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Abstract

Learning and memory in the brain are implemented by complex, time-varying
changes in neural circuitry. The computational rules according to which synaptic
weights change over time are the subject of much research, and are not precisely
understood. Until recently, limitations in experimental methods have made it chal-
lenging to test hypotheses about synaptic plasticity on a large scale. However, as
such data become available and these barriers are lifted, it becomes necessary
to develop analysis techniques to validate plasticity models. Here, we present
a highly extensible framework for modeling arbitrary synaptic plasticity rules
on spike train data in populations of interconnected neurons. We treat synap-
tic weights as a (potentially nonlinear) dynamical system embedded in a fully-
Bayesian generalized linear model (GLM). In addition, we provide an algorithm
for inferring synaptic weight trajectories alongside the parameters of the GLM and
of the learning rules. Using this method, we perform model comparison of two
proposed variants of the well-known spike-timing-dependent plasticity (STDP)
rule, where nonlinear effects play a substantial role. On synthetic data generated
from the biophysical simulator NEURON, we show that we can recover the weight
trajectories, the pattern of connectivity, and the underlying learning rules.

1 Introduction
Synaptic plasticity is believed to be the fundamental building block of learning and memory in the
brain. Its study is of crucial importance to understanding the activity and function of neural circuits.
With innovations in neural recording technology providing access to the simultaneous activity of
increasingly large populations of neurons, statistical models are promising tools for formulating and
testing hypotheses about the dynamics of synaptic connectivity. Advances in optical techniques [1,
2], for example, have made it possible to simultaneously record from and stimulate large populations
of synaptically connected neurons. Armed with statistical tools capable of inferring time-varying
synaptic connectivity, neuroscientists could test competing models of synaptic plasticity, discover
new learning rules at the monosynaptic and network level, investigate the effects of disease on
synaptic plasticity, and potentially design stimuli to modify neural networks.

Despite the popularity of GLMs for spike data, relatively little work has attempted to model the
time-varying nature of neural interactions. Here we model interaction weights as a dynamical system
governed by parametric synaptic plasticity rules. To perform inference in this model, we use particle
Markov Chain Monte Carlo (pMCMC) [3], a recently developed inference technique for complex
time series. We use this new modeling framework to examine the problem of using recorded data to
distinguish between proposed variants of spike-timing-dependent plasticity (STDP) learning rules.
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Figure 1: A simple network of four sparsely connected neurons whose synaptic weights are changing over time.
Here, the neurons have inhibitory self connections to mimic refractory effects, and are connected via a chain of
excitatory synapses, as indicated by the nonzero entries A1→2, A2→3, and A3→4. The corresponding weights
of these synapses are strengthening over time (darker entries in W ), leading to larger impulse responses in the
firing rates and a greater number of induced post-synaptic spikes (black dots), as shown below.

2 Related Work
The GLM is a probabilistic model that considers spike trains to be realizations from a point process
with conditional rate λ(t) [4, 5]. From a biophysical perspective, we interpret this rate as a nonlinear
function of the cell’s membrane potential. When the membrane potential exceeds the spiking thresh-
old potential of the cell, λ(t) rises to reflect the rate of the cell’s spiking, and when the membrane
potential decreases below the spiking threshold, λ(t) decays to zero. The membrane potential is
modeled as the sum of three terms: a linear function of the stimulus, I(t), for example a low-pass
filtered input current, the sum of excitatory and inhibitory PSPs induced by presynaptic neurons, and
a constant background rate. In a network of N neurons, let Sn = {sn,m}Mn

m=1 ⊂ [0, T ] be the set of
observed spike times for neuron n, where T is the duration of the recording and Mn is the number
of spikes. The conditional firing rate of a neuron n can be written,

λn(t) = g

bn +

∫ t

0

kn(t− τ) · I(τ) dτ +

N∑
n′=1

Mn′∑
m=1

hn′→n(t− sn′,m) · I[sn′,m < t]

 , (1)

where bn is the background rate, the second term is a convolution of the (potentially vector-valued)
stimulus with a linear stimulus filter, kn(∆t), and the third is a linear summation of impulse re-
sponses, hn′→n(∆t), which preceding spikes on neuron n′ induce on the membrane potential of
neuron n. Finally, the rectifying nonlinearity g : R→ R+ converts this linear function of stimulus
and spike history into a nonnegative rate. While the spiking threshold potential is not explicitly
modeled in this framework, it is implicitly inferred in the amplitude of the impulse responses.

From this semi-biophysical perspective it is clear that one shortcoming of the standard GLM is that it
does not account for time-varying connectivity, despite decades of research showing that changes in
synaptic weight occur over a variety of time scales and are the basis of many fundamental cognitive
processes. This absence is due, in part, to the fact that this direct biophysical interpretation is not
warranted in most traditional experimental regimes, e.g., in multi-electrode array (MEA) recordings
where electrodes are relatively far apart. However, as high resolution optical recordings grow in
popularity, this assumption must be revisited; this is a central motivation for the present model.

There have been a few efforts to incorporate dynamics into the GLM. Stevenson and Koerding [6]
extended the GLM to take inter-spike intervals as a covariates and formulated a generalized bilinear
model for weights. Eldawlatly et al. [7] modeled the time-varying parameters of a GLM using a
dynamic Bayesian network (DBN). However, neither of these approaches accommodate the breadth
of synaptic plasticity rules present in the literature. For example, parametric STDP models with hard
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bounds on the synaptic weight are not congruent with the convex optimization techniques used by
[6], nor are they naturally expressed in a DBN. Here we model time-varying synaptic weights as a
potentially nonlinear dynamical system and perform inference using particle MCMC.

Nonstationary, or time-varying, models of synaptic weights have also been studied outside the con-
text of GLMs. For example, Petreska et al. [8] applied hidden switching linear dynamical sys-
tems models to neural recordings. This approach has many merits, especially in traditional MEA
recordings where synaptic connections are less likely and nonlinear dynamics are not necessarily
warranted. Outside the realm of computational neuroscience and spike train analysis, there exist a
number of dynamic statistical models, such as West et al. [9], which explored dynamic generalized
linear models. However, the types of models we are interested in for studying synaptic plasticity
are characterized by domain-specific transition models and sparsity structure, and until recently, the
tools for effectively performing inference in these models have been limited.

3 A Sparse Time-Varying Generalized Linear Model
In order to capture the time-varying nature of synaptic weights, we extend the standard GLM by first
factoring the impulse responses in the firing rate of Equation 1 into a product of three terms:

hn′→n(∆t, t) ≡ An′→nWn′→n(t) rn′→n(∆t). (2)

Here, An′→n ∈ {0, 1} is a binary random variable indicating the presence of a direct synapse
from neuron n′ to neuron n, Wn′→n(t) : [0, T ]→ R is a non stationary synaptic “weight” tra-
jectory associated with the synapse, and rn′→n(∆t) is a nonnegative, normalized impulse response,
i.e.

∫∞
0
rn′→n(τ)dτ = 1. Requiring rn′→n(∆t) to be normalized gives meaning to the synaptic

weights: otherwiseW would only be defined up to a scaling factor. For simplicity, we assume r(∆t)
does not change over time, that is, only the amplitude and not the duration of the PSPs are time-
varying. This restriction could be adapted in future work.

As is often done in GLMs, we model the normalized impulse responses as a linear combination of
basis functions. In order to enforce the normalization of r(·), however, we use a convex combination
of normalized, nonnegative basis functions. That is,

rn′→n(∆t) ≡
B∑
b=1

β
(n′→n)
b rb(∆t),

where
∫∞
0
rb(τ) dτ = 1, ∀b and

∑B
b=1 β

(n′→n)
b = 1, ∀n, n′. The same approach is used to model

the stimulus filters, kn(∆t), but without the normalization and non-negativity constraints.

The binary random variables An′→n, which can be collected into an N ×N binary matrix A,
model the connectivity of the synaptic network. Similarly, the collection of weight trajecto-
ries {{Wn′→n(t)}}n′,n, which we will collectively refer to as W (t), model the time-varying synap-
tic weights. This factorization is often called a spike-and-slab prior [10], and it allows us to separate
our prior beliefs about the structure of the synaptic network from those about the evolution of synap-
tic weights. For example, in the most general case we might leverage a variety of random network
models [11] as prior distributions for A, but here we limit ourselves to the simplest network model,
the Erdős-Renyi model. Under this model, each An′→n is an independent identically distributed
Bernoulli random variable with sparsity parameter ρ.

Figure 1 illustrates how the adjacency matrix and the time-varying weights are integrated into the
GLM. Here, a four-neuron network is connected via a chain of excitatory synapses, and the synapses
strengthen over time due to an STDP rule. This is evidenced by the increasing amplitude of the
impulse responses in the firing rates. With larger synaptic weights comes an increased probability
of postsynaptic spikes, shown as black dots in the figure. In order to model the dynamics of the
time-varying synaptic weights, we turn to a rich literature on synaptic plasticity and learning rules.

3.1 Learning rules for time-varying synaptic weights

Decades of research on synapses and learning rules have yielded a plethora of models for the evolu-
tion of synaptic weights [12]. In most cases, this evolution can be written as a dynamical system,

dW (t)

dt
= ` (W (t), {sn,m : sn,m < t} ) + ε(W (t), t),
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where ` is a potentially nonlinear learning rule that determines how synaptic weights change as a
function of previous spiking. This framework encompasses rate-based rules such as the Oja rule
[13] and timing-based rules such as STDP and its variants. The additive noise, ε(W (t), t), need not
be Gaussian, and many models require truncated noise distributions.

Following biological intuition, many common learning rules factor into a product of sim-
pler functions. For example, STDP (defined below) updates each synapse indepen-
dently such that dWn′→n(t)/dt only depends on Wn′→n(t) and the presynaptic spike his-
tory Sn<t = {sn,m : sn,m < t}. Biologically speaking, this means that plasticity is local to the
synapse. More sophisticated rules allow dependencies among the columns of W . For example, the
incoming weights to neuron n may depend upon one another through normalization, as in the Oja
rule [13], which scales synapse strength according to the total strength of incoming synapses.

Extensive research in the last fifteen years has identified the relative spike timing between the pre-
and postsynaptic neurons as a key component of synaptic plasticity, among other factors such as
mean firing rate and dendritic depolarization [14]. STDP is therefore one of the most prominent
learning rules in the literature today, with a number of proposed variants based on cell type and
biological plausibility. In the experiments to follow, we will make use of two of these proposed vari-
ants. First, consider the canonical STDP rule with a “double-exponential” function parameterized
by τ−, τ+, A−, and A+ [15], in which the effect of a given pair of pre-synaptic and post-synaptic
spikes on a weight may be written:

` (Wn′→n(t),Sn′ ,Sn) = I[t ∈ Sn] `+(Sn′ ;A+, τ+) − I[t ∈ Sn′ ] `−(Sn;A−, τ−), (3)

`+(Sn′ ;A+, τ+) =
∑

sn′,m∈Sn′<t

A+ e
(t−sn′,m)/τ+ `−(Sn;A−, τ−) =

∑
sn,m∈Sn<t

A− e
(t−sn,m)/τ− .

This rule states that weight changes only occur at the time of pre- or post-synaptic spikes, and that
the magnitude of the change is a nonlinear function of interspike intervals.

A slightly more complicated model known as the multiplicative STDP rule extends this by bounding
the weights above and below by Wmax and Wmin, respectively [16]. Then, the magnitude of the
weight update is scaled by the distance from the threshold:

` (Wn′→n(t),Sn′ ,Sn) = I[t ∈ Sn] ˜̀
+(Sn′ ;A+, τ+) (Wmax −Wn′→n(t)),

− I[t ∈ Sn′ ] ˜̀−(Sn;A−, τ−) (Wn′→n(t)−Wmin). (4)

Here, by setting ˜̀± = min(`±, 1), we enforce that the synaptic weights always fall
within [Wmin,Wmax]. With this rule, it often makes sense to set Wmin to zero.

Similarly, we can construct an additive, bounded model which is identical to the standard additive
STDP model except that weights are thresholded at a minimum and maximum value. In this model,
the weight never exceeds its set lower and upper bounds, but unlike the multiplicative STDP rule,
the proposed weight update is independent of the current weight except at the boundaries. Likewise,
whereas with the canonical STDP model it is sensible to use Gaussian noise for ε(t) in the bounded
multiplicative model we use truncated Gaussian noise to respect the hard upper and lower bounds
on the weights. Note that this noise is dependent upon the current weight, Wn′→n(t).

The nonlinear nature of this rule, which arises from the multiplicative interactions among the pa-
rameters, θ` = {A+, τ+, A−, τ−,Wmax,Wmax}, combined with the potentially non-Gaussian noise
models, pose substantial challenges for inference. However, the computational cost of these detailed
models is counterbalanced by dramatic expansions in the flexibility of the model and the incorpora-
tion of a priori knowledge of synaptic plasticity. These learning models can be interpreted as strong
regularizers of models that would otherwise be highly underdetermined, as there are N2 weight tra-
jectories and only N spike trains. In the next section we will leverage powerful new techniques for
Bayesian inference in order to capitalize on these expressive models of synaptic plasticity.

4 Inference via particle MCMC
The traditional approach to inference in the standard GLM is penalized maximum likelihood esti-
mation. The log likelihood of a single conditional Poisson process is well known to be,

L
(
λn(t); {Sn}Nn=1, I(t)

)
= −

∫ T

0

λn(t) dt+

Mn∑
m=1

log (λn(sn,m)) , (5)
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and the log likelihood of a population of non-interacting spike trains is simply the sum of
each of the log likelihoods for each neuron. The likelihood depends upon the parame-
ters θGLM = {bn,kn, {hn′→n(∆t)}Nn′=1} through the definition of the rate function given in Equa-
tion 1. For some link functions g, the log likelihood is a concave function of θGLM, and the MLE can
be found using efficient optimization techniques. Certain dynamical models, namely linear Gaus-
sian latent state space models, also support efficient inference via point process filtering techniques
[17].

Due to the potentially nonlinear and non-Gaussian nature of STDP, these existing techniques are
not applicable here. Instead we use particle MCMC [3], a powerful technique for inference in time
series. Particle MCMC samples the posterior distribution over weight trajectories, W (t), the adja-
cency matrix A, and the model parameters θGLM and θ`, given the observed spike trains, by combin-
ing particle filtering with MCMC. We represent the conditional distribution over weight trajectories
with a set of discrete particles. Let the instantaneous weights at (discretized) time t be represented
by a set of P particles, {W (p)

t }Pp=1. The particles live in RN×N and are assigned normalized par-
ticle weights1, ωp, which approximate the true distribution via Pr(W t) ≈

∑P
p=1 ωp δW (p)

t
(W t).

Particle filtering is a method of inferring a distribution over weight trajectories by iteratively propa-
gating forward in time and reweighting according to how well the new samples explain the data. For
each particle W

(p)
t at time t, we propagate forward one time step using the learning rule to obtain

a particle W
(p)
t+1. Then, using Equation 5, we evaluate the log likelihood of the spikes that occurred

in the window [t, t+ 1) and update the weights. Since some of these particles may have very low
weights, after each step we resample the particles. After the T -th time step we are left with a set of
weight trajectories {(W (p)

0 , . . . ,W
(p)
T )}Pp=1, each associated with a particle weight ωp.

Particle filtering only yields a distribution over weight trajectories, and implicitly assumes that the
other parameters have been specified. Particle MCMC provides a broader inference algorithm for
both weights and other parameters. The idea is to interleave conditional particle filtering steps
that sample the weight trajectory given the current model parameters and the previously sampled
weights, with traditional Gibbs updates to sample the model parameters given the current weight
trajectory. This combination leaves the stationary distribution of the Markov chain invariant and
allows joint inference over weights and parameters. Gibbs updates for the remaining model param-
eters, including those of the learning rule, are described in the supplementary material.

Collapsed sampling of A and W (t) In addition to sampling of weight trajectories and model
parameters, particle MCMC approximates the marginal likelihood of entries in the adjacency ma-
trix, A, integrating out the corresponding weight trajectory. We have, up to a constant,

Pr(An′→n |S, θ`, θGLM,A¬n′→n,W¬n′→n(t))

=

∫ T

0

∫ ∞
−∞

p(An′→n,Wn′→n(t) |S, θ`, θGLM,A¬n′→n,W¬n′→n(t)) dWn′→n(t) dt

≈

[
T∏
t=1

1

P

P∑
p=1

ω̂
(p)
t

]
Pr(An′→n),

where ¬n′ → n indicates all entries except for n′ → n, and the particle weights are obtained by
running a particle filter for each assignment of An′→n. This allows us to jointly sample An→n′
andWn→n′(t) by first samplingAn→n′ and thenWn→n′(t) givenAn→n′ . By marginalizing out the
weight trajectory, our algorithm is able to explore the space of adjacency matrices more efficiently.

We capitalize on a number of other opportunities for computational efficiency as well. For exam-
ple, if the learning rule factors into independent updates for each Wn′→n(t), then we can update
each synapse’s weight trajectory separately and reduce the particles to one-dimensional objects. In
our implementation, we also make use of a pMCMC variant with ancestor sampling [18] that sig-
nificantly improves convergence. Any distribution may be used to propagate the particles forward;
using the learning rule is simply the easiest to implement and understand. We have omitted a number
of details in this description; for a thorough overview of particle MCMC, the reader should consult
[3, 18].

1Note that the particle weights are not the same as the synaptic weights.
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Figure 2: We fit time-varying weight trajectories to spike trains simulated from a GLM with two neurons
undergoing no plasticity (top row), an additive, unbounded STDP rule (middle), and a multiplicative, saturating
STDP rule (bottom row). We fit the first 50 seconds with four different models: MAP for an L1-regularized
GLM, and fully-Bayesian inference for a static, additive STDP, and multiplicative STDP learning rules. In all
cases, the correct models yield the highest predictive log likelihood on the final 10 seconds of the dataset.

5 Evaluation
We evaluated our technique with two types of synthetic data. First, we generated data from our
model, with known ground-truth. Second, we used the well-known simulator NEURON to simulate
driven, interconnected populations of neurons undergoing synaptic plasticity. For comparison, we
show how the sparse, time-varying GLM compares to a standard GLM with a group LASSO prior
on the impulse response coefficients for which we can perform efficient MAP estimation.

5.1 GLM-based simulations

As a proof of concept, we study a single synapse undergoing a variety of synaptic plasticity rules
and generating spikes according to a GLM. The neurons also have inhibitory self-connections to
mimic refractory effects. We tested three synaptic plasticity mechanisms: a static synapse (i.e., no
plasticity), the unbounded, additive STDP rule given by Equation 3, and the bounded, multiplicative
STDP rule given by Equation 4. For each learning rule, we simulated 60 seconds of spiking activity
at 1kHz temporal resolution, updating the synaptic weights every 1s. The baseline firing rates were
normally distributed with mean 20Hz and standard deviation of 5Hz. Correlations in the spike timing
led to changes in the synaptic weight trajectories that we could detect with our inference algorithm.

Figure 2 shows the true and inferred weight trajectories, the inferred learning rules, and the predictive
log likelihood on ten seconds of held out data for each of the three ground truth learning rules. When
the underlying weights are static (top row), MAP estimation and static learning rules do an excellent
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Figure 3: Evaluation of synapse detection on a 60 second spike train from a network of 10 neurons undergoing
synaptic plasticity with a saturating, additive STDP rule, simulated with NEURON. The sparse, time-varying
GLM with an additive rule outperforms the fully-Bayesian model with static weights, MAP estimation with L1
regularization, and simple thresholding of the cross-correlation matrix.

job of detecting the true weight whereas the two time-varying models must compensate by either
setting the learning rule as close to zero as possible, as the additive STDP does, or setting the
threshold such that the weight trajectory is nearly constant, as the multiplicative model does. Note
that the scales of the additive and multiplicative learning rules are not directly comparable since the
weight updates in the multiplicative case are modulated by how close the weight is to the threshold.
When the underlying weights vary (middle and bottom rows), the static models must compromise
with an intermediate weight. Though the STDP models are both able to capture the qualitative
trends, the correct model yields a better fit and better predictive power in both cases.

In terms of computational cost, our approach is clearly more expensive than alternative approaches
based on MAP estimation or MLE. We developed a parallel implementation of our algorithm to
capitalize on conditional independencies across neurons, i.e. for the additive and multiplicative
STDP rules we can sample the weights W ∗→n independently of the weights W ∗→n′ . On the two
neuron examples we achieve upward of 2 iterations per second (sampling all variables in the model),
and we run our model for 1000 iterations. Convergence of the Markov chain is assessed by analyzing
the log posterior of the samples, and typically stabilizes after a few hundred iterations. As we scale
to networks of ten neurons, our running time quickly increases to roughly 20 seconds per iteration,
which is mostly dominated by slice sampling the learning rule parameters. In order to evaluate the
conditional probability of a learning rule parameter, we need to sample the weight trajectories for
each synapse. Though these running times are nontrivial, they are not prohibitive for networks that
are realistically obtainable for optical study of synaptic plasticity.

5.2 Biophysical simulations

Using the biophysical simulator NEURON, we performed two experiments. First, we considered a
network of 10 sparsely interconnected neurons (28 excitatory synapses) undergoing synaptic plas-
ticity according to an additive STDP rule. Each neuron was driven independently by a hidden
population of 13 excitatory neurons and 5 inhibitory neurons connected to the visible neuron with
probability 0.8 and fixed synaptic weights averaging 3.0 mV. The visible synapses were initialized
close to 6.0 mV and allowed to vary between 0.0 and 10.5 mV. The synaptic delay was fixed at
1.0 ms for all synapses. This yielded a mean firing rate of 10 Hz among visible neurons. Synap-
tic weights were recorded every 1.0 ms. These parameters were chosen to demonstrate interesting
variations in synaptic strength, and as we transition to biological applications it will be necessary to
evaluate the sensitivity of the model to these parameters and the appropriate regimes for the circuits
under study.

We began by investigating whether the model is able to accurately identify synapses from spikes, or
whether it is confounded by spurious correlations. Figure 3 shows that our approach identifies the
28 excitatory synapses in our network, as measured by ROC curve (Add. STDP AUC=0.99), and
outperforms static models and cross-correlation. In the sparse, time-varying GLM, the probability
of an edge is measured by the mean of A under the posterior, whereas in the standard GLM with
MAP estimation, the likelihood of an edge is measured by area under the impulse response.
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Figure 4: Analogously to Figure 2, a sparse, time-varying GLM can capture the weight trajectories and learning
rules from spike trains simulated by NEURON. Here an excitatory synapse undergoes additive STDP with a
hard upper bound on the excitatory postsynaptic current. The weight trajectory inferred by our model with the
same parametric form of the learning rule matches almost exactly, whereas the static models must compromise
in order to capture early and late stages of the data, and the multiplicative weight exhibits qualitatively different
trajectories. Nevertheless, in terms of predictive log likelihood, we do not have enough information to correctly
determine the underlying learning rule. Potential solutions are discussed in the main text.
Looking into the synapses that are detected by the time-varying model and missed by the static
model, we find an interesting pattern. The improved performance comes from synapses that decay
in strength over the recording period. Three examples of these synaptic weight trajectories are shown
in the right panel of Figure 3. The time-varying model assigns over 90% probability to each of the
three synapses, whereas the static model infers less than a 40% probability for each synapse.

Finally, we investigated our model’s ability to distinguish various learning rules by looking at a
single synapse, analogous to the experiment performed on data from the GLM. Figure 4 shows
the results of a weight trajectory for a synapse under additive STDP with a strict threshold on the
excitatory postsynaptic current. The time-varying GLM with an additive model captures the same
trajectory, as shown in the left panel. The GLM weights have been linearly rescaled to align with the
true weights, which are measured in millivolts. Furthermore, the inferred additive STDP learning
rule, in particular the time constants and relative amplitudes, perfectly match the true learning rule.

These results demonstrate that a sparse, time-varying GLM is capable of discovering synaptic weight
trajectories, but in terms of predictive likelihood, we still have insufficient evidence to distinguish
additive and multiplicative STDP rules. By the end of the training period, the weights have saturated
at a level that almost surely induces postsynaptic spikes. At this point, we cannot distinguish two
learning rules which have both reached saturation. This motivates further studies that leverage this
probabilistic model in an optimal experimental design framework, similar to recent work by Shababo
et al. [19], in order to conclusively test hypotheses about synaptic plasticity.

6 Discussion
Motivated by the advent of optical tools for interrogating networks of synaptically connected neu-
rons, which make it possible to study synaptic plasticity in novel ways, we have extended the GLM
to model a sparse, time-varying synaptic network, and introduced a fully-Bayesian inference al-
gorithm built upon particle MCMC. Our initial results suggest that it is possible to infer weight
trajectories for a variety of biologically plausible learning rules.

A number of interesting questions remain as we look to apply these methods to biological record-
ings. We have assumed access to precise spike times, though extracting spike times from optical
recordings poses inferential challenges of its own. Solutions like those of Vogelstein et al. [20]
could be incorporated into our probabilistic model. Computationally, particle MCMC could be re-
placed with stochastic EM to achieve improved performance [18], and optimal experimental design
could aid in the exploration of stimuli to distinguish between learning rules. Beyond these direct ex-
tensions, this work opens up potential to infer latent state spaces with potentially nonlinear dynamics
and non-Gaussian noise, and to infer learning rules at the synaptic or even the network level.
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