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ABSTRACT

Agricultural production is vulnerable to climate change. However, this vulnerability
can be reduced by adapting food crops to a hotter climate. Many studies have ignored
adaptation when quantifying the effect of climate change on crop yield, which has likely
overestimated yield losses. Therefore, it is necessary to quantify agriculture’s adaptive
potential to climate change. Such work is challenging because there are no historical
analogues to current or future warming. In place of such a precedent this work explores
the varying sensitivity of maize yield to elevated temperatures through a suite of multiple
linear regression models. These models use high resolution yield and crop development
data available since 1981 in the United States to account for overlooked features of maize
physiology and agricultural management. The results of these models substantially alter
estimates of how crops will respond to a warming environment.

The studies here illustrate how finer scale details can be incorporated into broader
regional models. Temperature sensitivity is found to vary with local climatology indi-
cating that maize cultivars are adapted to their particular environment. Incorporating
this historical adaptation into estimates of yield loss substantially reduces the effect
of a modest warming. A physiological basis for spatial adaptation is apparent when
maize development data are incorporated into the model — cooler regions accelerate
through sensitive development phases faster than hotter areas. The development data

also suggest that crop development has been adapted to the seasonal cycle and that a

il



non-trivial portion of the temporal trend in maize yield has resulted from management
adjustments. Finally, the importance of spatio-temporal variation in temperature sensi-
tivity is highlighted through case studies of recent years with record-setting yield losses.
Spatial and/or temporal variation in temperature sensitivity is necessary to reduce bias
in estimates of yield loss in these years.

This work builds from previous conclusions regarding the negative effects of hot tem-
peratures, and suggests that while hotter temperatures will harm maize yields there are
steps that farmers might take to manage and reduce these losses. Taken together these
results quantify how extant adaptation may help to ameliorate yield losses in a hotter

future.
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Corn (maize) is arguably man’s first, and perhaps

his greatest, feat of genetic engineering

Nina V. Fedoroff, Science, 2003

Introduction

Over the ten-thousand years of agricultural history, cultivated land — combining both
agriculture and pasture — has become the dominant cover of Earth’s land surface, claim-
ing over 30% of total land area'?*. The growth of this managed land is one of the greatest
signals of humanity’s control over the natural world, and it has been accomplished with
a surprisingly small selection of plants. The spread of agricultural land under a hand-

ful of crops is due, in part, to the adaptability of agriculturally useful plants to varied



environments. In fact, many cultivars have become significantly more productive upon
moving into novel environments from those within which they evolved*’. The historical
plasticity of agricultural plants stands in sharp contrast to much of the discussion sur-
rounding the effect that anthropogenic global warming will have on crops®>'4Y. Given
the critical role that adaptation has played in the history of agriculture it must play an
important role in predicting its future.

The lack of attention to adaptation in widely cited empirical work 526,140

is surpris-
ing. Every assessment of the Intergovernmental Panel on Climate Change regarding the
impacts of climate change on agriculture has included an analysis of adaptation. The
work presented here uses a similar strategy as these recent empirical studies, employ-
ing a linear regression framework to analyze the relationship between temperature and
crop yield. The break with previous work is the incorporation of increasingly detailed
variations in crop yield sensitivity across different spatial regions and temporally over
the course of the growing season. By incorporating finer scale details of the relation-
ships amongst crop production, weather, and climate, clear spatial patterns of local
adaptation emerge. The program of this research has been to incorporate details from
finer scale agronomic research while maintaining a regional area of study that covers a
broader range of climate than agronomists generally explore. The result has been a mid-

dle path, which uses the modeling techniques of global and regional scale crop analyses,

but which also incorporates critical details from agronomic studies. The importance

of considering temperature sensitivity over time'*’ and space'% has been known for
some time, but here we are able to bring these detailed analyses up to scales that have
hitherto been unexplored. By doing so this research bridges some of the divide between
critical adaptation research occuring at the field scale and the broad analyses which

have highlighted the dangers of global warming to agriculture.



Before moving into the details of adaptation, it is necessary to explain some of the
other relevant features of agriculture’s global impact, how modern agriculture developed,
and the non-climatic challenges facing twenty-first-century agricultural production. Be-
yond the massive areas of land dedicated to agricultural production mentioned above
there are two other global perturbations worthy of note: the redistribution of fresh wa-
ter towards agricultural land and massive additions to the global nitrogen cycle. In the
modern world, water use is overwhelmingly dominated by agriculture, accounting for
70% of global water withdrawal'*>. This reshaping of global hydrology may not match
the scale with which humans have reshaped the biomes of the planet, but the produc-
tivity of many agricultural regions is maintained through the drastic redistribution of
water. Irrigation has a profound effect on productivity, and as we shall see in chapter
1, also offers some reduction in crop vulnerability to extremely hot condtions. Perhaps
less perceptible but more profound than the redistribution of water is the degree to
which agriculture has altered the biogeochemical cycling of nitrogen. The early 20"
century development of the Haber-Bosch process through which atmospheric nitrogen
is transformed into urea and then other nitrogenous compounds for application to soil
and consumption by plants has had a profound impact on both crop productivity and
the unmanaged environment '*®. Now, human production and application of nitrogen
is equivalent to the entire unmanaged portion of the terrestrial biosphere?!. This ap-
plication of nitrogen, accompanied by the physiological and agronomic modifications of
agriculture have enabled the explosive growth in crop yields over the course of the 20"
century, in the so called “green revolution”*’.

Despite continuing improvements in productivity brought about through the diver-
sion of land, water and chemical compounds into agriculture, as well as substantial

managerial innovations, the rate of yield increase has been largely linear since improve-



ment began. This is a challenge because a linear increase in yields produces a relatively
smaller fractional increase relative to the local mean?>?%. The slowing relative increase
in yields, even in the absence of the biophysical challenge that twenty-first-century agri-
culture faces from global warming, will strain global production in the face of substantial
social forces which will demand greater productivity. Historically, population growth
and agricultural production are tightly linked, though the causation between produc-
tion and population has been debated '”. The most recent United Nations projections %
suggest that even in a moderate population growth scenario there will be nearly 11 bil-
lion people on the planet by the end of the century, though the uncertainty around the
value is a topic of open debate®®. However, the generally accepted doubling required of
global food production by mid-century is not primarily driven by population, but the
economic demands of an increasingly affluent population'®®. Meeting these demands is
a challenge that global warming will only exacerbate.

Despite these challenges, recent work has indicated the potential for agriculture to in-
crease its productivity under current technological constraints while also potentially re-
ducing the environmental impact of agriculture through optimization of nutrient use'.
The challenge of feeding an increasingly large and affluent population even in the ab-
sence of climate change uncerscores the urgency of developing adequate methods of
inferring how agriculture may adapt to an increasingly hot environment.

A strategy to adapt crops to a hotter world must not be seen as a substitute for
continuing to work towards mitigating greenhouse gas emissions to contain the total
amount of warming the planet ultimately experiences. However, recent estimates of
global mean temperature all converge on warmer conditions regardless of the emissions

trajectory, at least into mid-century”®. Furthermore, even if we are able to curtail

emissions and restrict warming to 2°C, we will be living in warmer conditions for quite



some time?®. That we are locked into a warmer world and that it will continue to be so
beyond the foreseeable future underscores the critical importance of adapting agriculture
to this warmer world. We must be able to thrive in hotter conditions because at this
point we have no choice, and to do so we must develop methods by which we can
understand crop adaptation.

Much agriculture and climate research has focused on the three crops that account for
the majority of human caloric consumption: wheat, rice, and maize. It is impressive that
of the 300,000 estimated species of plants on the planet these three have received such
particular attention and so much land, though perhaps this is ultimately unsurprising as
each crop has proven incredibly productive. However, the developments that have led to
dramatic yield increases over the twentieth century vary significantly between these key
species. Maize yield has increased by substantially increasing its planting density, with
more plants able to share the same space — in other words, maize has become a better
neighbor. In the United States the density of maize plant populations has increased by
nearly 1000 plants per hectare every year since the 1930s*!: that’s nearly a tripling in
population density in the most highly cultivated areas. Wheat has seen a substantial
rise in its harvest index, the fraction of the plant’s total biomass dedicated to grain%°.
While the duration for a rice crop to reach maturity has been shortened, which has
allowed many regions to double and some even triple-crop within a single year®’!3%, Of
note is that these three yield increasing strategies occupy such different spaces: maize
has been optimized over space, rice over time, and wheat around the individual plant.
Many of the optimization strategies have been combined to some degree. For example,
rice has begun to receive more attention to the spatial arrangement of crop fields, a
purely managerial adjustment, which has substantially increased yields>°.

The primacy of these three crops in global caloric consumption suggests that they



deserve particular attention, but each crop has its own unique strategies which have
allowed it to thrive. The level of detail required in assessing adaptability to a novel
environment requires limiting the scope of the investigation. This was noted in the first
IPCC report: “Because of the very wide array of potential adjustments, which will vary
according to type of climate change, type of farming, and many other factors, it is not
profitable (even if sufficient information on likely changes of climate were available) to
generalise at length about them. More specific discussion is needed at the regional case
study level..” 119

Here, we will focus on maize, because of the wide range of environments for which
high quality data are available. The adaptability of maize has its roots in the plant’s
earliest domestication, though its origin is still a topic of some contention”'. The
contours of the argument further highlight the longstanding relationship of adaptation
between humankind and cultivated plants. One of the most likely candidates for the
primogenitor of today’s Zea Mays is teosinte. The small proto-cobs of teosinte bear
almost no resemblance to the massive grain bearing corn cobs of modern American field
corn, and there is no clear evolutionary pathway that leads from one to the other. So
it has been proposed that this transformation is one that was driven almost entirely by
human hands”. There is something fitting in a human origin of modern maize because
the plant has since proved so amenable to continued development.

In terms of productivity the development of hybrid varieties of maize, in the early
twentieth century, sparked a tremendous increase in yield that is ongoing to this day.
This classic feat of breeding involves crossing distinct genetically pure lines to produce
single cross hybrids or breeding together those single cross hybrids to produce double
cross hybrids. The crossing of genetically pure lines unlocked the potential of combining

optimal traits, so called hybrid vigor, and when coupled with improvements in fertil-



ization, and a wide range of management adjustments, the average yield of maize has
increased by nearly seven-fold since the United States began recordkeeping after the
Civil War, fig. 1. However, the optimism that this increase in production would seem
to support must be countered by the drag that climate change may exert on these yield
trends and the increasingly small fractional increase in yields from the generally linear
yield trend, mentioned above?”?%. Despite this concern, the historical adaptability of
maize provides some hope that there will continue to be room for yield improvement
even in the face of a changing climate.

The plasticity of maize is further evident in the range of condtions over which it
is grown. Orgininally domesticated in southern Mexico, it is now grown from greater
than 45°N down to 35°S, the most widespread cultivation of any crop in the world.
This translation into novel habitats comes with a host of challenges and benefits. For
example, an originally tropical crop like maize had to be adapted to the longer days
of mid-latitude summers, but after the plant was adjusted to the novel environment

it produced greater yields in mid-latitudes than in its native environment®.

Given
the degree to which maize has thrived outside of its region of original domestication,
there is a strong precedent for the crop to flourish in novel conditions. The widespread
cultivation of maize also suggests that there are extant cultivation techniques and/or
varieties already being used in warmer environments that will provide insight into how

currently highly productive but cooler environments may adjust their production to

continue to thrive in a warmer world.

*A note on units. Agricultural productivity is generally expressed as a yield, mass per unit
area, which in the United States Department of Agriculture/National Agriculture Statistics
Service is presented as bushels per acre. The first chapter will present results in these units,
and subsequent chapters, for easier international comparison will be converted to metric tons
per hectare, under the assumption that a bushel of US maize is equivalent to 25.4 kilograms.
This makes a straightforward conversion from bushels per acre to metric tonnes per hectare by
multiplication of 0.0628 (t/ha)/(bushels/acre)
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Figure 1: Average United States Maize Yield. Yields have steadily increased since the
widespread adoption of hybrid varieties in the 1930s. Despite isolated events of severe yield drops,
the trend has been towards consistent increase, resulting in a near septupling of yields over the
course of this record. The left axis reports yields in standard US units of bushels per acre while the
right axis is in international units of metric tons per hectare. Data are from the USDA/NASS 23,

The United States is the largest producer of maize in the world. Accounting, in 2013,
for about a third of the world’s total supply '%3. It is also the most widely grown crop in
the United States, occupying nearly 30% of US farmland. As a result of its widespread
cultivation maize is grown in a wide range of climates within the United States, all of
which may be assumed to operate at near their optimal production capacity. As such,
the US is an ideal region to investigate how the temperature sensitivity of maize varies

across different environments. This is further supported by the wide range of publically

available data from the United States Department of Agriculture / National Agriculture



Statistics Service (USDA/NASS), which provides relatively high spatial resolution data
throughout much of the 20" century, with detailed management data beginning in the
1980s. It is such detailed data on both productivity and management that enable the
studies presented here, which primarily detail how maize has been locally adapted to its
environment through both cultivar selection and adjustments in the cropping calendar.

The available data have substantially shaped the structure of this project, which is
briefly outlined below. The first chapter is a study of how maize yield sensitivity to
temperature varies across space. Prior work has generally taken crop sensitivity to
environmental variation to be spatially invariant, but this stands at odds with the local
adaptation that has been a hallmark of cultivar development. This work is repeated,
nearly verbatim, from Butler and Huybers (2013)'®. The primary difference is that
supplementary material has been incorporated directly into the body of the work, with
references modified to match this presentation. The second chapter adds temporal
variability to crop sensitivity, by incorporating detailed phenological data according to
different developmental phases of the maize crop. This work is repeated from Butler
and Huybers (2015)2?", though again has been modified to incorporate the supplemental
material into the body of the text. The phenological data provide a more physiologically
based hypothesis for the spatial variation in sensitivity observed in chapter 1. The
third chapter continues the analysis of developmental sensitivity by further exploring
how alterations in planting times and cultivar types have altered the climate to which
the crop is exposed, and indicates that, for the most part farmers have altered their
calendars to significantly improve their yields. The fourth and final chapter is a set
of detailed case studies on the hottest and lowest yielding years in the recent record.
Disturbingly, the empirical models used produce biased estimates across the hottest

counties within these years. However, this bias may be eliminated when more spatially



and temporally detailed development data are incorporated into the analysis. Taken
together these results highlight how details matter when studying how agriculture has
been and will continue to be affected by a changing climate.

Maize, despite what some may say, is not a homogeneous crop, and the effects of
temperature on its yield vary substantially depending on when and where both damag-
ing and beneficial events occur. The details presented here indicate that more nuance
is called for when analyzing how crops will be affected by climate change, and provide
further insight into strategies that may reduce the damages that an increaingly warm
environment will inflict on a static production system. Fortunately, the historical ev-
idence analyzed here suggests that farmers have steadily adjusted their cultivars and
management strategies to their local environment, and there is every reason to believe
this will continue into a warmer future. My hope is that by clearly illustrating the
adaptations that have already been taken to optimize maize production in the current
climate, the path will be smoother towards a highly productive maize agriculture in a

warmer future.
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Adaptation of US Maize to temperature

variations

1.1 ABSTRACT

140,85

High temperatures are associated with reduced crop yields , and predictions for

future warming”® have raised concerns regarding future productivity and food secu-

11



139,82,43,8,81

rity . However, the extent to which adaptation can mitigate such heat-related

losses remains unclear 30:164,99,45,141

. Here we empirically demonstrate how maize is lo-
cally adapted to hot temperatures across U.S. counties. Using this spatial adaptation as
a surrogate for future adaptation, we find that losses to average U.S. maize yields from
a two degree Celsius warming would be reduced from 14% to only 6% and that loss in
net production is wholly averted. This result does not account for possible changes in
temperature variability or water resources, nor does it account for all possible forms of
adaptation 1231113714644 "1yt it does show that adaptation is of first order importance
for predicting future changes in yield. Further research should be undertaken regarding
the ability to adapt to a changing climate, including analysis of other crops and re-

gions, the application of more sophisticated models of crop development, and field trials

employing artificially increased temperature.

1.2 INTRODUCTION

Global maize yields are forecast to decline in response to increasing temperature, partic-
ularly as the upper range of growing season temperatures become hotter 82:8:43139,131,140,85
The sensitivity of crop yields to increased temperature is often estimated through analy-
sis of variability in annual yield and growing season temperature '2%:135:140:85 byt there
is a potentially important distinction between year-to-year anomalies and changes in
climate in that the latter can be more fully adapted to. For instance, U.S. corn hy-
brids have a product half-life of about 4 years®®, suggesting sufficiently rapid turnover
to adapt to decadal changes in climate. To explore adaptability of maize production

to long-term differences in climate, we analyze the sensitivity of extant crops growing

in a range of different climate conditions and use this spatial variation to develop a
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functional form for future adaptation.

We explore yields within the U.S. because relatively high quality data and a highly
adapted and managed agricultural demographic can be assumed. Yield data are avail-
able from over 1600 counties between 1981-2008 from the United States Department
of Agriculture/National Agriculture Statistics Service'?? in the Eastern U.S., and daily

101 for

temperature is estimated for each county using a network of 534 weather stations
which daily minimum and maximum surface air temperature is available.

The influence of temperature upon yield is parameterized using Growing Degree Days
(GDDs) and Killing Degree Days (KDDs). GDDs are a commonly used measure for the
cumulative warmth a crop has experienced over the growing season !40:8%:166:37 here de-
fined as the sum of all daily average temperatures over the growing season in excess
of 8°C. The threshold is in accord with previous studies'?*37, but we use a novel ap-
proach to define the growing season using average planting and harvest dates reported
for each state on each year'??, with the average weighted according to the amount of
planted or harvested crop. Daily temperature is computed by taking the average of the
maximum and minimum temperature at the nearest available weather station. KDDs
are defined similarly to GDDs, but summing maximum temperatures in excess of 29°C,
consistent with previous studies'4%!31:%5 Whereas GDDs are indicative of higher yields
(e.g., by enabling a longer period of grain development), KDDs decrease yield (e.g., by
accelerating the plant through grain development or directly damaging plant tissue or
enzymes '%4%). Note that although 29°C is a low threshold for the initiation of dam-
031

age°', stressed maize plants have been shown to experience higher temperatures than

the air measured above the crop canopy®’.
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1.3 MODEL DESCRIPTION

Time-series of GDD and KDD anomalies for each county are linearly combined along

with a constant and time-trend term to represent yield for each county,

Y = Bo+ it + f2GDD" + fsKDD' + e. (1.1)

A prime indicates that the sample mean is removed. The [ coefficients are fit so as to
maximize the variance explained in Y, subject to the condition that GDD contributions
cannot be negative (32 > 0) and KDD contributions cannot be positive (83 < 0). The
linear time term, ¢, accounts for technological and other steady changes over this time
period and € is the residual error. Uncertainty estimates are obtained for each of the
parameters using a bootstrapping method.

Fitting the four adjustable parameters in Eq. 1.1 to each county results in an average
squared cross-correlation between predictions and observations of R?=0.65 (fig. 1.1a).
For comparison, other recent empirical fits to maize data obtained an R? of 0.47 with
four adjustable parameters®” and 0.77 using about 20 adjustable parameters'‘’. An
F-test is then used to determine whether the full model of Eq. 1.1 performs significantly
better (P < 0.05) than one containing only the mean and time trend. Counties with
insignificant model fits are omitted, reducing our pool of counties from over 1600 to a
subset of 1013 counties showing a statistically significant relationship with temperature
variations (fig. 1.1b), though a similar result is obtained when using the full sample.
See the methods section for further description of the model and the last section for a
more detailed case study.

The sensitivity of yield to GDD has values of 0.15 (bushels/acre)/GDD in cool North-
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Figure 1.1: Model significance and squared cross correlation. (a) The squared cross-
correlation for all significant counties. Irrigated counties are outlined in black. (b) P-values from
an F-test comparing the full model to a reduced model including only an intercept and time trend
for all 1666 counties, with the colorbar truncated at p=0.05. Omitted counties with p-values
greater than 0.05 are in deep red and counties omitted for insufficient data are in gray. The fi-
nal pool of counties is 1013. States not reporting planting and harvest times are shown in white.
Note that a scatter plot of p-values and KDD sensitivity had no apparent structure.

western regions of the study domain and trends to values near zero in the hotter South-
eastern regions (Fig. 1.2a). Yield sensitivity to KDDs (Fig. 1.2b) is nearly orthogonal to
that of GDDs, trending from more negative than —0.5 (bushels/acre)/KDD in North-
eastern regions toward less negative than —0.2 (bushels/acre)/KDD in Southwestern
regions. Variations in the sensitivity to GDDs and KDDs is perhaps unsurprising, given
that maize originated in the tropics and has been adapted to grow in colder climates™’.

Our focus will be on KDDs regional variation in sensitivity and the consequences of
a warming climate. Field trials on cultivars planted in different regions of the U.S. have
demonstrated a pattern of heat tolerance'® consistent with our findings of lower sensi-

tivity in hotter climates (Fig. 1b). Cultivars adapted to hot climates produce more heat-

resistant proteins and control for moisture deficits through greater stomatal sensitivity,
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Figure 1.2: Sensitivity of maize yield to temperature variations. (a) Yield sensitivity to
Growing Degree Days. (b) Yield sensitivity to Killing Degree Days (shading) and the climatological
average of Killing Degree Days (contours). Counties with at least 10% of their crop area irrigated
are indicated by black borders.

osmotic adjustment, and membrane structures that confer drought resistance 10-164:45,
While there are other management options that could reduce sensitivity to tempera-
ture, such as developing fields to increase water retention, the most likely candidate
to explain the observed variation in KDD sensitivity is cultivar selection, and we seek
to capture this effect in the form of a simple function. Note that although another

140 reported lack of evidence for regional variations in yield sensitivity to high

study
temperatures, further analysis using that study’s approach gives results consistent with

the above reported findings.

1.4 (CAUSES OF SPATIALLY VARIABLE SENSITIVITIES ACROSS THE US

We interpret the varied spatial sensitivity to KDDs diagnosed across U.S counties as
indicative of adaptability. Indeed, there exists a strong relationship between the clima-

tology of KDDs and the sensitivity of yield to KDDs for both unirrigated (Fig. 1.3a) and
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Figure 1.3: The climatological average Killing Degree Days (KDDs) versus the sensitivity
of yield to KDDs for individual U.S. counties. (a) A logarithmic fit provides a functional re-
lationship between climatology and sensitivity (red line, Eq. 1.2). For reference, linear and inverse
fits are also included (gray lines) and would imply greater and lesser ability to adapt to warming,
respectively. Red dashes represent bootstrap 95% confidence intervals. For visual clarity, data
points with 95% confidence interval lengths greater than 0.5 (bushels/acre)/KDD are not shown
as they have little influence upon the weighted fit. (b) The fit to irrigated counties is substantially
weaker than for rainfed counties (linear (gray) R? = 0.12, logarithm (red) R? = 0.21, and in-
verse (gray) R? = 0.25) possibly because of the differing levels of irrigation between counties. For
consistency, we use the logarithm of mean KDD to model the adaptation of irrigated counties.

irrigated crops (Fig. 1.3b) that can be approximated using a logarithmic relationship,

B3 = a,+aln(KDD) +n. (1.2)

Eq. 1.2 is fit to the data by minimizing the sum of n?, where the sum is inversely
weighted according to the bootstrapped variance estimates associated with each sen-
sitivity, 83. This gives a base sensitivity of a, = —0.64 (bushels/acre)/KDD (with a
bootstrapped 95% confidence interval of -0.69 to -0.59) and adaptation factor of o = 0.08
(bushels/acre) /(KDD In(KDD)) for unirrigated crops (95% c.i., 0.07 to 0.09). For ir-
rigated crops the base sensitivity is much lower, o, = —0.38 (95% c.i., -0.47 to -0.28),

and adaptation is weaker, o = 0.04 (95% c.i., 0.02 to 0.06).
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Essentially, Eq. 1.2 states that hotter counties are less sensitive to yield losses from
heat but that differences in sensitivity asymptote to zero toward hotter climatologies.
This formulation has the advantage of indicating the greatest change in the most data
rich regions and minimal change in the hottest regions, thereby limiting inferences based
upon extrapolation. Furthermore, when we consider a 2°C warming scenario (Fig. 1.4),
only 18 of the 837 unirrigated counties included in this study exceed the sampled range
of the historical climatology, and even though those counties experience amongst the
largest changes in KDD, their inferred adaptive change in sensitivity averages only
0.03 (Bushels/Acre)/KDD whereas the domain average is 0.05 (Bushels/Acre)/KDD.
Exclusion of these 18 counties would have no influence on yield statistics at the reported
precision level. Eq. 1.2 represents a moderate case relative to the greater and lesser
adaptability respectively implied by linear and inverse relationships and provides a
similar fit to the data: R%2=0.44, compared to R?=0.23 for the linear and R?=0.47 for
the inverse forms. What adaptation function is most suitable remains something of an
open question, but any of these would serve to qualitatively illustrate our basic point
that plausible degrees of adaptation fundamentally change predictions of yield response

to moderate warming.

1.5 SPATIAL ADAPTATION

To explore the implications of the observed spatial adaptation to KDDs for the sensi-
tivity of yield to warming, we redefine 83 in Eq. 1.1 to follow the adaptation function

given by Eq. 1.2,

Y = By + Bit + foGDD’ + (ap + aln(KDD) + n)KDD' +e. (1.3)
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In Eq. 1.3, as climatological KDDs increase with greater warming, fig. 1.4b, it is assumed
that cultivar selection and management practices are adjusted in keeping with the extant
adaptation observed across the U.S. Yield is solved for each county and each year using
the 3, €, a, and 7 terms from Eqs. 1.1 and 1.2 such that, in the absence of any change

in temperature, the original yield data is recovered.

a) sy b) sy

110"y . 10"y,
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A GDD 2°C Warming A KDD 2°C Warming

Figure 1.4: Increase in Growing and Killing Degree Days from a 2°C warming. (a) Changes
in each counties Growing Degree Days correspond well with the growing season length of each
county. The majority of days during the growing season are well above the minimum threshold

for GDD accumulation so that changes in GDDs are essentially linear with changes in mean tem-
perature. (b) Changes in each county’s Killing Degree Days correspond with the local mean tem-
perature in each region. Cold counties are generally below the 29°C threshold and accumulate

few KDD with modest warming, while hot counties are already near or above the threshold and
accumulate more KDDs. This helps explains why hot counties incur greater losses from the the
warming, despite having a lower sensitivity. Irrigated counties are outlined in black.

To illustrate the differences between non-adapted (Eq. 1.1) and adapted (Eq. 1.3)
yield responses, it is useful to consider a specific warming scenario, here taken to be a
uniform 2°C warming, which is often considered the “safe” limit of warming'?”. Specif-
ically, we add 2°C to all temperature records, recalculate the GDD and KDD terms

from these warmer records but using the original sample means to get new anomaly
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terms, and calculate a new average yield for each county. Without adaptation, North-
western regions broadly gain from warming because the benefits from increased GDDs
outweigh the losses from KDDs, whereas some Southern regions sustain losses of more
than 50% because increased KDDs reduce yield and low sensitivity to GDDs provides
little compensatory gain (Fig. 1.5a). Also, warm regions will gain KDDs more rapidly
in response to uniform warming because they have more days that already exceed the
29° threshold. The mean yield decrease for a 2°C warming without adaptation is 14%.

This result is generally consistent with foregoing estimates, though comparisons are
limited by the fact that different spatial averages are considered. One study®? found a
17% decline in global average yields in response to a 2°C warming. Another study 4"
found a 15% decline in an area-weighted average of eastern U.S. yields. Our calculations
indicate only a 5% decrease in area-weighted yields, but the lower value is expected
because some of the hottest states in the southeastern U.S. are excluded from our study
on account of data regarding planting and harvest times not being available. Note
that all of these studies are essentially perturbation approaches to calculating yield
anomalies, and that the accuracy of these estimates becomes increasingly questionable
for larger changes in temperature.

When adaptation is included, the average yield response to a uniform 2°C warming is
reduced from a 14% loss to one of 6% (Fig. 1.5b,c) (95% c.i. -5 to -7%). Minnesota now
stands to increase yields by 11%; the yield losses from northern Ohio west to northern
Missouri are nearly eliminated; and North Carolina, Georgia, and east Texas reduce
losses from 49% without adaptation to 39% with. These latter regions are already well
above the optimal temperature for current U.S. maize production, and although the
indication is that adaptation can help, sizable losses are nonetheless incurred. Already,

many of the southern states are relatively unproductive compared to the Corn Belt,
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and one consequence of increased temperature could be migration of maize production
toward cooler latitudes. Another implication of low southern productivity is that area-
weighted yields (equivalent to fractional changes in total production) go from a 5%
decrease without adaptation to no change with adaptation because gains in the highly

productive Corn Belt compensate for losses in the less productive South.

1.6 DISCUSSION

The adaptation function that we have empirically estimated for a theoretical warming
is consistent both with extant regional adapatation and field trials of differing culti-
vars 30, but this analysis omits other extenuating factors that may stymie or facilitate
adaptation. For example, reducing sensitivity to heat may entail negative physiological

16 To further explore the issue of trade-offs, we extend

trade-offs that reduce yields
Eqg. 1.3 to include a reduction in the positive effects of GDDs with warming that mir-
rors the reduction in the negative effects of KDDs. A least-squares-linear fit indicates
maladaptation for GDDs that average an order of magnitude smaller than the positive
adaptation found for KDDs (Fig. 1.6). It follows that inclusion of GDD maladaptation
in our model leads to relatively small changes, and we now obtain an 8% decline in aver-
age yield in response to a 2° warming, as opposed to a 6% decline when considering the
basic KDD-only adaptation scenario. Inclusion of GDD maladaptation also broadens
the 95% confidence interval to 6-11% because of the uncertainty in the GDD adapta-
tion fit. This reduction in adaptability and increase in uncertainty does not change the
conclusion that adaptation offers the potential to substantially reduce damages from

a warming climate, but highlights how more work is needed to constrain the specific

magnitudes of losses. Furthermore, there are also potential benefits to warming that we
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Figure 1.5: Changes in yield from a 2°C warming. (a) Without adaptation warming causes
yield to decrease by 14% on average, though counties in the deep South lose more than 50% of
their yield, whereas those in the Northwest increase by as much as 30%. The colorbar saturates

at £40% in order to highlight variation across the middle range of counties. (b) When adaptation
is accounted for, warming is estimated to cause only a 6% average loss in yield. (c) The increase
in yield brought about by adaptation relative to the no-adaptation scenario. The colorbar satu-
rates at 10% to highlight variation across the majority of counties. Black borders indicate irrigated
counties.
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have not included in our model, such as greater flexibility in planting times®’, a longer

125 Finally, note that

growing season, and opportunities for cultivating new regions
most, if not all, of these forms of adaptation can only be implemeneted in a warmer
climate, explaining why farmers that we expect to benefit from adaptation have not yet

made such changes.
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Figure 1.6: Climatological GDDs and GDD sensitivity. (a) There is a weak relationship be-
tween GDD climatology and GDD sensitivity. As with KDD, this fit was performed separately for
irrigated counties. Counties with extremely low sensitivity to GDD (GDD sensitivity < 0.001)
were omitted from this fit (shown in grey) and the regression was weighted by the inverse of the
bootstrap variance estimate of the GDD sensitivity parameter. The net effect of reducing GDD
sensitivity as GDD climatology warms is a mean yield loss of 8% from a 2°C warming, as opposed
to a 6% loss when changes in GDD sensitivity are ignored. (b) Climatological GDDs (contours)
are weakly negatively correlated with unirrigated GDD sensitivity (shading, r=-0.3). The regions
with the shortest growing season tend to have the highest GDD sensitivity. In the North, where
the growing season is potentially too short for the crops to reach maturity, yields respond well to
seasons with above average GDD; whereas in the South, where GDDs are abundant, yield is largely
insensitive to fluctuations in GDD.

Changes in water availability are another important consideration. Counties that
irrigate more than 10% of their harvested area have an average sensitivity to KDDs
that is 0.08 (bushels/acre)/KDD smaller than neighboring counties without irrigation,

a difference that is highly significant (P < 0.01, using a one-sided t-test, see Fig. 1.2b)
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133,111 " Prize winning yields from the

and is in qualitative agreement with other findings
2010 and 2011 National Corn Yield Contest also point to the importance of irrigation.
For unirrigated crops, the median prize-winning yields increase from 216 bushels/acre
in the South, to 247 in the Center, and 266 in the North of the U.S. (regional groupings

follow that of a previous study'*").

For irrigated crops, however, median southern
yields are 260 bushels/acre, central yields are 267, and northern ones are 247. The
highest yields come from Texas with 370 bushels/acre, showing that states with hot
climatologies are capable of attaining high yields.

We experimented with including a representation of precipitation in the model, but it
negligibly influences model skill, even when only non-irrigated crops are examined. The
absence of significant improvement may reflect that variations in precipitation are less
important for determining maize yield than temperature®’ but likely also results from
a strong covariance between temperature and precipitation that makes inclusion of the
latter partially redundant. Precipitation is negatively correlated with maximum daily
temperatures everywhere in our study domain (Fig. 1.7), as may be expected from the
effects of clouds and evaporable soil moisture. This anti-correlation reaches values of
-0.8 in some Southern regions. The coincidence of high KDDs and reduced water avail-
ability underscores that the low sensitivity to KDDs found in Southern regions reflects
substantial adaptation. It also suggests that our empirically fit adaptation function
partially accounts for the expectation that warming will cause dry regions to become
drier%®, though further explicit examination of the influences of water availability upon
yield appears necessary.

Losses to U.S. maize yield from increased temperature is almost certainly overesti-

139,140

mated if adaptation is not accounted for , and here we have shown that adaptation

could decrease the average fractional losses in the Eastern U.S. by roughly a factor of

24



-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
Correlation Coefficient

Figure 1.7: Correlation between mean KDD and mean precipitation. The correlation is al-
most everywhere negative between mean KDD and mean precipitation. The strong negative corre-
lation in the south further supports that local adaptation accounts for the low sensitivity to KDD,
as opposed to compensating meteorological factors. In general, years with high KDD are accompa-
nied by low precipitation.

two and could negate losses with respect to total production, at least for a modest 2°C
warming. The prospect that adaptation could have such a significant influence upon
future yields provides impetus for further study. Trials growing crop varieties in dif-
ferent conditions of temperature and water availability, analysis of the sensitivity and
adaptability of other major food crops and other growing regions, and the application
of more complete biophysical models of crop interactions with environmental variations

would all be prudent undertakings for adequately predicting the ecological response of
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crops to a changing climate.

1.7 METHODS

The data included in this study are from states that report maize planting and harvest
times for at least eight years, limiting the pool to 19 states in the Eastern United
States. Temperature records are screened to include only those having fewer than eight
consecutive days of missing temperature values, with the remaining gaps infilled using
linear interpolation. Data from 78 counties are also omitted because yield or nearby
weather station records have less than eight years of usable data.

Reported confidence intervals account for uncertainties in fitting a particular model
to the observations, but do not account for uncertainties in model formulation itself.
Some indication of model uncertainty is provided by the three functional forms discussed
in regard to KDD sensitivity versus climatology (Fig. 1.3) and by the inclusion of GDD
maladaptation. A range of alternative data selections and model configurations were
also explored before those presented in the main text were selected for their simplicity
and descriptive skill, and here we further describe the implications of those choices.
Counties not significantly fit (P < 0.05) by Eq. 1.1 were omitted. Including all counties
gave similar losses from a 2°C warming of 11% without adaptation and 4% with, where
the slight reduction in sensitivity is consistent with Eq. 1.1 being less likely to obtain a
significant fit with counties that have low sensitivity to weather variations.

A range of KDD thresholds between 25° and 35°C were also experimented with for
each county, as well as thresholds based on the 90th percentile of temperatures in each
county, but these also gave little improvement in fit (Fig. 1.8). We found no clear spatial

pattern in optimal threshold values and, for consistency, selected the same threshold of
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140,131 " Calculating GDDs after capping daily maximum

29°C used in previous studies
temperatures at 29°C in order to exclude overlap with KDDs also had little overall

effect.

5400

5300

5200

5100

5000

4900

4800

Mean Sum of Squared Resdiduals

4700

4600

4500
25 30 35

Optimum Temperature

Figure 1.8: Goodness-of-fit for the temperature threshold above which killing degree days
are computed. The goodness-of-fit is measured as the sum of the squared residuals when fitting
Eq. 1.1 to the county-level yield data. The best fit is achieved with a temperature threshold of
30°C, but we use a threshold of 29°C throughout this study for consistency with previous work.
Use of a 30°C threshold reduces the estimated losses from a 2°C warming to 11% without adap-
tation and 4% with adaptation. Note that although the magnitudes differ according to the thresh-
old, the relative differences are comparable using either threshold, supporting our main conclusion
that adaptation has major implications for forecasting the effects of climate change upon crop
yield.

Inclusion of a freezing degree day term in Eq. 1.1 likewise gave negligible improvement
in the ability of the model to predict yield variations, presumably because of the very
few freezing days that occur during the growing season. Finally, inclusion of linear

and quadratic precipitation terms were experimented with but gave negligible increases
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in the model fit, as discussed in the main text, and led to many more counties being
rejected because of an insignificant fit as a result of the increased degrees of freedom.
Other studies used a logarithmic transformation of yield data, as opposed to magni-
tudes, in order to minimize influence from trends and regional differences in yield 4%,
Repeating our analysis using logarithmically transformed yields gave a similar rela-
tionship between climatological KDDs and the sensitivity to KDDs (compare Fig. 1.9
and Fig. 1.3) and somewhat lower yield losses of 11% without adaptation and 2% with

adaptation.
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Figure 1.9: Alternative analysis using the logarithm of yield. Other studies (i.e. refs'4%:)

often use log(yield) instead of magnitude. The basic relationship between climatological KDD
and log(yield) sensitivity is quite similar to that between climatological KDD and yield sensitivity
(Fig. 1.3). The y-axis has been truncated for clarity at -0.01, omitting the four most sensitive
values, all of which had very low mean KDDs, though the points were included in the fit.

The above modifications regarding data selection and model configuration that we

explored lead to qualitatively consistent results, providing confidence that adaptation
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has significant potential to mitigate yield losses from moderate warming. Nonetheless,
further research using alternative simple model formulations, more complete biophysical
models, and field trials to test these models are all needed to better understand the

effectiveness of and scope for adaptation.

1.8 CASE STUuDY: BUTLER COUNTY

It is useful to consider a specific case study as a means of illustrating the overall analysis
process, and here we focus on Butler County, Ohio, at 39.4°N and 84.5°W. Butler
County’s mean yields are 118 bushels/acre relative to the average of 108 bushels/acre
over all counties. Butler is one of the better modeled counties, with the model explaining
86% of the yield variability (in the 75" percentile of variance explained, fig. 1.10a), but
the results presented here are nonetheless generalizable to results from other counties.

An obvious relationship exists between peaks in KDD anomaly and troughs in annual
yield from Butler (Fig. 1.10b). Furthermore, Butler serves to illustrate how GDD and
KDD vary relatively independently. For example, the worst yields for Butler in this
study occurred in 1983 (52.3 bushels/acre) with a GDD anomaly of +3.6 degree-days
and a KDD anomaly of 4200 degree-days. In 1985, a year with one more GDD but a
KDD anomaly of -59.3 degree-days, the yields were over double those in 1983 (122.8
bushels/acre). This demonstrates the great sensitivity of yields in Butler to variations
in KDD, and a central question for determining Butler’s response to future warming is
whether such large losses could be mitigated if higher levels of KDDs become the norm.

In the case of no adaptation, our model predicts that a 2°C warming would lead to
a 19% reduction in yield from 118 to 96 bushels/acre (Fig. 1.10c) in Butler, whereas

with adaptation, mean yields decline by 11%. Losses with and with-out adaptation are

29



calculated by running the model with historical temperatures plus 2°C, giving a different
time-history of GDDs and KDDs (Fig. 1.10d). For example, in year 10 our model gives
a 3 bushels/acre greater loss without adaptation, relative to with adaptation, whereas
in years 3 and 27 there is a 21 bushels/acre greater loss. (Years are reported generically
under the warming scenario with year 1 corresponding to 1981 and year 28 corresponding
to 2008 in the historic record.) All statistics that we report in the main manuscript are
calculated by averaging across years for which historical data are available, which for
the future warming scenario implicitly assumes that the distribution of temperatures

around a given mean is unchanged.
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Figure 1.10: Case study for Butler, OH. (a) Butler, OH yields (black) and model fit (dashed).
(b) Yearly variation in GDD and KDD anomaly. (c) Estimated yield without adaptation (dashed)
for a 2°C warming and with adaptation (solid). Note that year 1 corresponds to 1981 and year 28
corresponds to 2008 from the historical record. (d)The comparable increase in GDD anomaly is
not enough to offset the effects of increased KDDs, even with a reduced KDD sensitivity. Note
that while anomalies increase by similar amounts, the fractional increase in KDD is substantially
larger. There are missing data for Butler County in years 1993, 1995, 1996, 1997, 1999, and 2000
because of gaps greater than one week in the maximum temperature data obtained from station
121030 at 39.4°N and 85.0°W.
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Variation in extreme temperature

sensitivity by region and growth phase

2.1 ABSTRACT

Maize yield is sensitive to high temperatures, and most large scale analyses have used a

single, fixed sensitivity to represent this vulnerability over the course of a growing season.
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Field scale studies, in contrast, highlight how temperature sensitivity varies over the
course of development. Here we couple United States Department of Agriculture yield
and development data from 1981-2012 with weather station data to resolve temperature
sensitivity according to both region and growth interval. On average, temperature
sensitivity peaks during silking and grain filling, but there are major regional variations.
In Northern states grain filling phases are shorter when temperatures are higher, whereas
Southern states show little yield sensitivity and have longer grain filling phases during
hotter seasons. This pattern of grain filling sensitivity and duration accords with the
whole-season temperature sensitivity in US maize identified in recent studies. Further
exploration of grain filling duration and its response to high temperatures may be useful

in determining the degree to which maize agriculture can be adapted to a hotter climate.

2.2 INTRODUCTION

Most large-scale empirical studies of the effects of extreme temperatures upon maize
yield have employed a single, fixed sensitivity 177:24:139,82,140,6518 = A more resolved analy-
sis is useful, however, because sensitivity varies substantially across development phases,
and accounting for these variations permits for better discernment of physiological con-
trols and quantification of the relationship between weather and yield.

Early field-scale work?®® demonstrated that the sensitivity of maize yield to tempera-
ture peaks at a value approximately three times above the average around 90 days after
planting, during silking. Since that time, many further field-scale studies have confirmed
that maize yield is particularly sensitive to elevated temperatures during silking as well
as grain filling'?®. Several large-scale empirical analyses have also analyzed sensitivity

during portions of maize development. For example, moderate sensitivity to high tem-
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peratures prior to silking, exceptional sensitivity during silking, and increased yields
with elevated temperatures after the silking period were demonstrated for sub-Saharan
maize yields® . Similarly, sensitivity to high temperatures during early reproductive
stages has been demonstrated for US Maize'1%>!16:10,

Complementary to temporal variation in sensitivity is to explore regional variations
in sensitivity. Trials on various cultivars show that those planted in the South produce
more heat shock proteins, lose less water, and have morphologies better adapted to hot
environments relative to those typically planted in the North 3", It has also been shown
that temperate cultivars accelerate development in response to high temperatures more

127,126

so than tropical varieties Consistent with these variations amongst cultivars,

maize has been found to be more sensitive to high temperatures in the US North than
South 1&142,

Also suggested is that the observed spatial variations in sensitivity may permit for in-
ference of adaptability to future increases in temperature '®, though the appropriateness
of such an inference depends on the basis for present spatial variations in sensitivity, and
whether these qualities could be advantageously imported to new regions given warmer

142,19,79

conditions . Here we focus on identifying physiologic adaptations to high tem-

peratures in rainfed maize that may underlie variations in spatial sensitivity.

2.3 METHODS

We first characterize spatial variation in temperature sensitivity using a model with
a single fixed sensitivity over the course of the entire growing season, similar to the

157,24,139,82,140,65,1

approach in many previous studies 8 and then introduce a technique

to incorporate developmental data into a regression model in order to explore how
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temperature sensitivity varies through the growing season.
As input to the regression model we use development data from the United States

123 and temperature

Department of Agriculture/National Agriculture Statistics Service
data from the United States Historical Climatology Network weather stations'’!. Devel-
opment data are available for 17 states within the Eastern United States, all extending
from 1981-2012 except for Georgia (1981-1999) and Texas (1985-2012). Virginia, Ten-
nessee, and North Dakota also have development data but are omitted because less than
15 years of data makes reliable parameter estimation difficult. Temperature data are
maximum daily temperature, denoted 7}, ¢, and minimum daily temperature, T},;p 4.
These daily temperature values are interpolated from a subset of 444 weather stations
using a Delaunay Triangulation'? to the center point associated with each county con-
tained within the 17 states having sufficient development data

Heavily irrigated counties are excluded from our analysis because irrigation signif-
icantly reduces temperature sensitivity'® and to ensure a more homogeneous sample.
Specifically, irrigation data are averaged across three available census years (1997, 2002,
2007) and counties whose average irrigation exceeds 10% of its total harvested area are
excluded. Colorado is removed entirely for having only a single unirrigated county with
a sufficiently long record of maize planting, bringing the total number of states analyzed
to 16.

We use growing degree days (GDD) as an estimate of the beneficial effects of tem-
perature. GDDs are typically used as a measure of the thermal time required for a
specific cultivar to develop, but in this aggregate analysis there are many maturity
classes within any given state on any given year, and yearly GDDs help determine
which of those cultivars are most successful. This approach is in keeping with previous

aggregate statistical studies®>3%'®. The daily heat unit, GDDg, is defined on each day,
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d, using the representation of':

GDD, = T in.d J; 1 az.d T (2.1)
where
Tmax,d it Tow < Tmax,d < Thighv
;laX,d =\ Tow if Tmax,d < Now: (2:2)
Thigh i Tmax,d = Thigh-
T;:u-n, g4 is defined with analogous bounds. Similarly, damaging heat units, killing degree

days (KDDs), are used to quantify temperatures that may reduce yields, for example,
through desiccation or accelerated development, and are defined as:

Tmax — Thigh, I Tmax > Thigh;

KDD, = (2.3)

0, if Tmax < Thigh-

In the above, T}, is set to 9°C and T},;4p, to 29°C, similar to typical values for GDDs L
A T;gn value of 29°C for damaging temperatures is consistent with previous statistical
studies of the influence of high temperature on yield?*!40:8%18.65 “though is notably
cooler than thresholds established for protein denaturing (~ 45°C)'°® or photosynthetic
inhibition (~ 38°C)?!. This discrepancy can be explained in that KDDs represent many
negative effects of high temperature, which begin to accrue at temperatures just above
the optimum. It is also noteworthy that discrepancies can exist between ambient air
temperature — for which data are widely available — and crop canopy temperature®”.
We also experimented with including freezing days, precipitation, and potential sunshine

hours in the model but these were ultimately rejected for adding little explanatory power

relative to the increased number of free parameters, particularly in that our focus is on
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variations in the sensitivity to temperature.
Summing GDDy; and KDD, across each year’s growing season and removing the
sample mean across all years, ¥, gives anomalies in accumulated temperature measures,

GDD;, and KDDj, with which we formulate a panel regression model for the yield,

Yy,c = /BO,C + 51,1'3/ + 52,1'GDD;/,C + ﬂ3,iKDD;7c + €y,c- (24)

Y, . represents the yield in county ¢ and year y expressed in metric tons per hectare
(t/ha). The fp. term is a county dependent intercept, whereas other  terms are
uniform across each state, ¢. The inclusion of a state-wide linear time trend sensitivity,
B1,i, accounts for technological improvement over the study period, 1981-2012. Overall
positive yield trends are a result of both cultivar and management improvement, with the
greatest increase generally attributed to greater stand densities, which have increased

99,1601 T addition, kernel weight

by approximately 1000 plants per hectare per year
has increased over the course of plant breeding and contributes to the higher yields of
modern varieties®®. Although the estimated Bi, B2, and B3 would not change if the
magnitude of GDD and KDD were used instead of anomalies, the value of 5y would
then not be interpretable as the mean county yield. This model is similar to that used
in other recent studies®®%?, though here it is employed to estimate spatial variation in
parameter estimates, as in'®.

Resolving temporal as well as spatial variations in yield sensitivity requires additional
analysis. First, we develop and employ a technique to combine state-level development
data with county-level yields and weather station temperatures. The United States

Department of Agriculture/National Agriculture Statistics Service development data

indicates when crops pass through six distinct developmental stages: planting, silking,
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doughing, dented, mature, and harvested. These stages are used to define four phases
of maize development: (1) planting to silking is collectively referred to as the vegetative
phase; (2) silking to doughing is the early grain filling phase, (3) doughing to mature
is the late grain filling phase; and (4) mature to harvested is the drydown phase. Note
that phase 3 encompasses passage through the dented developmental stage, making
the early and late grain filling phases of similar duration. Although yield is largely
biologically insensitive to most environmental stresses during phase 4, the model is
ultimately constrained by actual yields as reported, and omitting possible influences
such as sufficiently high temperature for crop drydown, which can influence harvesting,
could introduce biases in the parameters inferred for the other phases.

Developmental values are reported as percentages of total acreage having attained a
particular stage on a weekly basis. We linearly interpolate these data to daily values and,
if the data do not cover 0 or 100%, linearly extrapolate to these end values in the adjacent
weeks. Cumulative distributions of development stage are converted into instantaneous
daily fractions by subtracting the total percentile of acreage in the following stage of
development and dividing by a factor of 100, P, 4 = (Cs 4 — Csy1,4)/100. P, 4 represents
the fraction of the planted area in each state within each phase, p, on day, d (Fig. 2.1).
Note that crops across a state can be in several phases on any given day, and in many
states this is indeed the case during the middle of the growing season.

Incorporating this detailed temporal information on growing phases is important be-
cause of the variability in both the seasonal cycle of temperature and cropping calendars.
Planting has shifted about two weeks earlier across the US corn belt over the last three
decades™, and Southern maize is typically planted about a month earlier than in the
North. There is also substantial interannual variability in the timing and amplitude of

the seasonal cycle in temperature, as well as evidence for a general shift toward earlier
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Figure 2.1: The fraction of planted area in lowa in each of four development phases. Solid
lines show the mean developmental phase distributions across all reported years, dashed lines are
for the earliest planting date (March 26th, 2012), and dot-dashed lines are for the latest planting
date (April 21st, 2008), nearly a full month later. lowa is the largest producer of maize in the US,
with over a third of the state's area dedicated to maize cultivation.

seasons by a few days over the last century'°'.

The combined effects of variations in
the seasonal cycle and planting date permit for substantial changes in the temperatures
that a crop may experience during a given growth phase.

To incorporate development data into predictor variables, daily GDD is weighted by
the fraction of crop in a given phase, GDD, = )", P, 4GDD,, where the sum is over
the days comprising a given growth period as a function of state and year. KDD, is

calculated analogously. GDD,, and KDD,, are then used as predictors for county yield

in a multiple linear regression,
4
Yye = Boe+ Briv+ Y (B2ipGDDy ., + B3ipKDD ) + €y c. (2.5)

p=1

Here, as in Eqn. 2.4, the 8 terms are defined for each state, i, as dictated by the scale

at which the development data are reported, and values are estimated using ordinary
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least squares. As with Eqn. 2.4, primes on GDD and KDD indicate that the mean has
been removed to prevent interaction with the [y . term. These model results have a
mean coefficient of determination of 0.69, with generally better fits in the North than
the South and, of course, superior fits than the single season sensitivity (Fig. 2.2). We
note that it is also possible to select a different T}, for each growing phase 3% within
each state, but that such an approach would introduce a large number of adjustable

parameters that would be partially redundant with the sensitivity parameters.

a) b)
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Figure 2.2: Correlation between observed and predicted yields. (a) Squared cross-correlation
between developmentally-resolved model predictions and observations of yield, and (b) between
whole-season model prediction and yield. In all cases, the more resolved model gives a slightly
higher correlation, as follows from the greater degrees of freedom.

The use of specific crop phase dates for defining GDD and KDD is critical to the per-
formance of our model. The supplemental material contains a counterfactual example
where phase dates are fixed to their average times across years, whereupon the inferred
sensitivities are unphysical, and the explained variance is reduced. Also see!!?>!16:10

for further discussion regarding the importance of correctly resolving growth stages in

considering yield sensitivity.
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Generally, the sensitivity to GDDs are found to have a positive coefficient across
each phase and state, whereas KDDs have a negative coefficient across states (Fig. 2.3).
As each state contains various cultivars having different GDD maturity ratings, the
generally positive coefficient of GDD is interpreted as reflecting greater yields for longer
maturing varieties*®. That an increase in GDD may further benefit yield is also likely
related to the degree to which carbon uptake, chlorophyll production, and growth may
be inhibited at lower temperatures?? 37138 as well as the fact that GDDs and mean
temperature are strongly correlated. Specifically, the correlation between daily GDDs
and the daily average temperature calculated for each county included in our analysis
gives an average Pearson’s coefficient of r = 0.94. Also in keeping with the inferred sign
of the response, KDDs are expected to damage yield through desiccation, accelerated

development, and, at especially high temperatures, tissue and protein damage 731196,

(@) so'n (b) s0'n
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Figure 2.3: Yield sensitivity to growing and killing degree days. Phase sensitivity is indicated
by shading within the wheels corresponding to: (1) vegetative, (2) early grain filling, (3) late grain
filling, and (4) drydown. The whole season sensitivity is indicated by the background shading of
each state. (a) Growing degree day (GDD) sensitivity is largest in the northern states during early
and late grain filling. (b) Killing degree day (KDD) sensitivity is generally largest during early grain
filling, but late grain filling is of a comparable magnitude in the North.
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Uncertainties associated with 3; , sensitivities are calculated using bootstrap resam-
pling. Each county is resampled 1000 times using individual years as independent
replicates. In addition, we perform a more conservative block resampling in which all
counties within a given state and year are resampled together as a unit. This reduces
the effective degrees of freedom by a factor of nearly 100 and provides an upper estimate
for the uncertainty (Fig. 2.4), but in this case GDD and KDD sensitivity in many state
and stage combinations are difficult to distinguish, which runs counter to the the over-
all consistency observed between states and physiological expectation. County based

bootstrap estimates are, therefore, used for cited uncertainties.
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Figure 2.4: Confidence intervals calculated using state-level and county-level aggrega-
tion. (a) Yield sensitivity for GDDs (black) and KDDs (red) for each stage and whole-season val-
ues, where spacing along the x-axis is purely for visual purposes. Vertical bars indicate the 95%
confidence level, and are obtained through a bootstrapping procedure where data is resampled at
the county level according to year. This approach assumes that county-level data is independent.
(b) In order to account for spatial dependence, uncertainties are also estimated using a block-
bootstrap procedure where yields are resampled according to year at the state level. In this case,
there are fewer degrees of freedom permitted for estimation, leading to larger variance in the re-
sult. Actual uncertainties are expected to reside between these two end-member cases. Note that
in either case the early and late grain filling phases — which we focus on — have the most clearly
distinct KDD and GDD sensitivity estimates. GF indicates the grain filling stages.
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2.4 RESULTS

Each phase of development represents a unique period of the maize plant’s phenological
cycle and entails a different response to environmental conditions. The overall life cycle
is divided between vegetative and reproductive phases, with roughly half of each growing
season spent in each. During the vegetative phase a seedling expands its surface area
and the leaf area index of the plant is set, influencing the amount of radiation that can
be intercepted over the remainder of its lifecycle'6. Sensitivity to both KDDs and
GDDs are low relative to other stages (see Fig. 2.3 and Table 2.1), though Texas shows
pronounced sensitivity to KDDs at -0.017 [(t/ha)/(°C day)] (95% c.i. -0.019 to -0.016),
possibly because overall hotter temperatures make seedlings particularly vulnerable%.

The early grain filling phase, as defined here, begins with the emergence of silks from
the ends of the ears and begins the reproductive portion of the plants’ life cycle. As has

149,35

long been recognize , vields are highly susceptible to elevated temperatures during

06,116,138,85,61,83  Tndeed, we find that average sensitivity

silking and early grain filling
to KDDs across states during this phase is a factor of four greater than during the
vegetative phase at -0.025 [(t/ha)/(°C day)] (95% c.i. -0.024 to -0.026). Sensitivity
to high temperatures results from damage to silks and fewer kernels being fertilized or

4,22:32,29  This phase also accounts for about

other factors influencing kernel viability
20% of final kernel dry mass' and, therefore, entails responses similar to those found
during late grain filling, discussed below.

Late grain filling is the combination of the doughing and dented stages, and is when
the majority of photosynthate and carbon reserves are transferred into the growing ker-

nels. At this point, yield damages are generally a result of lower final kernel mass rather

than lower total kernel number. High temperatures are known to directly reduce kernel
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State Veg.[G]|[EGF[G]|LGF|G]|Dry.[G]|Veg.[K]|[EGF.[K]|LGF[K]|Dry.[K]|WS[G][WS[K]
Georgia 2.5 1.6 2.3 -1.3 | -64 -9.1 -9.6 2.7 1.6 | -7.8
Illinois 0.0 -1.5 3.6 8.7 1.0 -47 -2.2 -8.8 4.9 -14
Indiana -2.8 4.1 2.3 7.6 -10 -41 2.1 -10 4.6 -15
Towa 1.0 -10 13 4.2 -0.5 -14 -20 -18 6.5 | -13
Kansas -1.6 7.5 6.1 5.1 -5.7 -18 -13 12 2.8 | -9.6
Kentucky 1.8 9.5 3.8 5.6 -3.1 -34 1.0 -9.7 | 3.7 | -10
Michigan -4.2 6.7 9.5 1.6 -1.2 -35 -20 24 3.9 -13
Minnesota 1.0 34 15 4.7 -1.8 -18 -38 16 6.8 | -13
Missouri 24 11 6.0 5.7 2.6 -42 -5.7 -5.5 55 | -12
Nebraska -0.6 11 10 2.2 -4.6 -25 -3.5 -16 6.1 -11
North Carolina| -2.2 3.5 2.7 2.1 -13 -21 -11 -2.2 0 -12
Ohio -1.6 -3.0 3.8 6.1 -7.3 -26 -20 34 3.6 | -15
Pennsylvania 2.4 9.4 1.0 8.9 -9.9 -31 -20 17 5.3 -18
South Dakota | 3.4 -0.6 5.5 8.3 -8.1 -11 -19 7.3 57 | -11
Texas 3.2 -2.6 -6.0 -0.9 -17 0.5 5.7 -6.6 | -3.1 | -4.6
Wisconsin -2.0 5.0 9.4 5.0 -1.7 -27 -49 57 58 | -17

Table 2.1: Yield sensitivity to growing degree days [G] and killing degree days [K] broken down by
growth phase: Veg. for Vegetative, EGF for Early Grain Filling, LGF for Late Grain Filling, Dry. for
Drydown, and over the whole growing season [WS]. Units are (kg/ha)/(°C day).

TLIAT - consistent with the high sensitivity we find. In addition, high temperatures

mass
can lead to acceleration through the growth phase, reducing the total number of days
of grain filling and lowering kernel mass?"!446:6,159,106,167 “Oq average, yield sensitivity
during late grain filling is smaller than during early grain filling, with mean losses from

KDDs of -0.014 [(t/ha)/(°C day)] (95% c.i. -0.013 to -0.015). Wisconsin has the great-

est sensitivity with -0.05 [(t/ha)/(°C day)] (95% c.i. -0.04 to -0.06) losses and Texas is
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the least vulnerable to KDDs at 0.006 [(t/ha)/(°C day)] (95% c.i. 0.004 to 0.008).

With regard to GDDs during late grain filling, the greatest increase in yield occurs in
Minnesota during this phase with values of 0.015 [(t/ha)/(°C day)] (95% c.i. 0.014 to
0.016). The mean increase is 0.0055 [(t/ha)/(°C day)] (95% c.i. 0.005 to 0.006), consis-
tent with cultivars that are able to take advantage of greater accumulation of moderate
temperatures and longer period of radiation interception having a higher yield 7270,
The fact that Texas has a positive late grain filling KDD sensitivity estimate and a
negative GDD sensitivity may be because collinearity of the predictors confounds some
of the results, similar to Iowa’s negative GDD sensitivity during early grain filling.
Note that while high KDDs shorten the duration of grain filling, the total accumulated
GDDs are generally higher in years with higher KDDs, consistent with previous work
on development under hotter conditions'%”.

The end of the plant’s life cycle is the drydown phase, when the plant ceases to
photosynthesize and kernels lose water, generally drying from just over 30% moisture to
about 20% moisture when ready for harvest. Sensitivity parameters indicate a positive
effect from KDDs in many northern states, possibly because insufficient drydown is most
probable there, with consequences for vulnerability to pests, mold, or other pre-harvest
losses. Statistical studies including but not independently resolving the drydown phase
presumably conflate the positive effects of KDDs during drydown with negative effects
during grain development. Some states in the eastern corn belt still indicate strong GDD
sensitivity during the drydown phase possibly because the late grain filling interval in
the USDA data extends into the drydown phase, or that the higher GDDs play a similar
role to KDDs in promoting drying. Altogether, these results highlight the variability of
the temperature response according to developmental phase.

It is useful to make a direct comparison between whole-season sensitivity and the
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phase-based sensitivity estimates. Whole season sensitivity implicitly sums over the
product of the distribution of KDDs (or GDDs) and sensitivity throughout the growing
season. A development phase that was highly sensitive but experienced no KDDs, for
example, would not contribute to whole-season KDD sensitivity. Thus, in order to
provide a direct comparison of whole-season sensitivity to phase-based sensitivity, we
weight each phase according to the fraction of KDDs that it accounts for and estimate
the slope between the two measures. Slope is estimated using a York fit ', which has
the advantage of accounting for uncertainties in both the ordinate and abscissa.

The best-estimate slope between weighted drydown-phase KDD sensitivity and whole-
season KDD sensitivity is weak and negative at -0.1 (95% c.i., -0.2 to 0.1), consistent
with the foregoing discussion that KDDs can be beneficial for drydown in the most
Northern states, whereas they are typically detrimental during other growth phases.
The slope for the vegetative phase is also negative and weak at -0.2, as well as uncertain
(95% c.i., -0.5 to 1.1), consistent with generally low KDD sensitivity during this phase.
Of greater pertinence is that the slope between KDD sensitivity for whole season and
early grain fill is 1.1 (95% c.i., 0.5 to 2.8), indicating that the spatial variation observed
over the whole season are substantially determined by variations in early grain filling
(Fig. 2.5). Similarly, the slope with late grain fill is 0.6 (95% c.i., -1.2 to 1.7) indicating
a further correspondence (Fig. 2.5). Together, the grain filling phases of development
account for the observed pattern of sensitivity to KDD, and are the focus of attention
hereafter.

The estimated spatial variations in grain filling sensitivity are consistent with field
trials where the responses of temperate and tropical maize to heat exposure were ex-
amined prior to and through early reproductive development'?”. In these trials, well-

watered temperate and tropical varieties gave similar yields under normal temperature
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Figure 2.5: Relationship between grain filling sensitivity and whole season sensitivity to
KDDs. The red crosses associated with each state are the respective 95% confidence intervals for
the sensitivity estimates. a) The R? between weighted early grain filling and whole season KDD
sensitivity is 0.37 and the York fit slope is nearly 1.1. b) The R? between weighted late grain filling
and whole season KDD sensitivity is 0.27 and the York fit slope is 0.61. This indicates that varia-
tions in both grain filling sensitivities are, on the whole, an important driver of the entire variation
in whole season sensitivity.

conditions, but when exposed to higher temperatures during what was likely the late
blister, milking, and doughing stages, the temperate varieties responded by accelerat-
ing through grain filling and having larger yield reductions. Specifically, temperate
varieties showed a 21 day decrease in the duration of the reproductive period as a con-
sequence of heating, compared to a five day decrease in tropical hybrids and no decrease
in temperate-tropical hybrids. Furthermore, temperate varieties had a greater decline
in conversion of radiation to biomass when exposed to higher temperatures during early
grain filling.

The USDA development data permits for an examination of changes in the duration
of grain filling in response to high temperatures across the Eastern US. We find that
the durational response to KDDs closely follows the number of KDDs experienced in

a given state. States whose climatological average KDDs during early grain filling are
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State Veg.|G]|EGF[G]|LGF|[G]|Dry.[G]|Veg.[K]|EGF[K]|LGF[K]|Dry.[K]|WS[G] [WS[K]
Georgia 890 400 550 280 110 100 130 40 2120 | 380
Illinois 780 310 480 230 60 40 50 10 1800 | 160
Indiana 790 300 460 240 60 30 40 10 1780 | 140
Towa 800 330 330 220 50 30 20 10 1670 | 110
Kansas 860 350 490 250 90 80 110 30 1940 | 310
Kentucky 840 370 440 270 80 70 70 20 1920 | 240
Michigan 730 320 310 150 30 20 10 0 1500 | 60
Minnesota 730 330 310 140 40 20 10 0 1520 | 80
Missouri 800 300 480 250 60 50 80 20 1840 | 210
Nebraska 850 310 490 210 90 50 60 10 1870 | 220
North Carolina| 870 360 520 340 80 70 90 30 2090 | 260
Ohio 780 270 460 190 50 20 20 0 1700 | 100
Pennsylvania 800 290 410 160 60 30 20 0 1650 | 110
South Dakota | 790 240 340 170 70 30 30 10 1540 | 150
Texas 1080 410 600 270 170 130 210 80 2350 | 590
Wisconsin 740 280 310 140 30 10 10 0 1470 | 60

Table 2.2: The planting area weighted mean growing [G] and killing [K] degree days in each state
and growing phase: Veg. for Vegetative, EGF for Early Grain Filling, LGF for Late Grain Filling,
Dry. for Drydown. As well as summed over the whole season [WS]. All values are in units of (°C
day) and rounded to the nearest ten.

below the median (<37 KDDs for MI, WI, MN, PA, TA, OH, SD, and IN) show an

average decrease in the duration of early grain filling by 0.04 days per KDD. States

clustered in the third quartile of exposure to KDDs (37 < KDD < 66; IL, NE, KY, and

MO) show a shortening of the early grain filling phase by 0.01 days per KDD. And three

out of four states in the upper quartile (>66 KDDs; NC, GA, TX, but not KS) show

the opposite sign of response, on average across the four states, increasing the duration
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of early grain filling by 0.09 days per KDD (Fig. 2.6a). Similar to early grain filling,
late grain filling at the low end of the KDD climatology shows an average decrease in
duration of 0.12 days per KDD(<50 KDDs); those at the mid-range (50 < KDD < 85)
show a weaker decrease at 0.06 days per KDD, and those at the highest range (>85
KDDs) show an increase in duration of 0.04 days per KDD (Fig. 2.6b). Although the
climatological values of KDDs differ between early and late grain filling, the same states

are kept in each climatological category.
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Figure 2.6: Relationship between killing degree days and duration of grain filling. North-
ern states show a decrease in the duration of both (a) early grain filling and (b) late grain filling in
seasons with greater KDDs, whereas Southern states show an increase in duration. These regional
variations in duration may represent a physiological trait important in determining differential sen-
sitivities to KDDs. For readability, the axes for early grain filling truncate the most extreme values
for Georgia, Texas, and North Carolina

Changes in the duration of grain filling are primarily associated with interannual
variability, as opposed to long term trends. The detrended length of early grain filling
has an average standard deviation across states of 3 days, whereas the average trend is
toward lengthening at 0.16 days/year. Similarly, late grain filling varies by nearly 4 days
and has a lengthening trend of only 0.05 days/year. Standard deviations are similarly

larger than trends in just the three Southern states with elongated grain filling phases
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during hotter seasons. These results strongly suggest that steady technological changes
are not the source of the KDD-duration relationship, and are consistent with variations
in the duration of grain filling as features of given cultivars.

The variations of grain filling duration as a response to high temperatures found here

generally accord with the aforementioned field trial results %7

, presuming that hybrids in
the South are most similar to those of tropical or temperate-tropical origin. That both
early and late grain filling phases indicate similar patterns with respect to climatological
KDDs also suggests that these results are robust. Combining early and late grain filling

into a single phase gives a similar result but with smaller fractional changes in duration

because high KDDs do not generally persist equally across the early and late phases.

2.5 DiscussioN AND CONCLUSION

Longer grain filling with hotter temperatures can be associated with lower sensitivity
to high temperatures on account of pattern correspondence between acceleration and
sensitivity across the US, similar responses seen in field trials, and on the physiolog-
ical basis of longer duration leading to greater kernel mass, so long as crops remain

d*127. The physiological pathway by which temperature variation

adequately watere
influences the timing of the transition out of grain filling is unclear, though evidence
for the role of reaching a critical moisture content® suggests that increased drying as-
sociated with higher temperatures and higher vapor pressure deficits would lead to an
earlier transition, as observed in the North. Refining our understanding of how temper-
ature influences grain filling duration, especially in the South and in tropical varieties,

may lead to a better understanding of how to reduce damages from a hotter climate.

Correspondence between KDD sensitivity and climatology over the whole season was
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identified in an earlier study and offered as a basis for inferring the adaptability of

18 The association of yield sensitivity to KDDs and

cultivars to higher temperatures
variations in grain filling duration documented here (also see Fig. 2.7) provides a more
physiologically based perspective on patterns of KDD sensitivity. An important ques-
tion, however, is why has a modification such as increasing the duration of grain filling in
response to higher temperature not yet been introduced into Northern states if it reduces

2 and

yield losses? More general versions of this question have been raised elsewhere '*
one possibility is that such a modification only becomes physiologically feasible under
warmer conditions, possibly because of a longer growing season !, In this specula-
tive case, lengthening of grain fill duration in response to higher temperatures would
constitute a climate change adaptation in the sense articulated by . The question re-
mains, of course, as to whether elongated duration of Southern grain filling would be
transferrable to Northern cultivars under conditions of a warming climate and whether
it would prove effective in mitigating yield losses that would otherwise accrue.
Building from previous controlled field-scale studies of yield loss in the presence of

127,126 appears useful for furthering our understanding of potential

altered temperature
adaptation to climate change. Field trials could be conducted to determine whether
Southern varieties could be advantageously grown at Northern latitudes under higher
temperatures, or, more elaborately, Northern cultivars could be similarly tested after
breeding for longer duration of grain fill in response to higher temperatures.

The risks posed by climate change for agricultural production remain uncertain, as
highlighted by the fact that the Fourth Intergovernmental Panel on Climate Change
Assessment Report*? suggested an overall increases in temperate maize production un-
der conditions of moderate warming with adaptation, whereas the most recent Fifth

t12l

Assessment Repor suggested losses. This variability appears to result from the en-
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Figure 2.7: Relationship between KDD sensitivity and duration of grain filling Vertical red
lines are the 95% confidence interval associated with each sensitivity. a) The relationship between
early grain filling rate per KDD and sensitivity provides some indication of adaptation, but the fit
is not particularly strong, with an R? of 0.1. b) The relationship between late grain filling rate per
KDD and sensitivity provides further evidence of a physiological basis for latitudinal adaptation.
The linear fit, in blue, fits the data with an R? of 0.36.

semble of available studies having substantial spread, and that subtle shifts in modeling
frameworks can have significant influences on individual results. It is suggested that
increasing the physiological interpretability of simple statistical models used to explore
large-scale changes in production may help to reduce some of this ambiguity through

132

better bridging their results with more complete agricultural models'®“ and facilitating

testing of results against field-scale trials.

2.6 SUPPLEMENTAL MODELS

To compare with prior work that used a fixed fraction of the growing season prior to
harvest to assess temperature sensitivity %', we fix the development period across years
by taking the mean of the weights for each state, P, 4, and applying those to all years
(Fig. 2.1). Whereas early grain filling clearly remains the most sensitive phase, late grain

filling estimates are almost entirely different - indicating a negative sensitivity across
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Figure 2.8: GDD and KDD Sensitivity with fixed growing season. (a) When growing stage
dates are fixed to average state-wide values, many states exhibit a negative relationship between
GDD and yield during late grain filling, and a strong positive relationship betweeen GDD and yield
during the drydown phase of development. (b) KDD sensitivity is also counter-intuitive, with high
temperatures during late grain filling generally indicated as beneficial. These results indicate the
importance of correctly specifying phase dates when attempting a more resolved analysis of sensi-
tivity.

much of the corn belt and sometimes a positive response to KDDs (Fig. 2.8). This result
is unsupported by any biological explanation and, apparently, arises from incorrectly
sampling the weather actually associated with late grain filling. Given that there is also
a trend toward earlier planting”™ which has the effect, when the seasons are fixed, of
shifting actual late grain filling dates into what is defined as the drydown phase this
has likely contributed to confused sensitivity estimates under fixed development dates.

As the drydown phase represents a period where the crop is no longer biologially
active we construct an alternative model which omits this phase and focuses only on
the vegetative, early grain filling, and late grain filling phases (Fig. 2.9). The parameter
estimates are largely unchanged, and given that grains are still vulnerable until harvest

we prefer the model which includes the drydown phase. Note that incorporating the
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Figure 2.9: GDD and KDD Sensitivity without a drydown phase. (a) GDD sensitivity esti-
mates and (b) KDD sensitivity estimates are largely unchanged when the drydown phase is omit-
ted from the analysis.

drydown phase as part of the late grain filling phase may bias the parameter estimates

on account of the substantial differences between the two.
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Adaptation and Temporal Trends

3.1 ABSTRACT

The weather that US maize has been exposed to during its growth has changed over the
20" century as a result of changes in climate as well as changes in planting dates and
development time. Planting dates have moved an average of 9 days earlier, spend an

average of 9 days less time in the field awaiting harvest, and have a 9 day longer grain
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filling period between 1981 and 2014. Applying a linear model that incorporates phe-
nology and yield data from 16 states enables the separation of yield trends attributable
to trends in climate and shifting of development timing. The estimates indicate that,
on average, climate trends and timing trends have contributed 8% and 10% of the yield
increase, presuming that yield sensitivity to interannual variability may be scaled to
estimate that associated with decadal trends. Temperature trends have generally been
beneficial through cooling of the hottest temperatures in the North. However, Texas
is an outlier which has experienced yield losses from both hotter temperatures and a
warmer baseline climate. These results indicate that ongoing adaptation of crops to take
advantage of the climatological seasonal cycle along with trends in temperature account
for non-trivial portions of the overall improvements in yield. The ongoing adaptation
to the climatological seasonal cycle is indicative of the capacity to adapt to a chang-
ing climate, at least for this intensively managed crop and in the context of the small

changes experienced to date.

3.2 INTRODUCTION

Maize yields have increased substantially over the 20" century, with average US yield
increasing by over 0.1 t ha=! yr=! from 1981 to 2014. This improvement is typically
ascribed to technology, the sum of cultivar and agronomic improvements. Thus, this def-
inition omits the effect that concurrent climate trends have also had on yield. Generally,
analyses of the climatic effect on yield trends have been estimated with a single temper-
ature trend over the growing season®>%*. However, it has been shown that temperature
sensitivity varies substantially over the course of crop development '2713%20  Similarly,

fixed planting and harvest dates are often necessary at large scales and in the absence of
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more accurate data, but regional analyses indicate that these dates have moved earlier

102,75,76,136,89 " While simplifying assumptions are often

across important growing regions
necessary at the global scale, a more detailed analyses may highlight mechanisms that
are indistinguishable under broad scale assumptions. Through a detailed analysis of
trends within the growing season we are able to determine the relative contributions of
climate and developmental timing to yield trends. This distinction refines how climatic
change has impacted maize yields and indicates how farmers have temporally adapted
to their historical growing environment.

Earlier work has highlighted the substantial role that spatial adaptation may play
in reducing damages from a warmer climate'®??. Similarly, it has been suggested that
simple temporal adaptations, such as longer maturing cultivars, may benefit yields in a
warmer climate®”'1%. By examining the details of historical adaptation to the seasonal
cycle we may gain some insight into the processes and limitations of temporally adapting
to a warmer future. Farmers have conducted a long term experiment in optimizing their
yield by exercising their limited control over two key features which set the course of the
growing season. First, when crops are planted, which is restricted by the hardiness of the
cultivar and the readiness of the fields”. Second, the maturity rating of their cultivar,
which determines the temperature modulated time needed by the crop to fully develop .
After selecting these two elements the plants will grow according to the weather of the
season. These steady adjustments of planting date and maturity ratings over time has
lead to substantial changes in the temperature environment the crop experiences over
the growing season. These changes in the temperature environment may be translated
into a yield trend by assuming that the interannual temperature sensitivity of crop yield
may be scaled to estimate a decadal trend.

The phenology trends observed in the heavily-managed agroecosystem of US maize
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has been attributed primarily to changes in management . This is, perhaps, surpris-
ing, given that there is every indication that unmanaged ecosystems have responded
significantly to local warming''®. Long term records indicate that a range of phenolog-
ical indicators for both plant and animal species now occur substantially earlier in both
Europe'?? and the United States!”!'9%47. Earlier dates for leaf out and flowering are
particularly common. Indeed, the planting date trend in the US is even greater than
the trend towards earlier phenological spring in unmanaged ecosystems'*?. In contrast,
European farmers appear to lag the phenological shifts of unmanaged ecosystems'"2.
The contrasting phenological patterns of managed and unmanaged ecosystems further
illustrates the dual roles of management and climate in setting the developmental timing
of agroecosystems.

Here, we address the degree to which changes in historical planting and development
timing associated with US maize have led to improvements in yield. The total climatic
trend within four development phases is decomposed into two components, a climate
component with fixed developmental phases and a timing component with variable
developmental phases and a fixed background climate. Across most states both timing
and climate have generally benefitted yields contributing, in different states, as much

as 47% and 34% respectively to the each state’s total temporal yield trend.

3.3 METHODS

State level crop development data and county level yields from the United States De-
partment of Agriculture/National Agriculture Statistic Service (USDA/NASS)!?* from
1981-2014 are available for 17 states in the Eastern US, except for Texas (1985-2014) and

Georgia (1981-1999). These development data are combined with weather data from
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467 United States Historical Climatology Network weather stations from the Global

klOl 2

Historical Climatology Networ and interpolated with a Delaunay Triangulation
to the center of each county to approximate the daily weather experienced by the crop.
Counties with greater than 10% of their harvested area irrigated according to the four
1997-2012 censuses of agriculture are removed from the analysis as they are known to
be significantly less sensitive to temperature'®, which eliminates Colorado and reduces
the states analyzed to 16 and the total counties to 1187.

Maize yield is modeled with two metrics of accumulated thermal time. Moderate
conditions are modeled with growing degree days (GDD), the average of truncated max-
imum and minimum temperatures between 9-29°C, a common metric for accumulated
thermal time that is also widely used in simple statistical models of crop yield #7:38:18:155,
Similarly, damaging conditions are summarized with killing degree days (KDD), maxi-
mum temperatures over a damaging threshold, here taken as 29°C. See chapter 2 for a
more complete description of the calculation of GDD and KDD. Other terms including
precipitation, freezing days, and potential sunshine hours were experimented with but
did little to improve the skill of the model.

Development data are available for six distinct growing stages: planting, silking,
doughing, dented, mature, and harvested. These are combined into four growing phases
(1) from planting to silking is the vegetative phase, (2) from silking to doughing is the
early grain filling phase, (3) from doughing to mature is the late grain filling phase
and (4) from mature to harvested is the drydown phase, just as in chapter 2. In the
USDA/NASS database the stages are presented as weekly percentages of crop develop-
ment, which are linearly interpolated to daily values and extrapolated to 0 and 100%

in surrounding weeks if the data do not naturally extend that far. When the stages are

combined into the four phases of development they are converted into daily fractions
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for each state in each phase, see chapter 2 for details. The days within each phase
are calculated by summing these fractional weights, this ensures that portions of the
growing season in multiple phases are not double counted when determining the length
of each phase.

The daily GDD and KDD within each county are weighted by the fraction of the
state in each development stage as GDD, = >, P, 4GDDy. Here, GDD,, is the total
GDD experienced within a given phase, p, and P, 4 is the fraction of the state’s crop
that is in that phase on each day, while GDDy is the daily GDD. The sum is taken over
the variable days that the crop was in each phase within each year. The weighted GDD

and KDD variables are combined into a panel model of yield as follows,

4
Yye=Boc+Briy+ Y (B2ipGDD} ., + B3ip,KDD] ) + €y.c. (3.1)
p=1

Here, Y, . is the yield, Y, in metric tons/hectare during year, y, in county c¢. The
B terms are the estimated coefficients for each state, i, except for By., which is a
county level mean yield. The £1;p, B2, and B3;, terms are all at the state level
and calculated for each phase, p. The B3 ;, represent the total temporal yield trend, of
which a component is due to the trends in GDD,, and KDD,, which will be explored
in detail below. The 32, and f3;, represent interannual GDD and KDD sensitivity,
respectively. It is assumed that this sensitivity is fixed over the duration of this study,
equivalent to assuming no ongoing adaptation over decadal timescales'®. The primes
on GDDJ . and KDDY{ . indicate that the mean has been removed to prevent interaction
with B .

To calculate statewide trends in GDD and KDD a single value is approximated for

each year in each state with weights according to the total planted area within each
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county:

GDD,;, = Z GDD, . pA./A;. (3.2)

The state wide value GDD, ; ,, is calculated in each year, y, state, ¢, and phase, p, by
summing across county, ¢, values, GDD.. These are weighted by the area, A., of maize
planted in that county and normalized by the total planted area of the state, A;. A
weighted statewide KDD is calculated analogously. The time trend, A, in GDD and
KDD is calculated with an ordinary least squares fit, and is shown in Fig. 3.1a,b. The
uncertainty in the thermal time trend of each state is calculated by taking 1000 random
draws from the bootstrapped uncertainty distributions of the GDD and KDD trends,
see Fig. 3.2a,b. The distribution of trends in GDD and KDD were calculated by using

the same sample of years to preserve temporal correlation.
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Figure 3.1, Trends in GDD and KDD, on the following page: The trend within
each phase of each state is indicated by the colors within wheel. Phases begin in the
upper right with vegetative and proceeding clockwise to drydown in the upper left, as
indicated by the numbered circle in the NE of the map. Total Climate Trends: a)
The GDD trend tends to be concentrated in the middle of the growing season, and
in the Western Corn Belt during late grain filling when yields benefit the most. The
cooling during the vegetative phase is from both a shift towards earlier planting and
climatic cooling while the decrease during the drydown phase is largely from earlier
harvesting. b) Killing degree days have declined in the vegetative phase when yields
are largely insensitive to hotter conditions with weak trends in other phases. Climatic
Change Trends c) The climate GDD trends are all close to zero, with some warming
indicated towards the end of the growing season in the East. d) The pattern of the
climate KDD trends are quite similar to the total climate trends, particularly in the
North suggesting that climatic change has a substantial influence on the total pattern.
Timing Trends e) The GDD trends from timing changes are quite close to the total
GDD trend. f) The KDD trends from timing shifts are negligible in the North but
increase further South. In Georgia the concentration of KDDs during early grain filling
has a particularly detrimental effect on yields.
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Figure 3.1: (Continued) Trends in GDD and KDD
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The time trends for both GDD and KDD are then decomposed into two components,
one due to timing and the other to climatic change. The climatic component of the trend
is estimated by using fixed planting and development dates for every year, Fig. 3.1c,d.
By fixing the development phases but using the historically variable weather the yearly
management adjustments are removed and the climatic component of the yield trend
is isolated. The fixed phases may be expressed as P, 4,, where the dp index indicates
that counting begins and progresses according to the same days every year. The weather
experienced still varies according to its historical values, only the developmental progress
of the crop is fixed across years.

The timing trend is calculated with the historically variable development phases, P, 4,
identical to the original calculation, but with a fixed seasonal climate to calculate daily
GDD and KDD, Fig. 3.1e,f. The fixed seasonal climate is estimated for each county
by fitting the observed time-series of minimum and maximum temperatures separately
with a two-term fourier model. This climatology is then used to estimate GDD,, and
KDD,, for each development phase. By fixing the background climate but allowing the
developmental phases to vary as they have historically this trend is soley a result of the
management decisions to shift planting times and cultivar types.

By combining the time trends of GDD and KDD within each phase and their respec-
tive sensitivities we can estimate their compound effect on the yield trend according to
the following:

4
AYER =" AGDD; pfa,ip + AKDD; 83, 5. (3.3)
p=1

Where AYZ-GK indicates the yield trend in state, i, resulting from the interannual yield
sensitivity to GDD and KDD, 32, , and 3 p, from eqn. 3.1, during each phase, p, and

the corresponding trends of growing degree days, AGDD; ,, and killing degree days,

63



AKDD; ;. The AYZ-GK trends are calculated for the three distinct estimates of GDD and
KDD. First, a total climate trend that does not distinguish between the contributions of
climatic change and timing. Then the GDD and KDD trends are decomposed into these
two components, as described above. In both the management and the climatic trend
assessments the GDD and KDD sensitivity parameters are maintained from eqn. 3.1, as
calculating sensitivities with fixed development has been shown to produce unphysical
estimates?’. Bootstrap confidence intervals were constructed to assess the uncertainty
on each of the yield trend models from 1000 samples incorporating the uncertainty in
both the trend estimates and the sensitivity parameters. In all cases the same years
were sampled for both GDD and KDD trends to preserve temporal correlation between
these quantities. When assessing the uncertainty of other quantities bootstrap samples

are always taken across years, such that all 16 states are always present in an estimate.

3.4 RESULTS

The GDD trends across growing phases indicate substantial variation across the season,
Fig. 3.1a. The middle of the season generally has more GDDs, but 15 states see a trend
towards fewer GDDs during the vegetative and 13 during the drydown phases. These
are typically the least sensitive phases to GDDs influence on yields. The more sensitive
grain filling phases see a substantial increase in GDDs, only five states see any decrease
between these phases and no state has a decrease in both. Median estimates indicate
decreases of -1.1 and -1.0 °C day yr=! (95% c.i. -1.9 to -0.8 and -1.5 to -0.4) in both the
vegetative and drydown phases, while early and late grain filling have both increased
by 1.7 °C day yr—! (95% c.i. 1.1 to 2.2 and 1.0 to 2.2). This is a substantial change in

the structure of heat units experienced over the growing season, and it is striking that
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Figure 3.2: Uncertainty in GDD and KDD trends The best estimate of each state's trend is
indicated by a solid point and the vertical lines are 95% bootstrapped confidence intervals. For
clarity each point has been horizontally jittered and the boundaries of the figure have been trun-
cated, omitting Georgia's early grain filling and drydown trends. Total Climate Trends a) The
pattern of increasing GDDs during the grain filling phases and declining GDDs during the vege-
tative and drydown phase is clear for most states even with the considerable uncertainty of many
trends. b) The KDD trends are more uncertain, but there is a clear cooling signal during the veg-
etative phase. Climatic Change Trends c) The uncertainty on the climatic GDD trends indi-
cate that nearly all are indistinguishable from zero. d) The KDD trends are similarly uncertain and
structureless. Timing Trends e) The structure of the timing GDD trends mirrors that of the total
GDD trend, though the pattern of increase in the middle of the season and decrease during the
vegetative and drydown phases is even more distinct. f) The uncertainty on many of the timing
KDD trends is negligible because northern states experience so few in their climatologies.
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GDDs have been concentrated where they are most beneficial to yield and decreased
where they are the least.

In general KDD trends are much weaker than GDD trends, Fig. 3.1b, and quite
uncertain, Fig. 3.2b. The KDD trends are dominated by the tendency towards a cooler
vegetative phase, when median KDDs have decreased by -0.9 °C day yr—! (95% c.i.
-1.2 t0 -0.5), when the plants are less sensitive to KDDs. Many states do see a modest
increase in KDDs during the highly sensitive early grain filling stage, with a median
increase of 0.1 °C day yr—! (95% c.i. -0.1 to 0.4). This suggests that uniformly shifting
planting dates earlier may have limited utility if this sensitive phase is pulled into a
warmer portion of the seasonal cycle, which is tested below when the timing trend is
analyzed. Texas and Kentucky are the only states to see a uniform increase in KDDs
across all of their growing phases, though Kentucky’s vegetative trend is nearly zero.
Perhaps most striking are those fortunate states in the Western Corn Belt which have
increased their GDDs, particularly during the critical late grain filling stage while also
experiencing a decline in KDDs.

That management had a substantial influence on the trends of GDD and KDD can
be seen by examining trends in planting dates, Fig. 3.3a. The first day of planting
has moved earlier by a median estimate of -0.26 days yr—! (95% c.i. -0.35 to -0.18),
amounting to over 9 days earlier over the 34 year course of the record. At the other end
of the season, the decrease in GDDs during the drydown phase is likely a result of the
increasingly early final day of harvest, Fig. 3.3b. The median final day of the drydown
phase - corresponding with the last harvest - has moved earlier, changing by -0.25 days
yr1 (95% ci. -0.47 to -0.15). In contrast, the increase in GDDs in the middle of
the season is likely a result of selecting longer maturing cultivars, as evidenced by the

increased duration of the grain filling phases, Fig. 3.3c. The median length of the grain
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Figure 3.3: Trends in start and end dates and length of development phases a) The start
date of each phase has moved earlier in every state other than Georgia and Wisconsin. This is
most likely a result of earlier planting shifting the dates of the other development phases. b) The
end date trends show more variability, though generally indicate that harvesting comes earlier in all
states other than Texas. The middle of the growing season has tended towards later grain filling
dates, which when combined with the trend towards earlier start dates indicate more total time
spent in grain fill. ¢) In every state other than Texas the drydown phase has shortened, while the
middle of the growing season has lengthened. The shortened drydown phase is a result of ear-

lier harvests while the lengthened middle is likely from longer maturing cultivars and accounts for
much of the trend towards more GDDs in this period.
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filling phases have increased by 0.11 and 0.14 days yr—! (95% c.i. 0.08 to 0.15 and 0.07
to 0.19) for early and late grain filling respectively. Taken together this lengthening
equates to another 9 days spent in these sensitive phases.

The climatic change component of GDD and KDD trends, calculated with fixed de-
velopment phases are quite different from the total climate trend, Fig. 3.1c,d. Without
the trend towards earlier planting and other changes in phase length there are only weak
trends towards increased GDDs, particularly in the easternmost states of Pennsylvania,
North Carolina and Kentucky, Fig. 3.1c, but most states have negligible trends across
all phases, the greatest increase is still during late grain filling with a median increase
of 0.5 °C day yr—! (95% c.i. 0.2 to 0.7). The patterns of KDD reduction are similar
between the total climate KDD trends and the climatic change KDD trends, but gener-
ally weaker. The strongest signal is again the cooling trend during the vegative phase,
but this is reduced to -0.2 °C day yr~—! (95% c.i. -0.6 to 0.2).

There are several possible mechanisms behind this cooling KDD trend. One possi-
bility, which would still place some control with the farm is the suppression of high
temperatures though elevated evapotranspiration rates’ from expanding and intensify-
ing row crop agriculture. Indeed, this mechanism has been proposed to be responsible

107 " However, there are

for a centennial decline in extreme late summer temperatures
other possibilities such as increasing precipitation during the late spring and early sum-
mer over the eastern US, particularly in the Southeast'?? as well as suggestions that
biogenic and anthropogenic aerosols may contribute to cooling in this area®’. Other
hypotheses include land cover change ' or local changes in circulation''”. While the cli-
matic KDD trend is fortunate for yields, the myriad potential explanations complicates

extrapolating these results into future climates.

The timing contribution of GDD and KDD trends is estimated using a fixed clima-
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tology with historically variable development dates, Fig. 3.1e,f. Given the weak contri-
bution to the total GDD trend from the climate change GDD trend it is unsurprising
that the timing GDD trends are nearly identical to the total climate trends, the most
appreciable difference, expectably, is during late grain filling, with an increase of 1.1
°C day yr—! (95% c.i. 0.5 to 1.7). All other phases are within 0.25 °C day yr—! of the
total season trend, with overlapping 95% confidence intervals. In contrast, the northern
states have almost entirely negligible KDD trends across all phases. This is unsurpris-
ing, in that KDDs overwhelmingly occur in the North through weather events, whereas
southern crops experience them climatologically, and correspondingly these crops have
been adapted to such circumstances %20,

The yield benefits of the trend towards earlier planting have been noted "®, but here
we are able to distinguish the relative benefits of the whole suite of management adjust-
ments. According to the total climate yield trend the greatest yield benefit has been
from the elongation of late grain filling, amounting to a mean increase of 10 kg ha™!
yr=! (95% c.i. 7.2 to 13), and the greatest drag has been from increasing KDDs during
early grain filling with mean losses of -5.3 kg ha=! yr=! (95% c.i. -12 to 1.4). These are
followed by increases in GDDs during early grain filling with a mean increase of 8.7 kg
ha=! yr=! (95% c.i. 6.0 to 12), but surprisingly the penultimate source of loss is cooling
during drydown, indicating mean losses of -4.9 kg ha=! yr=! (95% c.i. -7.4 to -2.3).

Breaking down the total climate yield trend in terms of its constituent components
of timing and climate change suggests even more precise sources of these yield trends.
That this decomposition accounts for nearly all of the total climatic effect is indicated
by the close correspondence of the yield trends calculated for each state through the
total climatic trend and that obtained by summing the two components. The values are

nearly identical with a Pearson’s correlation coefficient of 0.96, and a relationship just
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Figure 3.4: The total climate yield trend and its components of climatic change and tim-
ing. The best estimate of the total climate yield trend and the sum of the climatic change and
timing components is indicated by the black dot. Blue crosses represent 1 standard deviation un-
certainties on these estimates and the red line is a one-to-one line for reference. The close corre-
spondence between these estimates suggests that nearly all of the total climate trend is contained
in these two components.

shy of one to one, Fig. 3.4, with a york fit slope of 1.1 (95% c.i. 0.9 to 1.4). The model
suggests that several states have experienced a substantial increase in yields as a result
of both favorable climatic change and adjustments of the cropping calendar and cultivar
type, Fig. 3.5. Five states have combined increases from timing and climatic change that
account for over 40% their total temporal yield trend, Minnesota, Missouri, Nebraska,
North Carolina, and Pennsylvania, and the majority of this increase is from the timing
trend. Surprisingly, several states, including some substantial maize producers in the
Corn Belt: Illinois, Indiana and Ohio, indicate a negative yield effect from their timing
adjustments, as do Georgia, Kentucky, and Texas.

The primary source of this negative yield impact from timing changes, particularly
in the Corn Belt states is a shorter drydown phase with a consequent decline in GDDs,
Fig. 3.5b. These states have a much greater GDD sensitivity during this phase, with a

mean sensitivity of 7.6 (kg/ha)/(°C day) (95% c.i. 7.1 to 8.0) compared to the remaining
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Figure 3.5: The components of the total temporal yield trend The sum of all components

of the bar graph is the observed yield trend from 1981-2014. a) The whiskers indicate 1 standard
deviation uncertainties on each component of the estimate. While the technological residual is
substantial for many states, several, such as Minnesota, Nebraska and Pennsylvania have signifi-
cantly benefited from timing trends. b) The yield trends due to timing and climate may be further
broken down into GDD and KDD components. The greatest distinguishable component of the
yield trend is the increased GDDs from changes in developmental timing and the greatest drag is
an increase in KDDs, much of which is also due to timing trends. Note that several states have a
negative effect from timing GDDs, which results from a shorter drydown phase in every state other
than Texas.

states with a mean of 4.4 (kg/ha)/(°C day) (95% c.i. 3.9 to 4.9). The source of these
anomalous coefficient estimates is unclear and as such the negative impact of the variable
development estimate should be interpreted conservatively. In fact, if the drydown phase
is omitted, and the sensitivities and trends are recalculated, the Corn Belt states no
longer indicate a negative impact from timing trends, Fig. 3.6. Indeed in the three phase
model, every state other than Georgia, which has anomalously large trends towards a
longer and hotter early grain filling, indicate a benefit from the timing trends. Texas
is the only state which suffers from significant climatic change trends, while Kansas,
Kentucky and Ohio indicate a marginal negative effect. Under the three phase model
Minnesota, Missouri, Nebraska, South Dakota and Wisconsin all indicate that greater

than 50% of their total temporal yield trend is a result of timing and climatic trends.
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In Wisconsin, greater than 50% of the total temporal yield trend results exclusively
from the timing trend. In aggregate, the three phase model indicates that 20% of
the mean total temporal trend is a result of management adjustments while only 8%
is from climatic change. Together, these results suggest that farmers’ adaptations to
their historical climate have had a far greater influence on yields than the modest and
surprisingly beneficial climatic change experienced to date.
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Figure 3.6: Three phase model: components of the total temporal yield trend Similar to
figure 3.5 but using a three phase model which omits the drydown phase. a) Without the dry-
down phase only Georgia indicates a decline in yield as a result of timing trends and Texas is the
only state with a significant decline in yields due to climate change. Note that Kentucky, Ohio
and Kansas do indicate modest declines. b) The yield decline in Georgia is due almost entirely
to the increase in KDDs during early grain filling. Illinois, Kansas, Kentucky, Missouri, Nebraska
and Pennsylvania show modest declines from timing KDDs but these are offset by timing trend
increases in GDD.

The two primary management shifts that appear to have influenced thermal time
yield trends are the trend towards earlier planting and longer grain filling. By shifting
cultivation earlier in the calendar year farmers have altered the portion of the sea-
sonal cycle sampled by the crop at each subsequent phase of development, and on the
whole this sampling has benefited yields. The timing trends have generally benefitted

yields through increasing exposure to GDDs, but simulataneously KDD exposure has
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increased. This trade-off is one of the limits on the yield benefits from a continued shift
towards earlier planting, which will also be hampered by shortening daylength earlier
in the year®. However, the historial evidence appears to indicate that we have not yet
reached the point that earlier planting generally negatively affects yields. Similarly, the
longer maturing varieties will only continue to improve yields so long as the warmer con-
ditions necessary for their maturation don’t also bring substantial increases in damaging

temperatures.

3.5 DiscussioON AND CONCLUSIONS

Agricultural regions of the Eastern US have steadily adjusted their development sched-
ules since record keeping began with dominant trends towards earlier planting and longer
grain filling. For the most part this appears to be driven by improvements in agricul-
tural management and technology and not a result of climate change. These agronomic
adjustments are a substantial fraction of the total temporal yield trend across a number
of highly productive states. This highlights how substantially farmers have adjusted
their development schedules to the historical seasonal cycle, and provides some insight
into potential and limitations on adaptations to a hotter climate. Perhaps surprisingly,
the climatic change trends across the corn belt have also been a boon to yields, though
substantially less than might have been estimated if the agronomic component had not
been separated.

Perhaps most importantly these results highlight that predicting how climate change
will affect crop yields is likely to be considerably more nuanced than had previously been
estimated. In particular, the limits to adjustments by management >7® as well as the
151,42

interaction between seasonal climate variability and change will need to be taken
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into account when developing more accurate forecasts of crop yields. Trend analyses
which do not account for such phenomena risk underestimating the effect of a changing
climate on crop yields®>%*. The historical adjustments illustrated here indicate how both
crop development and management substantially moderate the effect that weather has
on yield. In particular, the timing of the silking and early grain filling window in relation
to the seasonal cycle is likely to be at least as important as global warming until the
anthropogenic signal is substantially stronger over the Eastern US. This work suggests
that continuing to evaluate changes in the seasonal cycle along with crop development
will be an important component of adjusting maize agriculture to a hotter world.

Taken together these results further emphasize that details matter when considering
the long term interaction of crops and climate. Much of the agriculturally relevant
temperature trend is the result of actions that farm managers have collectively under-
taken and the resulting adjustments of the growing season. The timing of these shifts
has not occurred by accident, though there may still be room for improvement. Fur-
thermore, the structure of the temperature trends within the phenological cycle of the
crop supports the substantial role that human agency has played in improving yields
through adapting to the historical climatology. Given that the climatic trend has been
largely benevolent over the region considered here it would be highly instructive to
conduct a similar analysis over a region which has experienced a greater magnitude of
anthropogenic global warming.

Reducing yield losses from a warmer environment is a critical component of adapting
humankind to life on a hotter planet and this work shows how farmers have already
adapted their planting schedules to improve yields in accord with the physiological sen-
sitivity of their crops. The statistical model applied here may prove useful in facilitating

future adaptations by bridging the understanding of the simpler models which operate
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at broader scales and the complexity of field scale studies.

3.6 IowaA CASE STUDY

To indicate how substantially development dates may shift exposure to the seasonal
cycle, the phases of Iowa and the climatology from Story County are displayed in Fig. 3.7.
These figures indicate the careful balance between early planting leading to a long warm
late grain filling period and an early grain filling period falling during a particularly hot
portion of the season. This is evident in Fig. 3.7b which shows the development cycles
for the earliest and latest planting dates in Iowa. The earliest recorded planting came
in 2012 and this aligned the most sensitive portion of the development cycle with the

warmest period in the climatology. After the crop was damaged by this exposure the

long warm grain filling period was of little benefit.
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Figure 3.7: lowa development and climatology The development data are presented as the
fraction of the state in each phase of development, according to the y-axis on the left side. The
color of each development phase is as follows: vegetative, green; early grain filling, red; late grain
filling, magenta; drydown, black. Similarly the dashed lines correspond to the climatology in Story
County, IA with red the maximum temperature and blue the minimum temperature, and repre-
sented by the right side y-axis. a) The average development and climatology in IA and Story
County. b) The earliest planting dates (solid: March 26th, 2012) and the latest planting dates
(dot-dashed: April 21, 2008). Note how the 2012 planting lined up the sensitive early grain filling
phase with the peak of the climatology, contributing to substantially lower yields.
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Modeling yield loss during historic heat

waves

4.1 ABSTRACT

Hot temperatures are known to negatively affect maize yield, an effect that has been

described using simple linear statistical models depending on the sum of cumulative
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temperatures above specified thresholds. Here we compare the performance of a suite
of such statistical models in the context of US maize yield from 1981-2014 with a focus
on describing the response during the heatwaves of 1983, 1988, and 2012. Models
employing a uniform temperature sensitivity across the growing season or across large
spatial domains generally underestimate yield loss from these heatwaves, particularly
2012. Using cumulative vapor pressure deficit as an alternative environmental metric
does not reduce these model-data differences. Differences are reconciled, however, when
higher spatial and temporal data are applied used in a model with variable temperature
sensitivity across growth phases. These results suggest that temporally and spatially
resolved statistical models are important for accurate representation of the consequences

of heat waves.

4.2 INTRODUCTION

It is well established that maize yield is highly correlated with temperature variability,

110,24,140

particularly hot temperatures This relationship is often represented in sim-

ple statistical models with a fixed yield sensitivity to cumulative temperatures above

140,85,18

a certain threshol Other studies, however, have highlighted how sensitivity

varies over the course of the growing season ' 2-116,10,138,20

, with the transition from the
vegetative developmental phase into the reproductive phase generally indicated as the
most sensitive interval. Variations in sensitivity across space have also been identi-
fied 120:127:18,20 " where cultivar selection and management practices in climatologically
hotter regions evidently confer lower sensitivity to high temperatues.

Simple statistical models have also employed a range of explanatory variables to indi-

cate yield losses. Many studies have measured damaging environmental condtions with

7



c e
d110,24,140,85,116,18 ' horeas others

the cumulative sum of temperatues above a threshol
have used vapor pressure deficit as a predictor of the negative effects of temperature
and drought on crops®®%3. Vapor pressure deficit accounts for both changes in absolute
humidity and temperature, and, therefore, is potentially a more complete indicator of
stress. Other changing environmental factors implicated in yield losses include ozone

81,155

exposure , which may also interact with elevated temperatures. Here we focus on

cumulative temperature sums and vapor pressure deficit as predictors of yield loss.
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Figure 4.1: Mean US Maize Yield. Each black circle indicates mean US vyields for a given year.
The red highlighted points are the three years highlighted in the text with substantial losses from
heat while the blue highlighted point suffered substantial yield losses from flooding. The dashed
line indicates the linear fit between yield and time, which is a result of agronomic and cultivar
improvements and adjustments in planting and development timing which have modulated the
temperature experienced by the crop.

The recent record of average US maize yield (fig. 4.1) indicates four years of excep-
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tional loss. Yield losses in 1983, 1988, 1993, and 2012 were respectively 22%, 25%, 18%,
and 21% below the expected trend between 1981-2014. Note that these percentages are
effectively lower bounds because counties not reporting any harvest do not figure into
the averages. Of these four years, all but 1993 coincide with exceptionally high tem-
peratures across the US corn belt, extending from Nebraska in the West to Ohio in the
East. The yield losses in 1993 were a result of extreme flooding® and are not further
considered, except to note that changes in precipitation may also be expected %1413,

Here we study the yield response during 1983, 1988, and 2012 using a range of statis-
tical models variously representing spatial and temporal variations in yield sensitivty,
as well as various representations of environmental stress, in order to determine which

representations are most adequate for describing yield outcomes during these extreme

years.

4.3 DATA AND METHODS

The most basic distinction incorporated into all representations that we consider is
between mild beneficial temperatures and high damaging temperatures. Temperature
data are from United States Historical Climatology Network (USHCN) weather stations
in the Global Historical Climatology Network'®! from 1981-2014. Interpolation is to
the county level through a Delaunay Triangulation'?. Counties with greater than 10%
of their harvested area irrigated according to the four 1997-2012 censuses of agriculture
are removed from the analysis as they are known to be significantly less sensitive to
temperature'®, which eliminates Colorado and reduces the states analyzed to 16 and
the total counties to 1187.

Heat unit metrics are used to predict yield, with a procedure identical to chapter
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2. Mild, beneficial temperatures are quantified using growing degree days (GDDs), a
common metric for tracking crop development. GDDs are calculated as the sum over

a selected interval of days of daily heat units, GDDq, which are defined in accordance

with !,
T* . + T*
min,d max,d
GDDy = 5 — Now> (4.1)
where
Tmax,d it Tow < Tmax,d < Thighv
:nax,d = Tlow if Tmax,d < T]OW’ (4.2)

Thigh  1f Tmax,d = Thigh-
Télin, d is defined with equivalent thresholds to Tr*nax, a4 Ty is set to 9°C and Thigh to
29°C, close to traditional values for GDDs'. GDDs are interpreted as increasing yield
through benefiting the successful development of longer maturing cultivars.
Damaging heat units are quantified as killing degree days (KDD) in a manner similar
to that of GDDs,

Tmax — Thigh’ if Tmax > Thigh?

KDD, = (4.3)

0, if Tmax < Thigh‘
The use of a Thigh value of 29°C accounts for temperatures above an optimal threshold,
as well as for the possibility of damage through desiccation or accelerated development.
This value is also close to a number of previous statistical studies describing the effect of
elevated temperatures on yield which used values ranging between 29-32°C. 24140,85,18,65
the USDA /NASS has development data that allows for constraining differential sen-
sitivity across the growing season. There are data available to distinguish six stages of

crop development which are aggregated into the following four phases: vegetative, early
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grain filling, late grain filling, and drydown. The procedure is identical to that in chap-
ters 2 and 3. The developmental data are available from 1981-2014 for all 16 states in
the study except for Texas (1985-2014) and Georgia (1981-1999). The data are reported
as percentages of total acreage having attained a particular stage of development and
the reports are issued on a weekly basis. The weekly data are converted to fractions
and interpolated to daily values, Cs 4, which indicate the cumulative fraction of crop in
a given stage, s, on day, d. If the data do not extend to 0 or 1, they are linearly ex-
trapolated to these end values in adjacent weeks. The cumulative distributions of each
development stage are converted into instantaneous daily fractions of the intervening
phase by subtracting the total fraction of acreage in the following stage of development,
P,qg=(Cs,qa—Cst1,4). Ppq is the fraction of the planted area in each state within each
phase, p.

The state level data are complemented by high resolution development and yield data
in Towa, which are available between 1994-2012. The state is divided into nine agricul-
tural districts for which eight stages of crop development are distinguished: planting,
emerged, tasseling, silking, milking, doughing, dented, mature. State level harvested
data indicate the end of the growing season. The nine stages are used to determine
eight phases of crop development, in a manner analogous with that of the state level
data. However, the stages of tasseling and silking require special attention as they occur
over similar periods of time. As a result both are cut-off with the milking stage. This
results in temperature values being counted twice across this period of time, but this
is necessary to distinguish these two periods in the crop’s development. lowa data thus
have nine times the spatial resolution and twice the temporal resolution of the more
widely available state level data, though their shorter time interval necessarily omits

the hot years of 1983 and 1988, restricting the models to the hot year of 2012. The
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eight phases of crop development are then steadily reduced and combined to produce a
range of models.

An alternate or complimentary measure of environmental stress is vapor pressure
defecit (VPD). VPD is calculated according to the standard algorithm employed by the

Food and Agricultural Organization®', where saturation vapor pressure is defined,

17.27 x T

with T in Celsius, and e, in kPa. Daily average vapor pressure, e,, is then estimated as
the simple average of the saturation vapor pressure at the highest and lowest tempera-

tures scaled by the, respective, lowest and highest relative humidities,

RHmm RHmaa:
ea(Tavg> - (es(Tmax)loO + es(Tmin)loo) /2 (45)

Although clearly only approximate, this representation has the advantage of only re-

quiring daily minima and maxima. Vapor pressure deficit is then calculated as,
VPD(T,RH) = es(Tang) — €a(Tavg), (4.6)

where eg(T44) is approximated as (es(Tmaz) + €s(Tmin))/2. A cumulative VPD metric,

defined as ¢cVPD = ), VPDy, is employed to gauge environmental stress, where the

sum is taken over all days of the growing season or relevant development phase.
Alternatively, a metric for VPD whereby the relative humidity data are omitted has

been used®® and then VPD is calculated soley as a function of temperature,
VPD(T) = es(Tmax) - es(Tmin)~ (47)
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This formulation has the advantage of more than doubling the available years and
quadrupling the available weather stations.

Weather stations which record humidity from the Weather Bureau Army-Navy (WBAN) '
network are used to compare the two VPD metrics, with data available between 1984
1997, except in Texas where records begin in 1985. Similar to the USHCN weather
stations, WBAN stations are nearest neighbor interpolated in time and to each county
in order to calculate VPD. The temperature-only VPD estimate has a cross-correlation
with the standard FAO approach of 0.93 when averaged across the 113 WBAN stations
within the states of this study. Omitting relative humidity, however, leads to VPD
estimates with standard deviations that are over 1.5 times greater than the FAO values,
which when applied in a linear model would tend to bias the sensitivity parameters low.

All of the spatial and temporal scales described are combined with the yield metrics

into a complete linear model with the following form,

N

Yye=PoetBriv+ > (BoipGDD) ., + B3 pKDD) ., + BuipcVPD) L) + €y (4.8)
p=1

Y, . represents the yield in county ¢ and year y expressed in metric tons per hectare
(t/ha). The By . term is a county dependent intercept, whereas other /3 terms are uni-
form across each state or agricultural district, ¢. If the ¢ subscript is omitted, then spatial
variation in sensitivity is ignored and the model represents an entire field, usually the
Eastern US. The 31 ; term is a temporal trend to incorporate the range of modifications
that have improved yield over this time period. The primes on the GDD; . ,, KDD ...,

and CVPD{%QP terms indicate that the mean has been removed. The sensitivity pa-
rameters are allowed to vary over each phase, p, from 1 to N. The values for phases

may indicate a single whole season, N = 1, the four phases available at the state level
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N = 4, or various subsets of phase for the lowa data. Similarly, the damage metric is
determined by setting B3, or f4, equal to 0.

The scale over which the model is applied are summarized in fig. 4.2.

4.4 RESULTS

4.4.1 YIELD AND KDD DISTRIBUTIONS AND MAPS

To determine the level of model complexity needed to produce unbiased estimates during
these extreme events we will consider a collection of models which vary the spatial
and temporal resolution of their temperature sensitivity. However, before pursuing the
details of these models it is useful to examine the adequacy of KDD as a simple linear
predictor of yield. That such a simple representation may be sufficient is supported by
a close correspondence between the positively skewed distribution of KDD anomalies
and negatively skewed distribution of detrended yields, fig. 4.3. The yield generated by
the linear models that we confine ourselves to considering will neccessarily produce a
distribution that is a linear combination of the predictor variable distributions, making
the correspondence in KDD and yield distributions an important indication that the
model has the potential to capture extreme losses in yield.

The correspondence between KDDs and yield losses in the three hottest years is
reinforced by the spatial pattern of yield loss and elevated temperatures indicated by
fig. 4.4. These heat events are generally centered on Iowa and Illinois, and extend further
west than east, with 1988 also reaching further north. Spatially, the correlations are
quite high between the detrended yield and KDD anomalies with Pearson’s correlation
coeflicients of -0.71, -0.59, and -0.77 for 1983, 1988, and 2012 respectively. The similarity

of the spatial patterns coupled with the correspondence of the distributions suggests that
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Figure 4.2: Spatial and temporal scales of analysis Identical colors indicate where tempera-
ture sensitivity values would be the same a) Fixed temperature sensitivity across space. b) Fixed
temperature sensitivity across time. c) State scale spatially variable temperature sensitivity. d)
State scale temporally variable sensitivity. €) Agricultural district scale spatially variable sensitiv-
ity. f) Agricultural district scale temporally variable sensitivity. Here the blue dashed lines would
have differing sensitivity, but both the Planted and Mature phases are not necessary for an ade-
quate model. Similarly the three green phases are the components of the grain filling phase, which
provide the least biased estimates when combined into a single phase.
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Figure 4.3: Killing degree days and detrended yield. a) The kernel smoothed distributions of
detrended yield and KDD indicate the close correspondence between these quantities. Note that
in order to highlight this relationship the abcissa has been reversed for the yield distribution, such
that low yield years have a positive standard deviation.

KDD over the whole growing season should be an adequate predictor of yield loss.

4.4.2 VARYING TEMPORAL SENSITIVITY

To begin testing the adequacy of models in capturing yield declines during heat waves
spatially invariant models are tested first, the i subscripts are omitted in Eq 4.8. The
majority of studies %7108 employing regression models with sensitivity to extreme tem-
perature do not allow sensitivity to vary over space and this model is most comparable
to those. The simplest such model with KDD as the metric of extreme temperatures
also has a fixed temperature sensitivity across time. More formally, 34;, is set to zero
in Eq 4.8 and N = 1. A more complicated model allows the temperature sensitivity
to vary over time, N= 4, similar to!''®!Y. The time varying and invariant models are
first compared by grouping all county years together. Then each development phase is

divided into subgroups based on the anomaly of KDD experienced. These anomalies

are always taken relative to the local mean such that an anomalously hot year in Texas
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Figure 4.4: Low yielding hot years. a,c,e) Killing degree day (KDD) anomalies, a metric to

estimate temperature damaage, corresponding to the years 1983, 1988, and 2012, respectively.

b,d,f) Detrended yield anomalies for the same three years. Note how well the spatial pattern of
KDD anomalies correlates with the pattern of yield anomalies.
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is relatively comparable to a hot year in Minnesota even though the climatologies differ
substantially between these regions. The KDD anomalies are divided into percentiles
according to the following seven categories, from 0-2.5, 2.5-5, 5-10, 10-90, 90-95, 95-97.5,
and 97.5-100, this allows us to focus on those most extreme events in the tails of the
KDD distribution, and these categories are dominated by the hot years of 1983, 1988,

and 2012.

a)sr

Yield Residual [t/ha]
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Figure 4.5: Yield residuals for KDD models summarized by Early Grain Filling quantiles.
The individual elements of each violin plot are an estimate of yields within a given county and

a given year. The histograms in red indicate the fixed sensitivity and in cyan the developmental
sensitivity. The bin widths are adaptive and give an approximation of the number of points within
each of the percentiles. The total number of points is over 34,000. During the early grain filling
phase the hottest 5% of county years indicate substantial bias with the fixed sensitivity model
while the stage based model does somewhat better. Positive residuals indicate that the model
results have yields that are biased high. a) Whole US model with no spatial variation in sensitivity.
b) State model with spatial variation in sensitivity.

The three hottest years account for over 70% of the entire county year group. Of
those, 2012 is by far the largest, accounting for 46% of the top category by itself. It
should be noted that the fourth largest heat wave in this dataset was in 1996 and while

3

it extended across over § as many counties as 1988, it was concentrated in the South and

the marginal contribution of Southern states to US yield prevented this heat wave from

88



significantly reducing mean US yield (fig. 4.1). The time varying residuals are directly
compared with the whole season residuals in fig. 4.5a, with each model represented by
half of the violin plot in each category. Note that both models appear adequate during
years of cool and normal early grain filling phases, but that the median estimates diverge
substantially in the hottest categories. In the hottest 2.5% of KDD anomalies the fixed
whole season sensitivity indicates a median bias across all county years of 1.0 t/ha. The
bias is reduced, but not eliminated by the inclusion of time varying sensitivity with the

bias of the hottest 2.5% of county years just under 0.6 t/ha.

4.4.3 VARYING SPATIAL SENSITIVITY

It has been shown that temperature sensitivity varies substantially across large spatial

18,20 "and given the extent of these heat waves the biased estimates may result

domains
from omitting this variation. Formally, the ¢ subscripts are allowed to vary in eqn. 4.8.
As with the fixed spatial model, there is a further comparison between a model with
temperature sensitivity that varies over time and one that does not. The spatially
varying coefficients do not appreciably improve the model fit during the hottest years
(fig. 4.5b), with a median bias of 0.9 t/ha. However, the time varying sensitivity reduces
the bias to just over 0.4 t/ha. The incorporation of spatial sensitivity did reduce the
bias, but not as much as incorporating temporal variation in temperature sensitivity.
In relative terms the median observed yields during the hottest 2.5% of KDD anomalies
was just under 57% of aggregated median yield during the 1981-2014 period, but the
fixed whole season sensitivity would have estimated median yields equal to 72% of the
median yield, as opposed to the stage based sensitivity with 65%. This bias is consistent

across almost all states though appears particularly pronounced in Illinois, Indiana, and

Kentucky which were severely affected by the summer of 2012.
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Figure 4.6: Distributions of detrended yields and KDDs during lowest yielding years. a)
The detrended yield distributions in 1983, 1988, and 2012. b) The anomaly of KDDs over the en-
tire growing season in the three lowest yield years. Note that 2012 is not substantially different
from 1983 b) The distribution of KDDs during early grain filling (EGF). During this sensitive pe-
riod of development 2012 was substantially hotter than either 1983 or 1988.
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To further illustrate the importance of resolving temperature sensitivity over time
the KDD anomalies over the entire season are compared with those during the early
grain filling phase. The 1983, 1988, and 2012 heatwave years all contain substantial
positive anomalies in KDDs, though the year with the largest decline in yields, 2012, is
not obviously the hottest, fig. 4.6. Indeed, 1983 and 2012 are almost indistinguishable
when comparing KDDs over the entire season. The real impact of the weather in
2012 is evident when comparing the distributions of KDDs during the most sensitive
period of development, early grain filling, fig. 4.6b. While 2012’s growing season was
not substantially warmer than previous hot years, the elevated temperatures occurred
inordinately around early grain filling. Indeed, almost the entire distribution indicates
positive anomalies, and the mean of the distribution is just over 2-standard deviations
warmer than a typical year. Properly resolving the timing as well as the magnitude of

2012’s temperature anomaly is critical to properly estimating it’s effect on yields.

4.4.4 OUT OF SAMPLE PREDICTIONS FOR HOT YEARS

The previous yield estimates suggest that incorporating temporal variation in temper-
ature sensitivity reduces the bias during the years with exceptionally hot early grain
filling. However, these models naturally include more free parameters and a further test
is called for. A more stringent test is applied to the four variations of the KDD model
to determine the relative importance of spatial and temporal variation in sensitivity by
predicting out of sample yields. To do this all available years other than 1983, 1988, and
2012 are used to estimate the coefficients in eqn. 4.8. Then the yields of each county in
all three years are predicted as a group and individually, fig. 4.7. For the grouped years
the least biased predictions allow sensitivity to vary over space and time with a median

bias of 0.23 (95% c.i. 0.19-0.29), though excluding temporal variability is statistically
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Figure 4.7: Yield distributions from out of sample predictions. Each distribution represents
one of the four KDD models with sensitivity parameters inferred from every year other than 1983,
1988, and 2012. a) The distribution of residuals for all three years aggregated together. Vertical
lines indicate the median of the distribution b) The distribution of residuals for 1983, note that
this year the state level models were relatively unbiased. c) The distribution of residuals for 1988,
when the least biased model was the whole season model with spatially varying coefficients. d)
The distribution of residuals for 2012, when the model with both spatially and temporally varying
coefficients produces the best estimates.
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indistinguishable, see table 4.1. The importance of representing varying sensitivity over
both space and time is reinforced by the predictions in 2012, which is also the year
which generally has the most biased estimates. The least biased prediction is the time
and space varying model with a median bias of 0.5 t/ha (95% c.i. 0.4 to 0.6), followed
by the model which varies over space but not time. However, for both 1983 and 1988 it
is the models which include spatial but no temporal variation in sensitivity that provide
the least biased estimates at -0.06 t/ha (95% c.i. -0.15 to 0.02) and 0.26 t/ha (95% c.i.
0.15 to 0.36). In all years the KDD anomalies are spread over a large enough region
that the spatial variation in sensitivity plays a significant role in minimizing biased yield
predictions, but in 2012 the particular concentration of KDDs during early grain fill-
ing indicates the additional importance of capturing the temporally varying sensitivity.
These details challenge selecting a single optimal model. Despite this, the spatially and
temporally varying model produced the best predictions in 2012 and the aggregated
years and was only marginally worse than the purely spatially varying models in 1983
and 1988. This suggests that the incorporation of physiological details is generally worth

the additional parameters required to estimate the more complicated model.

4.4.5 HIGH RESOLUTION IowA ANALYSIS

The failure of the spatially and temporally varying model to eliminate the biased yields
in 2012 suggests that more information is needed to adequately capture this heat wave.
The higher resolution data available for Iowa permit for a more detailed examination
of the role that spatial and temporal scale play in reducing the bias of predicted yield
during 2012. For brevity this analysis is restricted to out of sample predictions, and
all models are formulated with sensitivities that omit 2012 from the training data.

The spatial sensitivity is allowed to vary at the agricultural district level or held fixed
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Year fSIT vSIT fSvT vSvT

1983 | 0.06 (-0.07-0.14) | -0.06 (-0.14-0.01) | 0.14 (0.05-0.22) | 0.07 (0.02-0.13

1988 | 0.50 (0.43-0.61) | 0.26 (0.15-0.36) | 0.48 (0.37-0.56) | 0.30 (0.21-0.38

( ( )
( ( )
2012 | 0.95 (0.78-1.1) | 0.78 (0.64-0.94) | 0.86 (0.74-1.1) | 0.49 (0.36-0.62)
( ( )

All 0.42 (0.36-0.47) | 0.24 (0.18-0.30) | 0.42 (0.36-0.47) | 0.23 (0.19-0.29

Table 4.1: The median model bias for hot years. The four models are summarized by whether
the temperature sensitivity is allowed to vary or is fixed over both space and time. Each four letter
model column heading corresponds to one model, fSfT has fixed spatial and fixed temporal sensi-
tivity, vSfT has variable spatial and fixed temporal sensitivity, fSvT has fixed spatial and variable
temporal sensitivity, while vSvT has variable spatial and temporal sensitivity. Values are presented
in t/ha and the parentheses indicate the 95% boostrapped confidence interval.

across the entire state, equivalent to including or omitting the 7 subscripts in eqn. 4.8.
Similarly, the importance of temporal sensitivity is explored by including up to eight
phases of development, i.e. N< 8. From a full suite of 100 models, 36 were selected for
comparative and explanatory purposes and more fully described in table 4.2 and the
median biases of each are summarized in fig. 4.8.

Two elements are immediately apparent from this analyis. First, spatial variation
in sensitivity fails to improve predictions at the agricultural district level. However, in
order to signifcantly reduce the bias the model must contain a highly detailed repre-
sentation of the tasseling and silking period. Both of these phases, despite occuring
over nearly the same time period must be included in the model to reduce the bias to
statistical insignificance. Neither the combination of silking and tasseling together, nor
either phase included separately eliminates the biased estimate. For example, a model
with all eight phases has a bias of 0.31 t/ha (95% c.i. -0.05 to 0.70) while merging the
silking and tasseling phases raises this to 0.90 t/ha (95% c.i. 0.69 to 1.23). The least

biased model is a four phase model including the vegetative, tasseling, silking, and a
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Model fSfT R?2 vSfT R? vSvT R2 fSvT R2
PVTSMODA |1.1 (0.9-1.4)|0.60|1.5 (1.1-1.8)|0.62|1.6 (1.1-2.2)|0.76| 0.3 (0.0-0.6) |0.73
PVSMODA 0 (0.7-1.2)]0.62|1.2 (0.9-1.5)]0.64 (1.7 (1.4-2.0)|0.75| 0.8 (0.4-1.1) |0.72
PVTMODA 0 (0.7-1.2)]0.62[1.2 (0.9-1.5)|0.64|1.5 (1.1-1.8)[0.79| 0.9 (0.5-1.2) |0.71
PVT-SMODA 1.0 (0.7-1.2)|0.62|1.2 (0.9-1.5)|0.64|1.5 (1.0-1.7)|0.73| 0.9 (0.5-1.2) [0.71
VTSgf 1.4 (1.2-1.7)]0.58|1.6 (1.2-2.0)|0.60|0.6 (0.1-1.4){0.72] 0.0 (-0.2-0.5) [0.70
VSgf 3(0.9-1.5)]0.59(1.4 (1.1-1.9)]0.61 (0.8 (0.5-1.2)[0.73| 0.6 (0.4-0.9) |0.68
VTgf 3(0.9-1.5)]0.59|1.4 (1.1-1.9)|0.61|0.6 (0.1-1.1)|0.73| 0.6 (0.4-0.9) |0.69
VT-Sgf 3(0.9-1.5)]0.59|1.4 (1.1-1.9)|0.61|0.6 (0.1-0.9)|0.74| 0.6 (0.4-0.9) |0.68
VT-Sgf* 3 (0.9-1.5)]0.59|1.4 (1.1-1.9)|0.61|0.6 (0.1-0.9)|0.74|-0.0 (-0.4-0.2)|0.67

Table 4.2: The phases included in the model are as follows: Planted (P), Vegetative (V), Tas-
seling (T), Silking (S), Milking (M), Doughing (O), Dented (D), and Mature (A), where each is
defined by the stage that begins it, except for the vegetative phase which is considerably longer
than the others and begins with the emerged stage. A dash between phases indicates they have
been merged into a single phase and the merged milking, doughing and dented phases are sum-
marized as grain filling (gf). The four models that correspond with each of the included phases
are fixed over space and fixed over time (fSfT), variable over space and fixed over time (vSfT),
variable over space and variable over time (vSvT), and fixed over space and time (fSvT). The first
column indicates the median bias in 2012 with the 95% confidence interval in parentheses, and the
R? column immediately following is the squared cross correlation of that model against the entire
yield record. The final row, marked with a star indicates the model which uses a linear combina-
tion of the sensitivity estimates from the TS phases of the VTSgf model for its merged tasseling
and silking sensitivity phase based sensitivity. All median estimates are rounded to tenths and R?
values to hundredths.

single merged grain filling period consisting of the milking, doughing and dented phases,
the bias of this model is 0.05 t/ha (95% c.i. -0.20 to 0.52). A subset of phases coupled
with an additional degree of freedom around the most sensitive period produces the best
predictive coefficient estimates.

Particular attention was paid to the period around tasseling and silking in this anal-
ysis as that was around the time that KDDs peaked in 2012. As is clear from table

4.2 and fig. 4.8 the particular representation of this time period is critical to producing
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Figure 4.8: Median yield residuals for 2012 in lowa from 36 different models. The abcissa
indicates the number of developmental phases included in each of the models as well as a lettered
abreviation to indicate which phases are included in the model. The open circles correspond to the
models with a fixed spatial sensitivity over the entire state, and dots indicate spatial variation in
sensitivity at the agricultural district level. Similarly, black symbols indicate temporal variation in
sensitivity over the growing season while blue symbols indicate a fixed temporal sensitivity over
the whole season. Vertical lines indicate the 95% confidence interval on the median estimate from
a bootstrap sampling of counties included in the median estimate. The sensitivity parameters to
compute the yields in 2012 were calculated from a training data set from 1994-2011.

unbiased estimates of 2012. To further test the appropriateness of the separate tasseling
and silking estimates their separate sensitivies were added together and applied to the
estimated KDDs during the combined tasseling and silking phase. This combined esti-
mate is nearly as good as the one with distinct phases, with a median bias of -0.05 t/ha
(95% c.i. -0.41 to 0.20). Using the KDD sensitivity estimated from the out of sample
combined tasseling and silking phase produced a median bias of 0.65 t/ha (95% c.i. 0.43

to 0.87). When the tasseling and silking phases are aggregated or considered alone they

96



miss the increasing disparity between KDDs experienced during tasseling and silking in
hotter years which did not occur in 2012, fig. 4.9, despite the fact that tasseling and
silking are highly correlated, with a Pearson’s correlation coefficient of 0.98. This dis-
connect is indicated in the KDD sensitivities from the silking, tasseling, and combined
tasseling-silking models of -16, -10, and -11 kg/ha (°C day)~! in comparison with the
linearly combined KDD sensitivity from the individual tasseling and phases of -28 kg/ha
(°C day)™!, a factor of two to three greater. Properly resolving the sensitivity during
this extremely vulnerable period is critical to making accurate forecasts of future yield

losses.

* 1994-2011
e 2012

Difference of Tasseling and Silking KDD [ C day]

0 20 40 60 80 100 120
Combined Tasseling and Silking KDD P C day]

Figure 4.9: Tasseling and silking KDD exposure convergence in lowa in 2012 Each point
indicates an agricultural district for a given year in lowa. Generally as KDDs increase tasseling and
silking diverged, with tasseling experiencing more KDDs. However, in 2012 with record breaking
temperatures, both sensitive phases were nearly equally exposed. This convergence illustrates why
both phases must be modeled to adequately capture the yield loss in 2012.

4.4.6 VAPOR PRESSURE DEFICIT AS EXTREME TEMPERATURE METRIC

The final model uses ¢cVPD in place of KDD as the predictor of extreme damage by

setting (3, to zero in eqn. 4.8. However, it should be noted that KDD and ¢cVPD are
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Figure 4.10: Correlation between cVPD and KDD a) The correlations between cVPD and
KDD are generally quite high across the entire year. Though they trend from highest in the South-
west to lowest in the far North. b) Generally the correlations are lower during each of the growing
phases, but for the critical early grain filling phase they remain relatively high.

highly correlated. Indeed, across the entire year in the western portion of the study
region Pearson’s correlation coefficients are typically high (r> 0.8), and similarly across
the South (r> 0.7), fig. 4.10a. Even across the North the correlations rarely drop
below 0.6, indicating that much of the information contained in ¢VPD is shared with
KDD. However, a more nuanced picture appears when the correlations are taken within
individual growing phases. While the correlation is even higher in these shorter windows
across the South (r> 0.9), the North is generally more poorly correlated (r< 0.5),
fig. 4.10b. Despite this, the pattern of sensitivity estimates across the growing season
(not shown) is quite similar between KDD and cVPD, and between the high correlations
and the similar temporal patterns it is likely that most of the information contained in
one is also in the other.

A similar suite of four models are compared for the cVPD estimates as the KDD

esimates, identically modifying eqn. 4.8 to vary the sensitivity parameters over both
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Figure 4.11: Out of sample predictions for 1988 with varied VPD estimates. Both models
are significantly biased, and the improvements in resolution do not appear to help. The WBAN
stations are significantly sparser than the USHCN stations which may, in part, be responsible for
this. a) The full FAO VPD estimate, including relative humidity b) The alternative VPD estimate,
which only depends on minimum and maximum temperature.

space and time. First, the two representations of cVPD including and ignoring relative
humidity are compared, restricing the analysis to the years with the WBAN data and
thus tested only on the year 1988. While the cVPD(T,RH) is marginally less biased
than ¢VPD(T), both still indicate substantial biases for the full suite of models. The
least biased models are the models with the fewest parameters, aggregating sensitivity
over both space and time, though these still have median biases of 1.4 t/ha (95% c.i. 1.3
to 1.5) and 1.7 t/ha (95% c.i. 1.6 to 1.8), fig. 4.11. Despite a significantly smaller bias,
the values are close enough that the full USHCN data are analyzed using the VPD(T)
approximation, though it should be noted that a superior fit may be possible with better
relative humidity data.

The cVPD developmental model does not improve the fit of the model, and produces
inferior out of sample predictions during the hottest years. The same set of four models
is compared here, where both spatial and temporal sensitivity is allowed to vary from

the whole US and season scale to individual state and developmental phase. All of
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Figure 4.12: Yield residuals for cVPD models summarized by Early Grain Filling quantiles
The bias is larger when cVPD is used as the predictor of extreme condtions in place of KDD. The
categories are identical to those in fig. 4.5 for a straightforward comparison. a) Whole US model
with no spatial variation in sensitivity. b) State model with spatial variation in sensitivity.

the hottest years are substantially biased (Fig. 4.12), and more so than for the KDD
model. In fact, the penultimate category of the 95-97.5 percentile is nearly as biased
in the cVPD model as the KDD model was in the hottest 97.5-100 percentiles, with a
minimum bias of 0.5 t/ha from the phase based model. The hottest county years are as
biased as 2.0 t/ha for the fixed spatial and temporal model.

The out of sample estimates for the colllected years of 1983, 1988 and 2012, fig. 4.13,
again indicates that the least biased model has both spatially and temporally varying
coefficients. However, the least biased model is still significantly worse than the KDD
model with a median bias of 1.1 t/ha (95% c.i. 1.0 to 1.2). This holds true in 1983,
with a median bias of 0.9 t/ha (95% c.i. of 0.8 to 1.0) as well as 2012 with a bias of 1.2
t/ha (95% c.i. 1.0 to 1.4). In 1988, just as with the KDD model, the least biased model,
at 1.2 t/ha (95% c.i. 1.1 to 1.3), has spatially but not temporally varying coefficients
- though none of the models stand out from each other as significantly different. It is

striking that these results are quite different, and less biased, than the WBAN stations
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and underlines the importance of the higher resolution USHCN weather stations as well.
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Figure 4.13: Yield distributions from out of sample predictions with VPD model. Each dis-
tribution represents one of the four VPD models with sensitivity parameters inferred from every
year other than 1983, 1988, and 2012. a) The distribution of residuals for all three years aggre-
gated together. Vertical lines indicate the median of the distribution b) The distribution of resid-
uals for 1983, in the VPD model the lease biased estimates are from the time varying sensitivity
models. c) The distribution of residuals for 1988, when the least biased model was again the whole
season model with spatially varying coefficients. d) The distribution of residuals for 2012, when
the models with temporally varying coefficients were the least biased.
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4.5 DisScussiION AND CONCLUSION

It should be noted that this study is explicity concerned with weather losses to yield.
While such extreme weather events may be some indication of expected yield losses in a
broadly warmer climate, they are not necessarily an extrapolation to a warmer climate
given the range of options available to adapt to slowly varying conditions?3"'® that are
not available for a single extreme event. However, as such extreme events are also more
likely in a warmer future, improving our understanding of limitations in predicting
such extreme yield losses is critical to preparing for them. Some modeling work has
dismissed the utility of using statistical models to study yield responses to extreme
events !4, but this work suggests that with an appropriate physiological representation
such scenarios may be reasonably well predicted. This work indicates that improving
forecasts of agricultural damage will require the use of higher resolution data as well
as a deeper understanding of the mechanisms behind yield loss during sensitive phases

of development and complements other recent work which highlights the importance of

161,128 4

phenology , scale®® and higherto neglected processes of yield loss'**.

The bias exhibited by the least variable models to extreme conditions during the
most sensitive phases of maize development highlights the importance of capturing more
realistic details of crop physiology in a statistical modeling framework. While this bias
may not be directly transferable to average years that are much warmer as we move
into an increasingly hot 215¢ century, the likelihood of getting such extreme years is also

96,42,97,40

expected to increase as indicated by both statistical studies and dynamical

models*7%:77:30 The attention on extreme events has also highlighted the substantial
role that land surface — atmosphere interactions play in generating heat waves and

ht 171,53

droug which will be affected by the health and development state of field crops.
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This work has further highlighted the need for a more accurate understanding of how
extremes will change under a warming climate given the particular importance of the
tail of the temperature distribution during early grain filling to yield impacts. In fact,
it has been shown that extremes can change quite differently than the mean®’ and so a
simple perturbation of the current climatology for estimating effects from long temporal

1884 may lack important details. It is an improved understanding of these more

averages
precise changes in the physical climate system in conjunction with the more detailed
response of crops as indicated by the developmental sensitivity that will ultimately serve
to improve our forecasts of how global warming will affect maize and other crops.

This work has highlighted the importance of improving the resolution of agricultural
analysis. The coarsest models were usually substantially more biased and unable to
match the yield distributions over a wider range of conditions than the models which
were more tuned to their local environment. While this necessarily involves estimating
more free parameters, the general structure of the models is still simple and the required
data for these estimates is not necessarily substantial. An important additional element
of this study is the point at which further detail becomes unnecessary and may, in fact,
impede prediction - as was indicated for spatial sensitivity variation at the agricultural
district scale. The relevant scale for spatial variation in coefficients would appear to be
the state level, while finer spatial scales, at least over states as homogeneous as Iowa
did not substantively improve yield predictions. However the lowa data demonstrate
that both high resolution data and a model formulation capable of capturing the full
sensitivity during the most sensitive phases is required to reduce the yield bias during
2012. This is a problem because the critical stages of tasseling and silking are sepa-
rately aggregated into the end of the vegetative phase and the milking stage in the state

level USDA data. More detail on this highly sensitive period of development would
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be extremely valuable for isolating the effects of damaging heat waves and, perhaps,
forecasting their effect. While the availability of high quality development data outside
of the United States may be a challenge, there is some promise in forecasting pheno-
logical development with satellite data '°>%2. Without incorporating these details into
forecasts of a warmer future we risk underestimating the effects which are likely to be
most damaging to agricultural productivity.

Beyond the additional information needed in the physical climate forecast this work
highlights the need to further predict the interaction between the physical climate sys-
tem, the decisions of the farm manager, and the development phase of the crop. When
the crop is planted is a critical determinant of final yield and a warmer climate should
allow for more flexibility in planting®”''® which will then affect the timing of all the
later stages of development within the seasonal cycle. Furthermore, the interaction of
temperature with crop development further compounds the uncertainty of which phase
a crop will be in when damaging weather conditions occur. Further work should look to
combine these elements of physical climate forecasting, farm management decisions, and
crop development and the compound uncertainty of all these models into an increasingly

complete analysis of how food production will change in a warmer world.
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Conclusion

Adaptation to climate change is a sensitive, perhaps too easily politicized topic. It is
all too easy for a discussion regarding the reduction of damages brought about by a
warmer climate to lead towards downplaying the risks of global warming. It is the last
intention of this work to pull the dialogue regarding anthropogenic climate change in
such a direction. Mitigation of greenhouse gas emissions must remain a priority even

as work like that presented here will aid in developing adaptation strategies to already
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inevitable warming. However, the spatial variation in temperature sensitivity and tem-
poral control over temperature exposure indicated here must play a more substantial
role in modeling an environment that is increasingly shaped by humans. The large
body of work regarding damage to agriculture from a warmer world in the absence of
human adaptation runs the opposite risk of overstating the damages from a warmer en-
vironment and similarly endangering efforts to mitigate warming if such dire predictions
prove untrue. In this work I have striven to indicate the real risks a warmer climate
poses to maize agriculture at the same time that I have shown how the incorporation
of some principal elements of maize physiology and farmer control into models of how
climate and weather affect crop yields suggest options for managing that risk.

If there is a set of principals that have guided this research it is the search for pattern,
process, and scale. The pattern of spatial sensitivity unveiled at the county level in
chapter 1, and paired with the local climatology was what set this whole study in
motion. However, this result raised a question of process. What might serve as a
physiological basis for the coupling of temperature sensitivity and climatology? This
question ultimately lead towards the relationship between cultivar growth duration and
climatology described in chapter 2. The pattern coupled to the process provides a
foundation for a testable hypothesis regarding how maize crops have been adapted to
their local environments and a potential pathway towards future adaptation in a hotter
climate. The coupling of spatial sensitivity with temporal development in turn lead to
further questions about how crops had been adapted to their local environment over
time, not just at the cultivar level, but in terms of management and planting schedules as
well. This temporal adaptation lead to the work in chapter 3 and the observed patterns
of cooling and warming over the growing season were in turn described by alterations in

the managerial processes of earlier planting and longer maturing cultivars, respectively.
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Questions of scale persisted throughout these analyses, but take center stage in the
analysis of extreme events in chapter 4. Here, we were able to explore the spatial and
temporal scales at which meaninful variation occurred in temperature sensitivity. From
this analysis, the most relevant scale of spatial variation appears to be approximately the
state level, at least for states as homogeneous as Iowa. Temporally the highest resolution
available was critical to resolving the greatly increased sensitivity of the tasseling and
silking phases, but the grain filling phase sensitivity appeared more reliably estimated
when it was more coarsely resolved rather than estimated separately for each constituent
sub-phase. By identifying the relevant scales of variation this work points towards the
data needed to apply a similar analysis in other regions or to other crops.

Incorporating insight from finer spatial scales has also been part of an effort to incor-
porate a broader component of the agricultural research community into the discussion
of how crops will be affected by climate change. Anecdotal conversations with members
of the agronomy community have suggested that the coarser analyses produced by the
climate and economics community have been written off by the agronomists for a lack
of meaningful detail. As indicated in the introduction, the middle path of this research
has worked towards bridging that divide in a consistent and transparent manner. The
processes of adaptation revealed here may provide the larger scale global modeling com-
munity with new ideas to incorporate or the field researcher to explore in even greater
detail.

There are several directions this research may go from here. The most straightforward
is the application of a similar program to crops other than maize. Soy beans and wheat
are nearly as widely grown in the United States as maize and therefore may indicate
some similar local climatological adaptations. For example, is it possible to identify

similar relationship between duration of growth phases and climatology in these crops
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or is such a relationship unique to maize? If it is unique, what about the maize crop
has enabled such an adaptation and could it be incorporated into others? Similarly, has
the development of these crops been affected by changes in managment and climate?
Expanding to other crops also raises the possibility of substituting crops which become
more suitable for a warmer future than those which have been grown historically. For
example, maize has been expanding in Northern Minnesota and North Dakota and one
wonders if the current Canadian Wheat Belt will become the Corn Belt of the future.
The details presented in this research may help to answer when such a transition would
be fruitful.

Of broader interest, the importance of temporal variation in sensitivity and its role
in the devastating losses in 2012 highlights the importance of capturing this time period
more reliably outside regions with development data like that available from the USDA.
Coupling the USDA development data with remote sensing products like the Normalized
Difference Vegetative Index (NDVI) or sun-induced fluoresence (SIF) provide a path
towards modeling phenological development in the absence of agricultural survey data.
Calibrating these estimates with the USDA data would allow for an assessment of the
uncertainty that would accompany such an estimate. The USDA data, particularly at
the agricultural district scale could also be used to more precisely quantify how exact the
estimate of critical phenological stages must be for a useful estimate of crop sensitivity
and yield loss. The analysis in chapter 4 begins to probe this question, but there is
more room to explore how finely resolved the window of tasseling and silking must be
when estimating yield losses.

An even more applied, but potentially very beneficial direction for this research to
move in is to build a coupled model of seasonal forecasting and crop development. This

would involve optimizing planting dates and cultivar selection around expected weather

108



over the course of the growing season. The refinements needed in seasonal forecasting
are a substantial hurdle to this line of inquiry. However, the coupling of the early
planting in 2012 with the peak of the heat wave around tasseling and silking suggests
that improvements in this area could be of tremendous practical benefit to agricultural
extension offices. This would also require a more detailed large scale description of crop
development under varied temperature conditions, but the USDA development data
shoud allow for such a model to be constrained. There are, of course, some substantial
economic incentives to develop such a system which would extend beyond adapting to
a warmer climate.

Humans began a global experiment ten-thousand years ago when they began selecting
particular plants to optimize the landscape for their own ends. The process of indus-
trialization has lead to another global experiment in altering the surface temperature
of the planet. It remains to be seen whether the ultimate results of industrialization
will prove disastrous for agriculture, but it is certain that there is an opportunity to
adapt to the changing climate humans are creating. The degree to which agriculture
can be adapted to a changing climate will depend on realizing the types of adaptation
suggested by the research described here as well as keeping the absolute magnitude of

warming to a level that such adaptations will still be relevant.
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Archeobotanical Applications

An alternative use of growing degree days (GDD) is to apply them as a spatial indicator
to infer thermal niche constraints on the spatial distribution of a crop. In many respects
this application is closer to the original agronomic function of GDDs as a predictor of
crop growth and development?%?3. Here, I provide a brief overview of work more fully
described in D’Alpoim Guedes and Butler (2014), where we use GDDs to aid in inter-

preting archeobotanical data at a collection of archeological sites in Southwest China,
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of which seven are presented here. In particular, GDDs allow us to address how thermal
time constraints likely delayed the spread of rice to the highly productive region of the
Sichuan Basin and help explain the prevalence of both millet and western domesticates
in highly mountainous regions of Southwest China. We find that the orographically iso-
lated Sichuan Basin had limited pathways for tropical rice to migrate into it, and thus
the development of temperate varieties was likely critical to agricultural settlement in
this region. Furthermore, the thermal niche estimates in the most mountainous areas
of Southwest China never indicate long term stability for rice agriculture and these cool
conditions likely pushed agriculturalists towards more cold tolderant millets and then
wheat and barley once these became available.

The seven sites discussed here may be divided into three categories, fig. A.1. In
modern day Hunan province, two sites, Bashidang and Pengtoushan both indicate the
presence of rice agriculture from as early as 7500 calibrated BC??. Less than a thou-
sand kilometers to the west of these sites, on the other side of the Daba mountain
range in modern day Sichuan province rice does not appear in the Chengdu Plain and
Guiyuangiao sites until after 3000 cal BC. The Sichuan Basin, as the broad relatively
flat expanse at the eastern end of the province is called, is an exceptionally productive
region of rice agriculture in modern China®* and a delay of 4000 years to spread such a
short distance suggest there was a substantial barrier to the transmission of rice agri-
culture into this region. In contrast, the other three sites never indicate a substantial
presence of rice agriculture. The intervening site in the Daba mountains, Zhongba, is
dominated by millets as is the Sichuan highland site of Yingpanshan. Yingpanshan is
less than 100 kilometers northwest of the Chengdu Plain sites but there is no evidence
of rice. Finally, the site furthest to the Southwest, in modern day Yunnan province,

Haimenkou, steadily drops rice out of it’s crop mix in favor of millets and eventually
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Figure A.1: Archeological Sites The three categories of site are represented by different col-
ors and symbols. Red exes with circles indicate the earliest rice sites 1) Pengtoushan and 2)
Bashidang. The blue exes with circles are the later rice sites of the Sichuan Basin 3) Chengdu
Plain Sites and 4) Guiyuangiao. Finally, the millet dominated sites are indicated by the purple
burst patterns 5) Zhongba, 6) Yingpanshan, and 7) Haimenkou.

wheat. See D’Alpoim Guedes and Butler (2014) for details of these sites records.
Previously, archeologists examining the spread of agricultural crops have predomi-
nantly argued over the importance of growing season length”™ or a modified function
of monthly maximum and minimum temperature, called effective temperature'!, to
determine whether a region would be viable for a particular crop. However, these mea-
sures, respectively, do not account for the more detailed temperature requirements of
many crops or make use of more detailed agronomic data available for many cultivars.

Growing degree days address both of these issues. Here, the daily heat unit for growing
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degree days, GDDy is defined for each day, d, as,

GDDy = Tmeand — Thase i Tmeana > Thage: (A1)

0 if Tmean,a < Thyge-
Here, Tmean,a = (13 max,d+ 7T min, 2)/2 each day. These daily units are then summed over
every day in the calendar year ), GDDy, as there is no information on the seasonal cycle
of ancient cropping. Crop specific limitations on growth are incorporated through the
base temperature and yearly GDD requirements which vary substantially across these
crops. Rice has a base temperature of 10°C, and temperate rice requires at least 2500
GDD to mature while tropical rice requires at least 2900 GDD. Wheat and Barley, much
more cold tolerant crops, calculate GDDs with a base temperature of 0°C, and require at
least 1800 and 2000 GDD respectively. Millets are estimated with a base temperature
of 5.5°C, and require minimum GDDs of 2000 for foxtail millet and 2100 GDD for
broomcorn, though the lack of research on modern millets makes these somewhat more

uncertain estimates 239493,

Daily temperatures are taken from the Global Historical Climatology Network (GHCN) 0%,
Southwest China has a sparse but even network of weather stations that report to the
GHCN, fig. A.2. In total there are 95 stations in the years 1951-2012 spread between
China and Northern Thailand. The sample region is larger than the sites described
to accomodate regions that other researchers may be interested in, but which did not
have data which we examined in detail. To develop a smooth temperature field and
estimate GDDs over the entire region a krigging technique was applied°? to interpolate

the daily station temperatures onto a 5 arc-minute digital elevation model of the region,

ETOPO5'"2. The krigging was done over great-circle distances, and elevation was in-

113



Meters

6000

5000

- 4000

Latitude

= 3000

- 2000

I~ 1000

100 105 110 115 120 125

Longitude

Figure A.2: Weather Stations and Sea Cores. Each black dot represents a weather station in
this expanded view of the study region, and the archeology sites are as in fig. A.1. The sea cores
used to indicate regional temperatures in this area are indicated by colored squares (U%') and
diamonds (Mg/Ca) based on the proxy type used to infer temperature.

corporated as a co-variate. Because GDDs have a non-linear threshold relationship with
mean temperature, the daily temperatures were krigged and then yearly GDD totals
calculated and saved from these daily estimates. The krigging estimates were able to
pick up a seasonal cycle in the lapse rate, which was in reasonable agreement with other
modern estimates®.

To estimate the spatial structure of the temperature field a fixed exponential var-
iogram was applied to mean lapse rate corrected temperatures. An exponential vari-

ogram, 7y, was fit using non-linear least squares, implementing the Levenberg-Marquardt
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algorithm and had the form,

(@) = 0% + p(1 — exp(—z/0)). (A.2)

In typical krigging terminology, o2 corresponds to the nugget, p is the sill, and @ is the
range, and x is the mean distance-binned variogram estimate. The fit was reasonable
with a squared cross correlation, R? = 0.70, but there was substantial variability around
the mean values to which the estimate was fit. For simplicity this single best fit to mean
temperatures was applied to each day rather than recalculating the variogram for each
new krigging estimate.

These krigging estimates allow a reasonable estimate of the smooth modern GDD field
across Southwest China. Estimates of paleoclimatic conditions were taken from seven
publically available sea core records compiled in“? and originally studied by '20-72,190,74,153,152,168
with temperature reconstructions shown in fig. A.3. These cores do not indicate a consis-
tent signal over the time period of 6500-400 BCE during which there were considerable
changes in crop production across this region. Local pollen records provide another po-
tential constraint on temperature variability %7, but the signal is likely to be confounded
by alterations in habitat brought about by the introduction of agriculture to a site,
and this challenges a clean interpretation of the physical climate signal. So rather than
conducting a formal regional temperature reconstruction, we perturb modern tempera-
tures by +£1°C and examine the sensitivity of the rice growing region to these moderate
anomalies, which are within the scope of temperature swings indicated by the sea cores.

The analysis serves to indicate how sensitive crop ranges are to temperature variability
rather than produce a formal reconstruction of the archeological growing niches.

The first question suggested by the archeobotanical evidence regarded the slow trans-
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Figure A.3: Smoothed and centered sea core temperatures. The proxy temperatures indi-
cated the expected latitudinal gradient and are de-meaned and smoothed with an eleven point
two-sided moving average to indicate the broad features of temperature in the region. There is a
clear signal coming out of the last ice age, but after that there is significant regional variability,
which challenges a simple local reconstruction. The colors of each line correspond to the color of
each point in figure A.2.

mission of rice agriculture from the Hunan province sites into the Sichuan Basin. The
GDD estimates, fig, A.4 indicate that under modern conditions only the cool adapted
temperate rice, with GDD requirements as low as 2500°C days per year have a contin-
uous corridor in the Southwestern corner of the Sichuan Basin by which farmers could
have diffused their rice cropping techniques into the area. Perhaps more interesting,
under a 1°C cooling, fig. A.4b, this corridor is closed and the Sichuan Basin is an iso-
lated island of potential rice production separated by formidable mountainous barriers.

The corridor of continuously cultivable land widens considerably under the warming
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perturbation, fig. A.4c, though tropical rice is still barred from continuous cultivation
through the mountain range. Perhaps most striking is that even under the warming
perturbation all three sites dominated by non-rice agriculture are outside the estimated
cultivable range of temperate rice, though they hover on its margin.

The quantitive measure of crop suitability provided by GDDs indicates that the long
delay for rice to move into the Sichuan Basin was likely a result of the orographic bar-
rier of the Daba mountains. The development of temperate rice varieties was likely a
critical component of this movement, which is supported by the grains found in the
Sichuan Basin having the short and thick morphology of temperate rice®?. Of course,

134 gver the

the mountains would not have prevented a rapid advance of agriculturists
landscape, and the lack of continuously cultivable land would not have been a barrier to
leap-frog expansion. Another possibility is the adoption of agriculture by local commu-
nities through cultural diffusion, but there is little evidence that suggests local hunter
gatherers adopted an agrarian lifestyle?*. The GDD analysis suggests that the devel-
opment of temperate rice varieties, perhaps aided by an extended warm period, would
have allowed the settled communities outside of the Sichuan Basin to diffuse in and set
up their agrarian rice based lifestyle without the need for a rapid advance, though such
a scenario cannot be ruled out.

When the thermal time constraints are applied to the more cold tolerant millets and
western domesticates the cultivable region widens considerably, fig. A5. All of the sites
dominated by millet remains are well within the range of both of these crop types, and
the considerably more mountainous regions to the West begin to open up as well. Given
that these sites are out of the regularly cultivable area of temperate rice the importance

of millets to these sites is immediately clear. If these communities had planted rice, there

would have been a good chance that it did not reach maturity. This is highlighted by
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Figure A.4: Rice Growing Degree Day Limits The color scale indicates the range of GDD from
a base temperature of 10°C. The contours indicate growing regions for temperature rice (2500
GDD) and tropical rice (2900 GDD). Dotted lines are province boundaries and dashed lines are
national boundaries. a) GDDs calculated from modern temperatures averaged over 1951-2012 b)
Mean daily temperatures decreased by 1°C prior to calculating GDDs c) Mean daily temperatures

increased by 1°C prior to calculating GDDs.
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Figure A.5: Millet, Wheat and Barley GDD Limits The color scale displays GDDs calculated
for base temperatures of 5.5°C for the millets and 0°C for wheat and barley. The contours indi-
cate the cultivable regions for each crop, dotted lines are province boundaries and dashed lines are
national boundaries. a) Foxtail millet requires at least 2000 GDD while broomcorn needs 2100 giv-
ing them nearly overlapping cultivation ranges. b) Wheat requires at least 1800 GDD for matura-
tion and barley at least 2000 GDD, they are widely cultivable including into many of the mountain
valleys. These limits expand and contract only marginally under the modest temperature perturba-
tions and are omitted for brevity.

the sites close to the rice growing communities, Zhongba and Yingpanshan. Despite the
close proximity these sites maintained a millet based agriculture even as rice growing
communities developed around them. Haimenkou, the Southwesternmost site of the
millet group, is perhaps more striking for the change in crop composition excavated at
this site. The earliest evidence indicates that rice may have made up a third of its crop
mix, but over time this was steadily replaced by millet and then wheat. There are areas
that rice could potentially have been grown in near Haimenkou, the closest of which is
30km away, according to the coarse digital elevation model applied here. Under modern
conditions temperate rice would have thrived in about a third of years. However, the

GDD estimates clearly indicate that millets and wheat would have been much safer
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crops to cultivate. Growing degree days show that all of these sites were better suited
to crops which mature in cooler condtions, in agreement with the archeological record.

The use of growing degree days to analyze crop suitability helps to bring modern
agronomic insight to bear on classic archeological questions regarding the spread of
agriculture. This analysis has highlighted the importance of temperate rice varieties for
settling the Sichuan Basin and the widespread importance of millets for agrarian com-
munities in mountainous sites. Further work could produce more refined estimates of
paleoclimate to more closely couple the timing of agrarian settlement or crop transition
with climatic events. Similarly, more refined models of crop suitability, perhaps incor-
porating precipitation as well, would help to refine why particular crops were selected
at their respective sites. The archeobotanical data could also be used as an additional
paleoclimate proxy to add into other temperature reconstructions. While the situation
of early agricultural communities settling territory is considerably different than con-
temporary humans adapting to a changing climate, the archeological record provides
an opportunity to investigate the many ways in which humans have adapted themselves
to novel conditions and illuminate the utility of crops, such as millets, which are not as
widely grown under contemporary conditions. By investigating historical human adap-
tations we may be able to gain some insight into hitherto unconsidered options for our

own uncertain future.
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Leslie Lamport and based on Donald
Knuth’s TEX. The figure above can
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