x) − ρu(w)∣ < γ.

For the final step, choose a small positive number η, and consider the

CARA agents with absolute risk aversion coefficients ρu(w)+η and ρu(w)−η >

0. For a small enough environment of w, I,

ρu(w) − η ≤ inf
x∈I
ρu(x) ≤ sup

x∈I
ρu(x) ≤ ρu(w) + η.

This, in turn, implies, using Theorem 3 of Cabrales et al. (2014) and a

slightly modified version of their Theorem 2, that the coefficient of local

taste for A-informativeness of u with wealth w is equal to ρ−1
u (w), and that

RA(u,w) = SA(u,w).

(ii) Cabrales et al. (2013) showed that a = (µ,α) is accepted by an agent
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with log utility function if and only if Ie (α) > log ( w
w−µ). Using a Taylor

approximation yields

log ( w

w − µ) = log (w) − log (w − µ) ≈ 1

w
µ + µ2

2w2
.

As shown above, if an = (µn, αn) ∈ A 1
n
are accepted it must be the case that

µn Ð→
n→∞

0. It is therefore the case that for n large enough (when posteriors

are close to the prior), an is accepted by agents with log utility function if

Je (an) =
Ie(αn)
µn

> 1

w
+O(µn) Ð→

n→∞
1

w
= ρlog(w),

and rejected if

Je (an) =
Ie(αn)
µn

< 1

w
+O(µn) Ð→

n→∞
1

w
= ρlog(w).

For any x ∈ R+, 1
x ≡ w ∈ R+ satisfies ρlog (w) = x, and so by properly

translating the log utility function (and changing all but an environment of

the baseline wealth level of the agent), one can use a “sandwich” argument of

the form used above to complete the proof.

A.1.17 Theorem 1.21

Proof. The proof uses the same techniques used above. If ρu(w) > ρv(w′)

then there exists some γ > 0 such that ρu(w) > (1+ γ) ⋅ ρv(w′). Following the

arguments used before, for ε > 0 small enough, if u accepts a = (µ,α) ∈ Aε then

v accepts ((1 + γ
2 ) ⋅ µ,α). Together with local consistency and homogeneity

this implies that the coefficient of local taste for Q-informativeness of u at w

is smaller than the coefficient of local taste for Q-informativeness of v at w′,
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and that v at w has at least as much taste for Q-informativeness as u at w′.

4

In the other direction, assume ρu(w) = ρv(w′), and by way of contradiction

assume that the coefficient of local taste for Q-informativeness of u at w

is not equal to the coefficient of local taste for Q-informativeness of v at

w′. Without loss of generality, assume that the coefficient of local taste for

Q-informativeness of u at w is greater than the coefficient of local taste for Q-

informativeness of v at w′ . This means that there exists a sequence {an}∞n=1

of information transactions, such that for every n, an = (µn, αn) satisfies (a)

an ∈ A 1
n
, (b) For some small γ > 0, ((1+γ) ⋅µn, αn) is accepted by u at w, and

(c) an is rejected by v at w′. But this implies that A violates local consistency,

a contradiction, and so the coefficient of local taste for Q-informativeness

of u at w is equal to the coefficient of local taste for Q-informativeness of v

at w′. This, in turn, implies that u at w is has at least as much taste for

Q-informativeness as v at w′ (and vice versa).

A.1.18 Theorem 1.22

Proof. For (i), let δ ∶= 1
2min

i
{min{pi,1 − pi}}. Define

B (a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A(a) ∥p − qs∥ < δ ∀s

1
µk
⋅ f(α) else

for some positive f . Then B satisfies the required properties since for local

transactions (ones with posteriors close to the prior) it is equal to A, and
4For details, see Theorem 1.3.
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since both A and 1
µf(α) are homogeneous and changes in the price do not

change the distance of the posteriors from the prior (and hence the rule that

governs B). Choosing f ≡ 1 (or many other choices) completes the proof of

(ii).

A.1.19 Theorem 1.24

Proof. First, observe that for any CARA utility function u it must be the

case that Q-informativeness is globally at least as attractive for u as it is

for u, by reflexivity and the lack of wealth effects in CARA functions. Now

consider two information transactions, a and a′, with A(a) > A(a′). Consider

u CARA with ρu ≡ A(a)+A(a′)
2 . u accepts a and rejects a′, implying that

Q(a) ≥ Q(a), since otherwise strong global consistency will be violated (the

violation would be the fact that Q-informativeness is globally at least as

attractive for u as is for itself, u accepts a with Q(a′) > Q(a), but rejects a′).

Next, I claim that if A(a) > A(a′), but Q(a) = Q(a′), then there exists a

transaction aε such that A(aε) > A(a′), but Q(aε) < Q(a′) in contradiction

to the above result. To see this denote aε ∶= (µ + ε, α), where a = (µ,α), and

note that from monotonicity of Q, for any small ε > 0, Q(aε) < Q(a′), and

from continuity of A, for small enough ε, A(aε) > A(a′).

Finally, I claim that if A(a) = A(a′), but Q(a) > Q(a′), then there exists

a transaction aε such that A(aε) < A(a′), but Q(aε) > Q(a′). To see this,

apply the same argument from the previous paragraph, only this time use

the continuity of Q and the monotonicity of A.

The upshot of the above discussion is that A(a) > A(a′) ⇐⇒ Q(a) >
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Q(a′) as required.
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Appendix B

Appendix to Chapter 3

B.1 Proofs

Proof of Remark 3.1. Observe first that any matching that is stable with

respect to (P kw, P−w) and matches woman w to a man must be stable with

respect to P , and that any matching µ̃ that is stable with respect to P with

µ̃(w) ranked ≤ k must be stable with respect to (P kw, P−w). Hence, setting

M1 = {m ∈M ∣ m achievable for w under (P kw, P−w)}

and

M2 = {m ∈M ∣ m achievable for w under P and m ranked ≤ k in w’s list}

we haveM1 =M2. By the Gale-Shapley result, µM [P kw, P−w](w) is w ’s least

preferred element ofM1, and hence ofM2. Should both sets be empty, then

µM [P kw, P−w](w) = w. ◻
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Proof of Proposition 3.1. We introduce Algorithm 1 below and prove that

given the same input, Algorithm 1 and the Divorcing Algorithm generate

the same output, which in each case is the MP-DA outcome described in the

statement of the proposition.

Like the Divorcing Algorithm, Algorithm 1 takes as its input a profile P

of preference lists, a woman w, and a truncation point k ∈ {1, . . . ,N}, and

outputs a matching. Algorithm 1 is adapted from an algorithm due to McVitie

and Wilson, which differs from MP-DA in that the men make offers one at a

time instead of in rounds, but is nevertheless outcome equivalent (McVitie

and Wilson, 1970). Algorithm 1 is identical to McVitie and Wilson’s, except

that we explicitly delay selecting man µM [P ] until absolutely necessary. By

McVitie and Wilson (1970), the algorithm plainly produces µM [P kw, P−w],

the MP-DA outcome when w k-truncates her preference list.

Algorithm 1

• Step 0. Initialization. Identify the least preferred achievable mate for

woman w under (Pw, P−w) and call this man ml. For example, we may

identify this man by running MP-DA, setting ml = µM [Pw, P−w](w).

Iteration over steps 1 and 2. Preferences in these steps are given by

(P kw, P−w) .

• Step 1. Pick any single man other than ml who has not exhausted

his preference list. If no such man exists, pick ml. If we have picked

ml, and ml is not single, or if ml has exhausted his preference list,

terminate.
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• Step 2. The man chosen in the previous step makes an offer to the most

preferred woman on his preference list who has not already rejected

him. If this woman finds the man acceptable and prefers him to her

current mate (or if she is single), she holds his offer and divorces her

previous mate (if necessary). Return to step 1.

Let µ1(P, k,w) be the output of Algorithm 1 and recall that µDIV (P, k,w)

is the output of the divorcing algorithm.

To establish outcome equivalence of the algorithms, begin by letting l be

the rank of w’s least preferred achievable mate ml under P.

• If k ≥ l, both algorithms clearly produce µM , the men-optimal matching

under P.

• If k < l, then the algorithms will reach a point where they coincide.

That is, there will be a point where the sequences of single men chosen

coincide, as do the temporary matchings and preference lists.

In Algorithm 1, we claim that (1) at some point, ml will make an offer

to w, which will be rejected. (2) From this point forward, the algorithm

coincides with the Divorcing Algorithm, just after its initialization step.

1. Under MP-DA, when w k-truncates her list, men are (weakly)

worse off than if she reports truthfully (see Gale and Sotomayor

(1985)). This means that in µM [P kw, P−w], ml must be matched

with a candidate worse than w, or possibly with no woman at all.

Hence, in Algorithm 1, ml must have made an offer to w (since
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he makes offers from his list in order of preference), and this offer

must have been rejected.

2. When in Algorithm 1, ml makes his offer to w, no better ranked

man has yet done so. Otherwise, let m′ be the first man ranked

higher than ml to make an offer to w and backtrack to the point in

the algorithm where this offer is made. Note that up to this point,

the path of the algorithm is consistent with w having l-truncated

her preferences, since she has not faced any man ranked k through

l. But this implies that if w l-truncated her list, she would receive

a mate at least as good asm′, notml. This contradicts Proposition

3.1.

By the choice-of-proposer rule in the algorithm, we know that

when ml proposes to w, he must be the only single man who has

not yet exhausted his list. If w accepted ml’s offer, the path of the

algorithm would be consistent with w having l-truncated her list,

and the algorithm would terminate with matching µM . Hence,

by instead rejecting ml, we arrive at exactly the position of the

Divorcing Algorithm, following step 0.

Thereafter, the algorithms coincide, thus yielding identical outcomes. ◻

Proof of the Lemma in Section 3.3.3. For each i and k, define

P i
2(k) ≡ {P−w ∣ P−w ∈ P2(k), µM [P kw, P−w](w) =mi } .

We wish to show that w finds P i
2(k) and Pj

2(k) equally probable, for all

k and all i, j ≤ k. We proceed by finding a bijection from P i
2(k) to Pj

2(k)
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which is probability preserving with respect to w’s beliefs.

For i, j ∈ {1, . . . , k}, we define a mapping fijk ∶ P2(k) → P2(k). Let

fijk(P−w) ≡ P ′
−w be given by the following:

1. Switch mi and mj everywhere. Switch the positions of mi and mj in

each woman’s list, and swap mi and mj ’s preference lists (this is like

relabeling).

2. Switch back mi and mj in w’s list.

Notice that this is equivalent to swapping mi and mj in w’s list only, and

then relabeling i and j.1

Suppose P−w ∈ P i
2(k). The fact that w finds P −w and P ′

−w equally

probable follows directly from the definition ofM-symmetry. We will show

that P ′
−w ∈ Pj

2(k). Note that it is not immediately clear that we even

have P ′
−w ∈ P2(k), that is, that under P ′

−w, k-truncation still yields an

improvement for w.

We think of the matching as arising from MP-DA. Since P−w ∈ P2(k), if

w does not truncate, she will be matched with a man worse than mk. Hence,

during the process of the algorithm, she will not receive an offer from any

man m1, . . . ,mk. Hence, rearranging these men in w’s list will not affect the

outcome, and in particular, swapping mi and mj will not affect the outcome

(the stable matching). Furthermore, since P−w ∈ P i
2(k) we know that under

P−w, k-truncation leaves w matched with mi. Using proposition 3.1, we know

that during the chain of proposals following an “ex-post” k-truncation by w,
1For the trivial case, i = j, we use the identity mapping.
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the first man to make an offer to w will be mi. Hence, this will still be true

if w swaps the position of mi and mj in her list.

Thus, we have that if w switches mi and mj in her list, k-truncation

will yield an improvement and she will again be matched with mi. But now

relabeling mi and mj (so that w’s list is (m1,m2,m3, . . .)), we have that

P ′
−w ∈ Pj

2(k).

Hence, fijk(⋅) is a bijection from P i
2(k) to Pj

2(k), which is probabil-

ity preserving with respect to w’s beliefs. This is sufficient to prove the

proposition. ◻

To prove Theorem 4.1, we begin with a lemma demonstrating that even

upon submitting a vanishingly small truncation of one’s list (relative to the

length of one’s full preference list), we still see gains relative to truthful

reporting. We examine the case where a woman’s payoff is given by her

partner rank, and being unmatched is treated as rank N + 1. At the end of

the proof, we show that the result also holds for the more general preferences

described in the statement of the Theorem 4.1.2

Lemma B.1. There exists N∗ such that for every N > N∗, the gain to

woman w from truncating at 7 log2N relative to truthful reporting is strictly

greater than zero. Furthermore, the expected rank of w’s mate is lower

than (better than) her expected mate rank from truthful reporting by at least

1+N
2+logN − 7 log2N − 2.

2Throughout the proofs of Lemma B.1, Lemma B.2, and Theorem 4.1, for any fractional
x ∈ R+, we treat x -truncation as ⌊x⌋-truncation.
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Proof of Lemma 1. First, in the case of no truncation, we know from Pittel

(1989, p. 545) that the expected rank of w ’s husband, Rw(µm) satisfies:

E [Rw] ≥
1 +N

1 +HN
≥ 1 +N

2 + logN
,

where HN = 1
1 +

1
2 + . . . +

1
N , the N th harmonic number. Let D be the

highest (worst) rank some woman gets under WP-DA when all agents report

their preferences truthfully. Using Theorem 6.1 from Pittel (1992), we observe

that for N large enough,

Pr(D ≤ 7 log2N) ≥ 1 − 1

N
.

Therefore, truncating at 7 log2N ensures an expected rank of at most

7 log2N × (1 − 1
N
) + 1

N × (N + 1). Hence, the expected gain (in rank) from

truncation, ∆, satisfies:

∆ ≥ 1 +N
2 + logN

− 7 log2N − 2.

The right hand side approaches infinity as N grows to infinity, so for N large

enough, ∆ > 0. ◻

In Lemma B.1 we have established that truncating at 7 log2N ensures a gain

(in terms of expected partner rank) relative to truthful revelation that grows

arbitrarily large as N →∞. Note that this gain is an absolute measure. As

measured as a fraction of the expected payoff from truthful revelation, the

gains from truncation go to zero.3

3Recall that as a fraction of N, the expected partner rank for women (as well as for
men) converges to 0 as N grows large.
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It remains to establish that as a fraction of the market size N, the degree of

optimal truncation goes to 0. To do this, we will first show that any truncation

of a constant fraction of one’s list is (asymptotically) outperformed by the

level of truncation found in Lemma B.1.

Lemma B.2. For any fraction α ∈ (0,1),

i) there exists N(α) such that for every N > N(α), a woman’s payoff

from truncating at αN is lower than that from truncating at 7 log2N ;

ii) there exists N∗(α) such that for every N > N∗(α), a woman’s payoff

from truncating at xN is lower than that from truncating at 7 log2N

for every x ∈ [α,1].

Proof of Lemma 2. We begin by proving i) for the case of α = 1 − 1
e .

Let ∆̄ be the expected difference between the rank of the mate under trunca-

tion at αN and the rank of the mate under truthful revelation. Let ε > 0 be

a small number. Let AN be the event {w gets fewer than (1 − ε) logN offers,

or else more than (1+ ε) logN , before MP-DA stops}. Let PN = P (AN). We

then have:

∆̄ ≤ PN ×N + (1 − PN) ×Pr{Rank (µM(w)) > (1 − 1
e
)N ∣¬AN} × N

≤ PN ×N + Pr{Rank (µM(w)) > (1 − 1
e
)N ∣¬AN} × N

≤ PN ×N + (1
e
)(1−ε) logN ×N.

(B.1.0.1)

Note that truncation may only matter in the event {Rank (µM(w)) > (1 − 1
e
)N} ,

which is included in the event B = {{Rank (µM(w)) > (1 − 1
e
)N} ∩ ¬AN} ∪

AN . In the first inequality, we have replaced the conditional benefits from
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truncation, be they positive or negative, with N, and considered the event

B. In the last inequality, we treat offers w receives as independent draws

(and invoke the Principle of Deferred Decisions), when in fact the draws

are “without replacement,” which would yield a lower probability. These

substitutions are all acceptable as we are finding an upper bound on ∆̄.

Using Equation 2.16 from Pittel et al. (2007), we know that there exists

some c > 0 such that for N large enough, PN ≤ exp (−c ⋅ log
1
3N). Hence,

∆̄ ≤ exp (−c ⋅ log
1
3N) ×N + (1

e
)(1−ε) logN ×N

= N

exp(c⋅log
1
3 N)

+N ε.
(B.1.0.2)

We now must show that for large N, N

exp(c⋅log
1
3 N)

+N ε ≤ 1+N
2+logN −7 log2N−2,

which by Lemma B.1 will imply ∆ ≥ ∆̄.

We have N

exp(c⋅log
1
3 N)

+N ε ≤ 2N

exp(c⋅log
1
3 N)

for N large enough, since N ε ≤

N

exp(c⋅log
1
3N)

⇐⇒ 1 ≤ N1−ε

exp(c⋅log
1
3N)

⇐⇒ c ⋅ log
1
3N ≤ (1 − ε) logN , which

clearly holds for large N.

Hence, it is sufficient to prove that:

2N

exp (c ⋅ log
1
3 N)

≤ 1 +N
2 + logN

− 7 log2N − 2.

Since for large N, 7 log2N + 2 < N ε, it suffices to show that 3N

exp(c⋅log
1
3 N)

≤

1+N
2+logN , which is implied by 3N+3

exp(c⋅log
1
3 N)

≤ 1+N
2+logN ⇐⇒ 3 ≤

exp(c⋅log
1
3 N)

2+logN .

Observe that
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lim
N→∞

exp(c⋅log
1
3 N)

2+logN = lim
x→∞

exp(c⋅x)
2+x3 =∞

since c is greater than 0. This completes the proof for the case of (1− 1
e)N .

To show that i) holds, we now consider general α ∈ (0, 1). Let r ≡ 1
1−α >1,

so that 1 − 1
r = α. An analogous proof holds with truncation at (1 − 1

r
)N .

Probability PN will remain unchanged, and in Equation B.1.0.1, instead

of (1
e
)(1−ε) logN we have (1

r
)(1−ε) logN = (1

e
)log r⋅(1−ε) logN = ( 1

N
)(1−ε) log r =

( 1
N )δ(α), where δ(α) ≡ (1 − ε) log r = (1 − ε) log 1

1−α > 0. We may then replace

N ε with N1−δ(α) in Equation B.1.0.2, and the remaining argument will hold.

To show that ii) holds, observe that the critical appearance of α is in

the inequality N1−δ(α) ≤ N

exp(c⋅log
1
3N)

. For every x > α, we have N1−δ(x) ≤

N1−δ(α). Hence, for any N large enough so that N1−δ(α) ≤ N

exp(c⋅log
1
3N)

, we

have that N1−δ(x) ≤ N

exp(c⋅log
1
3N)

holds as well, demonstrating ii). ◻

Proof of Theorem 4.1. By way of contradiction, assume that lim
N→∞

k∗(N)
N = 0

does not hold. This implies that there exists a subsequence {Nj} such that

lim
j→∞

k∗(Nj)
Nj

= b > 0, so for Nj large enough, k∗(Nj)
Nj

> b/2. By Lemma B.2

ii), we know that for large enough Nj , truncating at 7 log2Nj outperforms

truncating at xNj for any x ≥ b/2. But this contradicts the optimality of

the truncations at k∗(Nj), and so concludes the proof for the case when

payoffs are given by partner rank. By applying Corollary 4.2, we see that the

result also holds for any strictly increasing, convex transformation of such

preferences. ◻
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To prove Theorems 3.2 and 3.4, we show that the following lemma holds:

Lemma B.3. Let τ be a profile of strategies where each man reports truthfully

and women play truncation strategies. Let σ∗ be an equilibrium in truncation

strategies, such that every woman in W / {w} truncates more at any state of

the world (in the sense of FOSD) and men report truthfully. Then woman w

is weakly better off under σ∗ than under τ .

Proof of Lemma B.3. Since other women truncate more under σ∗, it is

clear that the payoff to w from the profile (τw, σ∗−w) is weakly higher than

her payoff under τ . Moreover, since σ∗w is a best response to σ∗−w, the payoff

to w from (σ∗w, σ∗−w) is weakly greater than that under (τw, σ∗−w). ◻

Proof of Theorem 3.2. i) is a direct consequence of Lemma B.3. Proofs

for ii) and iii) were given in-text.

Proof of Theorem 4. i) follows from symmetry. ii) is a direct

consequence of Lemma B.3.

Proof of Proposition 4.1. To prove the proposition, we first show that if

under low correlation, we prefer truncating less to more, than under high

correlation we definitely prefer truncating less to more.
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First, observe that

Epα′ [v(k, P̃−w)] = ∑
P−w

pα
′(P−w)v(k,P−w)

= ∑
P−w

[(1 − α′)p(P−w) + α′pC(P−w)] v(k,P−w)

= ∑
P−w

[(1 − α′)p(P−w) + α
1 − α′
1 − α p

C(P−w) +
α′ − α
1 − α p

C(P−w)] v(k,P−w)

= (1 − α′
1 − α )Epα[v(k, P̃−w)] + (α

′ − α
1 − α )EpC [v(k, P̃−w)].

Now suppose that for k1, k2 ∈ {1, . . . ,N} with k2 > k1, we have

Epα[v(k2, P̃−w)] ≥ Epα[v(k1, P̃−w)]. (B.1.0.3)

Then since

EpC [v(k2, P̃−w)] ≥ EpC [v(k1, P̃−w)],

we must have

Epα′ [v(k2, P̃−w)] ≥ Epα′ [v(k1, P̃−w)]. (B.1.0.4)

If the inequality in (B.1.0.3) is strict, then so too is the inequality in (B.1.0.4).

We can now use this payoff comparative static to sort optimal truncation

points as follows.

By definition, kl(α, p, uw) satisfies

Epα[v(kl(α, p, uw), P̃−w)] > Epα[v(k, P̃−w)] ∀ k < kl(α, p, uw).

From (B.1.0.4), we must then have

Epα′ [v(kl(α, p, uw), P̃−w)] > Epα′ [v(k, P̃−w)] ∀ k < kl(α, p, uw),
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so that kl(α′, p, uw) ≥ kl(α, p, uw).

Similarly, kh(α, p, uw) satisfies

Epα[v(kh(α, p, uw), P̃−w)] ≥ Epα[v(k, P̃−w)] ∀ k < kh(α, p, uw).

From (B.1.0.4), we must then have

Epα′ [v(kh(α, p, uw), P̃−w)] ≥ Epα′ [v(k, P̃−w)] ∀ k < kh(α, p, uw),

so that kh(α′, p, uw) ≥ kh(α, p, uw). ◻
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