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Abstract

This thesis contains three chapters related to the microeconomic interactions in markets.

The first paper deals with markets with many participants, and in which monetary transfers

are allowed, and studies core convergence. The second paper considers reputation building

in time-limited negotiations. The third paper studies two-sided markets with no monetary

transfers, governed by stable matching mechanisms.
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Introduction

This thesis is about markets and analyzing them at different levels. Each chapter of the

thesis represents an approach that is useful under certain information constraints, but they

do have a shared goal which is determining who gets what in the market. Due to the

different environments considered, the specificity of the answers also varies and ranges from

a general statement such as “the short side is likely to gain more under a core allocation”

to detailed predictions such as “Player 1 gets a payoff of x with probability that tends to 1

under any Sequential equilibrium”.

The first chapter (“An Approximate Law of One Price in Random Assignment Games”)

takes the broadest perspective by looking at markets from an ex-ante point of view, before

players’ preferences and tastes are known to anyone. At this stage, only very limited

information is available to the modeler, and therefore the solution concept of choice is the

core. Not only that, but due to the stochastic nature of the environment, the only meaningful

predictions are probabilistic. In this transferable utility setting we show that as the market

gets larger, the salaries that workers get become more and more similar, as do the payoffs of

firms (under any core allocation). This property implies core shrinkage in both balanced and

unbalanced markets, and provides a strong prediction on surplus distribution in unbalanced

markets.

The second chapter (“Building Reputation at the Edge of the Cliff”) is on the other

extreme, as it assumes complete knowledge of players’ payoffs and strategic situation. The

only uncertainty in this model is related to whether a player is a commitment type or not.

These commitment types are used as a technical tool to explain reputation formation in
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a simplified two-player interaction with a deadline. The main prediction in this context

is a strong deadline effect, i.e., players tend to delay their interaction until very near the

deadline, and this delay may often lead to inefficient outcomes (for example, a negotiation

that ends with a disagreement when the deadline is hit).

The third chapter (“Implications of Capacity Reduction and Entry in Many-to-One Stable

Matching”) takes the middle road by considering two-sided many-to-one matching markets

without transfers in which players’ identities are already known (including their preferences

on being matched with agents from the other side of the market). Nevertheless, players are

not taken to be strategic agents, but rather the set of stable matchings is examined under

different assumptions on players’ participation in the market. For example, it is shown how

to identify a set of players that become strictly better off following entry on the other side

of the market, regardless of the stable matching that is being selected before and after the

entry takes places. Similar results are established for the case of capacity reduction and

using a truncation strategy. These results extend known result for the one-to-one case.
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Chapter 1

An Approximate Law of One Price in

Random Assignment Games1

1.1 Introduction

The “law of one price” asserts that homogeneous goods must sell for the same price across

locations and vendors. This basic postulate is assumed in much of the economic literature,

and its origins can be traced to Adam Smith’s discussion on arbitrage (Smith, 1776, e.g.,

Book I, Chapter V). While many (sometimes consistent) deviations from this “law” have

been observed and documented in the real world (see, for example, Lamont and Thaler,

2003, and references therein), it remains an interesting and useful building block in economic

theory, and serves as a benchmark for empirical studies. A crucial underlying assumption

used in arguing for the validity of the law of one price is the homogeneity of goods and

buyers: buyers do not care which of the goods they end up buying, or which seller they are

buying it from, nor do sellers care about the identity of the buyers. In other words, any two

instances of the good are perfect (or at least near-perfect) substitutes for the buyers, as are

any two buyers from any seller’s point of view.

However, there are many markets in which the assumption of homogeneity is highly

1Co-authored with Dr. Avinatan Hassidim, Bar Ilan University, Department of Computer Science
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implausible. For example, in labor markets there are some workers are skilled and some un-

skilled, and similarly some firms are generally considered better places to work. In addition

to these measurable quality differences, workers may exhibit heterogeneous preferences over

being employed by different firms, due to personal likes and dislikes, location, values, and a

variety of other individually determined factors. Firms may also have diverse preferences

over workers, and may, for example, favor workers who seem to share their vision or fit

well within their corporate culture. Similarly, in markets where buyers and sellers have

heterogeneous preferences over trading with the other side, the law of one price generally

should not hold.

This paper makes the formal claim that even in the presence of heterogeneous prefer-

ences, an approximate version of the law remains valid, and the approximation improves as

the market grows large. We focus on labor markets as our leading example, and argue that a

likely outcome of the market is that workers who are roughly equally skilled receive similar

wages, and firms of similar quality garner similar profits. Because of the inherent hetero-

geneity in firms’ and workers’ preferences, the law of one price holds only approximately,

with some workers being paid more than their peers with identical levels of human capital.

To prove this result we use the assignment game model of Shapley and Shubik (1971)

in which there is a finite set of firms and a finite set of workers, and each firm is looking

to hire exactly one worker in exchange for a negotiable salary. Each firm has a (possibly

different) value for hiring each of the workers, and each worker has a (possibly different)

reservation value for working for each of the firms, and utilities are assumed to be linear

in money. Since transfers are freely allowed, we can describe the net productivity of each

firm-worker pair by a single number, and we assume that this productivity is separable

in the firm’s quality, the worker’s human capital level, and an idiosyncratic noise element

that is independently and identically distributed according to some bounded distribution.2

2This assumption is similar in spirit to the one made in many papers in auction theory, where bidders’
valuations are assumed to be heterogeneous and determined according to some random distribution. However,
unlike most of the literature on auction theory, we do not wish to study the effects of the random generation
on agents’ beliefs and equilibrium behavior. Instead we take a different approach and characterize the likely
outcomes in a typical complete information matching market created in that manner.

4



We then provide a probabilistic analysis of the core of the game, and show that with high

probability the differences in the payoffs of agents on the same side of the market behave

like log n
n , where n is the size of the market (Theorem 1). We also prove that this bound is

tight (Theorem 2).

The fact that there are heterogeneous preferences in the market also implies that there

are good and bad matchings between firms and workers, and that there is a surplus that

is created by matching the right worker to the right firm.3 Our approximate law of one

price helps us to analyze the distribution of this surplus between firms and workers in

balanced and unbalanced markets. In an unbalanced market with more workers than

firms, at least one worker will be left out, and that worker will be willing to transact with

any matched firm even for a minuscule gain. This constrains the profit of the worker

matched to any firm that has good idiosyncratic fit with the unmatched worker, and by

the approximate law of one price, the rest of the agents on the long side will necessarily

make very small profits as well (Corollary 4). This argument shows why most of the surplus

goes to market participants on the short side, despite the assumed idiosyncratic nature of

pairwise productivities. In a balanced market we show that the surplus can be distributed

in a variety of ways (Corollary 3).

These two results extend our economic intuitions about competition and surplus distri-

bution in markets for homogeneous goods. If there are 10 farmers trying to sell 10 bushels

of wheat to 9 identical buyers, and each of the buyers is interested in buying exactly one

bushel of wheat and is willing to pay up to $100 for it, then the price of wheat will be $0,

and each buyer’s welfare is $100. In a market with 10 farmers and 10 buyers, the price of

wheat can be as high as the buyers’ willingness to pay.

As mentioned earlier, some of our results rely heavily on two assumptions: separability

of production factors and boundedness of the idiosyncratic noise factor. We relax the first

assumption by considering a model with a Cobb–Douglas productivity function, in which

3One interpretation of the productivities appearing in our model is to think of them as actual output of
workers, which is likely to be affected by heterogeneous person-organization fit. See Kristof-Brown and Guay
(2011) for a recent survey of most of the important contributions to the literature on this issue.
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the firm’s quality and the worker’s human capital level are complements. We prove that

in this model the efficient assignment is with high probability approximately assortative

(Lemma 5), and recover the approximate law of one price (Theorem 6). This analysis reveals

that the argument for an approximate law of one price is at least to some extent robust to

other forces in the market, such as efficiently matching good workers with good firms (and

vice versa).

We conclude by focusing on the boundedness assumption and show that it cannot be

dispensed with. We consider a model with exponential noise and show that the differences

in workers’ payoffs do not vanish as the market grows (Proposition 8). Nevertheless, we do

present computer simulations and a partial argument for why surplus distribution under

exponential noise may present similar properties to surplus distribution under bounded

noise (Theorem 10).

The rest of the paper is organized as follows. Section 1.2 reviews the literature related to

our paper. Section 1.3 introduces the model and the formal notation. Section 1.4 contains the

statement and the proof of the main result, as well as the tightness result, and an analysis of

surplus distribution. Section 1.5 discusses the extension of the main result to a market with

interaction terms in the joint productivity of firms and workers. Section 1.6 presents some

results related to unbounded noise distributions. Section 1.7 provides simulation results,

and Section 1.8 concludes.

1.2 Related Literature

Assignment games were first introduced by Shapley (1955). Shapley and Shubik (1971)

thoroughly analyze them and show that the core can be described as the set of solutions to

a linear program dual to the optimal assignment problem, and that it is therefore nonempty,

compact, and convex. They also prove that it contains two special allocations: a firm-optimal

and a worker-optimal core allocation. Demange and Gale (1985) extend the analysis and

show, among other things, that the core has a lattice structure. They also point to the

nonmanipulability by workers of the worker-optimal core allocation. Assignment games

6



bear a great resemblance to the very familiar assortative matching model of Becker (1981),

with the main difference being the lack of agreement of agents on one side over the ranking

of agents on the other side in the more general assignment game model. In a slightly

different interpretation, Demange et al. (1986) use the assignment game framework to

describe auctions of heterogeneous items with unit demand bidders (with this interpretation

in mind, core allocations are equivalent to Walrasian equilibria, and therefore our results

provide insight into revenue acquired by multiple auctioneers under different market

conditions).

Within the literature that focuses on assignment games, a paper related to ours is

Kanoria et al. (2014). They too study a random version of the assignment game and

show core convergence in the sense of agents getting similar payoffs across different core

allocations. The most striking difference between the models is that in theirs each agent

has a type (out of a finite set of fixed types), and agents’ preferences depend only on the

type of the agent to which they are matched, whereas in our model each agent may have

a ranking over individual agents on the other side of the market. Other relevant papers

within this literature are those that study the size of the core (in deterministic assignment

games) such as Quint (1987) who defines two measures for core elongation and shows the

relation between them, and Núñez and Rafels (2008) who investigate the dimension of the

core based on the entries in the productivity matrix.

Several recent empirical works estimate a model similar to ours (and even more closely

related to Kanoria et al., 2014), with the caveat of using an extreme value distribution for the

idiosyncratic component. Choo and Siow (2006) consider marital behavior in the United

States and estimate a model in which each agent has a type, and idiosyncratic preferences

over being matched with any type of agent on the other side of the market. Similarly,

Botticini and Siow (2008) study whether there are increasing returns to scale in marriage

markets, and Chiappori et al. (2011) study the marital college premium.

From a broader point of view, this paper belongs to the theoretical literature on matching

in two-sided markets. This literature gained prominence in the 1960s and early 1970s

7



following the publication of the seminal papers by Gale and Shapley (1962) and Shapley

and Shubik (1971), and research remained mostly divided (with some notable exceptions)

into two parallel strands: with and without transferable utility (i.e., money). The bulk of

the literature on matching markets without transfers, also known as the marriage market

model (in the one-to-one case) and the college admissions model (in the many-to-one case),

is focused on studying theory related to markets with fixed preferences, often under the

additional assumption of complete information. Within this realm, two important papers

for our discussion are Crawford and Knoer (1981) and Kelso and Crawford (1982). These

papers describe the detailed connection between marriage markets and assignment games,

and point to an auction process similar to the deferred-acceptance algorithm that produces

an approximation to a side-optimal core allocation.4 We employ a similar auction process in

the proof of our lower bound of variation in workers’ salaries (Theorem 2).

The past two decades have seen the emergence of more models that allow for stochastic

markets and incomplete information. This new focus has revealed to market designers

that some of the subtleties related to small markets may very well become negligible once

we consider large “likely” markets. Yet the works on large markets most relevant to our

present study were already written in the 1970s by Wilson (1972) and Knuth (1976), and

were extensively developed by Pittel (1989, 1992). These papers analyze marriage markets

with preferences that are determined uniformly at random and show that in a situation

in which the number of men is equal to the number of women, with high probability the

proposing side’s (in a deferred acceptance algorithm) mean rank of partners behaves like

log n, whereas the other side’s mean rank of partners behaves like n
log n . This particular

strand of the literature remained dormant for almost three decades, but several papers

have recently used similar methods. Ashlagi et al. (2013) show that in unbalanced random

marriage markets with high probability under any stable matching the short side’s mean

rank of partners behaves like log n, whereas the long side’s mean rank of partners behaves

4For further generalizations of the marriage market model and the assignment game model see, for example,
the works by Hatfield and Milgrom (2005), Ostrovsky (2008), Hatfield et al. (2013), and references therein.
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like n
log n . Coles et al. (2014) and Coles and Shorrer (2014) employ these results to study

aspects of strategic behavior in marriage markets with incomplete information. Lee (2014)

and Lee and Yariv (2014) assume that preferences are derived from underlying cardinal

utilities and study the issues of core convergence and efficiency, respectively.

Using somewhat different methods, but still trying to explain core convergence using

different modes of competition, Immorlica and Mahdian (2005) explain in a breakthrough

paper why in a large random marriage market with one of the sides having rank-ordered

lists of bounded length and with incomplete information, truth-telling become an approx-

imately dominant strategy. Kojima and Pathak (2009) extend this result to the college

admissions model, and Storms (2013) extends it to many-to-one markets with substitutable

preferences.5 Kojima et al. (2013) use a similar strategy to prove that in a market with “not

too many” couples, a stable matching exists despite the complementarities imposed by

couples’ preferences. Ashlagi et al. (forthcoming) further improve this result, show that

stability is also implied for groups that can contain more than two members, and provide a

counterexample to the case of a similar number of singles and couples.

Technically, our analysis is also related to what is known in the operations research and

computer science literature as the random linear sum assignment problem. Specifically, two

results that are used repeatedly in our proofs are the calculation of the limit value of a large

random assignment game (Aldous, 2001), and the bounding of the minimal productivity

in the optimal assignment (Frieze and Sorkin, 2007). For a more exhaustive survey of the

random linear sum assignment problem (and closely related problems) see Krokhmal and

Pardalos (2009).

1.3 Model and Notation

Consider a sequence of markets {Mn}∞
n=1, such that each market can be described as

Mn = (Fn, Wn, qn, hn, αn), where Fn is a set of firms of size n, Wn is a set of workers of size

5Related analysis was also applied by Manea (2009), Che and Kojima (2010) and Kojima and Manea (2010)
to the problem of optimal object assignments.
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n + k(n), with k(n) ∈N and k(n) = O(n),6 qn is a vector of qualities related to firms in Fn,

hn is a vector of human capital levels related to workers in Wn, and αn is an |Fn| × |Wn| real

matrix representing the value of pairs of firms and workers. We assume throughout that

each element of αn can be described as

αn
ij = u

(
qn

i , hn
j

)
+ εn

ij,

where u is the part of the production function that depends only on the firm’s quality and

the worker’s human capital level, and εn
ij is idiosyncratic noise representing the productivity

related to the identities of the firm and the worker. εn
ij is independently and identically

distributed according to the cumulative distribution function G which has a continuous and

strictly positive probability density function g.7

For technical purposes we will assume (unless otherwise noted) that the elements of the

vectors hn are identically and independently distributed on the interval
[

h, h
]

according to

the cumulative distribution function H. If h 6= h we will also require H to have positive and

continuous density on this interval. This assumption can easily be relaxed, but it is kept for

clarity. Note that it does not hold for the specific distribution we use in Appendix A.3.

• The separable case: u(q, h) = q + h.

• The interactive case: u(q, h) = qγh1−γ.

Note that while q and h appear without a transformation in both cases, any continuous

transformation can be applied directly to their distributions. Therefore, the word “separable”

accurately describes the domain of the first case. We also distinguish between several

possible assumptions on G:

• Bounded noise: G is bounded on the interval [0, 1] (G(1) = 1).

• Unbounded noise: There exists no c ∈ R such that G(c) = 1.

6The latter assumption is introduced for mathematical convenience.

7In fact for our results to hold we only need that the density be continuous near its supremum.
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• Exponential noise: G = Exp(1) (special case of unbounded noise).

We prove our main result for the separable case with bounded noise, and extend it (under a

certain technical assumption to be mentioned later) to the interactive case with bounded

noise. We show that an approximate law of one price (properly formulated) does not hold in

general for unbounded noise. Nevertheless, we explain why we believe some of our surplus

distribution results do hold (in a weak form), at least for the case of exponential noise.

In market Mn, the value of a coalition of firms and workers S is given by

v(S) = max
[
αn

i1 j1 + αn
i2 j2 + · · ·+ αn

il jl

]
,

where the maximum is taken over all arrangements of 2l distinct agents, f n
i1 , . . . , f n

il
∈ S ∩ Fn,

wn
j1 , . . . , wn

jl
∈ S ∩Wn, l ≤ min {|S ∩ Fn| , |S ∩Wn|}. An allocation is denoted by (µ, u, v)

with µ being a matching of firms to workers and vice versa, and u and v being payoff vectors

for the firms and workers, respectively. We refer to u as firms’ “profits,” and to v as workers’

“salaries.” Formally, µ : Fn ∪Wn → Fn ∪Wn ∪ {∅}, and satisfies

1. ∀ f ∈ Fn : µ( f ) ∈Wn ∪ {∅},

2. ∀w ∈Wn : µ(w) ∈ Fn ∪ {∅}, and

3. ∀ f ∈ Fn, w ∈Wn : µ( f ) = w ⇐⇒ µ(w) = f .

An allocation is a core allocation if no coalition can deviate and split the resulting value

between its members such that each member of the coalition becomes strictly better off.

We denote the set of core allocations of Mn by C (Mn). As mentioned above, Shapley and

Shubik (1971) show that the core is a nonempty compact and convex set, and that it is

elongated in the sense that there is a firm-optimal core allocation in which salaries are at

their lowest level among all core allocations, and a worker-optimal core allocation in which

salaries are at their highest level among all core allocations.

Most of our results are going to hold for “most” realizations of some stochastic matrices

and vectors. We often use the technical term with high probability (or whp for short) to

mean that some result holds for the sequences of markets Mn with probability 1−O
( 1

n

)
.
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Whenever it is not mentioned, the term refers to realizations of the stochastic matrices αn as

well as the quality vectors qn and hn. However, in some places we explicitly mention that

the term refers only to αn or only to the quality vectors.

1.4 An approximate law of one price

This section presents our main result, which shows that in the separable case with bounded

noise there cannot be too much variation in the payoffs of the agents on either side of the

market. We then proceed to improve our upper bound on this variation for the special

case of side-optimal core allocations, and establish a lower bound. These two proofs use

a different method that relies on the salary adjustment procedure described by Crawford

and Knoer (1981) and Kelso and Crawford (1982). The following subsection employs these

results to characterize surplus distribution in these markets, and argues that the range of

potential outcomes (i.e., payoffs in the core) crucially depends on whether the market is

exactly balanced or not.8 If it is not exactly balanced, the short side keeps most of the

created surplus (or at least the surplus due to the idiosyncratic noise).

1.4.1 The main result

In order to gain some intuition into the mechanics of the proof and the argument behind it,

let us first assume that the market is balanced, that all firms have the same quality, and that

all workers have the same level of human capital. In this specific scenario our result implies

that whp all workers (for example) should earn a very similar salary.

Suppose that worker w1 is employed by firm f1 and earns a salary of s1 and worker

w2 is employed by f2 and earns a salary of s2. Suppose further that s2 > s1. If workers

and firms were homogeneous goods, firm f2 could offer worker w2’s job to worker w1 for

any salary strictly between s1 and s2. That is the usual argument for the law of one price

in a two-sided market. However, it may well be that the combination of f2 and w2 has

8The term “balanced” is also used in the context of cooperative game theory to describe games with a
nonempty core. This meaning is not used anywhere in this paper.
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much higher productivity than f2 and w1, and therefore there is no mutually beneficial

opportunity for f2 and w1. Nevertheless, we do know that there are about n
2
3 workers in the

market such that their productivity with firm f2 is no less than 1− 1

n
1
3

. For each of those

workers the original argument works perfectly, and so none of these workers can be paid

less than s2 − 1

n
1
3

, because otherwise she and firm f2 might deviate. Now we have a set of

size n
2
3 , each getting a salary of at least s2 − 1

n
1
3

. Consequently there are about n
2
3 firms

paying a salary of at least s2 − 1

n
1
3

, and whp one of these firms, say f ′, is a good match with

worker w1, in the sense that their joint productivity is more than 1− 1

n
1
3

. By considering the

possibility of deviation by f ′ and w1, we reach the conclusion that s1 ≥ s2 − 2

n
1
3

.

The argument used above is not quite accurate, since we do not account for the fact

that firms in the intermediate set are not random, but are rather chosen in a specific way

(i.e., they are matched to workers who are also productive when matched with firm f1).

The formal proof handles this issue by considering the likely expansion properties of the

directed graph induced by the random productivity matrix and showing that a path must

exist between f2 and w1.

As implied, the other difference from the informal argument above is that the proof uses

the smallest possible expansion that still results in the necessary paths between all pairs of

agents, i.e., a strongly connected digraph. This minimality is also formally established in

our derivation of a lower bound for the variation in agents’ payoffs. The technical element

of the proof that allows for constructing high-probability paths is based on the result of

Frieze and Sorkin (2007), which we extend here to deal with unbalanced markets as well as

bounded distributions other than the uniform distribution.

The intuition behind proving the result for unbalanced markets is pretty straightforward

given our understanding of how to utilize improvement paths, as previously described. We

first show that whp all workers above a certain level of human capital are matched. Other-

wise, one could replace a low-quality worker with a high-quality worker, and then reshuffle

the matched workers such that the impact on the efficiency coming from idiosyncratic noise

component will not be too substantial. We next show that the same logic that was used in
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the balanced case can be applied to the unbalanced case, if we focus only on agents above a

certain level of human capital.

Theorem 1. In the separable case with bounded noise, there exists c ∈ R+ such that whp for any

(µn, un, vn) ∈ C (Mn) we have

1. ∀i, j ∈ {1, . . . |Fn|} : un
i − un

j ≤
(

qn
i − qn

j

)
+ c log n

n , and

2. ∀i, j ∈ {1, . . . |Wn|} , µn(wn
i ), µn(wn

j ) ∈ Fn : vn
i − vn

j ≤
(

hn
i − hn

j

)
+ c log n

n .

Proof. See Appendix A.1.

Theorem 1 demonstrates that in a large random assignment game, all firms make

approximately the same profits, and all matched workers earn approximately the same

salary. In a sense, this theorem states that the core is not only elongated, as implied in

Shapley and Shubik (1971) and Demange and Gale (1985), but that it is also narrow.

The bounds already provided do not leave much room for further improvements (let

alone the constants used in the proof), but we still wish to verify that they are tight, at

least in terms of order of magnitude. The following theorem shows that they are. We focus

on balanced markets with all firms having the same quality and all workers having the

same human capital level, governed by a specific core allocation, namely, the firm-optimal

core allocation. We know that we can find the firm-optimal core allocation via the auction-

like algorithm proposed by Crawford and Knoer (1981). When firms propose to workers,

the auction process ends when all workers have received an offer. We can compute the

probability that at each stage a worker who has not received an offer so far receives an

offer, and then calculate the number of discrete steps required to reach the last worker. The

approximation is possible thanks to our bounds from Theorem 1. This gives us a lower

bound for the expected sum of workers’ salaries, which implies a lower bound on what

the top earner gets with high probability. Since we know the lowest earner gets zero, we

are done. We note that the same procedure can also be used to provide better constants in

Theorem 1 for the specific cases of the side-optimal core allocations.
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Theorem 2. In the separable case with bounded noise, if k(n) ≡ 0, qn ≡ 0 and hn ≡ 0, there

exists c ∈ R+ such that whp there exist (µn, un, vn) ∈ C (Mn) and i, j ∈ {1, . . . |Wn|} for which

vn
i − vn

j ≥
c log n

n .

Proof. See Appendix A.2

We conclude this subsection by suggesting an interpretation of our results in terms of

the shape of the core. As mentioned above, Shapley and Shubik (1971) already noticed that

the core is compact and convex, and that it is shaped like a nut, in the sense that it contains

firm-optimal and worker-optimal core allocations. Our results suggest that in large markets

the core tends to be almost one-dimensional in the sense that one parameter defines it up to

very small perturbations. In balanced markets, once we know what is the average profits of

firms, we also approximately know the average salaries of workers, and what every firm

and worker makes under that core allocation. The same holds for unbalanced markets.

However, as we will see in the next section, workers’ salaries in unbalanced markets are

in fact determined by the human capital levels of those workers who are left unmatched,

and therefore the core actually has no real variation and resembles a point more than a line.

An interesting exercise would be to calculate the elongation measures suggested by Quint

(1987) for large unbalanced markets and show that they indeed converge to zero.

1.4.2 Surplus distribution

With the results from the previous subsection at hand, we are now ready to explore their

implications for surplus distribution. However, before doing so it is important to understand

how much surplus is created in a large market. Aldous (2001) proved that in a large balanced

random market with all firms having a quality of zero, and all workers having a human

capital level of zero, and noise being distributed according to the uniform distribution on

[0, 1], the expected surplus created is n− π2

6 . This result can be easily extended both to

general bounded distributions (with positive and continuous density) and to unbalanced

markets, and in general we know that the surplus to be divided between firms and workers
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is Ω(n). As for qualities and human capital, our analysis suggests that with high probability

the workers who will take part in the optimal assignments are all those above a certain

human capital level (see Lemma 36 in Appendix A.1), and so we can tell from the distribution

of qualities and human capital levels what is going to be the surplus created due to those

factors.

Our main result in this subsection is that when the market is exactly balanced (i.e.,

k(n) ≡ 0) the surplus that is created from the idiosyncractic matching between firms and

workers can be divided in very different ways. However, in the presence of even a slight

imbalance, most of the surplus related to the noise goes to the short side (the firms). This

indicates that a large core is a knife-edge case that is not likely to be found in any real

applications. This result is the assignment games parallel to Ashlagi et al. (2013), who prove

that in the realm of matching without transfers a large core is only possible if the number of

men and women is exactly equal, and that in unbalanced markets the short side has a big

advantage in determining the resulting matching.

Corollary 3. In the separable case with bounded noise, let k(n) ≡ 0 and let
(
µn, un,F, vn,F) be the

firm-optimal core allocation. Then there exist c ∈ R+ such that whp

∀wn
j ∈Wn : vn,F

j ∈
((

hn
j − h

)
− c log n

n
,
(

hn
j − h

)
+

c log n
n

)
.

Intuition for the proof. Under the firm-optimal core allocation there is at least one worker

who gets a salary of exactly zero; otherwise we could reduce all salaries by a small constant

without violating any of the inequalities defining the core. This worker’s human capital

level cannot be too high (otherwise, by the approximate law of one price, others with lower

human capital levels would get negative salaries). Then, by the approximate law of one

price, all workers must get only the difference between their human capital level and that

worker’s human capital level. For the full proof see Appendix A.2.

A similar argument to the one we used for balanced markets can be applied to unbal-

anced markets. In this case, a worker who is left unmatched gets a salary of zero, and
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this constrains at least some of the salaries of the workers who are matched. Then, by the

approximate law of one price, we get bounds on the salaries of all workers.

Corollary 4. In the separable case with bounded noise, let k(n) > 0 for all n. Then there exist

c ∈ R+ such that whp for all (µn, un, vn) ∈ C (Mn) and for all wn
j ∈Wn such that µ(wn

j ) ∈ Fn,

vn
j ∈

((
hn

j − hn[n]
)
− c log n

n
,
(

hn
j − hn[n]

)
+

c log n
n

)
,

where hn[n] signifies the n-th highest element in the vector hn.

Proof. See Appendix A.2.

Corollary 3 implies in particular that in a balanced market the expected division of

surplus is such that the workers get the contribution of their excess human capital (above h)

and then only O
(

log n
n

)
out of the part of the surplus that is related to the noise distribution.

Note that while Corollary 3 is put in terms of the firm-optimal core allocation, it is completely

symmetric, and therefore the same applies to the opposite case of the worker-optimal core

allocation. The convexity property of the core ensures that any compromise distribution

is also possible in a core allocation. Unlike the long (and narrow) core characterization in

balanced markets, Corollary 4 shows that in unbalanced markets the core quickly converges

to almost a point. The resulting surplus division is such that under any core allocation, the

agents on the long side (the workers) get the contribution of their excess quality (not above

the lower bound of the distribution, but rather above the highest quality of an unmatched

agent) plus a O
(

log n
n

)
fraction of the surplus created by the idiosyncratic matching.

1.5 Extension to Cobb–Douglas productivities

In the previous section we showed that an approximate law of one price holds for markets

in which both firms’ quality and workers’ human capital affect the productivity of each

matched pair, but we did not allow for any interaction between those two properties. In

other words, good workers provided the same output regardless of whether they were

working in a good firm or in a bad firm. While mathematically convenient, it is not a very
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plausible assumption. In this section we wish to relax our previous separability assumption

and consider also the family of productivity functions suggested by Cobb and Douglas

(1928).

Our main concern when considering interaction is that workers and firms will tend

to ignore their idiosyncratic productivity noise and will match solely on the basis of their

respective qualities. This is known in the economics literature as “assortative matching,” and

within the matching literature it is most identified with the work of Becker (1981). If firms

and workers match assortatively, there will not be any chance of having an approximate

version of the law of one price, since the idiosyncratic productivities can tilt the profits of

matching pairs.

We find that as the market grows large (and under certain technical assumptions on the

qualities of firms and workers), there is a trade-off between matching assortatively on the

quality dimension and matching efficiently on the noise dimension. We define the concept

of “approximately assortative matching,” which means that all firms are matched to workers

who have approximately the same level of human capital as the firms’ quality. The fact

that the matching is only approximately assortative and not completely assortative allows for

more efficient matching in terms of idiosyncratic noise.

Definition 1. A model exhibits approximately assortative matching if there exist c ∈ R+ and

a ∈ (0, 1) such that whp for any (µn, un, vn) ∈ C (Mn) and for any i, j such that µn( f n
i ) = wn

i we

have
∣∣∣qn

i − hn
j

∣∣∣ ≤ cn−a.

We now turn to a specific model, which we refer to as the Cobb–Douglas benchmark model.

The Cobb–Douglas benchmark model consists of a balanced market (k(n) ≡ 0) in which

productivities are given by αn
ij = 2

√
qn

i hn
j + εn

ij, and qn
k = hn

k = k
n , i.e., qualities of firms and

human capital levels of workers are evenly spaced.

Lemma 5. The Cobb–Douglas benchmark model exhibits approximately assortative matching.

Proof. See Appendix A.3.
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Having established an approximately assortative matching, we can prove the approxi-

mate law of one price using the tools developed for the separable case, but not quite the

same ones since we need to make sure that we limit the paths used in those proofs so that

they do not go through firms or workers that have very different qualities. Even then a direct

comparison between firms or between workers of different qualities is not straightforward,

and so we restate our main result in terms of agents that have similar qualities.

Theorem 6. In the Cobb–Douglas benchmark model there exist c1, c2 ∈ R+ and a, b ∈ (0, 1) such

that whp for any (µn, un, vn) ∈ C (Mn):

• ∀i, j ∈ {1, . . . , n} such that
∣∣∣qn

i − qn
j

∣∣∣ ≤ c1n−b: un
i − un

j ≤ c2n−a, and

• ∀i, j ∈ {1, . . . , n} such that
∣∣∣hn

i − hn
j

∣∣∣ ≤ c1n−b: vn
i − vn

j ≤ c2n−a.

Proof. See Appendix A.3.

1.5.1 Surplus distribution

Still focusing on the Cobb–Douglas benchmark model, it is quite clear that while the analysis

of surplus distribution is not as straightforward as the separable case, it is still not much

different. The rough intuition for the next result is that we can compare the salary of any

worker with that of a worker who has a slightly lower or slightly higher human capital level,

if both workers have a relatively high joint productivity with the firm that employs one of

them. This allows us to build paths from any worker to one of the workers with the lowest

human capital levels and deduct that the former can only make a salary that is the sum of

the differences between productivities of workers along the path. In other words, the salary

of a worker with human capital level hn
j is roughly the integral from 0 to hn

j of the marginal

productivities of workers. Since we know that there is approximately assortative matching,

we also know the quality of firms matched to workers along the path.

Corollary 7. In the Cobb–Douglas benchmark model let
(
µn, un,F, vn,F) be the firm-optimal core
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allocation. Then there exist c, a ∈ R+ such that

∀j ∈ {1, . . . , n} : vn,F
j ∈

(
j
n
− cn−a,

j
n
+ cn−a

)
.

Proof. Omitted.

We note that the surplus created by worker wn
j is approximately 2j

n + 1, and so we learn

that the workers get only the share of the surplus related to their own contribution to the

correlated component, and none of the surplus related to the idiosyncratic component under

the firm-optimal core allocation.

We conclude this section by noting that none of the technical steps we took seem to

require balancedness. We therefore conjecture that in unbalanced markets any worker’s

salary under any core allocation will be bounded above by the integral of the marginal

productivity from the highest human capital level of any unemployed worker to her own

human capital level, plus an expression that behaves like O
( 1

na

)
for some a ∈ (0, 1).

Simulation results presented in Section 1.7 also indicate that this conjecture holds.

1.6 Unbounded noise

Up until now we have established that an approximate version of the law of one price

holds in two-sided economies with heterogeneous preferences. However, one of the more

restrictive assumptions that we used was the boundedness of the noise distribution, which

obviously leads to a relatively high concentration of “good enough” matches, and in

particular allows an assignment so efficient that it misses a potential first-best only by a

constant (Aldous, 2001). In this subsection we relax this assumption for the first time and try

to understand what happens when the noise is unbounded. Apart from the mathematical

elegance and conceptual difference of unbounded noise, understanding the implications of

this concept is also important for comparing our work with some of the empirical papers

on two-sided matching markets with transfers, which are based on models with unbounded

noise (e.g., Choo and Siow, 2006).
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When we discuss unbounded noise it is important to understand what it means to

have “one price” in the market, since the average productivity may tend to infinity as

the market grows large. Our interpretation is that an approximate law of one price holds

if the variation among agents’ profits is a vanishing fraction of the average productivity.

In the bounded case, the average productivity approaches a constant, and therefore any

sub-constant differences in profits are considered as an approximate law of one price. In

what follows we focus on the exponential distribution, under which the average productivity

behaves like log n, and we show that whp there are two workers in the market whose salaries

differ by Θ (log n). Hence, we conclude that in the presence of unbounded noise the law of

one price might not hold.

The intuition for our “counterexample” is that unbounded distributions with a heavy

tail may create “good” outliers, i.e., agents that are highly productive compared to others,

and such that agents from the other side fiercely compete to be matched with them. These

agents share a significant portion of the surplus they help to create, and if they are common

enough, they may offset other forces that would otherwise squeeze the surplus from their

side (such as an adversarial core allocation, or a slight imbalance in favor of the other side

of the market). Our example is based precisely on the existence of such agents.

Proposition 8. In the separable case with exponential noise, let the market be balanced (k(n) ≡ 0),

with all firms having the same qualities (qn ≡ 0), and with all workers having the same human

capital level (hn ≡ 0). Let
(
µn,F, un,F, vn,F) denote the firm-optimal core allocation of Mn. Then

average productivity is Θ(log n), and there exists c ∈ R+ such that whp there are two workers wn
i

and wn
j with

∣∣∣vn,F
i − vn,F

j

∣∣∣ > c log n.

Proof. See Appendix A.2.

1.6.1 Surplus distribution under exponential noise

Despite the fact that the law of one price does not apply in general to unbounded noise,

we would like to argue that at least some of the main conclusions, i.e., the convergence of

the share of the surplus that each side gets, continues to hold to some extent. By studying
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simulation data carefully (see Figure 1.11 in Section 1.7), one suspects that the behavior of

the workers’ expected share of the surplus in a balanced market under the firm-optimal core

allocation is Θ
(

log log n
log n

)
. In what follows we assume the following mathematical conjecture

is true, and show that indeed the share of the surplus behaves in that manner.

Conjecture 9. In the separable case with exponential noise, let k(n) ≡ 0, qn ≡ 0 and hn ≡ 0. Then

there exists c ∈ R+ such that whp under the maximal assignment each firm is matched to one of the

c log n workers who have the highest joint productivity with that firm.

We note that Conjecture 9 parallels Theorem 2 of Frieze and Sorkin (2007), in the sense

that it bounds the lowest possible element in the optimal assignment. While computer

simulations suggest that it holds (see Section 1.7), we are not familiar with any work within

the computer science literature or the operations research literature that tackles the problem

of unbounded distributions.9

Theorem 10. In the separable case with exponential noise, let k(n) ≡ 0, qn ≡ 0, and hn ≡ 0.

Assume Conjecture 9 holds, and let ψF (Mn) =
(
µn, un,F, vn,F) be the firm-optimal core allocation.

Then there exists c ∈ R+ such that

E

[
∑j vn,F

j

∑i un,F
i + ∑j vn,F

j

]
≤ c log log n

log n

Intuition for the proof. In a balanced market governed by the firm-optimal core allocation, a

worker cannot make more than the value she creates together with the firm that employs her

minus the lowest value that any other worker creates (Lemma 40). Given the assumption

and the above claim, it remains to show that with high probability the lowest value created

by any worker behaves like log n − c log log n (Lemma 41). The full proof appears in

Appendix A.2.

It is worth mentioning that by observing simulation results for unbalanced markets

(Figure 1.11), one may arrive at the following conjecture.

9Those two literatures focus on minimizing the sum of costs, and not maximizing productivity, and therefore
unbounded distributions are less intuitive.
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Conjecture 11. In the separable case with exponential noise, let k(n) > 0, qn ≡ 0, and hn ≡ 0, and

let ψW (Mn) =
(
µn, un,W , vn,W) be the worker-optimal core allocation. Then there exists c ∈ R+

such that

E

[
∑j vn,W

j

∑i un,W
i + ∑j vn,W

j

]
≤ c log log n

log n
.

In particular, this implies that for any core mechanism (that is, any function from markets to core

allocations) the expected surplus of the workers is O
(

log log n
log n

)
.

We conclude this section by suggesting that although we were focused on the study of

the exponential distribution, much can be inferred about other unbounded distributions.

Proposition 8 provided a counterexample to a theorem that held for the bounded case. The

conjectures we discussed in this subsection were strictly about the exponential distribution,

but it is our belief that other distributions that have similar tail behavior will exhibit the

same phenomena (see also Figure 1.12 and Figure 1.13 in Section 1.7).

1.7 Simulations

In this section we present results of computerized simulations that demonstrate how quickly

the dispersion of payoffs contracts, and how this affects the market. Unless explicitly noted,

figures are based on averaging 400 trials for each market size, where the size of balanced

markets ranges from (10, 10) to (300, 300) with jumps of 5 agents on each side, and the size

of unbalanced markets ranges from (5, 6) to (300, 301) with jumps of 5 agents on each side.

1.7.1 The separable case with bounded noise

We first focus on the benchmark case of uniform [0, 1] distribution with all firms having

the same quality (qn ≡ 0) and all workers having the same human capital level (hn ≡ 0),

and study wage dispersion in balanced markets under the firm-optimal core allocation.

Figure 1.1 shows that indeed in a balanced market the maximal difference between the

profits of any two firms in any core allocation behaves like log n
n , as proved by Theorem 1
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and Theorem 2.10

Figure 1.1: Approximate law of one price in balanced markets

The left panel of Figure 1.2 shows that in this case the maximum salary any worker gets

under the firm-optimal core allocation also behaves like log n
n , and the right panel of the

same figure exemplifies the fact that the core in balanced markets is long, as suggested by

Corollary 3.

Figure 1.2: Surplus distribution in balanced markets

In unbalanced markets we expect the core to be much more narrow, per Corollary 4. The

left panel of Figure 1.3 shows that even when the number of workers is only one more than

the number of firms, the maximal salary any worker gets approaches zero rapidly, even

under the worker-optimal core allocation. Furthermore, as the right panel demonstrates, in

this case the workers’ share in the surplus approaches 0, even under the worker-optimal

core allocation. Figure 1.4 parallels Figure 4 of Ashlagi et al. (2013), and depicts the workers’

share of the surplus when the number of workers is constant at 50, and the number of firms

10Figure 1.1 is based on only 25 trials for every market size, since finding the maximal difference across all
core allocations requires solving n(n− 1) linear-programming problems.
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varies from 20 to 80.

Figure 1.3: Surplus distribution in unbalanced markets

Figure 1.4: Surplus distribution with 50 workers

We now wish to verify that adding qualities to the mix does not substantially change any

of these results. We let qn
i ∼ U[0, 1] for every i, and hn

j ∼ U[0, 1] for every j. In a balanced

market we expect each worker to get roughly her human capital level, and for all workers

to take 25% of the surplus. Under the worker-optimal core allocation we expect workers

to take about 75% of the surplus. This is indeed shown in Figure 1.5. In an even slightly

unbalanced market, we expect each worker to get her human capital level under any core

allocation, and for the whole population of workers to take 25% of the surplus. This is

demonstrated in Figure 1.6.

1.7.2 Cobb–Douglas productivity with bounded noise

We first try to demonstrate that assortative matching takes place in the model mentioned in

Appendix A.3; i.e., each side of the market is characterized by evenly spaced qualities on the

interval [0, 1], and the idiosyncratic noise is distributed according to U[0, 1]. In Section 1.5
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Figure 1.5: Surplus distribution in balanced markets with qualities

Figure 1.6: Surplus distribution in unbalanced markets with qualities

we proved just one aspect of assortative matching, namely, whp no firm is matched to a

worker whose human capital level is substantially different from the firm’s own quality

(Lemma 5). The left panel of Figure 1.7 depicts the average and the maximal absolute quality

difference between firms and the workers they employ under the optimal assignment. It

is easy to see that these differences shrink as market size grows, and by looking at the

logarithms of both axes (right panel) we can see that indeed these differences behave like a

negative power of n.

Figure 1.7: Assortative matching when production factors are complements

The surplus distribution described in Corollary 7 is depicted on the left panel of Fig-
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ure 1.8. This panel shows the average absolute difference between workers’ salaries and

workers’ human capital levels under the firm-optimal and the worker-optimal core alloca-

tions. The right panel supports the conjecture we raised at the end of Section 1.5 by showing

the same metric in unbalanced markets for both the firm-optimal and the worker-optimal

core allocations.

Figure 1.8: Surplus distribution when production factors are complements

1.7.3 Unbounded distributions

As mentioned in Section 1.6, unbounded noise distributions give rise to quite different

phenomena than those mentioned with respect to bounded distributions. Figure 1.9 depicts

the maximal difference between any two workers’ salaries divided by the average surplus

created under the optimal assignment, in a balanced market with exponential noise governed

by the firm-optimal core allocation. As predicted by Proposition 8, the difference does not

vanish as n gets large.

Figure 1.9: No law of one price under Exponential distribution

In Section 1.6 we also mentioned a conjecture about the behavior of the optimal as-
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signment under the exponential distribution (Conjecture 9). Figure 1.10 shows that indeed

it holds for medium-sized markets. The left panel of Figure 1.11 exemplifies how this

conjecture translates into the conclusion of Theorem 10, and the right panel of that figure

suggests that Conjecture 11 is true.

Figure 1.10: Maximal rank of matched agents under exponential distribution

Figure 1.11: Surplus distribution under exponential distribution (balanced and unbalanced)

We conclude this subsection by noting that while our discussion was mostly about the

exponential distribution, there are many other distributions that have similar tail behavior,

and therefore are likely to exhibit the same phenomena. In particular, the extreme value

distribution used in some empirical papers seems to have similar effects. Figure 1.12

parallels Figure 1.10 and shows the maximal rank of any two matched agents in a balanced

market with noise distributed according to an extreme value distribution, and Figure 1.13

shows surplus distribution for both balanced and slightly unbalanced markets.
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Figure 1.12: Maximal rank of matched agents under extreme value distribution

Figure 1.13: Surplus distribution under extreme value distribution (balanced and unbalanced)

1.8 Conclusion

During the 1980s, as it became clear that real-life centralized clearing houses could be

immensely improved using intuitions gained in the study of marriage markets, the trans-

ferable utility strand of the literature became slightly neglected compared to its glorified

non-transferable utility half-sibling. We decided to focus our attention in this paper on

assignment games because it is our belief that they provide an excellent way to model

decentralized markets, and that both strands of the matching theory literature can benefit

from the continuous cross-fertilization.

We have investigated the applicability of the law of one price in two-sided matching

markets with transfers, when agents have heterogeneous preferences over matching with

the other side of the market. We have shown that an approximate law of one price holds,

and that it implies core convergence and sharp predictions about surplus distribution in

unbalanced markets. We have explained why the same kind of forces continue to work in

markets in which there is interaction between the production factors, and why they fail to
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hold in markets in which the idiosyncratic noise is unbounded. These results indicate that

only in knife-edge cases, in which the markets are exactly balanced, can we expect to see

any significant variation in core outcomes.

We conclude the paper by noting that many of our assumptions were for expositional

clarity only. The fact that firms had unit demand and workers supplied one unit of work

is of course not crucial to our results, nor is the fact that all agents can possibly work in

all the firms. The same results will hold in markets with discrete and finite demand and

supply, and in markets that are less thick (at least to some extent). Nevertheless, some of

the assumptions were crucial, and weakening them could lead to further understanding

of markets with heterogeneous preferences. Specifically, the mechanism through which

markets with unbounded noise converge remains a mystery, and the extent to which these

results hold for markets with general utility functions (not quasi-linear) can be further

studied. Finally, generalizing our results and the results of Ashlagi et al. (2013) to markets

with substitutable preferences (with or without transferable utility) is another very promising

direction for future research.
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Chapter 2

Building Reputation at the Edge of

the Cliff

2.1 Introduction

The 2012 New Year’s Eve celebrations in America were somewhat clouded by the gloomy

predictions of the Congressional Budget Office about an upcoming fiscal crisis that might

take place in 2013. This unsettling forecast originated from the expiration of several laws,

most notably the 2010 Tax Relief Act and the Budget Control Act of 2011, which entailed an

increase in taxes as well as major spending cuts, leading to a sharp decline in the budget

deficit. If all the changes were to go into effect simultaneously they would have induced a

recession by cutting household incomes, increasing unemployment rates, and hurting both

consumers’ and investors’ confidence in the economy. This dire situation sparked extensive

media coverage that referred to the December 31 midnight deadline and the sharp decline

in the budget deficit expected to ensue as the “fiscal cliff.”

Preventing the fiscal cliff was supposedly a very simple task. Either the tax reliefs were

to be extended, spending cuts were to be canceled, or some combination of these measures

was to be taken. However, the political situation provided an extremely inconvenient

environment for enacting such reforms. President Barack Obama and the Democratic-
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controlled Senate disapproved of across-the-board tax cuts (as opposed to tax cuts for only

the bottom 98%), and wanted to keep the spending level relatively high. The Republican-

controlled House of Representatives preferred a solution that would lower spending as well

as tax rates. Several proposals for amending the budget had been suggested by President

Obama, House Speaker John Boehner, and others, but all were quickly rejected. In an

attempt to reach an agreement, negotiations extended until the very last hours of 2012.

There was some uncertainty about whether a compromise would be reached in time, and the

entire bipartisan negotiation process was described by several commentators as an elaborate

and dangerous high-stakes game of “chicken.”1 An agreement was finally reached just

before the deadline, with legislation passing in the Senate on January 1, and in the House

the following day.2

This paper models the negotiations as a revision game with reputation formation.3 In

the revision game model, introduced by Kamada and Kandori (2011), players prepare (pure)

actions over a continuous and finite time horizon. They can change their actions only when

they are called to play by stochastic Poisson processes. When the deadline is reached, the

last actions prepared are used to determine the payoffs. This model also encompasses the

idea of an uncertain deadline, as its effect is similar to the randomness induced by the

stochastic revision opportunities.4 We expand the model to accommodate for incomplete

information, which allows us to study how adding a small probability irrational type into

the game affects the equilibrium outcome.

1See, for example, Robin Harding, “US Plays Chicken on Edge of Fiscal Cliff”, ft.com/world, November
11, 2012, and Robert Reich, “Cliff Hanger: Obama’s Last Stand and the Republican Strategy of Fanaticism”,
Huffington Post, December 26, 2012.

2Several economists insist that the consequences of passing the deadline by several days would not have
been as catastrophic as portrayed by the media; see, e.g., Baker (2013). However, our theoretical analysis applies
to other situations of negotiating close to a deadline, as well as to the described situation where the utilities
of the players represent the political cost of not reaching agreement for the two parties rather than the actual
economic implications of the fiscal cliff.

3Our results also apply to a model of war of attrition with a deadline and with independent and stochastically
distributed exit opportunities (see Section 2.5).

4Explicitly adding a deadline over which there is common uncertainty would not substantially change any
of the results.
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In simplifying the negotiation alternatives to a 2x2 game of opposing interests, we demon-

strate that the effect of reputation-building on equilibrium outcomes can be substantial, even

as the time horizon becomes infinitely long. That is, we show that, generically, reputation

formation by one player prevents her opponent from achieving her most-preferred outcome

(Proposition 12). Furthermore, one-sided reputation-building often leads to last-minute

revisions that push some of the strategic interaction close to the deadline and induce a

chance of falling over the cliff, i.e., reaching an outcome that neither side desires (Theo-

rem 13).5 When both parties try to build reputation, substantial delay must arise with

positive probability and inefficiency is inevitable (Theorem 15). Furthermore, in this case

the probability of not reaching an agreement can be non-negligible. It is important to stress

that as our model contains no flow payoffs inefficiencies are caused only by ex-post Pareto

inefficient outcomes, and that as a result of the discreteness of the revision phase any form

of delayed action is necessarily tightly connected with inefficiency.

We provide some illustrative comparative statistics, as well as suggestive computational

evidence, that help in assessing the magnitude of inefficiency. These results demonstrate

that the more players are similar in strength, the more likely they are to hold to their

bargaining position for a long time, leading to a deadline effect with harmful implications

for the players’ expected utility. In the limit case of equal strengths, the inefficiency does not

vanish even as the ex-ante probability of the commitment types approaches zero.

Some methods used in the study of revision games are similar to those employed when

discussing wars of attrition. We introduce a model of war of attrition over a continuous

and finite horizon with Poisson arrivals and incomplete information. We prove that all

sequential equilibria possess a simple structure in which one of the players uses a strategy

that is completely characterized by a cutoff time, and the other player’s strategy also

adheres to the same cutoff time (but could be more complicated before it). This allows us

to provide sharper results concerning delay and inefficiency in one-sided and two-sided

5It is straightforward to show existence of an equilibrium with such properties. Our contribution is in
showing that every sequential equilibrium must exhibit the same inefficiency. The same is true for most of the
results in this paper.
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reputation-building scenarios.

The deadline effect that our model predicts is widely prevalent not only in political

circumstances, but also in situations of a purely economic nature. It was observed in

empirical data on labor strikes (Cramton and Tracy, 1992), and was replicated in lab

experiments (Roth et al., 1988). While the present paper stresses the role of reputation-

building in inducing such an effect, other authors have suggested explanations such as

irreversible commitments (Fershtman and Seidmann, 1993), private information about

second-order beliefs (Feinberg and Skrzypacz, 2005), strategic delay in a bargaining process

(Ma and Manove, 1993), individual deadlines (Sandholm and Vulkan, 1999), and optimism

(Yildiz, 2004). Two papers that investigate this subject and have closer assumptions to ours

are Fuchs and Skrzypacz (2013) and Ponsati (1995) who discuss continuous-time bargaining

with private information and a deadline. Both papers point to a positive mass of agreements

at the deadline, which is hard to interpret as inefficiency without a proper discretization of

their continuous-time models.

This paper belongs to a growing body of work that follows Kamada and Kandori (2011)

and studies different aspects of revision games. Some of the intuition is based on the

analysis of the complete-information case by Calcagno et al. (2014). Other papers that

employ similar methods include Ishii and Kamada (2011) and Kamada and Muto (2011).

A few papers use a continuous-time finite-horizon framework to explore specific topics

such as bargaining (Ambrus and Lu, 2010) or online auctions (Ambrus et al., 2013). The

novel feature of this strand of the literature is the tractable compromise between having a

continuous-time model, which often requires extreme technical effort to get rid of unwanted

equilibria, and using a discrete-time model, which may add additional strategic aspects

(such as the exact order of play) that have nothing to do with the main issues.6

This work also relates to a vast literature that explores the effects of building reputation

in repeated games, following the seminal papers of Kreps and Wilson (1982a) and Milgrom

and Roberts (1982). Several of the many papers on reputation, and perhaps most notably

6For a relevant discussion on this topic see Hendricks et al. (1988).
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Abreu and Gul (2000), demonstrate the existence of delay and inefficiency, where delay is

measured from the first period of play and inefficiency is due to forgone payoff opportunities.

Our results resemble these contributions in the sense that perturbing the game by adding

commitment types can significantly shift the outcome when the time horizon is long enough.

Players sacrifice utility to convince their opponent of their intentions not by decreasing

immediate payoffs (as in the repeated games literature), but rather by increasing the

probability of reaching an inferior outcome at the deadline. In this paper, the delay is

measured backward from the deadline, and reputation formation is based on reaching an

ex-post inefficient outcome with positive probability.7

The war of attrition extension is reminiscent of Fudenberg and Tirole (1986) who study

what happens in a duopoly exit situation when there are commitment types. Unlike our

model which is in continuous-time but has discrete preparation opportunities, in their

model players can exit at any point in time, which makes their uniqueness proof far more

involved. Other related models are the continuous-time model with two-sided uncertainty

of Kreps and Wilson (1982a, Section 4),8 the bargaining model of Osborne (1985), the

discrete time model with generalized reputation of Kornhauser et al. (1989), and Atakan and

Ekmekci (2013) who show that equilibrium behavior in a repeated game with two-sided

reputation-building is similar to a war of attrition.

The rest of the paper is organized as follows. Section 2.2 introduces the model and

the formal notation. Section 2.3 analyzes the general form in the presence of one-sided

reputation. Section 2.4 deals with the case of two-sided reputation-building and provides

results concerning the induced inefficiency. Section 2.5 discusses wars of attrition with a

deadline, and Section 2.6 concludes. Proofs are relegated to the appendix.

7It is possible to apply some involved transformations between the revision game model and the repeated
game model, so that the probabilities of reaching a Pareto inferior outcome are reflected in flow payoffs and in
the discount factor. Nevertheless, using any such transformation will strip the model, the methods, and the
results of any reasonably intuitive interpretation. We choose not to pursue the search for such an equivalence
any further in this paper.

8That model uses flow payoffs and strategies in continuous-time, and therefore has a recursive structure.
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Republicans
(L)arger spending (R)educed spending

Democrats
Taxes (U)p u1(U, L), u2(U, L) u1(U, R), u2(U, R)

Taxes (D)own u1(D, L), u2(D, L) u1(D, R), u2(D, R)

Figure 2.1: Payoff matrix for rational types

2.2 Model

Since the fiscal cliff negotiations included many elements and neither side had full control

over any of the parameters of the final proposal, we choose here to abstract away from

the details and present a simplified version of the process. We consider a two-player

Bayesian revision game,9 summarized by the parameters (T; u1, u2; ξ1, ξ2). For i ∈ {1, 2},

ui : {U, D} × {L, R} → R is a payoff function for the rational type of Player i (see Figure 2.1

below), and ξi ∈ [0, 1] is the probability that Player i is a commitment type. We refer to the

normal form game associated with the payoff matrix in Figure 2.1 as the component game.

The underlying story is that Player 1 (the Democratic Party) has sole authority to set

taxes back to their original level (before the expiration of the tax relief acts), whereas Player 2

(the Republican Party) alone can approve a spending increase. We assume that both (U, L)

and (D, R) are strict Nash equilibria of the component game and that

u1(U, L) > u1(D, R) and u2(U, L) < u2(D, R).

These assumptions represent two main features of the story. First, the game is a game of

opposing interests; i.e., each party has a preferred solution to the fiscal crisis situation.10 The

Democrats favor raising taxes and keep spending high, while the Republicans would rather

lower taxes and embrace the upcoming spending cuts. Second, if both parties insist on their

preferred outcome, then the economy falls over the fiscal cliff. That is, if the Democrats keep

9Alternatively, we could have used the model of Kamada and Kandori (2011) with a different equilibrium
concept that takes into account the evolving probabilities about (nonexistent) irrational types.

10We do not consider common interest games since the analysis of such games does not become more
interesting with the introduction of reputation. In such games rational players have no incentive to communicate
anything other than being rational and willing to cooperate.
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taxes up and the Republicans go with the reduced spending, then the resulting scenario is

undesirable for both players compared to any agreed-upon solution. Finally, if both parties

concede then the combination of low taxes and high spending may drive the economy to a

fiscal wall, a situation in which there is too much spending and not enough taxes to cover it,

and this alternative is unattractive for both players as well.

Denote the possible types of Player i by τr
i (rational type) and τc

i (commitment type).

We model the commitment type of Player 1 (Player 2) as an agent who can only prepare U

(R). We often refer to U and R as the commitment actions. We stress that the rational types’

payoffs are independent of their rival’s type.

Following the notation used by Calcagno et al. (2014), players prepare actions on the

interval [−T, 0], and the component game is played once at time 0. At time −T, both

players simultaneously choose the initial profile of actions. We restrict players to choose

pure actions at this initial choice.11 Between time −T and 0, Players 1 and 2 are called

to prepare an action according to two independent Poisson processes. For expositional

purposes, we assume in the main text that the frequencies of the Poisson processes are both

equal to 1; i.e., each player has on average one revision opportunity per unit of time. All the

results for arbitrary revision rates are stated and proved in the appendix. Players are not

informed of the realizations of their opponent’s Poisson process, but are informed of the

current profile at any point in time.12 This means that players’ strategies depend only on

their own preparation opportunities, the prepared action profiles, and time, but not on their

opponents’ preparation opportunities. At t = 0 the action profile that has been prepared

most recently determines the payoffs for the players. In order for expected payoffs and

probabilities of preparing certain profiles in the revision phase to be well defined for all

11This restriction is mostly for clarity of exposition and focusing the analysis on what we perceive as the
important part of the game, namely, the revision phase. In an earlier draft we show that most of the results
continue to hold if we allow mixed action at −T. We can also replace this assumption by an exogenous selection
of a default profile of actions (U, R).

12Loosely interpreted: one player cannot tell when the other player considered preparing a different action,
but only when the opponent actually did prepare a different action. It is also possible to consider a model in
which players are aware of opponents’ revision times. However, analyzing this model becomes cumbersome
very quickly due to discontinuities at the revision opportunities. See also the concluding discussion.
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strategy profiles, we restrict players’ strategies to be measurable with respect to the natural

topologies. All the elements of the model are common knowledge, and the type of each

player is private information (see the appendix for a formal definition of the strategy space).

We employ the solution concept of Sequential Equilibrium (SE) (Kreps and Wilson,

1982b), which guarantees that even off the equilibrium path a player that revised her action

to D or L is believed to be rational with probability 1.13 We consider the limit set of SE

payoffs as the length of time horizon, T, approaches infinity.14 We are interested mostly

in the rational types’ payoffs, and so we denote by φ(T; u1, u2; ξ1, ξ2) the set of interim SE

payoffs of the profile (τr
1 , τr

2). We define the revision equilibrium payoff set of (u1, u2; ξ1, ξ2)

by

φ̄(u1, u2; ξ1, ξ2) = lim
T′→∞

φ(T′; u1, u2; ξ1, ξ2).

Besides the eventual payoffs of the players, we also wish to discuss cases in which

a significant delay in reaching an agreement is mandated by equilibrium behavior. We

distinguish between two situations in which strategic interaction is significantly delayed.

We say that a vector of parameters (u1, u2; ξ1, ξ2) induces substantial delay if with strictly

positive probability the prepared profile does not change throughout the game until close

to the deadline. We say that it exhibits last-minute strategic interaction if there is a strictly

positive probability that the prepared profile changes close to the deadline. In both cases, we

say that the vector of parameters induces inefficiency if there is a strictly positive probability

of reaching ex-post Pareto inefficient payoffs. The following definition formalizes these

statements.

Definition 2. A vector of parameters (u1, u2; ξ1, ξ2) induces

• substantial delay if there exists a time −t′ < 0 and δ > 0, such that for every sequence

13Alternatively, we could have modelled the commitment type as having the possibility of choosing either
action, but with utilities such that U and R are dominant. In this case we would also need a refinement akin to
the Intuitive Criterion of Cho and Kreps (1987), since merely using the concept of Sequential Equilibrium would
not rule out “strange” beliefs on and off the equilibrium path.

14A different interpretation is that the time horizon is fixed, and the revision rates approach infinity while
the ratio between them is preserved.
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{Tk}∞
k=1 such that Tk → ∞, and every corresponding sequence of SEs, the probability that

only (U, R) is being prepared before time −t′ is bounded above δ as k approaches infinity.

• last-minute strategic interaction if there exists a time −t′ < 0 and δ > 0, such that for

every sequence {Tk}∞
k=1 such that Tk → ∞, and every corresponding sequence of SEs, the

probability that the prepared profile changes between time −t′ and time 0 is bounded above δ

as k approaches infinity.

• inefficiency if there exists δ > 0, such that for every sequence {Tk}∞
k=1 such that Tk → ∞,

and every corresponding sequence of SEs, the probability of reaching ex-post inefficient payoffs

is bounded above δ as k approaches infinity.

Note that whenever a vector of parameters induces substantial delay, it also induces last-

minute strategic interaction. When a vector of parameters induces last-minute strategic

interaction it necessarily induces inefficiency (this is Lemma 50 in the appendix).

2.3 One-sided reputation-building: Last-minute strategic interac-

tion

We begin our analysis by focusing on one-sided reputation-building and its consequences.

This simpler environment allows us to introduce some of the intuitions that continue to

guide us when studying two-sided reputation-formation. The analysis is required for the

study of two-sided reputation-formation also because it represents what happens after either

of the players is revealed as a rational type. In what follows we establish first that even

when the time horizon becomes long, a prior positive probability of acting “crazy” prevents

an opponent from getting the entire surplus.15

To do this, we first rephrase and explain a useful definition of Calcagno et al. (2014) that

summarizes several aspects of the players’ bargaining power in our setting.

15As is the case in the complete information game (Calcagno et al., 2014, Theorem 3).
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Definition 3. Player i’s strength is given by

si(ui) ≡
|ui(U, L)− ui(D, R)|

[ui(U, L)− u1(U, R)] + [ui(D, R)− ui(U, R)]
.

Player i is stronger than Player j if si(ui) > sj(uj). Player i’s relative strength (with regard to Player

j) is

∆ij(u1, u2) = si(ui)− sj(uj).

The denominator of the expression in Definition 3 can be thought of as the expected

surplus of Player i when both players try to myopically best-respond over a time period, and

there is an equal probability that any one of them will manage to stop before the deadline.

This value is normalized by the difference between Player i’s preferred component game

equilibrium payoff and her less-preferred component game equilibrium payoff.16 Player i is

less strong if her preferred component game equilibrium payoff is higher, and is stronger

if her less-preferred component game equilibrium payoff is higher, or if ui(U, R) is higher.

Intuitively, lower payoffs for reaching the preferred outcome, and higher payoffs for reaching

the less-preferred outcome and or for no agreement, all allow a player to insist longer. Note

that for generic payoffs, ∆ij(u1, u2) 6= 0 and so one of the players is stronger than the other.17

Proposition 12. Assume Player 1 is stronger than Player 2, ξ1 = 0, and ξ2 > 0; then the revision

equilibrium payoff set is bounded away from Player 1’s preferred outcome:

u(U, L) /∈ φ̄(u1, u2; 0, ξ2).18

16Calcagno et al. (2014) note that there is an equivalent and perhaps more readable form for the inverse of si:

1
si(ui)

= 1 + 2 · min{ui(U, L), ui(D, R)} − ui(U, R)
|ui(U, L)− ui(D, R)| .

17One may be tempted to compare this strength notion with the concept of risk-dominance (Harsanyi and
Selten, 1988). Generally, these two measures do not agree. For example, consider the following games:

L R
U 7, 5 2, 0
D 0, 0 3, 6

L R
U 8, 8 0, 5
D 0, 0 5, 9

Player 1 is stronger than Player 2 in both games. However, the risk-dominant equilibrium in the left-most matrix
is (U, L), and the risk-dominant equilibrium in the right-most matrix is (D, R).
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Proof sketch. The theorem shows that one-sided reputation-building bounds the revision

equilibrium payoff set away from the stronger player’s preferred outcome as the length of

the time horizon tends to infinity. Intuitively, to get this outcome in the limit the rational

Player 2 must prepare L on average further and further away from t = 0. But this implies

that if the stronger player is called to prepare an action at any time before t = 0 and the

weaker player’s prepared action is the commitment action, then the stronger player will

attribute a very high probability to the event that the weaker player is a commitment type,

and will have a strict incentive to myopically best-respond from there on. This in turn

creates an incentive for the rational type of the weaker player to imitate the commitment

type, and we get a contradiction. The complete proof is in the appendix.

To fully understand the role of the random processes in the derivation of the above result,

it may be helpful to consider briefly a model in which the times of players’ preparations are

well known in advance. If there is no incomplete information about players’ types, it is easy

to see (using backward induction) that the last mover will have to prepare the action related

to his less-preferred component game equilibrium. The same pair of strategies will also

form a SE in an incomplete information game, as long as the probability of the other player

being a commitment type is small enough. Generally, a deterministic order of play enhances

such bargaining strengths as first-mover or last-mover advantage or disadvantage. When

preparations are random both players can find themselves in a situation where they are the

last player to prepare an action, which makes the exact order of preparations irrelevant in

determining the bargaining strengths of the two players.

Proposition 12 indicates what kind of outcomes are impossible, but does not provide a

full description of what does happen. For example, the expected payoffs may be bounded

away from u(U, L) due to some plays ending with Pareto inefficient outcomes, or the

equilibrium behavior may dictate arriving at the weaker player’s preferred outcome with a

18We write u(U, L) instead of (u1(U, L), u2(U, L)), and similarly for all action pairs.
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positive probability. Theorem 13 demonstrates that under certain parameters the equilibrium

behavior necessarily involves last-minute strategic interaction that may lead to inefficient

outcomes.

Theorem 13. Assume Player 1 is stronger than Player 2, and ξ1 = 0. Then there exists ξ̄2 > 0 such

that for every ξ2 ∈
(
0, ξ̄2

)
, the parameters induce last-minute strategic interaction and inefficiency.

Proof sketch. If the probability that Player 2 is a commitment type is small enough, then

Player 1 can get a payoff strictly above u1(D, R) with high probability by never changing

her action and waiting for Player 2 to best-respond. That is, some histories lead to Player 1

getting her most-preferred payoff, and Player 2 getting less than her most-preferred payoff.

We know from Proposition 12 that Player 2 cannot prepare the action L too soon, and

when she does not, Player 1 cannot always prepare D or else Player 2 will have a profitable

deviation. This necessarily implies last-minute strategic interaction, which in turn directly

causes inefficiency. The complete proof is in the appendix.

We are inclined to interpret Theorem 13 as relating to different notions of advantage.

These two flavors of strategic advantage are reminiscent of those discussed in the context

of bargaining. For example, Rubinstein (1982) uses slight differences in impatience to

determine the bargaining outcome, whereas Abreu and Gul (2000) suggest irrationality as

an explanation for the final division of residual claims in the bargaining procedure. In our

case the strength of Player 1 cannot prevent the rational type of Player 2 from imitating the

commitment type and creating reputation. At the same time Player 1 cannot completely give

up her strong bargaining posture too soon, as she knows that rationality dictates a change

in the revisions of the rational type of Player 2 close to the deadline. As the probability of

actually facing a commitment type becomes small, Player 1 has an incentive to preserve

some bargaining power to the end of the revision phase. This means that for an open set

of parameters, one-sided reputation-building leads to last-minute strategic interaction and

inefficiency.19 In Section 2.5 we strengthen this result for the case of War of Attrition with

19Strictly speaking, we have not shown that the set of parameters is open. However, looking at the proof of
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Poisson arrivals (Corollary 20).

An important question, to be discussed further in the two-sided reputation formation

case, is whether the effect of reputation vanishes as the probability of a commitment type

tends to zero. While we do not prove that it necessarily does, we can demonstrate that the

efficient outcome related to the subgame perfect equilibrium of the complete information

game is a limit of a sequence of outcomes in games with diminishing probability for

a commitment type. That is, we show that φ̄ is lower hemi-continuous in ξ2 at 0. To

prove this result we explicitly construct a specific sequence of equilibria that has a simple

structure of using cutoff strategies (that is, insisting up to a certain time and then myopically

best-responding from there on), and show that the related expected payoffs converge to

u(U, L).

Proposition 14. Assume Player 1 is stronger than Player 2, and ξ1 = 0. Then Player 1’s preferred

outcome is in the limit of the revision equilibrium payoff set as20 ξ2 → 0:

u(U, L) ∈ lim inf
ξ2→0

φ̄(u1, u2; 0, ξ2).

2.4 Two-sided reputation-building: Falling over the cliff

As demonstrated in the previous section, one-sided reputation formation may lead to

inefficiency under certain conditions. The inefficiency is realized on the equilibrium path

when the Democrats insist on keeping taxes high (U) and the Republicans insist on reducing

spending (R), a scenario that leads to a fiscal cliff. The basic argument was that the

Republicans, who are perceived as having a positive probability of being committed to

reducing spending, cannot fold too quickly, or else the entire surplus will be taken by

the Democrats who are stronger along other bargaining dimensions. This section applies

Theorem 13, we can see that ξ̄2 can be chosen as a continuous function u1 and u2, and hence finding an open
set of parameters is trivial.

20Note that φ̄(u, 0, ξ2) is a set. The operator lim inf here means that for every sequence ξk
2 → 0 we can choose

equilibrium payoffs uk ∈ φ̄(u, 0, ξk
2) such that uk → u(U, L). Note also that Proposition 14 does not completely

characterize the limit set of the payoffs.
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a similar logic to situations with two-sided reputation-formation, and describes how it

necessarily induces a positive probability of falling over the fiscal cliff. That is, the probability

of seeing any action prepared in the game other than the commitment actions is bounded

below 1 until the very end of the game, and the expected payoffs cannot be on the Pareto

frontier. We characterize the inefficiency for the special case of equilibrium in cutoff

strategies, and present comparative statics and limit results. Finally, we present a variety of

numerical and analytic calculations that indicate that the inefficiency can be substantial for

reasonable values of the parameters.

As described above, not only does our first theorem in this section predict a shift from

the complete information outcome, but it also demonstrates that with positive probability

a long delay must occur before any player prepares anything but the commitment action.

This delay in turn must cause inefficiency, as agreement might not be reached before the

deadline. Theorem 15 therefore combines and strengthens the results of Proposition 12 and

Theorem 13 for the case of two-sided reputation-building.

Theorem 15. Assume Player 1 is stronger than Player 2,21 and ξ1, ξ2 > 0. Then substantial delay

and inefficiency are induced.

The intuition for Theorem 15 is an extension of the one used to derive the one-sided

reputation results. The rational type of the weaker player (in terms of payoffs) cannot give

up on building reputation too quickly in equilibrium. If she does, then, by extension of

Calcagno et al. (2014, Theorem 3), her payoff will approach her least preferred component

game equilibrium payoff, while pretending to be a commitment type will guarantee a larger

payoff. Given that there is a time before which the weaker player’s probability of revealing

her rationality is bounded below 1, there is also an earlier time before which the rational

type of the stronger player cannot reveal her rationality too early either. If she does that her

utility will be bounded away from her preferred outcome (by Proposition 12), and deviating

21This assumption is only for the sake of simplicity. The case of equal strengths is susceptible to similar
analysis but requires proving first that if players are equally strong, ξ1 > 0 and ξ2 = 0, then equilibrium payoffs
approach u(U, L) as T approaches infinity.
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ensures a payoff that approaches the preferred outcome. This dictates substantial delay,

which necessarily leads to inefficiency.

The above theorem points to some of the problematic efficiency properties of two-sided

reputation-building. The rest of this section is dedicated to uncovering the magnitude of the

inefficiency, and how different parameters of the game affect it. In what follows we focus on

the simple equilibrium form in which each rational type insists on her commitment action

until some point in time and myopically best-responds (according to the component game’s

payoffs) from there on. We know that in order for these strategies to form an equilibrium,

each rational type must be indifferent between both actions at the switching point, and

this together with the Bayesian updating of beliefs allows us to solve for the cutoff times.

The following proposition gives us some basic comparative statics regarding the extent of

inefficiency that Theorem 15 predicts.

Proposition 16. If ξ1, ξ2 > 0, both players play cutoff strategies, and Player 2’s cutoff is earlier

than Player 1’s cutoff, then the probability of reaching an ex-post Pareto inferior outcome is

1. increasing in u1(D, R), and decreasing in u1(U, L) and u1(U, R),

2. increasing in u2(D, R) and u2(U, R), and decreasing in u2(U, L).

It is instructive to read Proposition 16 in light of Definition 3, and see that each element

of the bargaining strength affects the inefficiency in the same way it affects the relative

strength, ∆12(u1, u2). Changes in the payoffs that push the relative strength away from zero

decrease the inefficiency, and changes that push it towards zero increase the inefficiency.

From symmetry it follows that the maximal inefficiency is attained when ∆12(u1, u2) = 0.

To get a feeling of what that maximal inefficiency might be, Theorem 17 below takes both

probabilities of being a commitment type to zero.

Theorem 17. 1. Assume Player 1 is stronger than Player 2, and both players play cutoff

strategies. Then in the limit as ξ1 → 0 and ξ2 → 0, the probability of reaching ex-post

inefficiency tends to zero.
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2. Assume players are equally strong (∆12(u1, u2) = 0), and both players play cutoff strategies.

Let the sequence (ξk
1, ξk

2)
∞
k=1 be such that limk→∞ ξk

1 = limk→∞ ξk
2 = 0, and limk→∞

ξk
2

ξk
1
≤ 1.

Then in the limit as k→ ∞, the probability of reaching ex-post inefficiency tends to[
u1(U, L)− u1(D, R)

u1(U, L) + u1(D, R)− 2u1(U, R)

]
× lim

k→∞

ξk
2

ξk
1

.

The interpretation of Theorem 17 is that as the probability of commitment types goes

to zero, the inefficiency (generically) goes to zero as well. Nevertheless, if the probability

that either of the sides is a commitment type does not merely serve as a refinement tool,

but rather constitutes an essential part of the dynamics, then the balance of the different

forces becomes important. As the second part of the theorem shows, even for relatively

small probabilities of being commitment types, the inefficiency can be substantial. Roughly,

if the players are close to being equally strong in terms of payoffs, then reputation effect

may cause significant efficiency loss. However, if one of the players is much stronger (in

terms of payoffs), reputation effects only mildly hurt efficiency. Similarly, if one player’s

reputation is much stronger than the other player’s (the ratio ξ2
ξ1

is very small or very big),

then the inefficiency is negligible.

To illustrate the extent to which the equilibrium result may be inefficient we solve for a

variety of parameters. We first note that when the two players are equally strong we can

use the formula of Theorem 17 to compute the limit inefficiency. We assume ξ1 = ξ2 and

(without loss of generality) normalize u1(U, R) to be zero, and get the reduced formula

Inefficiency =
u1(U, L)− u1(D, R)
u1(U, L) + u1(D, R)

.

This implies that for a standard battle of the sexes payoff matrix, the inefficiency tends to

1
3 in the limit. If the stakes are higher, say if u1(U, L) = u2(D, R) = 99 and u1(D, R) =

u2(U, L) = 1, then the inefficiency is 98%. In this case equilibrium behavior dictates that

both players insist on playing the commitment action until very close to time 0, and the first

to be called to prepare an action chooses her less-preferred component game equilibrium

and gets a payoff of 1, whereas the other player gets 99. However, the time at which players
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stop preparing the commitment action is so close to the deadline that only with probability

2% is either of them is going to be called, which pins their expected payoff at exactly 1.

Figure 2.2 illustrates several of the properties that were just discussed. In this figure we

see the extent of inefficiency for the game form presented in the top left panel for x ∈ (0.5, 2)

and y ∈ (1, 3), and for three values of ξ1 and ξ2. The three shapes resemble shark fins

that become narrower as ξ1 and ξ2 become smaller. This demonstrates that the maximal

inefficiency is always at ∆12(u1, u2) = 0 and does not vanish, and that everywhere else the

inefficiency tends to zero as the ex-ante probability of commitment types approaches zero.

Figure 2.3 offers a different view of the same family of payoff matrices, but here the payoffs

are held constant and the ex-ante probabilities of commitment types vary. A careful look

at those graphs reveals that there is a trade-off between strength (in terms of payoffs) and

commitment power when it comes to bargaining posture, which in turn leads to inefficiency.

2.5 Wars of attrition with Poisson arrivals

In many negotiations (including those related to the fiscal cliff), reaching a final agreement

before the deadline is also a possibility. This is inherently different from the model of

revision games in which even after one of the parties decides to concede, it can still return

to its previous bargaining position. Assuming that a concession ends the game simplifies

the model and turns it into a model of a war of attrition. Wars of attrition can generally be

described as situations in which the first player to take action over some defined period of

time determines the payoffs for both players. This model was first introduced by Maynard

Smith (1974) to model biological situations in which two animals fight over a disputed

territory. While the first animal to leave the territory receives a lower payoff than its rival,

both animals suffer from the preceding fight. The framework also captures some of the

economic incentives that govern firms when they are engaged in a patent race or when

trying to become a monopolist in a market that cannot sustain multiple competitors. An
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L R
U 2, 1 0, 0
D 0, 0 x, y

The payoff matrix

ξ1 = ξ2 = 0.1

ξ1 = ξ2 = 0.05 ξ1 = ξ2 = 0.01

Figure 2.2: Varying payoffs
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x = 1 , y = 2 (side) x = 1 , y = 2 (top)

x = 1 , y = 1.9 (side) x = 1 , y = 1.9 (top)

x = 0.97 , y = 2 (side) x = 0.97 , y = 2 (top)

Figure 2.3: Varying commitment probabilities
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extensive literature studies different aspects of the game.22

As mentioned in the Introduction, variants of wars of attrition that include reputation

have been analyzed in the literature in both discrete and continuous-time. Here we introduce

a new timing structure, namely, continuous and finite time, where players can exit only

when being called to play by a stochastic process. We restrict ourselves to payoffs that

correspond to a 2x2 opposing interests game when the stochastic processes governing the

timing of the players’ decisions are independent Poisson processes. One specific instance

from this class of games is the “three-state example” analyzed (without reputation effects)

by Kamada and Sugaya (2010, Section 6.1).

Roughly speaking, all of the previous results hold for this class of games. However, it

turns out that in the war of attrition with Poisson arrivals all equilibria have the special

structure of both players exiting with probability one when being called to play after some

cutoff time, and at least one of the two players exiting with zero probability before that time.

Furthermore, every equilibrium payoff can be mimicked using cutoff strategies for both

players. We use these observations to pin down the limit results.

The fact that the strategies are simpler allows us to provide even sharper results. We

continue to use the same basic definitions of types and utilities (see the appendix for

formal definitions of histories, information sets, and strategies). As before, we now let

φwoa(T; u1, u2; ξ1, ξ2) denote the set of interim SE payoffs of the profile (τr
1 , τr

2) in the war of

attrition with Poisson arrivals and payoffs given by u1 and u2. We define φ̄woa(u1, u2; ξ1, ξ2)

as the limit payoffs set of this game as T approaches infinity.

Lemma 18. In the war of attrition with Poisson arrivals (and incomplete information), for any T,

all sequential equilibria have the property that there exists a cutoff time −t∗ such that both players

exit if being called to play after −t∗, and at least one of them exits with zero probability before −t∗.

Corollary 19. In the war of attrition with Poisson arrivals (and incomplete information), for any T

all SE payoffs can be attained by SEs in which both players use cutoff strategies.

22Such as random rewards (Bishop et al., 1978), asymmetric equilibria (Nalebuff and Riley, 1985), effects of
continuous-time (Hendricks et al., 1988), strong evolutionary equilibria (Riley, 1980), and more.
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The intuition for the proof of Lemma 18 is that players can use strategies that do not

depend on their previous decision opportunities because the other player’s inference does

not depend on those opportunities. Furthermore, the nature of players’ incentives is such

that if one player exits at some time −t, and there is a strictly positive probability that the

second wants to exit from then on until some future time −t′ > −t, then after time −t′

the first player will definitely want to exit. This “pairwise monotonicity” property, which

is precisely defined in the appendix, can be used to show that all equilibria have a cutoff

time −t∗. Corollary 19 then follows by reducing the probability with which the “weaker”

player exits before −t∗ to an interval just before −t∗, while preserving the conditions for

equilibrium and giving the same expected payoffs as the original SE.

Lemma 18 and Corollary 19 represent the key difference between the analysis presented

in the previous sections and the analysis of a war of attrition. Specifically, we can use

Lemma 18 and Corollary 19 and repeat the same arguments from before to get sharper

results. In the case of one-sided reputation formation, the results about efficiency and

inefficiency under certain parameters are stronger, and equilibrium payoffs are uniquely

determined for small enough values of ξ2. Uniqueness is established by ruling out any other

equilibrium payoffs using only cutoff strategies. Then the construction that appears in the

proof of Proposition 14 nails down the exact values of the cutoff times. These results again

demonstrate that the ability to build reputation is an extremely important property of the

bargaining process.

Corollary 20. In a war of attrition model, assume Player 1 is stronger than Player 2 and ξ1 = 0.

Then there exists ξ̄2 such that for every ξ2 ∈ (0, ξ̄2), the parameters induce substantial delay and

inefficiency.

Corollary 21. In a war of attrition model, assume Player 1 is stronger than Player 2; then her

preferred outcome is the unique limit of the equilibrium payoff set as the probability of Player 2 being

the commitment type approaches zero. Formally, lim infξ2→0 φ̄woa(u1, y2; 0, ξ2) = {u(U, L)}.

As for the case of two-sided reputation-building, all the results from Section 2.4 hold,

but whenever the restriction about cutoff strategies appears it is redundant. We here avoid
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repeating these results or providing their proofs, which resemble the proofs that were used

for the revision game model but also employ Corollary 19.

For the sake of completeness it is useful to review how our results relate to previous

models of the war of attrition with incomplete information in continuous-time. First, as

mentioned before, the continuous-time framework makes proving uniqueness results far

more complicated than the results we present here. Our model relies on discrete actions,

and so we can more easily apply the sequential rationality property to establish uniqueness.

Second, a striking feature is that the rates at which players exit in the war of attrition

are similar. Since we employ cutoff strategies, players exit according to the two Poisson

processes that govern their action opportunities starting from a certain time. Osborne (1985)

provides an expression that amounts to exactly the same exit rate when the players are

risk-neutral.

2.6 Conclusion

While the fiscal cliff negotiations ended with an agreement between the two parties, similar

bargaining situations often lead to an outcome undesirable to both sides in the form of

passing the deadline. While ignoring some real-life reasons that may cause this to happen

(animosity, miscommunication, and so on), we provide an intuitive explanation for such

events. Our prediction of non-degenerate equilibrium play with the possibility of a deadline

effect stands in sharp contrast with previous results on complete information play, and

suggests that reputation formation may play a crucial part in delaying meaningful bargaining

in the presence of a deadline.

It is likely that the effects mentioned in this paper would only become stronger if there

were an element of repeated bargaining between the parties, as is natural in the political

arena. In this case, reputation formation would not only serve the present agenda, but

would also be beneficial for future negotiations. A different direction in which our results

can be extended is to consider a game with incomplete information on the rates of revision

opportunities. In such a game each player may try to persuade her opponent that her
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rate of revision opportunities is low. This creates an incentive for the opponent to give up

her bargaining posture faster than she would have done had she known she was facing a

player who can still react with high probability before the deadline. This particular kind

of incomplete information may serve as a good model of the level of interest that each of

the players invests in the game, and provides yet another reason why even players who

care dearly about the results of the game would like to hold their position as the deadline

approaches.

Finally, it is possible to consider an alternative model in which players’ revision op-

portunities are observed by their opponents. While non-observable arrivals of revision

opportunities are slightly more intuitive, the alternative model may also be relevant for

certain applications. However, once players’ revision opportunities become common knowl-

edge delicate issues of playing mixed strategies arise. Studying the structure of strategies in

a war of attrition with Poisson arrivals and incomplete information under this observability

condition also becomes tricky, and it remains an open question whether or not cutoff

strategies can be used to exhaust the entire space of equilibrium payoffs.
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Chapter 3

Implications of Capacity Reduction

and Entry in Many-to-One Stable

Matching

3.1 Introduction

Many economic environments can be characterized as matching markets in which agents

of two different populations contract to achieve a common goal. Two prominent examples,

which were extensively studied in the market design literature, are school choice problems

and allocations of interns to hospitals.1 Natural experiments with various centralized

matching mechanisms have made it quite clear that the single most important property

determining the success of a mechanism is its stability or lack thereof (Roth, 1991). The

importance of stability drove many economists to study the properties of stable mechanisms

in one-to-one matching markets, as well as more general and more realistic models of

matching that allow agents to contract with multiple parties, to specify salaries or other

benefits as part of the contracts, and so on.

As is by now well-known, participants in markets governed by stable mechanisms may

1See Abdulkadiroğlu and Sönmez (2003) and Roth (2002) for a survey of these case studies.
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have an incentive to report their preferences and attributes (such as capacities) untruthfully.

Roth (1982) proves that any stable mechanism can be manipulated by some participants,

and Sönmez (1997) shows that every stable mechanism is manipulable via capacities.2

We follow up on this literature by investigating the implications of capacity reductions in

many-to-one markets, and show that if a capacity reduction is binding then there exists a

mechanism-independent non-empty set of doctors and a related set of hospitals, such that

every doctor in the first set is worse off and every hospital in the second set is better off

following the capacity reduction (under any stable mechanism). Moreover, if it so happens

that the hospital with the reduced capacity belongs to the set of hospitals mentioned above,

then this hospital can report a lower capacity and be certain to get a better outcome, even

without knowing which stable matching will be realized. That is, in this situation reporting

a reduced capacity dominates truth-telling regardless of the stable mechanism that is being

used. We then consider a larger domain of preferences, namely substitutable preferences

that satisfy the law of aggregate demand, and prove that a capacity reduction has slightly

different yet similar consequences.

We apply our results to the study of entry in many-to-one markets. While early works

on entry in the matching literature focused on specific mechanisms,3 Theorem 2.26 of Roth

and Sotomayor (1990), which is an adaptation of previous work on assignment games by Mo

(1988), stands out as it holds regardless of the matching process. We show that their result

is false in many-to-one matching markets when a doctor enters the market. That is, there

2Further contributions include Konishi and Ünver (2006), who show that in a game of capacity manipulation
every pure strategy equilibrium is weakly preferred by the hospitals to the outcome of any larger capacity
profile, and on this matter see also Ehlers (2010), Kesten (2011), Kojima (2006), Mumcu and Saglam (2009) and
Romero-Medina and Triossi (2007). Azevedo (2014) uses a continuum model (Azevedo and Leshno, 2011) to
perform a more detailed analysis of hospitals’ incentives to reduce capacity.

3For example, the results of Roth and Sotomayor (1990, Theorems 2.25 and 5.35), which are reminiscent
of those by Kelso and Crawford (1982, Theorem 5) and Demange and Gale (1985, Corollary 3), show that it
is possible to make weak comparisons with regard to the entire population when either the hospital-optimal
or the doctor-optimal stable matching mechanisms are being used. That is, one can predict that all agents on
one side of the market are made weakly better off or weakly worse off following the arrival of a new agent.
By technically treating hospital’s positions as separate entities (i.e., the equivalent marriage market approach),
these theorems also imply that capacity reductions have a similar effect under these two mechanisms. The weak
comparison results are extended to other matching environments by Crawford (1991), Hatfield and Kominers
(2013) and Hatfield and Milgrom (2005, Theorem 6).
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are cases in which a doctor enters the market and is matched, and yet the conclusion of the

mentioned theorem about which doctors become worse off does not hold. We establish a

weaker result by allowing only responsive preferences and focusing on the set of hospitals

that become better off following a doctor’s entry. In the case of hospitals being at full

capacity prior to the entry we can also identify a non-empty related set of doctors that

become worse off. We also show that the original statement does hold when a hospital joins

the market.

Manipulation via truncations and dropping strategies is another strategic issue frequently

discussed in the matching literature.4 Roth and Vande Vate (1991) note that in a one-to-

one matching environment it is sufficient to consider a special subclass of preference

manipulations called truncation strategies, in which the hospital reports a preference

that coincides with the real preference in its ordering of acceptable alternatives, but may

misreport its least preferred acceptable alternative.5 We prove that whenever a hospital uses

a (binding) truncation, it harms some non-empty set of doctors and benefits a related set of

hospitals. However, as soon as attention is turned to many-to-one matching, hospitals may

want to resort to the broader class of dropping strategies (Kojima and Pathak, 2009). We

show that even a binding dropping strategy may not have similar implications.

Our somewhat partial welfare analysis is mandated by the broad domain of matching

environments to which it can be applied. For example, stability has emerged in the

theoretical literature as something one may expect even in decentralized markets in which

the precise matching mechanism may not be so clearly defined. Roth and Vande Vate

(1990) show that reasonable random processes will converge to a stable matching, but may

converge to different stable matchings at different realizations of the random process. While

many of the results in the matching literature do not apply when the stable matching

is stochastically determined, our results are robust even under such uncertainty. The

4Other forms of manipulation, which are not discussed in this paper, are via pre-arranged matches (Sönmez,
1999), creating fictitious doctor records (Afacan, 2011), and application fee manipulation (Afacan, 2012).

5For more on truncation strategies, see Ashlagi and Klijn (forthcoming), Coles and Shorrer (2014), Ehlers
(2004), Ma (2002), Ma (2010), and Roth and Rothblum (1999).
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applicability of our results to decentralized markets also explains why our analysis is useful

despite the simplifying assumption of complete information over preferences, as it allows

us to be agnostic about what information is available regarding the details of the matching

process and which stable matching will be selected.

The paper proceeds as follows. Section 3.2 introduces the model. Section 3.3 studies

the implications of capacity reduction. Section 3.4 applies them to study entry in many-to-

one markets. Section 3.5 considers the effects of truncation and dropping strategies, and

Section 3.6 concludes. Most proofs are relegated to the Appendix.

3.2 The model

Let D be a finite set of doctors and H a finite set of hospitals. A doctor can be matched

to at most one hospital, but hospitals can be matched to several doctors. Doctors and

hospitals have strict preferences over possible matchings with agents from the other side of

the market, as well as remaining unmatched (which we denote by ∅). The strictness of the

preferences is crucial to our results (see also the closing discussion). Each d ∈ D is endowed

with a transitive and complete preference �d over H ∪ {∅}, and every h ∈ H is endowed

with a transitive and complete preference �h over 2D, i.e., all possible subsets of D. We

write preferences as ordered lists and abbreviate them by omitting those elements that are

unacceptable (that is, less preferred to remaining unmatched). Hospital h also has a capacity

qh, which is the cardinality of the largest acceptable set doctors.

We will denote by P the set of all problems, with a general element

P = (D, H, {qh}h∈H, {�i}i∈D∪H) .

Throughout this paper we restrict ourselves to the analysis of two important sub-domains of

preferences for the hospitals, namely the domain of responsive preferences, and the domain

of substitutable preferences that satisfy the law of aggregate demand. Both of these domains

have been extensively used in the literature, mostly due to their intuitive interpretations and

their convenient mathematical properties when it comes to the analysis of stable matchings.
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Hospital h is said to have responsive preferences and �h is said to be responsive if for

every set of doctors D′ ⊆ D such that |D′| ≤ qh, every d1 ∈ D′ and every d2 ∈ D \ D′ we

have:

1. D′ �h D ∪ {d2} \ {d1} ⇐⇒ {d1} �h {d2}

2. D′ �h D′ \ {d1} ⇐⇒ {d1} �h ∅

Loosely interpreted, a responsive preference is consistent with its ordering of individual

doctors, and prioritizes a set with more acceptable doctors (as long as it does not exceed its

capacity). We denote the subset of problems in which hospitals have responsive preferences

by PR.

Define for any hospital h ∈ H the choice function Ch : 2D → 2D by:

Ch(D′) = max
�h
{D′′ | D′′ ⊆ D′}

We say that hospital h’s preference relation is substitutable if ∀D′′ ⊆ D′ ⊆ D : D′′ ∩

Ch(D′) ⊆ Ch(D′′). Intuitively, a hospital’s preference relation is substitutable if a doctor

who is accepted remains accepted when the set of doctors under consideration shrinks.

Hospital h’s preference relation satisfies the law of aggregate demand if ∀D′′ ⊆ D′ ⊆

D : |Ch(D′′)| ≤ |Ch(D′)|.6 We denote the subset of problems in which hospitals have

substitutable preferences that satisfy the law of aggregate demand by PSL. It is easy to verify

that a responsive preference is substitutable and satisfies the law of aggregate demand, and

so PR ⊆ PSL.

A matching is a function µ : D ∪ H → H ∪ 2D such that every doctor is either matched

to one hospital or remains unmatched (denoted by ∅), every hospital is matched to a set of

doctors,7 and the matching is consistent. Formally: for every d ∈ D we have µ(d) ∈ H ∪{∅},

for every h ∈ H we have µ(h) ∈ 2D, and µ(d) = h if and only if d ∈ µ(h).

6For matching markets without contracts such as ours, this property was first introduced under the name
cardinal monotonicity by Alkan (2002).

7Restricting the definition to only allow hospitals to be matched to sets of doctors smaller than their capacity
does not affect our analysis.
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A matching is individually rational if all doctors and hospitals (weakly) prefer their

matching to remaining unmatched. A matching is unblocked if there is no set of doctors and

a hospital such that every doctor prefers the hospital to her current match, and the hospital

prefers the union of this set of doctors and some subset of its currently matched doctors

to its current match.8 A matching is stable if it is individually rational and unblocked.

Formally, matching µ is stable if it is:

1. Individually rational: For every i ∈ D ∪ H, µ(i) �i ∅.9

2. Unblocked: There exist no h ∈ H, D′ ⊆ D and D′′ ⊆ µ(h) such that for all d′ ∈ D′,

h �d′ µ(h) and D′ ∪ D′′ �h µ(h).

For any P ∈ P , we denote by Ψ(P) the set of stable matchings. A mechanism is a function

from P to matchings. Mechanism ψ is a stable mechanism on sub-domain P ′ if for any

P ∈ P ′, ψ(P) ∈ Ψ(P), that is, its outcome for problems in P ′ is always a stable matching.

Throughout the paper it will be clear what is the sub-domain currently under discussion and

we will not be explicit about it when we refer to a specific stable mechanism. We denote by

ψD the doctor-optimal stable mechanism, and by ψH the hospital-optimal stable mechanism.

The existence of these two mechanisms is proved by Gale and Shapley (1962) for the domain

of responsive preferences, and by Roth (1984b) for the domain of substitutable preferences.

We study preference domains in which the “rural hospital theorem” holds, i.e., the set

of unmatched doctors remains unchanged for all stable matchings, as well as the set of

doctors assigned to hospitals that fail to reach their capacity. This result was first proved by

Roth (1984a, Theorem 9), and was extended to the domain of q-separable and substitutable

preferences by Martínez et al. (2000). For a recent treatment and a survey of the different

extensions see Klijn (2011). It immediately follows that given a problem P ∈ PSL any agent

i is matched to the same number of partners under all stable matchings, and we denote this

8We employ here the notion of setwise stability. In the many-to-one markets with substitutable preferences
that we consider, this is equivalent to pairwise stability (Blair, 1988).

9One can also define individual rationality for the hospitals by requiring that ∀h ∈ H : µ(h) = Ch (µ(h)).
This yields the same stability concept and does not affect our results.
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number by mi(P).

3.3 Capacity reduction

For any hospital h ∈ H with preference relation �h and capacity qh and for any q′ < qh,

define �q=q′

h as the preference relation derived from �h by imposing capacity q′, that is,

for all D′, D′′ ⊆ D:

D′ �q=q′

h D′′ ⇐⇒
(
|D′| ≤ q′ and |D′′| ≤ q′ and D′ �h D′′

)
or(

|D′| ≤ q′ and |D′′| > q′
)

or(
|D′| > q′ and |D′′| > q′ and D′ �h D′′

)
Lemma 22. Let �h and qh be hospital h’s preference relation and capacity respectively, and �q=q′

h

the preference relation derived from �h by imposing capacity q′. Then:10

1. If �h is responsive, then so is �q=q′

h .11

2. If �h is substitutable and satisfies the law of aggregate demand, then �q=q′

h satisfies the law of

aggregate demand.

3. Even if �h is substitutable and satisfies the law of aggregate demand, it does not necessarily

follow that �q=q′

h is substitutable.

Our first result states that if preferences are responsive and a hospital reduces its capacity

(or at least reports such a reduced capacity) beneath the number of doctors who are assigned

to it in a stable matching, then it is possible to find some non-empty set of doctors and

a (possibly empty) set of hospitals such that each doctor in the former set is worse off,

and each hospital in the latter set is better off following the reduction. It is important to

10Parts of this result are similar in spirit to Mongell and Roth (1986) who demonstrate why imposing budget
constraints on a firm in the model of Kelso and Crawford (1982) may cause the gross substitutes condition to
stop holding for the budget-constrained firm.

11That is, when the capacity used in the definition of responsiveness is taken to be q′.
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note that throughout this paper comparisons are strict, and so “better (worse) off” means

“strictly better (worse) off”. We explicitly note when the comparison is weak. Furthermore,

whenever we make a comparison between outcomes it is with respect to the true capacity

and full preferences (in the next section, including possible entrants), and not with respect

to any partial preferences or reported capacities.

Theorem 23. Assume P ∈ PR.12 Let h0 ∈ H and 0 ≤ q′ < mh0(P), and set

P′ =
(

D, H,
(
q′, q−h0

)
, {�i}i∈D∪H\{h0} ∪ {�

q=q′

h0
}
)

.

Then there exists a non-empty subset of doctors S ⊆ D, such that under any stable mechanism ψ,

every doctor in S is worse off and every hospital in
{

h | ψD(P′)(h) ∩ S 6= ∅
}

is better off under

ψ(P′) compared to ψ(P).

Note that the relevant set of hospitals mentioned in the theorem includes exactly those

hospitals that employ some doctors from the specified set of doctors following the capacity

reduction under the doctor-optimal stable matching. The two sets are invariant under

different stable mechanisms, and therefore the conclusion does not depend on the stable

mechanism used. This mechanism-free welfare comparison is equivalent to the claim that all

the specified doctors are worse off and all hospitals in the related set are better off under any

stable matching following the capacity reduction compared to any stable matching before it.

The economic intuition and the proof of this theorem are both loosely based on Theo-

rem 2.26 in Roth and Sotomayor (1990). For the sake of completeness we reproduce the

statement of this theorem here. To make the connection clearer, the theorem is reformulated

in terms of doctors and hospitals instead of men and women. Note however that the original

theorem is stated in “the opposite direction” (a hospital enters the market), whereas we

focus on capacity reductions that are a generalization of leaving a market.

Theorem 24 (Roth and Sotomayor, 1990, Theorem 2.26). Assume all hospitals have a capacity

12Theorem 23 holds for a more general preferences domain, namely q-separable and substitutable preferences
(Martínez et al., 2000). However, the proof is far more involved, and so we use the stronger assumption of
responsiveness. For further details on the proof under the weaker assumptions, please contact the author.
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of one. Suppose hospital h0 is added to the market, i.e.,

P′ = (D, H ∪ {h0}, (1, 1, . . . , 1), {�h0} ∪ {�i}i∈D∪H) .

If mh0(P′) > 0, then there exists a non-empty subset of doctors S ⊆ D, such that under any stable

mechanism ψ, every doctor in S is better off and every hospital in
{

h | ψD(P)(h) ∈ S
}

is worse off

under ψ(P′) compared to ψ(P).

The idea in the many-to-one case is that h0’s capacity reduction, which is in a sense

opposite to h0’s entry in the one-to-one case, initiates a rejection chain. That is, a doctor

that was previously matched to hospital h0 is now “rejected” and is possibly matched

to a different hospital, which in turn rejects another a doctor, and so forth until either a

doctor remains unmatched or a previously empty position is filled. If it was the one-to-one

case doctors on these rejection chains were all worse off, whereas hospitals were better off.

However, in the many-to-one case things are not quite so simple as a hospital may employ

several doctors (before and after the capacity reduction). The responsiveness assumption

ensures that the same kind of welfare comparisons can be made on the (generalized) rejection

chain.

Technically, the proof relies on constructing a directed graph whose vertices are the

agents in the market such that there is an edge from a hospital to a doctor if they are

matched under the hospital-optimal stable matching before the capacity reduction, and

from a doctor to a hospital if they are matched under the doctor-optimal stable matching

following the capacity reduction. The original proof (for the case of one-to-one matching)

follows a path from h0 until reaching an unmatched agent. This proof strategy cannot always

work in a many-to-one environment, as paths can split and cycles can appear. Instead we

consider properties of the component reachable from h0. The implications for all stable

mechanisms follow from the doctor-optimality and hospital-optimality of the matchings

that were used to construct the directed graph. A similar logic applies to most of the proofs

in the rest of the paper, under various adjustments to account for the different assumptions
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and desired conclusions.13

Proof of Theorem 23. Let µ = ψH(P) and µ′ = ψD(P′). The latter matching is well-defined

because �q=q′

h0
is responsive, by Lemma 22. Throughout this proof “agent i is better off”

means µ′(i) �i µ(i), and similarly for “indifferent”, “weakly worse off”, and so on.

Assume in contradiction that there exists no S ⊆ D such that S 6= ∅, every doctor in S is

worse off, and every hospital in {h | µ′(h) ∩ S 6= ∅} is better off.

Construct a directed graph with vertices and edges defined as:

V = D ∪ H

E =
{
(d, h) | µ′(d) = h

}
∪ {(h, d) | µ(d) = h}

Denote by W the set of vertices reachable from h0, including h0 itself (see for example

Figure 3.1).

Figure 3.1: An example of the graph used in Theorem 23

Claim 24.1. All doctors in D either have an outgoing edge or are indifferent.

13Theorem 23 is not a direct implication of Theorem 2.26 in Roth and Sotomayor (1990) using an equivalent
marriage market (see, e.g., Roth and Sotomayor, 1990, section 5.3.1). The equivalent marriage market approach
will only imply that some slots of some hospitals now hold doctors that the hospital prefers, but the hospital
may possibly also employ doctors that it prefers less in other slots. Similar arguments explain why the rest of
the theorems in this paper are not trivially implied by Theorem 2.26 in Roth and Sotomayor (1990).
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Proof. Let d ∈ D be some doctor who is not indifferent. If d is worse off and has no outgoing

edge then S = {d} contradicts our assumption (with µ′(d) = ∅ being the set of hospitals

which are better off). Suppose d is better off. From individual rationality µ(d) �d ∅,

meaning that µ′(d) 6= ∅ and d has an outgoing edge. �

Claim 24.2. All hospitals in H are weakly worse off.

Proof. Let h ∈ H be better off. If there exists d ∈ µ′(h) who is worse off, use S = {d} to get

a contradiction. On the other hand, if all doctors in µ′(h) are weakly better off we get a

contradiction to the stability of µ (blocked by hospital h and doctors µ′(h)). This argument

applies to h0 as well. �

Claim 24.3. For every hospital h ∈ H, if there is at least one doctor who is better off in µ′(h), then

|µ(h)| = qh, and all doctors in µ(h) are weakly better off.

Proof. Let d′ ∈ µ′(h) be a doctor who is better off. If |µ(h)| < qh then d′ and h form a

blocking pair for µ. Suppose d ∈ µ(h) is worse off. Then from the stability of µ it follows

that:

µ(h) �h µ(h) ∪ {d′} \ {d},

and from the stability of µ′ that:

µ′(h) �h µ′(h) ∪ {d} \ {d′},

which together contradict the responsiveness of �h. This means that there is no doctor in

µ(h) who is worse off. �

Claim 24.4. All doctors inW ∩ D are weakly worse off.

Proof. Let Db = {d ∈ D | d is better off}. Let deg−b (h) denote the number of incoming edges

from doctors in Db to hospital h, and deg+
b (h) denote the number of outgoing edges from

hospital h to doctors in Db.
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UnlessW ∩ Db = ∅ we can find d′ ∈ argmind∈W∩Db
δ(h0, d), where δ(x, y) denotes the

distance between nodes x and y on the graph (V , E). We denote h′ = µ(d′) (which is not ∅

because d′ is reachable from h0).

We claim that:

deg−b (h
′) < deg+

b (h
′). (3.1)

To see that note first that d′ ∈ µ(h′) and so deg+
b (h

′) ≥ 1. If deg−b (h
′) = 0, then we

are done. Let ni = |µ(h′) ∩ µ′(h′)| denote the number of doctors who are indifferent in

µ(h′). If 1 ≤ deg−b (h
′) + ni < qh′ then we can use Claim 24.3 to get Equation 3.1. If

deg−b (h
′) + ni = qh′ then it must be that h′ 6= h0 (because h0’s capacity was reduced below

qh0). In this case there must be d′′ ∈ µ′(h′) ∩ Db such that δ(h0, d′′) < δ(h0, d′), contradicting

the way d′ was chosen.

Putting everything together we know that:14

∀h ∈ H : deg−b (h) ≤ deg+
b (h) (Claim 24.3)

deg−b (h
′) < deg+

b (h
′) (Equation 3.1)

∀d ∈ Db : deg−(d) ≤ deg+(d) (individual rationality)

We sum over all hospitals in H to get:

∑
h∈H

deg−b (h) < ∑
h∈H

deg+
b (h) = ∑

d∈Db

deg−(d) ≤ ∑
d∈Db

deg+(d) ≤ ∑
h∈H

deg−b (h)

Which is a contradiction, proving thatW ∩ Db must be empty. �

Pick some d ∈ µ(h0) \ µ′(h0), and let h = µ′(d) (exists by Claim 24.1). We get that

hospital h (which is worse off by Claim 24.2) and the doctors in µ(h) (who are weakly worse

off by Claim 24.4) form a blocking coalition under µ′. This concludes the contradiction

argument, proving that the required S exists.

The conclusion of the theorem follows from the hospital-optimality and the doctor-

14For any i ∈ D ∪ H, deg−(i) denotes the indegree of i and deg+(i) denotes the outdegree of i.
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optimality of µ and µ′ respectively. We showed that every d ∈ S prefers µ(d) to µ′(d).

Since the hospital-optimal stable matching is the least preferred stable matching for doctors

(Knuth, 1976) we know that for any stable mechanism ψ, d weakly prefers ψ(P)(d) to µ(d)

and weakly prefers µ′(d) to ψ(P′)(d), so it must prefer ψ(P)(d) to ψ(P′)(d). A similar

argument (in the opposite direction) is true for the hospitals in
{

h | ψD(P)(h) ∈ S
}

.

To better understand some of the implications of Theorem 23 to manipulating capacities,

it is instructive to look at the next example, in which the relevant set of hospitals contains

the hospital h0 itself.

Example Let P ∈ PR be such that D = {d1, d2, d3, d4}, H = {h0, h1}, qh0 = 3, qh1 = 2, and

the (responsive) preferences are given by:

�d1=h1, h0

�d2=h0, h1

�d3=h0, h1

�d4=h0

�h0={d1, d2, d4}, {d1, d3, d4}, {d1, d2, d3}, {d1, d4}, {d1, d2}, {d1, d3},

{d1}, {d2, d3, d4}, {d2, d4}, {d3, d4}, {d4}, {d2, d3}, {d2}, {d3}

�h1={d2, d3}, {d1, d2}, {d2}, {d1, d3}, {d3}, {d1}

Define P′ =
(

D, H, (1, 2), {�i}i∈D∪H\{h0} ∪ {�
q=1
h0
}
)

. We have Ψ(P) = {µ} and Ψ(P′) =

{µ′}, where µ and µ′ are given by:

µ =

(
h0

d2 d3 d4

h1

d1

)
µ′ =

(
h0

d1

h1

d2 d3

)
Therefore h0 should not report its true capacity in this market, because it can always obtain

a better match by reporting a capacity of 1. Note that if h0 reports a capacity of 2 and
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P′′ =
(

D, H, (2, 2), {�i}i∈D∪H\{h0} ∪ {�
q=2
h0
}
)

, then we have Ψ(P′′) = {µ′′1 , µ′′2}, where:

µ′′1 =

(
h0

d1 d4

h1

d2 d3

)
µ′′2 =

(
h0

d2 d4

h1

d1 d3

)
This means that if, for example, the hospital is uncertain about which stable matching will

come about, it may want to avoid reporting a capacity of 2 in order not to lose d3 (e.g. in

case the doctor-optimal mechanism is being used). However, such hesitations should not

bother the hospital when considering reporting a capacity of just one position.

Example 3.3 can also serve as an alternative and a more direct proof for (a slight

modification of) Theorem 1 of Sönmez (1997). This theorem states that if there are at

least two hospitals and three doctors then there exists no matching rule that is stable and

non-manipulable via capacities. When using our example as the proof, the reason for non-

existence of any such mechanism becomes much clearer. Instead of relying on the interaction

between two hospitals’ incentives under the structure imposed by the stability constraint as

in the original proof, we only need to consider a rejection chain that is generated by just one

hospital and the benefits it gets from inducing this chain.

Corollary 25 (Modified version of Theorem 1 of Sönmez (1997)). Suppose there are at least

two hospitals and four doctors. Then there exists no stable mechanism that is non-manipulable via

capacities.

It is certainly not the case that a hospital always wants to report a lower capacity. For

example, in a market with just one hospital, reporting a lower capacity can only make the

hospital weakly worse off. In this market Theorem 23 holds with the relevant set of hospitals

being empty. Furthermore, it is possible that the set of hospitals mentioned in the theorem

is not empty, but does not contain h0, which means that the effect of its capacity reduction

on some other hospitals is predictable, but the welfare effect on itself does not have to

be. Another interesting observation is that in a setting in which doctors are in very high

demand (that is, under any stable matching every doctor is employed by some hospital), it

is straightforward that Theorem 23 holds with the relevant set of hospitals being non-empty.
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While the earlier study of many-to-one matching focused solely on the domain of

responsive preferences, in recent years the literature converged to studying a less restrictive

preferences domain that still preserves the lattice structure of stable matchings, namely

the domain of substitutable preferences. Most of the results on one-to-one matching were

extended to this domain, with the occasional restriction of requiring preferences to satisfy

the law of aggregate demand, a key property when attempting to prove extended versions

of the rural hospital theorem and similar results. We now show that the result described

above breaks down when the domain of preferences is extended to substitutable preferences

that satisfy the law of aggregate demand. The reason for the failure is that unlike in the

one-to-one case or the responsive preferences case, the matching of a hospital with a single

doctor does not contain all the information about the hospital’s welfare change. When

hospitals offer multiple positions, a doctor taking a previously vacant position could possibly

have a marginal positive direct effect on the hospital employing her, but at the same time

induce a different mix of the other doctors altogether, and the latter can have a much more

substantial effect on hospitals’ ranking of their outcomes.

Example Let P ∈ PSL be such that D = {d1, d2, d3}, H = {h0, h1, h2}, qh0 = 1, qh1 = 2,

qh2 = 1, and:

�d1= h0, h1

�d2= h2, h1

�d3= h1, h2

�h0= {d1}

�h1= {d1, d2}, {d2}, {d2, d3}, {d1, d3}, {d1}, {d3}

�h2= {d3}, {d2}

Hospitals’ preferences are substitutable and satisfy the law of aggregate demand.15 Define

P′ =
(

D, H, (0, 2, 1), {�i}i∈D∪H\{h0} ∪ {�
q=0
h0
}
)

. One can verify that Ψ(P) = {µ1, µ2} and

15However, preferences are not q-separable (Martínez et al., 2000). See also Footnote 12.
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Ψ(P′) = {µ′1, µ′2}, where:

µ1 =

(
h0

d1

h1

d3

h2

d2

)
µ′1 =

(
h1

d1 d3

h2

d2

)
µ2 =

(
h0

d1

h1

d2

h2

d3

)
µ′2 =

(
h1

d1 d2

h2

d3

)
Thus if we define a stable mechanism ψ such that ψ(P) = µ2 and ψ(P′) = µ′1 we can

clearly see that an exact analog of Theorem 23 fails. This is because the only doctor who is

made worse off following h0’s capacity reduction is d1, and yet the hospital that employs d1

under ψD(P′), namely h1, also becomes worse off following the capacity reduction.

Inspecting Example 3.3, one may conjecture that weakening the conclusion of Theorem 23

could help in establishing a similar result even without responsiveness, and indeed this is

the case.

Theorem 26. Assume P ∈ PSL. Let h0 ∈ H, 0 ≤ q′ < mh0(P), and set

P′ =
(

D, H, {�i}i∈D∪H\{h0} ∪ {�
q=q′

h0
}
)

.

If P′ ∈ PSL,16 then there exists a non-empty subset of doctors S ⊆ D, such that under any stable

mechanism ψ, every doctor in S is worse off and every hospital in

{
h | ∅ 6= ψD(P′)(h) \ ψH(P)(h) ⊆ S

}
is better off under ψ(P′) compared to ψ(P).

Theorem 26 modifies the conclusion by relating a more restricted set of hospitals to the

set of doctors who are made worse off following the capacity reduction. That is, the set

of hospitals is now those hospitals that, except for doctors who were employed by them

under the hospital-optimal stable matching prior to the reduction, employ only doctors

from S under the doctor-optimal stable matching following the reduction. For any subset of

doctors who are not indifferent between ψD(P′) and ψH(P), this relation induces a subset

16This condition is required since it is not immediate (Lemma 22) and the proof uses the doctor-optimal

stable matching following the manipulation, a construct that may not exist if �q=q′

h0
is not substitutable.
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of hospitals that is weakly included in the subset mentioned in Theorem 23. That is to say:

∀S′ ⊆
{

d | ψD(P′)(d) 6= ψH(P)(d)
}

:{
h | ∅ 6= ψD(P′)(h) \ ψH(P)(h) ⊆ S′

}
⊆
{

h | ψD(P′)(h) ∩ S′ 6= ∅
}

Moreover, as Example 3.3 shows, in some cases the inclusion is strict. The restriction is

necessary because when preferences are substitutable but not responsive, comparisons

across individual doctors employed by a hospital become impossible, and one has to resort

to comparisons between sets of doctors. When restricted to one-to-one environments the two

definitions coincide and both Theorem 23 and Theorem 26 reduce to a statement equivalent

to Theorem 2.26 of Roth and Sotomayor (1990).

3.4 Entry in many-to-one markets

We now turn to applying our results on capacity reduction to the study of entry in many-to-

one markets. As was already briefly mentioned in the intuition for the proof of Theorem 23,

a hospital’s entry is the mirror image of a hospital’s leaving the market, which is equivalent

to reducing the hospital’s capacity to zero. This relation provides us immediately some

predictions that hold regardless of the stable mechanism used.

For any P ∈ P and any d ∈ D we denote the market without d by:

P−d =
(

D \ {d}, H, {qh}h∈H, {�i}i∈D\{d} ∪ {�h|2D\{d}}h∈H
)

,

where �h|2D\{d} ≡ {(S1, S2) ∈�h| S1, S2 ⊆ D \ {d}}. We similarly define P−h for any h ∈ H.

Corollary 27. Assume P ∈ PR. If h0 ∈ H and mh0(P) > 0 then there exists a non-empty subset

of doctors S ⊆ D, such that under any stable mechanism ψ, every doctor in S is better off and every

hospital in
{

h | ψD(P−h0)(h) ∩ S 6= ∅
}

is worse off under ψ(P) compared to ψ(P−h0).

Corollary 28. Assume P ∈ PSL. If h0 ∈ H and mh0(P) > 0 then there exists a non-empty subset

of doctors S ⊆ D, such that under any stable mechanism ψ, every doctor in S is better off and every
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hospital in {
h | ∅ 6= ψD(P−h0)(h) \ ψH(P)(h) ⊆ S

}
is worse off under ψ(P) compared to ψ(P−h0).

Unlike the case of a hospital’s entry, we now establish that Theorem 2.26 of Roth and

Sotomayor (1990) cannot be directly applied to many-to-one markets when a doctor enters

the market. Recall that this theorem states that if a doctor enters the market and gets

matched then there exists a non-empty set of hospitals such that every hospital in this set

becomes better off following the entry under any stable mechanism. Furthermore, every

doctor who was previously employed by some hospital in the mentioned set of hospitals

becomes worse off following the entry. Example 3.4 describes a situation in which the one

doctor that was previously in the market does not become worse off following another

doctor’s entry.

Example Let P ∈ PR be such that D = {d0, d1}, H = {h1}, qh1 = 2, and the preferences are

given by:

�d0= h1

�d1= h1

�h1= {d0, d1}, {d1}, {d0}

Note that Ψ(P−d0) = {µ} and Ψ(P) = {µ′}, where µ and µ′ are given by:

µ =

(
h1

d1

)
µ′ =

(
h1

d0 d1

)
Therefore, this example simply points to the fact that a doctor could get a vacant place

without having any impact on the welfare of other doctors in the system.

While the original result cannot be fully recuperated in the many-to-one case, a partial

formulation that predicts only that some hospitals will be made better off following the

entry of a doctor is possible under the assumption of responsive preferences. Furthermore,
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if we assume all hospitals were at full capacity prior to the entry, we also get predictions on

welfare effects on the entrant’s side.17

Theorem 29. Assume P ∈ PR. If doctor d0 ∈ D is such that md0(P) = 1 then there exists a

non-empty subset of hospitals S ⊆ H, such that under any stable mechanism ψ, every hospital in S

is better off under ψ(P) compared to ψ(P−d0).

Theorem 30. Assume P ∈ PR. If doctor d0 ∈ D is such that md0(P) = 1 and ∀h ∈ H :

mh(P−d0) = qh, then there exists a non-empty subset of hospitals S ⊆ H, and a non-empty subset of

doctors T ⊆
{

d | ψH(P−d0)(d) ∈ S
}

, such that under any stable mechanism ψ, every hospital in S

is better off and every doctor in T is worse off under ψ(P) compared to ψ(P−d0).

We conclude this section by showing that Theorem 29 and Theorem 30 fail to hold when

preferences are allowed to be non-responsive, even when they are substitutable and satisfy

the law of aggregate demand.

Example Let P ∈ PSL be such that D = {d0, d1, d2, d3}, H = {h1, h2}, qh1 = 2, qh2 = 1, and

the preferences are given by:

�d0=h1

�d1=h1, h2

�d2=h2, h1

�d3=h1

�h1={d0, d2}, {d2, d3}, {d0, d1}, {d0, d3}, {d1, d3}, {d1, d2},

{d0}, {d1}, {d2}, {d3}

�h2={d1}, {d2}

It is easy to verify that both �h1 and �h2 are substitutable and satisfy the law of aggre-

gate demand.18 The stable matchings before and after d0 enters the market are given by

17I thank the associate editor for suggesting this extension.

18In fact, �h1
is also 2-separable and �h2 is 1-separable (Martínez et al., 2000).
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Ψ(P−d0) = {µ1, µ2} and Ψ(P) = {µ′1, µ′2}, where the different matchings are:

µ1 =

(
h1

d1 d3

h2

d2

)
µ′1 =

(
h1

d0 d1

h2

d2

)
µ2 =

(
h1

d2 d3

h2

d1

)
µ′2 =

(
h1

d0 d2

h2

d1

)
Define a stable mechanism ψ such that ψ(P−d0) = µ2 and ψ(P) = µ′1, and then both hospitals

are worse off following d0’s entry.

3.5 Truncations and dropping strategies

Having dealt with the effects of capacity reduction and its potential to allow successful

manipulation regardless of the stable mechanism, we now wish to study similar effects when

a hospital reports a preference relation that is different than its true preference relation. For

any hospital h ∈ H with a preference relation �h, we say that h plays a dropping strategy

�dr(E)
h for some E ⊆ D if:

1. For all D′ ⊆ D: D′ �dr(E)
h ∅ ⇐⇒ D′ �h ∅ and D′ ∩ E = ∅.

2. For all D′, D′′ ⊆ D: If D′ �dr(E)
h ∅ and D′′ �dr(E)

h ∅, then D′ �dr(E)
h D′′ ⇐⇒ D′ �h

D′′.

In other words, a hospital playing a dropping strategy submits its true preference over some

subset of its acceptable doctors. Note that this definition coincides with the definition of

Kojima and Pathak (2009) for the domain of responsive preferences. We say that h plays

a truncation strategy �tr(d)
h (or simply that �tr(d)

h is a truncation of �h) if �tr(d)
h is derived

from �h by “truncating” all doctors below and including d ∈ D. Formally, we require:

1. For all D′ ⊆ D: D′ �tr(d)
h ∅ ⇐⇒ D′ �h ∅ and ∀d′ ∈ D′: {d′} �h {d}.

2. For all D′, D′′ ⊆ D: If D′ �tr(d)
h ∅ and D′′ �tr(d)

h ∅, then D′ �tr(d)
h D′′ ⇐⇒ D′ �h D′′.

That is, �tr(d)
h is the same as �h, except it does not accept any subset of doctors containing

any doctor who is weakly less preferred to d. It is easy to see that a truncation strategy is

also a dropping strategy.
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Observation 31. Let �h be hospital h’s preference relation. If �h is responsive, then for any d ∈ D,

�tr(d)
h is also responsive.

Our next theorem states that if hospital h0 reports a truncated preference such that some

doctor who was previously assigned to h0 under the hospital-optimal stable matching is

now unacceptable according to the truncated preference, then a similar conclusion to the

one that appears in Theorem 23 holds.19

Theorem 32. Assume P ∈ PR.20 Let h0 ∈ H, d̄ ∈ D, and d∗ ∈ ψH(P)(h0) be such that{
d̄
}
�h0 {d∗}, and P′ =

(
D, H, {�i}i∈D∪H\{h0} ∪ {�

tr(d̄)
h0
}
)

. Then there exists a non-empty

subset of doctors S ⊆ D, such that under any stable mechanism ψ, every doctor in S is worse off and

every hospital in
{

h | ψD(P′)(h) ∩ S 6= ∅
}

is better off under ψ(P′) compared to ψ(P).

The intuition here resembles the one for Theorem 23, as a hospital that uses a truncation

strategy practically does something which is very much like reducing its capacity. Rejecting

the less attractive doctors mimics what would have happened, for example, in a deferred

acceptance algorithm (with either doctors or hospitals proposing), and again causes rejection

chains that may lead to more preferred doctors being available for the hospital to hire.

Theorem 32 uses truncations, which play an important role in preferences manipulation

in one-to-one markets. Specifically, in these markets a player trying to act strategically to

manipulate the results of the stable mechanism can restrict herself to the class of truncation

strategies. However, in many-to-one matching truncations do not exhaust the space of

strategies that may lead to better outcomes. Kojima and Pathak (2009, Lemma 1) show that

using dropping strategies a hospital can mimic all the manipulations that are possible by

reporting a reduced capacity and some preference relation over individual doctors. It turns

19Note that for the case of doctors truncating their preferences, truncating above the doctor-optimal stable
match always results in remaining single, and so it is equivalent to leaving the market. Truncating below the
doctor-optimal stable match does not give rise to any consistent welfare predictions (i.e., independently of the
mechanism).

20Theorem 32 does not hold under the weaker assumption of q-separable and substitutable preferences. See
Example 3.5.
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out there is no immediate counterpart for Theorem 32 that holds for dropping strategies. To

see that, consider the following counterexample:

Example Let P ∈ PR be such that D = {d1, d2}, H = {h0, h1}, qh0 = qh1 = 1, and the

preferences are given by:

�d1= h0, h1

�d2= h0, h1

�h0= {d1}, {d2}

�h1= {d2}, {d1}

Suppose that for some reason h0 considers playing the dropping strategy:

�′h0
= {d2}

Define P′ =
(

D, H, {qh}h∈H, {�d1 ,�d2 ,�′h0
,�h1}

)
. It is easy to verify that Ψ(P) = {µ} and

Ψ(P′) = {µ′}, where:

µ =

(
h0

d1

h1

d2

)
µ′ =

(
h0

d2

h1

d1

)
This implies that the non-empty set of doctors in the theorem must be S = {d1}. However,

this means that the relevant set of hospitals contains only h1, which is worse off following

the manipulation. Thus, the theorem must be revised in some way if it is to be applied to

dropping strategies. Note that despite the fact that in this particular example playing the

dropping strategy hurts h0, in all other results in this paper the hospital that reduced its

capacity or reports different preferences can be worse off, better off or indifferent.

Another reasonable question is whether it is possible to extend the theorem to the case

of substitutable preferences that satisfy the law of aggregate demand in a manner similar to

Theorem 26. The answer is again negative, as the following example demonstrates.

Example Let P ∈ PSL be such that D = {d1, d2, d3, d4}, H = {h0, h1}, qh0 = qh1 = 2, and the
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preferences are given by:

�d1=h1, h0

�d2=h1, h0

�d3=h0, h1

�d4=h0, h1

�h0={d1, d2}, {d1, d3}, {d1, d4}, {d2, d3}, {d2, d4},

{d3, d4}, {d3}, {d4}, {d1}, {d2}

�h1={d3, d4}, {d1, d3}, {d2, d3}, {d1, d4}, {d2, d4},

{d1, d2}, {d3}, {d4}, {d1}, {d2}

These preferences are not only substitutable and satisfy the law of aggregate demand, they

are also q-separable. However, it is important to note that �h0 is not responsive. Consider

the truncation �tr(d1)
h0

, which is responsive and is therefore substitutable and satisfies the law

of aggregate demand. Let P′ =
(

D, H, {qh}h∈H, {�i}i∈D∪H\{h0} ∪ {�
tr(d1)
h0
}
)

be the problem

in which h0 truncates, and note that Ψ(P) = {µ1, µ2} and Ψ(P′) = {µ′}, where:

µ1 =

(
h0

d1 d2

h1

d3 d4

)
µ′ =

(
h0

d3 d4

h1

d1 d2

)
µ2 =

(
h0

d3 d4

h1

d1 d2

)
This means that there exists a stable mechanism ψ such that ψ(P) = µ1 and ψ(P′) = µ′, and

all doctors are better off following the manipulation.

3.6 Conclusion

This paper explored welfare consequences of capacity reductions, entries and truncations

in many-to-one matching markets governed by stable mechanisms. We showed that there

are situations in which even if participants have imperfect information about the matching

process, they may profitably manipulate by reducing capacity. It should be emphasized
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that one key argument for reducing capacity is gaining the ability to propose positions to

doctors while bypassing the centralized mechanism (e.g. market unraveling or off-shore

hiring). This paper does not incorporate the advantage gained by freeing up additional

positions. It does show that doing so may create a second-order effect that also works to

the hospital’s benefit, and therefore encourages rather than inhibits the process of market

unraveling.

We assumed throughout that hospitals have strict preferences over acceptable doctors

and vice-versa. While this assumption could be defended in some markets, it is quite

problematic when discussing school choice, where students are frequently assigned the

same priority by the schools and the indifferences are motivated by moral considerations

and not by lack of sufficient information. The fact that mechanisms can break ties in different

ways implies that the structure of stable matchings is a bit different, and this prevents us

from applying the same techniques. Note however that in this case even comparisons that

take the mechanism to be a fixed one usually hold only under a specific tie-breaking rule,

so it is possible that we should be less ambitious when trying to come up with predictions

that hold across all stable mechanisms as well.

Finally, throughout our analysis we used the language of the college admissions model

(applied to hospitals and doctors). However, the market design literature has recently

witnessed the emergence of several generalized matching models.21 One may wonder to

which extent our results continue to hold in these more sophisticated environments. First,

all the results hold for the many-to-one generalized matching with contracts framework of

Hatfield and Milgrom (2005).22 This implies that the results we described are also true for

matching with salaries and with other properties that may be embedded in the contracts.23

Furthermore, while it is probably true that similar results will continue to hold in other

21Some of those can be found in Hatfield and Milgrom (2005), Echenique and Oviedo (2006), Hatfield et al.
(2013) and Ostrovsky (2008).

22For details please contact the author.

23For a comparison of the generality of matching with contracts and matching with just salaries, see
Echenique (forthcoming).
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matching frameworks as long as we assume everybody has responsive preferences, it is also

quite easy to see that in many-to-many matching environment with substitutable preferences

one will run into problems trying to generalize our results, by extending Example 3.4 (in

which a doctor enters the market). However, it is my belief that similar predictions are still

possible in supply networks that have a pyramid structure, i.e., in which each firm can sell

to multiple clients, but can have only one supplier.24

24In this suggested framework, a manipulation by one of the first-layer suppliers has predictable outcomes
on a set of firms (intermediate or final users) and a related set of firms, which are the immediate suppliers of
the first set.

78



References
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Appendix A

Appendix to Chapter 1

A.1 Proof of Theorem 1

Proof. For simplicity, the proof uses results that were proven for the uniform noise distribu-

tion G = U[0, 1]. However, all claims hold for more general distributions. A complete proof

for general distributions (albeit one that provides slightly less tight bounds and only deals

with balanced markets) can be found in the working paper version of the present work

(Hassidim and Romm, 2014).

The general structure of the proof is as follows.

1. Given an arbitrary vector of workers’ human capital, show that whp (relevant to the

distribution of
{

εn
ij

}
) there are only finitely many workers above a certain human

capital level who are unemployed, and similarly finitely many workers below a

different human capital level who are employed (Lemma 33).

2. Based on the previous step, show that a version of the result of Frieze and Sorkin

(2007) holds, but with some restrictions on its applicability to workers (Lemma 34).

3. Show that in fact whp all workers above a certain human capital level are employed,

and all workers below a certain human capital level are not employed (Lemma 35).

4. Improve the applicability of Lemma 34 to workers (Lemma 36).
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5. Put everything together with the intuition presented in the main text to complete the

proof.

For a given a vector of human capital levels hn (of length n + k(n)), let us denote by

hn[m] the m-th highest value.

Lemma 33. For any ε > 0 there exist M ∈N such that

1. whp there are at most M workers with a human capital level greater than hn[n] + ε who are

unemployed under the optimal assignment for Mn;

2. whp there at most M workers with a human capital level less than hn[n]− ε who are employed

under the optimal assignment for Mn.

Proof. Denote by Vn
opt the value resulting from the optimal assignment in Mn, and by Vn

bound

the value resulting from optimally assigning the top n workers (in terms of human capital

level) to the n available firms. From Aldous (2001) we know that

lim
n→∞

E[Vn
bound] =

n

∑
i=1

qn
i +

n

∑
j=1

hn[j] +
(

n− π2

6

)
. (A.1)

Taking qn and hn as given, we know from Wästlund (2005) that

Var[Vn
bound] =

4ξ(2)− 4ξ(3)
n

+ O
(

1
n2

)
≈ 1.7715

n
+ O

(
1
n2

)
. (A.2)

By approximating the limit in (A.1), bounding the variance in (A.2), and using Markov

inequality:

Pr

(
Vn

bound ≤
n

∑
i=1

qn
i +

n

∑
j=1

hn[j] + (n− 2)

)
≤ 13.6

n
.

This also implies that whp

Vn
opt ≥

n

∑
i=1

qn
i +

n

∑
j=1

hn[j] + (n− 2).

Now assume that there are M workers with a human capital level greater than or equal to

hn[n] + ε who do not participate in the optimal assignment (or alternatively that there are
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M workers with a human capital level less than or equal to hn[n]− ε who do participate in

the optimal assignment). It must be that

Vn
opt ≤

n

∑
i=1

qn
i +

n

∑
j=1

hn[j]−Mε + n,

and therefore

M ≤
⌈

2
ε

⌉
.

�

Now, given some arbitrary matchings {µn}, construct digraphs Gn = (Vn,~En), with

Vn = Fn ∪Wn and

~En =
{
(wn

j , f n
i ) | µn( f n

i ) = wn
j

}
∪
{
( f n

i , wn
j ) | wn

j ∈ Nn
hn[n]+ε,40+M( f n

i )
}

∪
{
( f n

i , wn
j ) | f n

i ∈ Nn
hn[n]+ε,40+M(wn

j )
}

,

where Nn
x,k( f n

i ) represent the top k workers in terms of idiosyncratic fit to f n
i ) (i.e., εn

ij) out of

those workers who have a human capital level above x, and similarly for Nn
x,k(w

n
j ). We call

the edges from Fn to Wn “forward edges” and the edges from Wn to Fn “backward edges.”

The weight on each forward edge ( f n
i , wn

j ) is εn
ij (and not αn

ij).

Lemma 34. If h 6= h,1 there exists c ∈ R+ such that whp there is an alternating path between every

two firms with the sum of weights on the forward edges being less than or equal to c log n
n . Similarly,

there is an alternating path from any matched worker to any worker with a human capital level above

hn[n] + ε with the sum of weights on the forward edges being less than or equal to c log n
n .

Proof. First, let us choose ε > 0 such that whp the number of workers with a human capital

level above hn[n] + ε is no less than 0.99n. To see that this is possible, let us denote by νn

1This lemma also holds (with the proper adjustments) for the case where all workers have the same human
capital level, but we omit the proof here since it can easily be recovered using the arguments presented in the
more complicated case.
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the fraction of workers who are unassigned in Mn, i.e., νn := k(n)
n+k(n) , and let ηn = H−1(νn).

Let ε > 0 be such that sup(x,y)⊆(h,h),(y−x)<ε H(y)− H(y) < 0.0049 (this is possible since we

required the density to be continuous on
[

h, h
]
, and it is therefore bounded). By Hoeffding’s

inequality whp hn[n] ∈ (ηn − ε, ηn + ε). Then, using Hoeffding’s inequality again, we know

that whp 0.99n of the workers have a human capital level above ηn + 2ε ≥ hn[n] + ε.

Note that whp there exists c1 such that there is a directed path of length less than c1 log n

between any two firms, using the same argument as Frieze and Sorkin (2007, Lemma 5). It is

true that in our case some of the workers do not have related backward edges (since they are

unmatched), but out of those workers who are connected to forward edges (with a human

capital level above h− ε) at most M do not have backward edges. Therefore, by pointing

to M + 40 workers we keep the expansion rate of at least 40. We also note that some of

the constants have to be changed to account for the fact that only a constant fraction of the

workers are connected by forward edges, and that the number of workers is not necessarily

n but could rather be greater than that as long as it is O(n). We remark that ε must have

been chosen such that a large majority of the firms will be matched to workers with human

capital levels above hn[n] + ε; otherwise there would not necessarily be an overlap between

the two “funnels” constructed in the proof.

We then use Lemma 7 of Frieze and Sorkin (2007) which works as is, except that the

number 40 is replaced by 40 + M whenever it appears in the proof there. This completes

the argument for the firms.

As for the workers, the same argument works, but we note that in order for a directed

path to start from some worker, that worker must be matched, and in order for it to finish

with some worker, that worker must have a human capital level above hn[n] + ε. �

Lemma 35. If h 6= h, then there exist c1 ∈ R+ such that

1. whp all workers with a human capital level greater than hn[n] + c1 log n
n are assigned under the

optimal assignment for Mn;
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2. whp no workers with a human capital level less than hn[n]− c1 log n
n are assigned under the

optimal assignment for Mn.

Proof. Let c1 ∈ R+ be equal to (c + 2), where c is the constant recovered in the proof of

Lemma 34. Assume on the contrary that there exists an unmatched worker wn
1 with human

capital level hn
1 > hn[n] + c1 log n

n . Let wn
2 be the worker with the lowest level of human capital

in Mn that is matched. We want to argue that there exists a matching in which the set

of matched workers is µn(Fn) ∪ {wn
1} \ {wn

2} and that this matching gives a larger value.

Replace the matching µn with the one in which µn(wn
2 ) is matched with wn

1 . Note that

this matching gives a value greater by (hn
1 − hn

2) ≥
(c+2) log n

n in human capital, but might

provide us with less than optimal noise compatibility between µn(wn
2 ) and wn

1 . Applying

Lemma 34 to our new matching, find a directed path between wn
1 (which is now matched)

and some worker who is also matched and who “likes” µn(wn
2 ) (in the sense of having

joint productivity greater than 1− log n
n ). Apply the directed path, in the sense that now

each worker is going to be matched to the firm connected to her by a forward edge, and

the last worker is connected to µn(wn
2 ). The value of the resulting matching is at least

val(µn) + (c+2) log n
n − (c+1) log n

n > val(µn) + log n
n , a contradiction.

The exact same reasoning applies when a matched worker has a human capital level

below hn[n]− c1 log n
n , and is replaced by the best unmatched worker. �

Lemma 36. If h 6= h, there exist c, c1 ∈ R+ such that whp there is an alternating path from any

matched worker to any worker with a human capital level above hn[n] + c1 log n
n with the sum of

weights on the forward edges being less than or equal to c log n
n .

Proof. Use the same logic of Lemma 34 but replace ε with c1 log n
n , which will work by virtue

of Lemma 35. �

To complete the proof, let us first consider the firms. By Lemma 34 whp for every

i, j ∈ {1, . . . , |Fn|} there exists an alternating path on Gn (induced by µn, the optimal
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assignment for Mn). Suppose one such path is ( f n
i , wn

1 , f n
1 , wn

2 , f n
2 , . . . , wn

k , f n
j ). Since µn is a

core allocation, it must be that un
i + vn

1 ≥ αn
i1, and therefore

un
i ≥ αn

i1 − vn
1 ≥ qn

i + hn
1 + (1− εn

i1)− (αn
11 − un

1) ≥ un
1 + (qn

i − qn
1)− εn

i1.

Similarly we get

un
i ≥ un

1 + (qn
i − qn

1)− εn
i1,

un
1 ≥ un

2 + (qn
1 − qn

2)− εn
12,

. . .

un
k ≥ un

j +
(

qn
k − qn

j

)
− εn

kj.

Stacking all of those together we have

un
i ≥ un

j +
(

qn
i − qn

j

)
−∑ εn

xy,

where the last sum goes over all the firms that alternate on the path, and therefore

un
i ≥ un

j +
(

qn
i − qn

j

)
− c log n

n
.

Reordering terms we get

un
j − un

i ≤
(

qn
j − qn

i

)
+

c log n
n

,

which is exactly what we wanted.

As for the workers, we need to be slightly more careful. The same line of reasoning tells

us that whp for any matched worker wn
i and any worker wn

j with a human capital level

above hn[n] + c1 log n
n (as in Lemma 36) we have

vn
i − vn

j ≤
(

hn
i − hn

j

)
+

c log n
n

.

However, we also want to account for matched workers with a human capital level in the

interval
(

hn[n]− c1 log n
n , hn[n] + c1 log n

n

)
. Let wn

i be some matched worker and let wn
j be a

matched worker in that interval. Since whp there are Θ(n) workers with human capital

levels above hn[n] + ε (for any constant ε), then whp one of them, say wn
k , is a good match
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for µn(wn
j ) in the sense that their joint idiosyncratic noise is above 1− c2 log n

n for some

constant c2. Consider now a path that goes from wn
i to wn

k (whp such a path exists) and then

continues to µn(wn
j ) and to wn

j , and perform the same calculation as before.

A.2 Other proofs

A.2.1 Proof of Theorem 2

Lemma 37. Let Z = ∑n
k=1 Xk where each Xk is a geometric variable with stopping probability

pk =
ck
n3 . Then whp Z > 1

16c n3 log n.

Proof. Let n′ be the largest number smaller than n such that
√

n is an integer, i.e., n′ =(
d
√

ne
)2. Z dominates Z′ = ∑

√
n′

k=1 ∑
√

n′
l=1 X′kl , where each X′kl is a geometric variable with

stopping probability pkl =
ck
√

n′
n3 . Note that X′kl >

1
2pkl

with probability 1− (1− pkl)
1

2pkl ≈

1− e−
1
2 > 0.39, and so using Hoeffding’s inequality

Pr

(√
n′

∑
l=1

X′kl >
1
4

√
n′ · 1

2pkl

)
> 1− e−2(0.39−0.25)2

√
n′ > 1− e−0.03

√
n′ .

Therefore

Pr

(
Z′ >

√
n′

∑
k=1

√
n′

8pkl

)
≥
(

1− e−0.03
√

n′
)
> 1− n′e−0.03

√
n′ .

So with high probability

Z >

√
n′

∑
k=1

√
n′

8pkl
=

1
8c

n3

√
n′

∑
k=1

1
k
≈ 1

8c
n3 log

√
n =

1
16c

n3 log n

�

Proof. For the sake of simplicity let us focus on the case of G = U[0, 1]. Let us take the

variant of the approximation algorithm suggested by Crawford and Knoer (1981) to solve a

generalized version of the assignment game, in which firms are ordered from f n
1 to f n

n , and

at each round only the lowest-number firm that still wants to propose actually proposes.
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Take the step size to be ε = 1
n3 . We want to bound the minimal number of steps through the

entire algorithm.

We note that when it is firm f n
i ’s to propose, and its previous aspiration level (i.e., the

maximal utility it would get by giving some worker her current salary was ui, and if for all

unmatched workers wn
j ∈Wn we have εn

ij /∈ [ui − ε, ui), then some worker’s salary increases

by ε. The conditional probability of εn
ij not being in [ui − ε, ui) is 1− ε

ui
. We know that in the

firm-optimal core allocation at least one worker gets a salary of zero, and from Theorem 1

we learn that all workers get no more than c log n
n . Combining this with the results of Frieze

and Sorkin (2007) gives us that whp ui ≥ 1− c log n
n for some constant c ∈ R+. Therefore the

conditional probability mentioned before is at least 1− ε

1− c log n
n

> 1− 1.01ε.2 This implies

that when there are n− k + 1 (k > 1) still unemployed workers, the probability of raising

the salary of one of the employed workers by ε is at least

(1− 1.01ε)n−k+1 > 1− 1.01(n− k + 1)ε,

and the probability of employing a still unemployed worker is at most 1.01(n− k + 1)ε =

1.01(n−k+1)
n3 . By Lemma 37, whp there are going to be at least 1

16.16 n3 log n steps, and

multiplying by ε we get that whp the sum of workers’ salaries is at least 1
16.16 log n. This

implies also that whp at least one of the workers has a salary that is at least 1
16.06 ·

log n
n . As

mentioned before, in each realization one of the workers has a salary of zero. Together this

means that whp there are two workers such that the difference between their salaries is

1
16.06 ·

log n
n , and we are done.

A.2.2 Proof of Corollary 3

Proof. As mentioned in the intuition for the proof, there must be at least one worker

whose salary is exactly zero. If h 6= h, let c1 ∈ R+ be such that for large enough n,

H
(

h + c1 log n
n

)
> log n

n (such c1 exists since H has positive and continuous density at h). It

2We assume that G = U[0, 1]. When G 6= U[0, 1] we have to approximate the density near the upper bound,
and rely on Theorem 1 to approximate the conditional probability of choosing a still unmatched worker.
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follows that the probability of having at least one worker with a human capital level below
c1 log n

n is at least

1−
(

1− log n
n

)n

≈ 1− e− log = 1− 1
n

.

Let c2 be the constant we arrived at in the proof of Theorem 1, if the worker who gets zero

salary has a human capital level above (c1+c2) log n
n ; then Theorem 1 implies that any worker

with a human capital level lower than c1 log n
n gets a negative salary. Therefore, with high

probability the worker getting a zero salary must have human capital level below (c1+c2) log n
n .

It follows from Theorem 1 that whp for every worker wn
j

vn,F
j ∈

(
hn

j −
(c1 + 2c2) log n

n
, hn

j +
c2 log n

n

)
.

By taking c = c1 + 2c2 we reach the desired conclusion.

A.2.3 Proof of Corollary 4

Proof. We prove this corollary separately for the case of workers who have the same human

capital level and for the case of workers with different human capital levels. In the first

case (hn ≡ 0) we recall that the same line of proof used in Lemma 34 could have shown us

that in this case the approximate law of one price holds for any two workers (and not just

two matched workers). The proof follows immediately from Theorem 1 by comparing any

matched worker to one of the unmatched workers (whose salary is 0).

In the second case (h 6= h), note that there exists c1 ∈ R+ such that whp all work-

ers with a human capital level below hn[n] − c1 log n
n are unmatched (Lemma 35). Let

c2 ∈ R+ be such that whp there exists a worker wn
j with a human capital level hn

j ∈(
hn[n]− c1 log n

n , hn[n]− (c1+c2) log n
n

)
. Note that there exists c3 ∈ R+ such that whp this

worker has a good match with one of the matched firms; i.e., there exists f n
i such that

εn
ij > 1− c3 log n

n . It follows that the worker wn
k employed by that firm gets no more than(

hn
k − hn

j

)
+ c3 log n

n ≤
(
hn

k − hn[n]
)
+ (c1+c2+c3) log n

n . Now set c = c1 + c2 + c3 + c4, where c4

is the constant provided by Theorem 1, and we get the desired result using Theorem 1

(comparing matched workers to wn
k ).
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A.2.4 Proof of Proposition 8

Lemma 38.

E

 ∑
f n
i =µn

(
wn

j

) αn
ij

 ≤ n(log n + 1)

Proof. We want to show that for every worker the expected value of the maximal element in

the relevant column of the productivity matrix αn equals log n. To see that, note first that the

minimal element is distributed according to an exponential distribution with parameter n

(think of the first arrival of one of n identical arrivals). Due to the memorylessness property

of exponential random variables, the difference between the first minimal element and the

second minimal element is distributed like an exponential distribution with parameter n− 1,

and so on. This implies that the expected value of the largest element is

1
n
+

1
n− 1

+
1

n− 2
+ · · ·+ 1

2
+ 1 ≤ log n + 1.

�

Lemma 39.

E

 ∑
f n
i =µn

(
wn

j

) αn
ij

 ≥ 0.99n log n

Proof. Let µ be a matching that results from running a greedy algorithm: firm 1 picks the

worker it likes best, then firm 2 picks a worker from those remaining, and so on. The

expected value of µ is

E

 ∑
f n
i =µ

(
wn

j

) αn
ij

 =E [max {X1,1, . . . , X1,n}] + E [max {X2,1, . . . , X2,n−1}] +

· · ·+ E [Xn,1] ,
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where
{

Xi,j
}

are i.i.d. Exp(1). Therefore

E

 ∑
f n
i =µ

(
wn

j

) αn
ij

 =
n−1

∑
i=0

[log(n− i) + 1] ≈ n log n.

The result then follows from the optimality of µn. �

Proof. The first claim follows from Lemma 38 and Lemma 39. For the second claim, let pn

denote the probability that for a given firm f n
i ∈ Fn there exists a worker wn

j ∈Wn such that

αn
ij > 1.1 log n and maxk 6=j αn

ik < log n. Then

pn = n · e−1.1 log n ·
(

1− e− log n
)n−1

=
1

n0.1 ·
(

1− 1
n

)n−1

≈ 1
en0.1 .

This specifically implies that for any ε > 0 whp there are Ω
(
n0.9−ε

)
firms that meet the

above condition. If the same worker is the outlier in any two of these firms, then this worker

must get paid at least 0.1 log n under any core allocation. Since there are Ω
(
n1.8−2ε

)
pairs,

we get that there are many workers who get paid Θ (log n). Finally, at least one worker’s

salary is 0 under the firm-optimal core allocation, and so we are done.

A.2.5 Proof of Theorem 10

Lemma 40. In an arbitrary balanced market with productivity matrix αn, let (µn, un,F, vn,F) be a

the firm-optimal core allocation. If f n
i = µn

(
wn

j

)
then

vn,F
j ≤

(
αn

ij − min
f n
k =µn(wn

l )
αn

kl

)
.

Proof. Let α := min f n
k =µn(wn

l )
. Consider a core allocation (µ′, u′, v′) for a modified produc-

tivity matrix α′ = αn − α. It is trivial that µ′ = µn. Since this is a core allocation it must be

that ∀i : u′i ≥ 0, which means that ∀ f n
i = µ(wn

j ) : v′j ≤ α′ij = αij − α. Define ui = u′i + α and

v = v′, and note that (µ, u, v) is a core allocation for α since all the constraints defining the

core are preserved when we restore the constant. The result follows immediately from the

worker-pessimality of the firm-optimal core allocation. �
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Lemma 41. If Conjecture 9 holds, then there exists c ∈ R+ such that whp

min
f n
i =µn(wn

j )
αn

ij ≥ log n− log log n− log c.

Proof. Let the constant used in Conjecture 9 be c1, and let c = c1 + 3. The probability

that the c1 log n highest element out of n exponential random variables will be lower than

log n− log log n− log c equals

P =
n

∑
m=n−c1 log n+1

(
n
m

)(
1− e− log n+log(c log n)

)m (
e− log n+log(c log n)

)n−m

≤c1 log n ·
(

n
c1 log n− 1

)(
1− c log n

n

)n−c1 log n+1 ( c log n
n

)c1 log n−1

≤c1 log n
(

en
c1 log n− 1

)c1 log n−1 (
1− c log n

n

)n ( c log n
n

)c1 log n−1

≤c1 log n
( e

c

)c1 log n−1
e−c log n = c1 log n

( e
c

)c1 log n−1 1
nc

≤ c1(c1 + 3)
e

log n
n3 ≤ 1

n2 ,

where the transition in the fourth line is by Stirling’s approximation, and the one in the

fifth line uses c = c1 + 3. Therefore the probability that after taking the c1 log n highest

element out of n exponential random variables n times the minimal value is lower than

log n− log log n− log c is bounded above by

1−
(

1− 1
n2

)n

≈ 1−
(

1− 1
n
+ O

(
1
n2

))
=

1
n
+ O

(
1
n2

)
.

Conjecture 9 ensures that whp µn does not assign any firm to a worker who is ranked below

c1 log n, and therefore whp the claim holds. �

Proof of Theorem 10. Given Lemma 38, Lemma 40, and Lemma 41, we know that

E

[
∑

j
vn,F

j

]
≤ n(log n + 1)−

(
1− c1

n

)
· n · (log n− c log log n) ,

where c1 is such that the statement in Lemma 41 holds with probability greater than 1− c1
n .
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This implies that

E

[
∑

j
vn,F

j

]
≤ cn log log n + n + c1 log n− cc1 log log n

n
.

Finally, use Lemma 39 to complete the proof.

A.3 Analysis of the Cobb–Douglas benchmark model

This appendix demonstrates how one can get results similar to Theorem 1 in the presence

of interaction between firms’ quality and workers’ human capital level.

A.3.1 Sketch of proof of Lemma 5

Given any n, d, m ∈N, let

Sym (n, d, m) := {σ ∈ Sym(n) | |{i | σ(i)− i ≥ d}| ≥ m} ,

where Sym(n) is the symmetric group of size n. That is, Sym(n, d, m) is the set of all

permutations σ of the set {1, . . . , n} such that there are at least m elements such that the

difference between their images and themselves is equal to or larger than d. For any

σ ∈ Sym(n) we let

val(σ) := ∑n
i=1

√
i · σ(i)

n
.

Lemma 42. If σ ∈ Sym(n, d, m), and there exist i < j such that σ(i) > σ(j) and σ(i)− i < d,

then there exists σ′ ∈ Sym(n, d, m) such that val(σ′) > val(σ).

Proof. Consider σ′ ∈ Sym(n, d, m) defined by

σ′(k) =


σ(j) if k = i,

σ(i) if k = j,

σ(k) otherwise.
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We get that

val(σ′)− val(σ) =
1
n

(√
iσ(j) +

√
jσ(i)−

√
iσ(i)−

√
jσ(j)

)
=

1
n

(√
i−
√

j
)(√

σ(j)−
√

σ(i)
)
> 0

�

Lemma 43. If σ ∈ Sym(n, d, m), and there exist i < j such that σ(i) > σ(j) and σ(j)− j ≥ d,

then there exists σ′ ∈ Sym(n, d, m) such that val(σ′) > val(σ).

Proof. The proof is similar to the proof of Lemma 42. The only difference is that now

σ′ ∈ Sym(n, d, m) because σ′(i)− i = σ(j)− i > σ(j)− j ≥ d and σ′(j)− j = σ(i)− j >

σ(j)− j ≥ d. �

Lemma 44. If σ ∈ Sym(n, d, m), m > 0, and n−σ−1(n) < d, then there exists σ′ ∈ Sym(n, d, m)

such that val(σ′) > val(σ).

Proof. Let n′ be the largest number such that (n′ − 1)− σ−1(n′ − 1) ≥ d (such n′ exists since

m > 1). Denote k := n′ − σ−1(n′ − 1). If there exists i such that i > k and σ(i)− i > d, then

by Lemma 43 we are done. If σ(n′) 6= n′, then by a simple counting argument there exist

i < j such that σ(i) > σ(j) and σ(i)− i < d, and then by Lemma 42 we are done. Similarly,

if σ(n′ − k + 1) > n′ − k, we can again find i < j such that σ(i) > σ(j) and σ(i)− i < d, and

be done by Lemma 42. Define σ′ ∈ Sym(n) as

σ′(i) =



n′ − 1 if i = n′,

n′ if i = n′ − k + 1,

σ(n′ − k + 1) if i = n′ − k,

σ(i) otherwise.
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We now have:

val σ′ − val σ =
1
n

((
(n′ − k) +

√
(n′ − k + 1)n′ +

√
n′(n′ − 1)

)

−
(√

(n′ − k)(n′ − 1) +
√
(n′ − k + 1)(n′ − k) + n′

))

=
n′

n

((
1− k

n′
+

√
1− k− 1

n′
+

√
1− 1

n′

)

−
(√

1− k
n′

√
1− 1

n′
+

√
1− k− 1

n′

√
1− k

n′
+ 1

))

=
n′

n

(
− k

n′
+

(√
1− 1

n′
+

√
1− k− 1

n′

)(
1−

√
1− k

n′

))

=
k
n


√

1− 1
n′ +

√
1− k−1

n′

1 +
√

1− k
n′

− 1


=

k

n
(

1 +
√

1− k
n′

) (F (k− 1, n′)−F (0, n)
)

,

where F (t, n′) =
√

1− t
n′ −

√
1− t+1

n′ . Note that

∂F (t, n′)
∂t

= − 1

2n′
√

1− t
n′

+
1

2n′
√

1− t+1
n′

=

√
1− t

n′ −
√

1− t+1
n′

2n′
√

1− t
n′

√
1− t+1

n′

,

and therefore ∂,′
∂t > 0 for all t ∈ (0, n′ − 1). This implies that val σ′ > val σ as required. �

Lemma 45. For all σ ∈ Sym(n, d, m), val(σ) ≤ n+1
2 −

md2

8n(n+d+1) .

Proof. Let val(n, d, m) := maxσ∈Sym(n,d,m) val(σ). Given some σ1 ∈ Sym(n, d, m) such that

val(σ1) = val(n, d, m), we can define σ2 ∈ Sym(n + d + 1, d, m) by

σ2(i) =


σ1(i) if i ≤ n,

i if i > n.
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Following the same logic used in the proof of Lemma 44, there exists σ3 ∈ Sym(n + d +

1, d, m) such that σ3(n + 1) = n + d + 1, σ3(i) = i − 1 for i ∈ {n + 2, . . . , n + d + 1}, and

val(σ3) > val(σ2). However, this also implies that there exists σ4 ∈ Sym(n + d + 1, d, m)

such that σ4 is identical to σ3 for inputs larger than n, and is identical to a permutation

σ4 ∈ Sym(n, d, m− 1) that achieves val(n, d, m− 1) for inputs smaller than or equal to n. It

follows that

val(n, d, m) = val(σ1) =
1
n

(
(n + d + 1) val(σ2)−

n+d+1

∑
i=n+1

i

)
≤

1
n

(
(n + d + 1) val(σ4)−

n+d+1

∑
i=n+1

i

)
=

val(n, d, m− 1)− 1
n

(
n+d+1

∑
i=n+1

i−
n+d

∑
i=n+1

√
i(i + 1)−

√
(n + 1)(n + d + 1)

)
.

Now note that

n+d+1

∑
i=n+1

i−
n+d

∑
i=n+1

√
i(i + 1)−

√
(n + 1)(n + d + 1) =

n + d + 1−
√
(n + 1)(n + d + 1)−

n+d

∑
i=n+1

(√
i(i + 1)− i

)
=

(n + d + 1)2 − (n + 1)(n + d + 1)
n + d + 1 +

√
(n + 1)(n + d + 1)

−
n+d

∑
i=n+1

i√
i(i + 1) + i

≥

(n + d + 1)d
n + d + 1 +

√
(n + 1)(n + d + 1)

− d
2
=

d
2

(
(n + d + 1)−

√
(n + 1)(n + d + 1)

(n + d + 1) +
√
(n + 1)(n + d + 1)

)
=

d
2

 d(n + d + 1)(
(n + d + 1) +

√
(n + 1)(n + d + 1)

)2

 ≥ d2

8(n + d + 1)
.

Therefore

val(n, d, m) ≤ val(n, d, m− 1)− d2

8n(n + d + 1)
,

and

val(n, d, m) ≤ val(n, d, 0)− md2

8n(n + d + 1)
.

To complete the proof, note that for m = 0 we know by Lemma 42 that val(n, d, 0) =
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∑n
i=1

i
n = n+1

2 . �

Let µn be an assignment for a certain market Mn; we denote

val(µn, Mn) := ∑
µn( f n

i )=wn
j

2
√

qn
i hn

j + εn
ij.

Lemma 46. Let µn be an assignment for Mn such that∣∣∣{i :
∣∣∣qn

i − hn
µn(i)

∣∣∣ > nb−1
}∣∣∣ ≥ na,

for some a, b ∈ (0, 1); then there exists c ∈ R+ such that

val (µn, Mn) ≤ 2n + 1− cna+2b−2

Proof. Without loss of generality, assume that more than half of the firms in the set{
i :
∣∣∣qn

i − hn
µn(i)

∣∣∣ > nb−1
}

are matched with workers whose human capital level exceeds

the firms’ quality. Now the maximal value is given when all the firms fit workers perfectly

in terms of the idiosyncratic component (i.e., εn
ij = 1), and then Lemma 45 bounds the sum

of the interactive components, and we get

val (µn, Mn) ≤ 2

(
n + 1

2
−

( 1
2 na) (nb)2

8n(n + nb−1 + 1)

)
+ n ≤ 2n + 1− 1

8.01
na+2b−2.

�

Lemma 47. Let {µn} be a sequence of optimal assignments for Mn. Then there exists c ∈ R+ and

γ ∈ (0, 1) such that whp val (µn, Mn) ≥ n− cnγ.

Proof sketch. Use a greedy algorithm that divides the firms and workers into layers according

to their quality/human capital level, where each layer contains n1/3 firms/workers. Then

perform an optimal assignment within each layer based only on the noise dimension. The

result approximates the efficiency on both dimensions, and gives a lower bound on the

efficient assignment. �
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Sketch of proof of Lemma 5. We deduce from Lemma 46 and Lemma 47 that for a+ 2b− 2 > γ

it must be that
∣∣∣{i |

(
qn

i − hn
µn(i)

)
> nb−1

}∣∣∣ < na. Now assume to the contrary that there is

a firm that is matched under the optimal assignment to a worker who has a human capital

level far higher than the firm’s quality (by “far higher” we mean nδ−1 for some δ ∈ (0, 1)),

and show (using a somewhat involved counting argument) that there must be another firm

that is matched to a worker with a human capital level far lower than the firm’s own quality,

and such that a switch between the workers employed by those two firms would yield an

efficiency gain of c1n2−2δ on the quality dimension for some c1 ∈ R+. Then for each new

match, try to find an alternating path (in the spirit of Theorem 1) to fix the efficiency on

the noise dimension. This leads to an overall improvement in efficiency, which leads to a

contradiction.

A.3.2 Sketch of proof of Theorem 6

Sketch of proof. The proof follows immediately from Lemma 5 and similar arguments to

those used in Theorem 1, applied within a band of qualities of width Θ
(
n−b).
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Appendix B

Appendix to Chapter 2

B.1 Formal Definition of the Extensive-Form Game

Revision games: The set of players is N = {1, 2} and the sets of types are Ti = {τr
i , τc

i }. The

set of possible histories is

H ={∅} ∪

−t, (τ1, τ2,O1,O2, x)

∣∣∣∣∣∣∣
τi ∈ Ti,Oi ⊆ [−T, 0],−T ∈ Oi,

x : [−T,−t)→ {U, D} × {L, R}

 .

Here Oi represents Player i’s revision opportunities, and x(−t′) represents the prepared

profile at time −t′. For almost all realizations O1 and O2 will be finite. The players who

take action at h are given by the function P : H → 2N∪{Nature}:

P(h) =


{Nature} if h = ∅

{i | −t ∈ Oi} if h = (−t, τ1, τ2,O1,O2x)
.

The information sets partition for Player i is given by Ii whose typical element is

Ii
(
−t̃, τ̃i, Õi, x̃

)
={

(−t, τ1, τ2,O1,O2, x)
∣∣∣ −t = −t̃, τi = τ̃i, Oi|[−T,−t] = Õi, x|[−T,−t) = x̃

}
.
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The set of information sets in which Player i takes an action is

Ji =
{
Ii
(
−t̃, τ̃i, Õi, x̃

)
∈ Ii

∣∣ −t̃ ∈ Õi
}

.

At history ∅ Nature chooses τ1, τ2, O1, and O2 independently according to the probabil-

ities ξ1 and ξ2 (for τc
1 and τc

2 respectively) and according to the distributions of the Poisson

processes with frequencies λ1 and λ2 (to determine O1 and O2 respectively). The game

then moves immediately to the history (τ1, τ2,O1,O2,−T, x∅), with the “empty” function

x∅ : ∅→ {U, D} × {L, R}. Following that, time moves continuously and whenever a player

is called to play the available actions are

Ai
(
Ii
(
−t̃, τ̃i, Õi, x̃

))
=



{U, D} if i = 1, τ̃i = τr
i

{U} if i = 1, τ̃i = τc
i

{L, R} if i = 2, τ̃i = τr
i

{R} if i = 2, τ̃i = τc
i

We denote also A1 = {U, D} and A2 = {L, R}.

A feasible strategy for Player i is σi : Ji → ∆Ai such that

1. supp
(
σi
(
Ii
(
−t̃, τ̃i, Õi, x̃

)))
⊆ Ai

(
Ii
(
−t̃, τ̃i, Õi, x̃

))
2. ∀ai ∈ Ai : σi

(
Ii
(
−T, τr

i , {−T}, x∅)) [ai] ∈ {0, 1}

As mentioned we restrict players’ strategies to be measurable with respect to the natural

topologies.

The state variable x is determined by the realizations of players’ strategies. For any time

−t′ < −t, let −t′′i = max{−τ ∈ Oi | −τ < −t}, and let αi be the realized action of Player i

at −t′′i , then x(−t′) = (α1, α2).

The terminal histories are Z = {(−t, τ1, τ2,O1,O2, x) ∈ H | −t = 0}, and the payoffs at

history (0, τ1, τ2,O1,O2, x) are given by u (x(0)), where u is a function from {U, D}× {L, R}

to R2.
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Wars of attrition with Poisson arrivals: In the case of the war of attrition with Poisson ar-

rivals the definition of the game is slightly simpler.

The set of possible histories is now given by

H ={∅, D, L} ∪ {(−t, τ1, τ2,O1,O2) | τi ∈ Ti,Oi ⊆ [−T, 0],−T ∈ Oi}

The information sets partition for Player i is given by Ii whose typical element is

Ii
(
−t̃, τ̃i, Õi

)
=
{
(−t, τ1, τ2,O1,O2)

∣∣∣ −t = −t̃, τi = τ̃i, Oi|[−T,−t] = Õi

}
.

The rest of the details are identical to those given for revision games, except that once

Player 1 chooses action D or Player 2 chooses action L the game moves to the relevant history

(D or L). The terminal histories are Z = {D, L} ∪ {(−t, τ1, τ2,O1,O2) ∈ H | −t = 0}, and

payoffs are given by

uwoa(h) =


u(D, R) if h = D

u(U, L) if h = L

u(U, R) otherwise

with u defined as before.

B.2 Model with Heterogeneous Revision Rates

The main text ignored the possibility of the two players having different revision rates. Here

we formalize all the necessary definitions to deal with heterogeneous revision rates. All the

proofs below are provided for the more general case of different frequencies.1 The game is

now summarized by the parameters (T; u1, u2; ξ1, ξ2; λ1, λ2), where λi is the frequency of the

Poisson process governing Player i’s revisions. We denote by φ(T; u1, u2; ξ1, ξ2; λ1, λ2) the

set of interim SE payoffs of the profile (τr
1 , τr

2), and define the revision equilibrium payoff

1With the exception of Theorem 17.
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set of (u1, u2; ξ1, ξ2; λ1, λ2) by

φ̄(u1, u2; ξ1, ξ2, λ1, λ2) = lim
T′→∞

φ(T′; u1, u2; ξ1, ξ2; λ1, λ2).

We extend Definition 2 trivially.

Lastly, the definition of strength becomes slightly more complicated.

Definition 4. Player i’s strength is given by

si(ui; λ1, λ2) ≡
λ3−i · |ui(U, L)− ui(D, R)|

λ2 [ui(U, L)− ui(U, R)] + λ1 [ui(D, R)− ui(U, R)]
.

Player i is stronger than Player j if

si(ui; λ1, λ2) > sj(uj; λ1, λ2).

Player i relative strength (with regard to Player j) is

∆ij(u1, u2; λ1, λ2) = si(ui; λ1, λ2)− sj(uj; λ1, λ2).

Note that a player is stronger if her revision frequency is low or if her opponent’s revision

frequency is high. The relative frequency of play allows a player to commit and thus

makes her a stronger competitor (a player whose frequency of play is much lower than her

opponent is practically a Stackelberg leader).

B.3 Proofs

All proofs are for the general model (with heterogeneous revision rates). Whenever the

statement of the result changes because of that, the new formulation is explicitly brought.

Whenever the statement is the same as in the main text, it is omitted.
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B.3.1 Proof of Proposition 12

Proposition 48. Assume Player 1 is stronger than Player 2, ξ1 = 0, and ξ2 > 0; then the revision

equilibrium payoff set is bounded away from Player 1’s preferred outcome:

u(U, L) /∈ φ̄(u1, u2; 0, ξ2; λ1, λ2).

Proof. Let {Tk}∞
k=1 be a sequence of horizons such that Tk → ∞ and let {σ̂k}∞

k=1 be a

corresponding sequence of equilibria. We let Pk denote the probability measure induced by

Nature’s moves (i.e., the lottery over types and the stochastic Poisson processes governing

players’ revision opportunities) and by equilibrium strategies σ̂k.

Choose KA > 0, −tA < 0 and δA > 0 such that

1. δA < 1
3 (u2(D, R))− u2(U, L)),

2. e−
1
2 λ1tA

(u2(D, R)− u2(U, R)) < δA,

3. for any k > KA, given that it is common knowledge that Player 2 is rational by time

−tA, the expected continuation payoffs induced by equilibrium strategies σ̂k are below

u2(U, L) + δA for Player 2.

The reason we can find KA, −tA, and δA that meet these conditions is due to Lemma 49

below, the proof of which is a straightforward extension of the proof of Theorem 3 of

Calcagno et al. (2014) and it is omitted.

Lemma 49. Assume Player 1 is stronger than Player 2, and ξ2 = 0. Then the revision equilibrium

payoff set contains only Player 1’s preferred outcome:

φ̄(u1, u2; ξ1, 0; λ1, λ2) = {u(U, L)}.

Assume to the contrary that u(U, L) ∈ φ̄(u1, u2; 0, ξ2; λ1, λ2). This implies that

lim
k→∞

Pk
(

EL(−tA) | E2r

)
= 1,
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where

E2r = {Player 2 is rational}

EL(−t) = {L is prepared before time − t}

(or else the equilibrium result will be bounded away from the intended limit). Then for any

δ′ > 0 there exists K′ > KA such that for any k > K′ Player 2’s expected utility under σ̂k can

be bounded above by

(1− δ′) ·
(

u2(U, L) + δA
)
+ δ′ · u2(D, R) ≤ u2(U, L) + δA + δ′u2(D, R). (B.1)

We can take δ′ = δA

u2(D,R) and get that there exists K′ > 0 such that for any k > K′ Player 2’s

expected utility is bounded above by u2(U, L) + 2δA.

The rational Player 2 can deviate to the strategy in which she prepares R until time − tA

2 ,

and then best-responds to the prepared profile. Note that

lim
k→∞

Pk
(

Ec
2r |

[
EL(−tA)

]c)
= lim

k→∞

ξ2

ξ2 + (1− ξ2) · Pk
(
[EL(−tA)]

c | E2r
) = 1.

And therefore for large enough k Player 1’s strategy from −tA onward will be to prepare D

conditional on Player 2 never preparing L. This will ensure the rational Player 2 an expected

utility bounded below by

(
1− e−

1
2 λ1tA

)
u2(D, R) + e−

1
2 λ1tA

u2(U, R) > u2(D, R)− δA. (B.2)

By the definition of δA, (B.1), and (B.2), it follows that Player 2 has a profitable deviation

and we get a contradiction.

B.3.2 Proof of Theorem 13

Proof. Let ξ̄2 be implicitly defined by

ξ̄2

1− ξ̄2
= ∆12(u1, u2; λ1, λ2) ·

λ1u1(D, R) + λ2u1(U, L)− (λ1 + λ2)u1(U, R)
(λ1 + λ2)u1(D, R)

.

The reasons for using this definition will become clear in the proof.
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Given some ξ2 ∈
(
0, ξ̄2

)
, let {Tk}∞

k=1 be a sequence of horizons such that Tk → ∞ and

let {σ̂k}∞
k=1 be a corresponding sequence of equilibria. We let Pk denote the probability

measure induced by Nature’s moves (i.e., the lottery over types and the stochastic Poisson

processes governing players’ revision opportunities) and by equilibrium strategies σ̂k.

Note that the rational type of Player 2 must myopically best-respond after time −t∗2 ,

where −t∗2 is implicitly defined by

u2(U, L) =
(

1− e−(λ1+λ2)t∗2
)
· λ1u2(D, R) + λ2u2(U, L)

λ1 + λ2
+ e−(λ1+λ2)t∗2 u2(U, R),

or more simply

e−(λ1+λ2)t∗2 = s2(u2; λ1, λ2).

Let −tB be such that −tB ≤ min{−tA,−t∗2}, with −tA being defined as in Proposition 12.

Using the notation defined in the proof of Proposition 12 we know that

lim
k→∞

Pk
(

EL(−tB) | E2r

)
< 1.2

Assume to the contrary that there is no last-minute strategic interaction. This implies

that the probability of the profile of prepared actions changing in the interval (−tB, 0) goes

to zero as k goes to infinity. Let E(a1,a2) denote the event that (a1, a2) is the prepared action

profile at time −tB.

Claim 49.1. limk→∞ Pk(E(U,R) | E2r) = limk→∞ Pk(E(D,L) | E2r) = 0.

Proof. If the action profile prepared at time −tB is either (U, R) or (D, L) there is a constant

probability that Player 2 will be called to play after time −t∗2 , and will best-respond to the

prepared action of Player 1, which contradicts the lack of last-minute strategic interaction.

�

Claim 49.2. limk→∞ Pk(E(U,L) | E2r) > 0.

2For convenience, and without loss of generality, we will assume throughout the proof that all the sequences
of probabilities we mention converge.
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Proof. If limk→∞ Pk(E(U,L) | E2r) = 0 then for any δ > 0, Player 1’s utility for large enough k

is bounded above by u1(D, R) + δ. However, Player 1 can deviate to the strategy of playing

only U until time −t∗2 and then best-responding, so that she will get a payoff bounded below

by

(1− ξ2) ·
( (

1− e−(λ1+λ2)t∗2)
)
· λ1u1(D, R) + λ2u1(U, L)

λ1 + λ2
+

e−(λ1+λ2)t∗2 u1(U, R)
)
+ ξ2 ·

((
1− e−λ1t∗2

)
u1(D, R) + e−λ1t∗2 u1(U, R)

)
>

1− ξ2

λ1 + λ2
·
(

λ1u1(D, R) + λ2u1(U, L)− s2(u2; λ1, λ2)·

(λ1u1(D, R) + λ2u1(U, L)− (λ1 + λ2)u1(U, R))
)
=

1− ξ2

λ1 + λ2
·
(

λ1u1(D, R) + λ2u1(U, L) + (∆12(u1, u2; λ1, λ2)− s1(u1; λ1, λ2)) ·

(λ1u1(D, R) + λ2u1(U, L)− (λ1 + λ2)u1(U, R))
)
= (1− ξ2)u1(D, R)+

(1− ξ2)∆12(u1, u2; λ1, λ2) ·
λ1u1(D, R) + λ2u1(U, L)− (λ1 + λ2)u1(U, R)

λ1 + λ2
>

(1− ξ2)u1(D, R) + ξ2u1(D, R) = u1(D, R),

where the last inequality comes from ξ2 being strictly less than ξ̄2 and the definition of ξ̄2.

The fact that we have a lower bound that is strictly above u1(D, R) implies that we can select

δ small enough such that the deviation will be profitable for Player 1 for large enough k.

�

Claim 49.3. limk→∞ Pk
(

E(D,R) |
[
EL(−tB)

]c ∩ E2r

)
< 1.

Proof. Suppose limk→∞ Pk
(

E(D,R) |
[
EL(−tB)

]c ∩ E2r

)
= 1. We know from Claim 49.2 that

for every δ′ > 0 there exists K′ such that for every k > K′ Player 2’s payoffs from equilibrium

σ̂k are bounded from above by

u2(D, R)−
(

lim
k→∞

Pk
(

E(U,L) | E2r

)
− δ′

)
· (u2(D, R)− u2(U, L)) .

Player 2 can deviate and always prepare R and for any δ′′ > 0 there exists K′′ such that for
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any k > K′′ Player 2’s payoffs from this deviation will be bounded from below by

u2(D, R)− δ′′ · u2(U, R). (B.3)

If we pick δ′ and δ′′ to be small enough, and take K = max{K′, K′′}, Player 2 has a profitable

deviation for all k > K. �

From Claim 49.3 and Proposition 12 we know that

lim
k→∞

Pk
(

E(U,R) | E2r

)
= lim

k→∞
Pk
(

E(U,R) |
[

EL(−tB)
]c
∩ E2r

)
·

lim
k→∞

Pk
([

EL(−tB)
]c
| E2r

)
> 0,

which contradicts Claim 49.1. This concludes the contradiction argument and proves that the

parameters induce last-minute strategic interaction. The proof is completed using Lemma 50

below.

Lemma 50. If parameter vector (u1, u2; ξ1, ξ2; λ1, λ2) induces last-minute strategic interaction,

then it induces inefficiency.

Proof. Given the vector of parameters, we know that there exists −t′ < 0 and δ > 0 such that

for every sequence {Tk}∞
k=1 such that Tk → ∞, and every corresponding sequence of SEs, the

probability that the prepared profile changes between time −t′ and time 0 is bounded above

δ as k approaches infinity. Note that two of the four possible action profiles are inefficient

and there is no way to change from one efficient profile to the other without passing through

an inefficient profile. Therefore, there is a probability of at least δ of reaching an inefficient

profile at some time between −t′ and 0. It is therefore possible to bound the inefficiency

from below by δ times the probability that no player moves from the time an inefficient

profile was reached until 0, that is, δ′ = δ · e−(λ1+λ2)t′ .
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B.3.3 Proof of Proposition 14

Proposition 51. Assume Player 1 is stronger than Player 2, and ξ1 = 0. Then Player 1’s preferred

outcome is in the limit of the revision equilibrium payoff set as ξ2 → 0:

u(U, L) ∈ lim inf
ξ2→0

φ̄(u1, u2; 0, ξ2; λ1, λ2).3

Proof. This proposition is a specific case of Theorem 17 (part 1), whose proof can be found

below.

B.3.4 Proof of Theorem 15

Proof. We will first show that substantial delay is induced, and this in turn will imply

last-minute strategic interaction and inefficiency (via Lemma 50).

Let {Tk}∞
k=1 be a sequence of horizons such that Tk → ∞ and let {σ̂k}∞

k=1 be a corre-

sponding sequence of equilibria. We let Pk denote the probability measure induced by

Nature’s moves (i.e., the lottery over types and the stochastic Poisson processes governing

players’ revision opportunities) and by equilibrium strategies σ̂k.

Choose KA > 0, −tA < 0 and δA > 0 such that

1. δA < 1
3 (1− ξ1) (u2(D, R))− u2(U, L)),

2. e−
1
2 λ1tA

(u2(D, R)− u2(U, R)) < δA,

3. e−
1
2 λ2tA

(u2(U, L)− u2(U, R)) < δA,

4. for any k > KA, given that it is common knowledge that Player 2 is rational by time

−tA, the expected continuation payoffs induced by equilibrium strategies σ̂k are above

u1(U, L)− δA for Player 1 and below u2(U, L) + δA for Player 2.

The reason we can find KA, −tA, and δA that meet these conditions is due to Lemma 49.

3See Footnote 20.
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We describe several events using the following notation:

E1r = {Player 1 is rational}

E2r = {Player 2 is rational}

Er = E1r ∩ E2r

ED(−t) = {D is prepared before time − t}

EL(−t) = {L is prepared before time − t}

Assume to the contrary that no substantial delay is induced. This implies that the

probability that by time −tA the only profile that was prepared was (U, R) conditional on

both players being rational converges to zero as k→ ∞. Formally:

lim
k→∞

Pk
([

ED(−tA)
]c
∩
[

EL(−tA)
]c
| Er

)
= 0.4 (B.4)

Claim 51.1. limk→∞ Pk
([

EL(−tA)
]c | Er

)
> 0.

Proof. Suppose that limk→∞ Pk
([

EL(−tA)
]c | Er

)
= 0; then for any δ′ > 0 there exists

K′ > KA such that for any k > K′ Player 2’s expected utility under σ̂k can be bounded above

by

ξ1 · u2(U, L) + (1− ξ1) ·
(
(1− δ′) ·

(
u2(U, L) + δA

)
+ δ′ · u2(D, R)

)
(B.5)

≤ u2(U, L) + δA + δ′u2(D, R).

We can take δ′ = δA

u2(D,R) and get that there exists K′ > 0 such that for any k > K′ Player 2’s

expected utility is bounded above by u2(U, L) + 2δA.

The rational Player 2 can deviate to the strategy in which she prepares R until time − tA

2 ,

4For convenience, and without loss of generality, we will assume throughout the proof that all the sequences
of probabilities we mention converge.
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and then best-responds to the prepared profile. Note that

lim
k→∞

Pk
(

Ec
2r |

[
EL(−tA)

]c
∩ E1r

)
=

lim
k→∞

ξ2

ξ2 + (1− ξ2) · Pk
(
[EL(−tA)]

c | Er
) = 1.

And therefore for large enough k the rational Player 1’s strategy from −tA onward will be to

prepare D conditional on Player 2 never preparing L. This will ensure the rational Player 2

an expected utility bounded below by

ξ1 ·
((

1− e−
1
2 λ2tA

)
u2(U, L) + e−

1
2 λ2tA

u2(U, R)
)
+ (B.6)

(1− ξ1) ·
((

1− e−
1
2 λ1tA

)
u2(D, R) + e−

1
2 λ1tA

u2(U, R)
)
>

ξ1 · u2(U, L) + (1− ξ1) · u2(D, R)− δA.

From the definition of δA, (B.5), and (B.6), it follows that Player 2 has a profitable deviation,

and we get a contradiction. �

Following Claim 51.1, let p̄ ≡ limk→∞ Pk
([

EL(−tA)
]c | Er

)
. Choose KB > KA, −tB ≤

−tA and δB > 0 such that

1. for any k > KB, given that it is common knowledge by time −t ≤ −tB that Player 1 is

rational, and that Player 1 believes that Player 2 is a commitment type with probability

at least ξ2, the expected continuation payoffs induced by equilibrium strategies σ̂k are

below u1(U, L)− δB for Player 1,

2. e−
1
2 λ1tB

(u1(U, L)− u1(U, R)) < 1
2 (1− ξ2) p̄δB.

We can select such KB, tB, and δB as shown by Theorem 13 (note that the method of proof

there implied that payoffs can be bounded for all times before −tB simultaneously).

Claim 51.2. limk→∞ Pk
(

ED(−tB) |
[
EL(−tB)

]c ∩ Er

)
< 1.

Proof. Note that Claim 51.1 and (B.4) imply that

lim
k→∞

Pk
(

ED(−tB) ∩
[

EL(−tB)
]c
| Er

)
> 0.

115



Assume to the contrary that limk→∞ Pk
(

ED(−tB) |
[
EL(−tB)

]c ∩ Er

)
= 1. Then

lim
k→∞

Pk
([

EL(−tB)
]c
| Er

)
= lim

k→∞
Pk
(

ED(−tB) ∩
[

EL(−tB)
]c
| Er

)
> 0.

This in turn implies that for any δ′ > 0 there exists K′ > KB such that the rational type

of Player 1’s expected utility under σ̂k can be bounded above by

ξ2 · u1(D, R) + (1− ξ2)·
((

1− lim
k→∞

Pk
([

EL(−tB)
]c
| Er

)
+ δ′

)
u1(U, L)+

(
lim
k→∞

Pk
([

EL(−tB)
]c
| Er

)
− δ′

)
·
(

u1(U, L)− δB
))

.

And if we take δ′ < 1
2 limk→∞ Pk

([
EL(−tB)

]c | Er

)
and remember that

lim
k→∞

Pk
([

EL(−tB)
]c
| Er

)
≥ p̄,

we get an upper bound of

ξ2 · u1(D, R) + (1− ξ2) · u1(U, L)− 1
2
(1− ξ2) p̄δB. (B.7)

Player 1 can deviate to the strategy in which she prepares U until time − tB

2 , and then

best-responds to the prepared profile. Note that

lim
k→∞

Pk
(

Ec
1r |

[
ED(−tB)

]c
∩
[

EL(−tB)
]c
∩ E2r

)
=

lim
k→∞

ξ2

ξ2 + (1− ξ2) · Pk
(
[ED(−tB)]

c | [EL(−tB)]
c ∩ Er

) = 1.

This deviation will ensure the rational Player 1 an expected payoff bounded below by

ξ2 ·
((

1− e−
1
2 λ1tB

)
u1(D, R) + e−

1
2 λ2tB

u1(U, R)
)
+ (B.8)

(1− ξ2) ·
((

1− e−
1
2 λ2tB

)
u1(U, L) + e−

1
2 λ2tB

u1(U, R)
)
>

ξ2 · u1(D, R) + (1− ξ2) · u1(U, L)− 1
2
(1− ξ2) p̄δB.

From (B.7) and (B.8) it follows that Player 1 has a profitable deviation, and we get a

contradiction. �
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We have

lim
k→∞

Pk
([

EL(−tB)
]c
| Er

)
≥ p̄ > 0 (Claim 51.1,−tB < −tA)

lim
k→∞

Pk
([

ED(−tB)
]c
|
[

EL(−tB)
]c
∩ Er

)
> 0 (Claim 51.2)

which together imply that

lim
k→∞

Pk
([

ED(−tB)
]c
∩
[

EL(−tB)
]c
| Er

)
> 0,

and therefore substantial delay is induced.

B.3.5 Proof of Proposition 16

Proof. In an equilibrium of the prescribed form with cutoff times −t∗1 and −t∗2 , where

−t∗2 ≤ −t∗1 , the following three equations must hold.

Indifference of Player 1: (B.9)

u1(D, R) = (1− q(t∗2 − t∗1)) ·
[ (

1− e−(λ1+λ2)t∗1
)
· λ2u1(U, L) + λ1u1(D, R)

λ1 + λ2
+

e−(λ1+λ2)t∗1 · u1(U, R)

]
+ q(t∗2 − t∗1) ·

[(
1− e−λ1t∗1

)
u1(D, R) + e−λ1t∗1 u1(U, R)

]
.

Indifference of Player 2: (B.10)

u2(U, L) =
(

1− e−λ2(t∗2−t∗1)
)

u2(U, L) + e−λ2(t∗2−t∗1)×[
(1− ξ1) ·

[ (
1− e−(λ1+λ2)t∗1

)
· λ2u2(U, L) + λ1u2(D, R)

λ1 + λ2
+

e−(λ1+λ2)t∗1 u2(U, R)
]
+ ξ1 ·

[(
1− e−λ2t∗1

)
u2(U, L) + e−λ2t∗1 u2(U, R)

]]
.

Bayesian updating: (B.11)

q(t̄) =
ξ2

ξ2 + (1− ξ2)e−λ2 t̄ .
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Note first that (B.10) can be reduced to

u2(U, L) = (1− ξ1) ·
[ (

1− e−(λ1+λ2)t∗1
)
· λ2u2(U, L) + λ1u2(D, R)

λ1 + λ2
+ (B.12)

e−(λ1+λ2)t∗1 u2(U, R)
]
+ ξ1 ·

[(
1− e−λ2t∗1

)
u2(U, L) + e−λ2t∗1 u2(U, R)

]
In equilibrium, −t∗1 is nailed down by (B.12), and so any change to Player 1’s payoffs

does not affect −t∗1 , and changes only −t∗2 . Assume that strategies defined by cutoffs

(−t∗1 ,−t∗2) form an equilibrium, and examine (B.9). Note that from the structure imposed

on the payoffs it is always true that u1(D, R) is greater than the second part of the RHS of

(B.9) (the part multiplied by q(t∗2 − t∗1)). The first part of the RHS of (B.9) must therefore be

greater than u1(D, R). If u1(U, L) becomes larger it makes the first part of the RHS even

greater, and since t∗1 does not change, this must mean that q(t∗2 − t∗1) goes up, which in turns

means that t∗2 becomes smaller. The probability of reaching (U, R) is simply e−(λ1t∗1+λ2t∗2),

and so if t∗1 remains the same and t∗2 becomes larger, this probability becomes smaller. A

similar argument shows that raising u1(U, R) also decreases this probability. When u1(D, R)

increases, the LHS of (B.9) rises more than the RHS, and then by a similar argument the

probability of reaching (U, R) increases.

Dealing with changes in Player 2’s payoffs is only slightly more involved. Raising

u2(D, R) makes the first part of the RHS of (B.12) larger, and so it must be that e−(λ1+λ2)t∗1

becomes larger as well, and this means that t∗1 becomes smaller. Looking now at (B.9), we

see that the decrease in t∗1 has two direct meanings if t∗2 is kept constant: q(t∗2 − t∗1) increases,

and e−(λ1+λ2)t∗1 and e−λ1t∗1 both increase. This means that each part of the RHS of (B.9)

becomes smaller, and the weight on the second part becomes larger. Both effects lead to

the RHS becoming smaller, and to offset it, q(t∗2 − t∗1) must decrease, which implies that t∗2

decreases. So both t∗1 and t∗2 decrease, so that the probability of reaching (U, R) increases.

Similar arguments show that this probability decreases with u2(U, L) and increases with

u2(U, R).
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B.3.6 Proof of Theorem 17

Theorem 52. 1. Assume Player 1 is stronger than Player 2, and both players play cutoff

strategies. Then in the limit as ξ1 → 0 and ξ2 → 0, the probability of reaching ex-post

inefficiency tends to zero.

2. Assume players are equally strong (∆12(u1, u2; λ1, λ2) = 0), λ1 = λ2 = 1,5 and both players

play cutoff strategies. Let the sequence (ξk
1, ξk

2)
∞
k=1 be such that limk→∞ ξk

1 = limk→∞ ξk
2 = 0,

and limk→∞
ξk

2
ξk

1
< 1. Then in the limit as k→ ∞, the probability of reaching ex-post inefficiency

tends to

s1(u1; λ1, λ2)× lim
k→∞

ξk
2

ξk
1

[
= s2(u2; λ1, λ2)× lim

n→∞

ξk
2

ξk
1

]
.

Proof. Part 1: For any given ξ1 and ξ2, consider a SE that is defined by a pair of strategies for

the rational players. Player 1 prepares U until time −t∗1(ξ1, ξ2), and best-responds (according

to the component game’s payoffs) from there on. Similarly, the rational Player 2 prepares R

until time −t∗2(ξ1, ξ2), and best-responds (according to the component game’s payoffs) from

there on. In order for these two strategies to form a SE it is sufficient that three conditions

are satisfied. The first is that the rational Player 2 “gives up” before Player 1 does, that is

−t∗2(ξ1, ξ2) ≤ −t∗1(ξ1, ξ2).

The second condition is that Player 1 is indifferent between preparing U and D at

−t∗1(ξ1, ξ2), conditional on the current prepared action of Player 2 being R and on her

5This theorem requires players’ revision rates to be equal. This is because solving the equations involves a
polynomial of degree λ1

λ2
. Proofs for the cases where λ1

λ2
∈ { 1

4 , 1
3 , 1

2 , 2, 3, 4} can also be found. Furthermore, for
the specific case of a symmetric payoff matrix, it is possible to prove this claim for arbitrary revision rates. It is a
reasonable conjecture that the theorem holds even for non-symmetric payoffs and arbitrary revision rates.
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playing according to the prescribed strategy at any subsequent time. This can be written as

u1(D, R) = (1− q (t∗2(ξ1, ξ2)− t∗1(ξ1, ξ2)))× (B.13)[ (
1− e−(λ1+λ2)t∗1(ξ1,ξ2)

)
· λ2u1(U, L) + λ1u1(D, R)

λ1 + λ2
+

e−(λ1+λ2)t∗1(ξ1,ξ2) · u1(U, R)

]
+ q (t∗2(ξ1, ξ2)− t∗1(ξ1, ξ2))×[(

1− e−λ1t∗1(ξ1,ξ2)
)
· u1(D, R) + e−λ1t∗1(ξ1,ξ2) · u1(U, R)

]
,

where q(t̄) is the posterior probability that Player 1 assigns to the event that Player 2 is the

commitment type conditional on Player 2 not preparing L on an interval of length t̄ and her

playing a strategy that dictates preparing L on this interval, which is given by

q(t̄) =
ξ2

ξ2 + (1− ξ2)e−λ2 t̄ . (B.14)

Note that as q(·) is weakly increasing in t̄, Player 1 strictly prefers preparing U before

−t∗1(ξ1, ξ2), and strictly prefers preparing D after −t∗1(ξ1, ξ2).

The third condition is that the rational type of Player 2 is indifferent at −t∗2(ξ1, ξ2)

conditional on Player 1’s prepared action being U and her playing according to the prescribed

strategy at any subsequent time:

u2(U, L) =
(

1− e−λ2(t∗2(ξ1,ξ2)−t∗1(ξ1,ξ2))
)
· u2(U, L)+ (B.15)

e−λ2(t∗2(ξ1,ξ2)−t∗1(ξ1,ξ2))×
[
(1− ξ1) ·

[ (
1− e−(λ1+λ2)t∗1(ξ1,ξ2)

)
·

λ2u2(U, L) + λ1u2(D, R)
λ1 + λ2

+ e−(λ1+λ2)t∗1(ξ1,ξ2) · u2(U, R)
]
+

ξ1 ·
[ (

1− e−λ2t∗1(ξ1,ξ2)
)

u2(U, L) + e−λ2t∗1(ξ1,ξ2)u2(U, R)
]]

.

This means that the rational type of Player 2 weakly prefers preparing R prior to −t∗2(ξ1, ξ2),

and weakly prefers preparing L after −t∗2(ξ1, ξ2) (she strictly prefers preparing L after

−t∗1(ξ1, ξ2)). It remains to show that these three conditions can be met simultaneously (as
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T → ∞). To see that, note first that (B.15) reduces to

u2(U, L) = (1− ξ1) ·
[ (

1− e−(λ1+λ2)t∗1(ξ1,ξ2)
)
· (B.16)

λ2u2(U, L) + λ1u2(D, R)
λ1 + λ2

+ e−(λ1+λ2)t∗1(ξ1,ξ2) · u2(U, R)
]
+

ξ1 ·
[ (

1− e−λ2t∗1(ξ1,ξ2)
)

u2(U, L) + e−λ2t∗1(ξ1,ξ2)u2(U, R)
]
,

which implies that t∗1(ξ1, ξ2) only depends on ξ1. Furthermore, from continuity:

lim
ξ1→0

e−(λ1+λ2)t∗1(ξ1,ξ2) =
λ1 (u2(D, R)− u2(U, L))

λ1u2(D, R) + λ2u2(U, L)− (λ1 + λ2)u2(U, R)
.

Therefore t∗1(ξ1, ξ2) approaches a constant as ξ1 → 0, and in this equilibrium the ra-

tional Player 2 is indifferent between insisting on playing R or not along the interval

[−T,−t∗1(ξ1, ξ2)]. Knowing that t∗1(ξ1, ξ2) does not change with ξ2 and converges to a con-

stant, and looking at (B.13), we can immediately deduce that q (t∗2(ξ2)− t∗1) also converges

to a constant. It follows from (B.14) that t∗2(ξ1, ξ2) tends to infinity as ξ1, ξ2 → 0. This means

that for small enough ξ2 the first condition is also satisfied, and ensures that the strategies

we described form an equilibrium for small enough ξ1 and ξ2.

As mentioned above, when ξ1, ξ2 → 0, t∗1(ξ1, ξ2) approaches some constant, and t∗2(ξ1, ξ2)

tends to infinity. This means that the limit of the expected payoffs (for the rational types) is

u(U, L), and the probability of reaching the Pareto inferior outcome approaches zero.

Part 2: Assume that −t∗2(ξ
k
1, ξk

2) ≤ −t∗1(ξ
k
1, ξk

2).
6 We need to solve a set of four equations,

namely, Equations (B.9), (B.12), (B.11), and ∆12(u1, u2) = 0. Inputting all of these into a

6This is not without loss of generality, because the two players have different payoffs and different
probabilities of being the commitment type. Nevertheless, we will show that this is the right assumption if

limk→∞
ξk

2
ξk

1
< 1.
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standard mathematical solver and then simplifying gives

e−t∗1(ξ
k
1,ξk

2) =− ξk
1s2(u2)

(
u2(U, L)− u2(U, R)
u2(D, R)− u2(U, L)

)
+√

(1− ξk
1)

2s2(u2) + (ξk
1)

2s2
2(u2)

(
u2(U, L)− u2(U, R)
u2(D, R)− u2(U, L)

)2

e−t∗2(ξ
n
1 ,ξn

2 ) =
ξk

2

ξk
1
×
[
− ξk

1s1(u1)

(
u1(D, R)− u1(U, R)
u1(U, L)− u1(D, R)

)
+√

(1− ξk
1)

2s1(u1) + (ξk
1)

2s2
1(u1)

(
u1(D, R)− u1(U, R)
u1(U, L)− u1(D, R)

)2
]

.

Taking the limit as k→ ∞ gives us

lim
k→∞

e−t∗1(ξ
k
1,ξk

2) =
√

s2(u2)

lim
k→∞

e−t∗2(ξ
k
1,ξk

2) =
ξ2

ξ1
×
√

s1(u1).

Given cutoff strategies the probability that both players never revise their strategies is

e−t∗1(ξ
k
1,ξk

2) × e−t∗2(ξ
k
1,ξk

2), and this is also the probability of reaching an ex-post inefficient

outcome. Because s1(u1) = s2(u2) we get in the limit exactly

s1(u1; λ1, λ2)× lim
k→∞

ξk
2

ξk
1

[
= s2(u2; λ1, λ2)× lim

k→∞

ξk
2

ξk
1

]

B.3.7 Proof of Lemma 18

Proof. Let us denote

σi(−t) = Ej
[
σi
(
Ii
(
−t, τr

i ,O′i
))
| −t ∈ O′i

]
,

where the expectation is taken with respect to Player j’s beliefs on the possible realizations of

revision opportunities for Player i up until time −t (that is, it is a simple expectation derived

from the definition of the Poisson process), such that −t itself is a revision opportunity as

well.

We wish to show that any pair of strategies played in equilibrium satisfies some kind of
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restricted “pairwise-monotonicity,” or formally

(σi(−t) > 0) ∧
(
−t < −t′

)
∧
(∫ −t′

−t
σj(τ)dτ > 0

)
=⇒ σi(−t′) = 1.

Note that if σi(−t) > 0, then Player i’s continuation payoff at −t if not exiting is less than

or equal to her payoff if exiting (the continuation payoff cannot rely on previous revision

opportunities because they do not affect Player j’s behavior). The continuation payoff at

time −t is a convex combination of (1) the expected payoff in case Player i is called to make

a decision on the interval (−t,−t′] and exits (in which case she gets the same payoff), (2)

the expected payoff in case Player j is called to make a decision on the interval (−t,−t′]

and exits, and (3) the continuation payoff at t′. Since the probability of Player j exiting is

at least e−λi(t−t′)
(

1− e−λj(t−t′)
)
·
∫ −t′

−t σj(τ)dτ > 0, the expected continuation payoff at time

−t′ must be strictly lower than the payoff from exiting. This means that Player i exits at −t′,

i.e., σi(−t′) = 1.7

Finally, define

−t∗ = lim sup
{
−t
∣∣∣∣ min

i

∫ −t

−T
σi(τ)dτ = 0

}
.

It is immediate from the definition that at least one of the players exits with zero probability

before −t∗.

Assume (without loss of generality) that
∫ −t∗

−T σ2(τ)dτ ≥
∫ −t∗

−T σ1(τ)dτ. To see that

for any −t′ > −t∗ we have σ1(−t′) = σ2(−t′) = 1, consider first how the pairwise-

monotonicity property works for Player 2. Let ε > 0 be such that ε <
∫ −t′

−t∗ σ1(τ)dτ, and let

−t ∈ [−T,−t∗ + ε) be such that σ2(−t) > 0 (exists from definition of −t∗). This implies

that σ2(−t′) = 1. This is true for arbitrary −t′ > −t∗, so σ2(−t) = 1 for all −t ∈ (−t∗, 0].

Now let −t ∈ (−t∗,−t∗ + ε) be such σ1(−t) > 0, and since
∫ −t′

−t σ2(τ)dτ > 0 the pairwise-

monotonicity property again implies σ1(−t′) = 1.

7We here use the sequential rationality property of the equilibrium; the last step would not have worked for
a Nash equilibrium concept.
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B.3.8 Proof of Corollary 19

Proof. We wish to modify the strategies to get a new pair of strategies that are essentially the

same as the old pair, and still constitute an equilibrium. Similar to the proof of Lemma 18,

let

σ′i (Ii (−t, τr
i ,Oi)) = Ej

[
σi
(
Ii
(
−t, τr

i ,O′i
))
| −t ∈ O′i

]
.

Note that the fact that Player i could have played any continuation strategy at time −t

without Player j knowing about it implies that she must be indifferent between playing σi

and σ′i . Furthermore, σj is a best-response to σ′i , because nothing was changed with respect

to Player j’s beliefs or expected continuation payoffs. For the rest of the proof we abbreviate

and write σ′i (−t) instead of σ′i
(
Ii
(
−t, τr

i ,Oi
))

.

Define

−t∗i ≡ inf
{
−t ∈ [−T, 0]

∣∣∣∣ ∀ − t′ ∈ (−t, 0] :
∫ −t′

−t
σ′i (τ)dτ > 0

}
.

That is, −t∗i is the earliest point from which Player i has a strictly positive probability of

exiting (it could be that −t∗i = 0). We know from Lemma 18 that there are only two possible

equilibrium structures:

1. −t∗2 ≤ −t∗1 , and both players exit starting from −t∗2 .

2. −t∗2 > −t∗1 , and both players exit starting from −t∗1 .

Without loss of generality, consider the first case, and define −t̂∗2 as

t̂∗2 = t∗1 +
∫ −t∗1

−t∗2
σ′2(τ)dτ.

We claim that the strategies in which the rational type of Player 1 exits from −t∗1 , and the

rational type of Player 2 from −t̂∗2 , constitute a SE. To see that, note that Player 1’s incentives

are essentially the same, but they might have “shifted,” because now the relation between

the exact time and the probability is different. However, for every posterior probability of

Player 2 being the rational type, the same probability that Player 2 is going to exit until time

−t∗1 remains the same, and so the fact that the previous pair of strategies was a SE implies
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that the new strategy is a best-response as well.

B.3.9 Proof of Corollary 20

Proof. The proof follows the same lines as the proof of Theorem 13, and we omit some of

the technical arguments and definitions.

Let {Tk}∞
k=1 be a sequence of horizons such that Tk → ∞ and let {σ̂k}∞

k=1 be a corre-

sponding sequence of equilibria. We let Pk denote the probability measure induced by

Nature’s moves (i.e., the lottery over types and the stochastic Poisson processes governing

players’ exit opportunities) and by equilibrium strategies σ̂k.

Following Corollary 19 we know that there is a sequence of equilibria in cutoff strategies,

denoted by {σ̄k}∞
k=1, such that the expected payoffs from σ̄k are the same as the expected

payoffs from σ̂k. Let σ̄k be defined by the cutoffs
(
−t̄k

1,−t̄k
2
)
.

If limk→∞ t̄k
2 = ∞,8 then Player 2’s payoffs must approach u2(D, R). If they are not, then

Player 2 can deviate to the strategy of never exiting, thus convincing Player 1 that Player 2

is the commitment type, and getting a payoff that approaches u2(D, R). This implies that

Player 1’s payoffs must approach u1(D, R), but then, as in the proof of Theorem 13, Player 1

can deviate to the strategy of exiting only after −t̄k
2 and get a payoff that is strictly greater

than u1(D, R) (for small enough selection of ξ̄2). We reach a contradiction, implying that

limk→∞ t̄k
2 < ∞. Because of the same deviation, it cannot be that limk→∞ t̄k

1 = ∞, and so we

get that the sequence {σ̂k}∞
k=1 exhibits substantial delay.

Moving back to the sequence {σ̄k}∞
k=1, it must be that the common cutoff time, which

we will denote by −t̂k, does not approach infinity either, and there is a positive probability

of reaching it. This means that the parameters induce substantial delay, and inefficiency

follows.

8For convenience, and without loss of generality, we will assume throughout the proof that all the sequences
we mention converge (in the broad sense).
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B.3.10 Proof of Corollary 21

Corollary 53. In a war of attrition model, assume Player 1 is stronger than Player 2; then her

preferred outcome is the unique limit of the equilibrium payoff set as the probability of Player 2

being the commitment type approaches zero. Formally, lim infξ2→0 φ̄woa(u1, u2; 0, ξ2; λ1, λ2) =

{u(U, L)}.

Proof. The existence proof is very similar to (an abbreviated version of) the proof of Theo-

rem 17. Following Corollary 19, we need only to show that there is no other pair of cutoff

strategies that forms a SE. We can rule out this possibility by showing that there are no

such equilibria with −t∗1 < −t∗2 for small enough ξ2 and for large enough T.9 The other

case, in which −t∗2 < −t∗1 , is already nailed down in the calculations appearing in the proof

for Theorem 17. To see that indeed there are no equilibria of the former type, suppose that

Player 1 starts exiting first. Then the rational Player 2 must be indifferent at −t∗2 , which

gives

u2(U, L) =
(

1− e−(λ1+λ2)t∗2
)
· λ2u2(U, L) + λ1u2(D, R)

λ1 + λ2
+ e−(λ1+λ2)t∗1 · u2(U, R)

or

e−t∗2 = λ1+λ2

√
λ1 (u2(D, R)− u2(U, L))

λ1u2(D, R) + λ2u2(U, L)− (λ1 + λ2)u2(U, R)
. (B.17)

We also know that Player 1 is indifferent at −t∗2 (because she is indifferent along the interval

(−t∗1 ,−t∗2)), that is,

u1(D, R) = (1− ξ2)

[ (
1− e−(λ1+λ2)t∗2

) λ2u1(U, L) + λ1u1(D, R)
λ1 + λ2

+

e−(λ1+λ2)t∗2 u1(U, R)

]
+ ξ2

[(
1− e−λ1t∗2

)
u1(D, R) + e−λ1t∗2 u1(U, R)

]
.

9Both t∗1 and t∗2 may be functions of ξ2 and T. We omit this dependence in our notation except where it is
crucial for understanding.
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If we define t2 ≡ limξ2→0 limT→∞ t∗2(ξ2, T), taking the last expression to the limit gives us

e−t2 = λ1+λ2

√
λ2 (u1(U, L)− u1(D, R))

λ1u1(D, R) + λ2u1(U, L)− (λ1 + λ2)u1(U, R)
. (B.18)

Turning back to the assumption that Player 1 is stronger than Player 2, (B.17) together with

the limit in (B.18) yield a contradiction, as needed when ξ2 tends to zero.
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Appendix C

Appendix to Chapter 3

C.1 Proofs

C.1.1 Proof of Lemma 22

1. This part is immediate from the definitions and is omitted.

2. Let �h be a substitutable preference that satisfies the law of aggregate demand,1 and

assume in contradiction that �q=q′

h does not satisfy the law of aggregate demand. Then

there are two sets of doctors D′ ⊆ D′′ such that |Cq=q′

h (D′)| > |Cq=q′

h (D′′)|, where

Cq=q′

h is the choice function related to the preference �q=q′

h .

Let E = Ch

(
Cq=q′

h (D′) ∪ Cq=q′

h (D′′)
)

. Then from the law of aggregate demand (applied

to �h) we have |E| ≥
∣∣∣Cq=q′

h (D′)
∣∣∣, which means E 6⊆ Cq=q′

h (D′′), and there exists

some d ∈ E \ Cq=q′

h (D′′). Since {d} ∪ Cq=q′

h (D′′) ⊆ D′′ and |Cq=q′

h (D′′)| < q′, then

1The substitutability assumption is imperative. A counterexample when substitutability is not assumed is
the following preference relation:

�= {d1, d2, d3}, {d1}, {d1, d3}, {d2, d3}, {d3}

which satisfies the law of aggregate demand, but after imposing capacity of 2 the resulting preference does not
satisfy the law of aggregate demand.
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Ch

(
{d} ∪ Cq=q′

h (D′′)
)
= Cq=q′

h (D′′). Putting all together we get:

d ∈
(
{d} ∪ Cq=q′

h (D′′)
)
∩ Ch

(
Cq=q′

h (D′) ∪ Cq=q′

h (D′′)
)

, and

d /∈ Ch

(
{d} ∪ Cq=q′

h (D′′)
)

which contradicts the substitutability of �h.

3. Consider the following example. Let D = {d1, d2, d3, d4} and H = {h}. Hospital h’s

preferences over doctors are given by:

�h={d1, d2, d3, d4}, {d1, d2, d3}, {d1, d2, d4}, {d1, d3, d4},

{d2, d3, d4}, {d1, d2}, {d3, d4}, {d1, d3}, {d1, d4}, {d2, d3},

{d2, d4}, {d1}, {d2}, {d3}, {d4}

This preference is substitutable and satisfies the law of aggregate demand (h never

rejects any doctors). However, imposing a capacity 2 on �h gives us the following

substitutability violation:

{d2, d3, d4} ∩ Cq=2
h (D) = {d2} 6⊆ {d3, d4} = Cq=2

h ({d2, d3, d4})

C.1.2 Proof of Theorem 26

Let µ = ψH(P) and µ′ = ψD(P′). Throughout this proof “agent i is better off” means

µ′(i) �i µ(i), and similarly for “indifferent”, “weakly worse off”, and so on. Assume in

contradiction that there exists no S ⊆ D such that S 6= ∅ and every doctor in S is worse off,

and every hospital in {h | ∅ 6= µ′(h) \ µ(h) ⊆ S} is better off.

Construct a directed graph with vertices V = D ∪ H, and edges

E =
{
(d, h) | µ′(d) = h

}
∪ {(h, d) | µ(d) = h} .

We prove a series of claims that will enable us eventually to show that the number of

outgoing edges is strictly larger than the number of incoming edges (in the entire graph),

thus reaching a contradiction.
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Note that Claims 24.1 and 24.2 continue to hold, but Claim 24.3 relied on responsiveness

and does not hold here.

Claim 53.1. For every hospital h ∈ H \ {h0} that is not indifferent there is at least one doctor in

µ(h) who is better off.

Proof. If not then h (which is worse off by Claim 24.2) and the doctors in µ(h) block µ′. �

Claim 53.2. For every hospital h ∈ H, if there exists some d ∈ µ′(h) who is worse off, then

µ′(h) \ µ(h) = {d}.

Proof. If |µ′(h) \ µ(h)| > 1, then S = {d} provides a contradiction. �

Claim 53.3. For every hospital h ∈ H, the number of doctors in µ′(h) who are better off is less or

equal to the number of doctors in µ(h).

Proof. If h = h0 this is immediate from the assumption on q′. For other hospitals, denote

by D̃ the set of doctors in µ′(h) who are better off. From the substitutability of �h and

D̃ ⊆ µ′(h) it is immediate that Ch(D̃) = D̃, and from the stability of µ it is also true that

Ch(D̃ ∪ µ(h)) = µ(h). Then the law of aggregate demand implies that
∣∣D̃∣∣ ≤ |µ(h)|. �

Claim 53.4. For every agent i ∈ D ∪ H the number of incoming edges is less or equal to the number

of outgoing edges: deg−(i) ≤ deg+(i).

Proof. If the agent is a doctor, this is immediate from Claim 24.1. Suppose the agent is

h ∈ H. If deg−(h) = 0, the conclusion is immediate. If there exists a doctor d ∈ µ′(h) who

is worse off, then by Claim 53.2 |µ′(h) \ µ(h)| = 1, but we also know from Claim 53.1 that

|µ(h) \ µ′(h)| ≥ 1, and so we have deg−(h) = |µ′(h) ∩ µ(h)|+ 1 ≤ deg+(h). If there exists

one doctor d ∈ µ′(h) who is better off, then by Claim 53.3 the conclusion is correct. And

finally, if all the doctors in µ′(h) are indifferent, then deg−(h) ≤ deg+(h). �

Sum the indegrees and the outdegrees of all agents. From Claim 53.4 we know that

∑i∈D∪H deg−(i) ≤ ∑i∈D∪H deg+(i). Moreover, since by assumption deg−(h0) ≤ q′ <
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mh0(P) = deg+(h0), the inequality is in fact strict. This concludes the contradiction argu-

ment, proving that the required S exists.

The conclusion of the theorem follows from the hospital-optimality and the doctor-

optimality of µ and µ′ respectively in a way similar to the proof of Theorem 23. The

polarization of interests for the optimal/pessimal stable matchings under substitutable

preferences is proved by Roth (1984b, Theorem 3).

C.1.3 Proof of Theorem 29

Let µ = ψH(P−d0) and µ′ = ψD(P). Throughout this proof “agent i is better off” means

µ′(i) �i µ(i), and similarly for “indifferent”, “weakly worse off”, and so on. Assume in

contradiction that all hospitals in H are weakly worse off.

Construct a directed graph with vertices V = D∪H, and edges E = {(h, d) | µ(d) = h}∪

{(d, h) | µ′(d) = h}.

Claim 53.5. For every hospital h ∈ H, if there is at least one doctor who is better off in µ′(h) \ {d0},

then |µ(h)| = qh, and all doctors in µ(h) are weakly better off.

Proof. Let d′ ∈ µ′(h) \ {d0} be better off. If |µ(h)| < qh then h and d′ form a blocking pair

under µ, and therefore |µ(h)| = qh. Suppose d ∈ µ(h) is worse off. From the stability of µ

we have:

µ(h) �h µ(h) ∪ {d′} \ {d},

and from the stability of µ′ that:

µ′(h) �h µ′(h) ∪ {d} \ {d′},

which together contradict the responsiveness of �h. Hence no such d exists, and all doctors

in µ(h) are weakly better off. �

Claim 53.6. Let h′ = µ′(d0), then the number of doctors who are better off in µ(h′) is strictly larger

than the number of doctors who are better off in µ′(h′) \ {d0}.
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Proof. First, note that there must be at least one doctor in µ(h′) who is better off, or otherwise

h′ (which is worse off by our contradiction assumption) and µ(h′) form a blocking coalition

under µ′. If all doctors in µ′(h′) \ {d0} are weakly worse off then we are done, and if some

are better off, then use Claim 53.5. �

Let Db ⊆ D \ {d0} denote the set of doctors who are better off (d0 not included), deg−b (h)

denote the number of incoming edges from doctors in Db to hospital h, and deg+
b (h) denote

the number of outgoing edges from hospital h to doctors in Db. We know that:

∀h ∈ H : deg−b (h) ≤ deg+
b (h) (Claim 53.5)

deg−b
(
µ′(d0)

)
< deg+

b
(
µ′(d0)

)
(Claim 53.6)

∀d ∈ Db : deg−(d) ≤ deg+(d) (individual rationality)

We sum over all hospitals to get:

∑
h∈H

deg−b (h) < ∑
h∈H

deg+
b (h) = ∑

d∈Db

deg−(d) ≤ ∑
d∈Db

deg+(d) ≤ ∑
h∈H

deg−b (h)

We reached a contradiction and therefore there exists some non-empty set S ⊆ H of hospitals

that are better off.

The conclusion of the theorem follows from the hospital-optimality and the doctor-

optimality of µ and µ′ respectively, in a way similar to the proof of Theorem 23.

C.1.4 Proof of Theorem 30

Let µ = ψH(P−d0) and µ′ = ψD(P). Throughout this proof “agent i is better off” means

µ′(i) �i µ(i), and similarly for “indifferent”, “weakly worse off”, and so on. Assume in

contradiction that there exists no S ⊆ H and T ⊆ {d | µ(d) ∈ S} such that S 6= ∅, T 6= ∅,

every hospital in S is better off and every doctor in T is worse off.

Construct a directed graph with vertices V = D∪H, and edges E = {(h, d) | µ(d) = h}∪

{(d, h) | µ′(d) = h}. As in the proof of Theorem 29, let Db ⊆ D \ {d0} denote the set of

doctors who are better off (d0 not included), deg−b (h) denote the number of incoming edges
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from doctors in Db to hospital h, and deg+
b (h) denote the number of outgoing edges from

hospital h to doctors in Db.

Claim 53.7. There exists h0 ∈ H such that deg−b (h0) < deg+
b (h0).

Proof. Let h0 be some hospital that is better off (by Theorem 29). If there exists a doctor d ∈

µ(h0) who is worse off, then S = {h0} and T = {d} provide a contradiction. It must be then

that all doctors in µ(h0) are weakly better off. Since by assumption |µ(h0)| = mh0(P) = qh0 ,

it follows that deg−b (h0) ≤ deg+
b (h0). If d0 ∈ µ′(h0) then we are done. If d0 /∈ µ′(h0), and

all doctors in µ′(h0) are weakly better off, then we get a contradiction to the stability of µ

through the blocking coalition composed of h0 and µ′(h0). �

Putting everything together we know that:

∀h ∈ H : deg−b (h) ≤ deg+
b (h) (Claim 53.5)

∃h0 ∈ H : deg−b (h0) < deg+
b (h0) (Claim 53.7)

∀d ∈ Db : deg−(d) ≤ deg+(d) (individual rationality)

We sum over all hospitals to get:

∑
h∈H

deg−b (h) < ∑
h∈H

deg+
b (h) = ∑

d∈Db

deg−(d) ≤ ∑
d∈Db

deg+(d) ≤ ∑
h∈H

deg−b (h)

We reached a contradiction and therefore the required S and T do exist.

The conclusion of the theorem follows from the hospital-optimality and the doctor-

optimality of µ and µ′ respectively, in a way similar to the proof of Theorem 23.

C.1.5 Proof of Theorem 32

The method of proof is very similar to the one used in proving Theorem 23. We repeat the

construction done there and recall that µ = ψH(P) and µ′ = ψD(P′) (the existence of µ′ is

guaranteed from Observation 31). Note that Claims 24.1 and 24.2 continue to hold.

Claim 53.8. For every hospital h ∈ H, if there is at least one doctor who is better off in µ′(h), then

|µ(h)| = qh, and all doctors in µ(h) are weakly better off.
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Proof. For every h 6= h0 the proof is the same as the proof of Claim 24.3. For h0, let d′ ∈ µ′(h0)

be better off. If |µ(h0)| < qh0 then d′ and h0 form a blocking pair for µ, hence |µ(h0)| = qh0 .

Suppose d ∈ µ(h0) is worse off. From the stability of µ we have:

µ(h0) �h0 µ(h0) ∪ {d′} \ {d},

and from stability of µ′ we have:

µ′(h0) �
tr(d̄)
h0

µ′(h0) ∪ {d} \ {d′},

and since �tr(d̄)
h0

is a truncation, these two statements together contradict the responsiveness

of �h0 . Hence no such d exists and all doctors in µ(h0) are weakly better off. �

Claim 53.9. All doctors inW ∩ D are weakly worse off.

Proof. Let Db = {d ∈ D | d is better off}. Let deg−b (h) denote the number of incoming edges

from doctors in Db to hospital h, and deg+
b (h) denote the number of outgoing edges from

hospital h to doctors in Db.

UnlessW ∩ Db = ∅ we can find d′ ∈ argmind∈W∩Db
δ(h0, d), where δ(x, y) denotes the

distance between nodes x and y on the graph (V , E). We denote h′ = µ(d′). We claim that:

deg−b (h
′) < deg+

b (h
′). (C.1)

Note that d′ ∈ µ(h′) and so deg+
b (h

′) ≥ 1. If deg−b (h
′) = 0, then we are done. Let

ni = |µ(h′) ∩ µ′(h′)| denote the number of doctors who are indifferent in µ(h′). If 1 ≤

deg−b (h
′) + ni < qh′ then we can use Claim 53.8 to prove the strict inequality. Finally, if

1 ≤ deg−b (h
′) + ni = qh′ we need to distinguish between two cases. If h′ = h0 then we

know all doctors in µ′(h0) are weakly better off. However, there must be at least one doctor

d′′ ∈ µ′(h0) \ µ(h0) such that d′′ �h0 d∗ ∈ µ(h0) (by the assumption on the truncation), and

so we get a contradiction to the stability of µ. If h′ 6= h0, then there must be d′′ ∈ µ′(h′)∩Db

such that δ(h0, d′′) < δ(h0, d′), contradicting the way d′ was chosen.
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Putting everything together we know that:

∀h ∈ H : deg−b (h) ≤ deg+
b (h) (Claim 53.8)

deg−b (h
′) < deg+

b (h
′) (Equation C.1)

∀d ∈ Db : deg−(d) ≤ deg+(d) (individual rationality)

We sum over all hospitals in H to get:

∑
h∈H

deg−b (h) < ∑
h∈H

deg+
b (h) = ∑

d∈Db

deg−(d) ≤ ∑
d∈Db

deg+(d) ≤ ∑
h∈H

deg−b (h)

Which is a contradiction, proving thatW ∩ Db must be empty. �

Pick some d ∈ µ(h0) \ µ′(h0), and let h = µ′(d) (exists by Claim 24.1). We get that

hospital h (which is worse off by Claim 24.2) and the doctors in µ(h) (who are weakly worse

off by Claim 53.9) form a blocking coalition under µ′. This concludes the contradiction

argument, proving that the required S exists.

The conclusion of the theorem follows from the hospital-optimality and the doctor-

optimality of µ and µ′ respectively, in a way similar to the proof of Theorem 23.
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