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Abstract
We develop a machine learning approach to rep-
resent and analyze the underlying spatial struc-
ture that governs shot selection among profes-
sional basketball players in the NBA. Typically,
NBA players are discussed and compared in an
heuristic, imprecise manner that relies on un-
measured intuitions about player behavior. This
makes it difficult to draw comparisons between
players and make accurate player specific pre-
dictions. Modeling shot attempt data as a point
process, we create a low dimensional representa-
tion of offensive player types in the NBA. Using
non-negative matrix factorization (NMF), an un-
supervised dimensionality reduction technique,
we show that a low-rank spatial decomposition
summarizes the shooting habits of NBA play-
ers. The spatial representations discovered by
the algorithm correspond to intuitive descriptions
of NBA player types, and can be used to model
other spatial effects, such as shooting accuracy.

1. Introduction
The spatial locations of made and missed shot attempts in
basketball are naturally modeled as a point process. The
Poisson process and its inhomogeneous variant are pop-
ular choices to model point data in spatial and temporal
settings. Inferring the latent intensity function, λ(·), is an
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effective way to characterize a Poisson process, and λ(·)
itself is typically of interest. Nonparametric methods to fit
intensity functions are often desirable due to their flexibil-
ity and expressiveness, and have been explored at length
(Cox, 1955; Møller et al., 1998; Diggle, 2013). Nonpara-
metric intensity surfaces have been used in many applied
settings, including density estimation (Adams et al., 2009),
disease mapping (Benes et al., 2002), and models of neural
spiking (Cunningham et al., 2008).

When data are related realizations of a Poisson process on
the same space, we often seek the underlying structure that
ties them together. In this paper, we present an unsuper-
vised approach to extract features from instances of point
processes for which the intensity surfaces vary from real-
ization to realization, but are constructed from a common
library.

The main contribution of this paper is an unsupervised
method that finds a low dimensional representation of re-
lated point processes. Focusing on the application of mod-
eling basketball shot selection, we show that a matrix de-
composition of Poisson process intensity surfaces can pro-
vide an interpretable feature space that parsimoniously de-
scribes the data. We examine the individual components
of the matrix decomposition, as they provide an interest-
ing quantitative summary of players’ offensive tendencies.
These summaries better characterize player types than any
traditional categorization (e.g. player position). One appli-
cation of our method is personnel decisions. Our repre-
sentation can be used to select sets of players with diverse
offensive tendencies. This representation is then leveraged
in a latent variable model to visualize a player’s field goal
percentage as a function of location on the court.
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1.1. Related Work

Previously, Adams et al. (2010) developed a probabilistic
matrix factorization method to predict score outcomes in
NBA games. Their method incorporates external covariate
information, though they do not model spatial effects or in-
dividual players. Goldsberry & Weiss (2012) developed a
framework for analyzing the defensive effect of NBA cen-
ters on shot frequency and shot efficiency. Their analysis is
restricted, however, to a subset of players in a small part of
the court near the basket.

Libraries of spatial or temporal functions with a nonpara-
metric prior have also been used to model neural data. Yu
et al. (2009) develop the Gaussian process factor analysis
model to discover latent ‘neural trajectories’ in high di-
mensional neural time-series. Though similar in spirit, our
model includes a positivity constraint on the latent func-
tions that fundamentally changes their behavior and inter-
pretation.

2. Background
This section reviews the techniques used in our point
process modeling method, including Gaussian processes
(GPs), Poisson processes (PPs), log-Gaussian Cox pro-
cesses (LGCPs) and non-negative matrix factorization
(NMF).

2.1. Gaussian Processes

A Gaussian process is a stochastic process whose sam-
ple path, f1, f2 · · · ∈ R, is normally distributed. GPs are
frequently used as a probabilistic model over functions
f : X → R, where the realized value fn ≡ f(xn) corre-
sponds to a function evaluation at some point xn ∈ X .
The spatial covariance between two points in X encode
prior beliefs about f ; covariances can encode beliefs
about a wide range of properties, including differentiabil-
ity, smoothness, and periodicity.

As a concrete example, imagine a smooth func-
tion f : R2 → R for which we have observed a set of lo-
cations x1, . . . , xN and values f1, . . . , fN . We can model
this ‘smooth’ property by choosing a covariance function
that results in smooth processes. For instance, the squared
exponential covariance function

cov(fi, fj) = k(xi, xj) = σ2 exp

(
−1

2

||xi − xj ||2

φ2

)
(1)

assumes the function f is infinitely differentiable, with
marginal variation σ2 and length-scale φ, which controls
the expected number of direction changes the function ex-
hibits. Because this covariance is strictly a function of the
distance between two points in the space X , the squared
exponential covariance function is said to be stationary.

We use this smoothness property to encode our induc-
tive bias that shooting habits vary smoothly over the court
space. For a more thorough treatment of Gaussian pro-
cesses, see Rasmussen & Williams (2006).

2.2. Poisson Processes

A Poisson process is a completely spatially random point
process on some space, X , for which the number of points
that end up in some set A ⊆ X is Poisson distributed.
We will use an inhomogeneous Poisson process on a do-
main X . That is, we will model the set of spatial points,
x1, . . . , xN with xn ∈ X , as a Poisson process with a
non-negative intensity function λ(x) : X → R+ (through-
out this paper, R+ will indicate the union of the positive
reals and zero). This implies that for any set A ⊆ X , the
number of points that fall in A, NA, will be Poisson dis-
tributed,

NA ∼ Poiss
(∫

A

λ(dA)

)
. (2)

Furthermore, a Poisson process is ‘memoryless’, meaning
thatNA is independent ofNB for disjoint subsetsA andB.
We signify that a set of points x ≡ {x1, . . . , xN} follows a
Poisson process as

x ∼ PP(λ(·)). (3)

One useful property of the Poisson process is the superpo-
sition theorem (Kingman, 1992), which states that given
a countable collection of independent Poisson processes
x1,x2, . . . , each with measure λ1, λ2, . . . , their superpo-
sition is distributed as

∞⋃
k=1

xk ∼ PP

( ∞∑
k=1

λk

)
. (4)

Furthermore, note that each intensity function λk can be
scaled by some non-negative factor and remain a valid in-
tensity function. The positive scalability of intensity func-
tions and the superposition property of Poisson processes
motivate the non-negative decomposition (Section 2.4)
of a global Poisson process into simpler weighted sub-
processes that can be shared between players.

2.3. Log-Gaussian Cox Processes

A log-Gaussian Cox process (LGCP) is a doubly-stochastic
Poisson process with a spatially varying intensity function
modeled as an exponentiated GP

Z(·) ∼ GP(0, k(·, ·)) (5)
λ(·) ∼ exp(Z(·)) (6)

x1, . . . , xN ∼ PP(λ(·)) (7)

where doubly-stochastic refers to two levels of random-
ness: the random function Z(·) and the random point pro-
cess with intensity λ(·).
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2.4. Non-Negative Matrix Factorization

Non-negative matrix factorization (NMF) is a dimension-
ality reduction technique that assumes some matrix Λ can
be approximated by the product of two low-rank matrices

Λ = WB (8)

where the matrix Λ ∈ RN×V+ is composed ofN data points
of length V , the basis matrix B ∈ RK×V+ is composed of
K basis vectors, and the weight matrix W ∈ RN×K+ is
composed of the N non-negative weight vectors that scale
and linearly combine the basis vectors to reconstruct Λ.
Each vector can be reconstructed from the weights and the
bases

λn =

K∑
k=1

Wn,kBk,:. (9)

The optimal matrices W∗ and B∗ are determined by an op-
timization procedure that minimizes `(·, ·), a measure of re-
construction error or divergence between WB and Λ with
the constraint that all elements remain non-negative:

W∗,B∗ = arg min
W,B≥0

`(Λ,WB). (10)

Different metrics will result in different procedures. For ar-
bitrary matrices X and Y, one option is the squared Frobe-
nius norm,

`2(X,Y) =
∑
i,j

(Xij − Yij)2. (11)

Another choice is a matrix divergence metric

`KL(X,Y) =
∑
i,j

Xij log
Xij

Yij
−Xij + Yij (12)

which reduces to the Kullback-Leibler (KL) divergence
when interpreting matrices X and Y as discrete distribu-
tions, i.e.,

∑
ij Xij =

∑
ij Yij = 1 (Lee & Seung, 2001).

Note that minimizing the divergence `KL(X,Y) as a func-
tion of Y will yield a different result from optimizing over
X.

The two loss functions lead to different properties of W∗

and B∗. To understand their inherent differences, note
that the KL loss function includes a log ratio term. This
tends to disallow large ratios between the original and re-
constructed matrices, even in regions of low intensity. In
fact, regions of low intensity can contribute more to the loss
function than regions of high intensity if the ratio between
them is large enough. The log ratio term is absent from the
Frobenius loss function, which only disallows large differ-
ences. This tends to favor the reconstruction of regions of
larger intensity, leading to more basis vectors focused on
those regions.

Due to the positivity constraint, the basis B∗ tends to
be disjoint, exhibiting a more ‘parts-based’ decomposition
than other, less constrained matrix factorization methods,
such as PCA. This is due to the restrictive property of the
NMF decomposition that disallows negative bases to can-
cel out positive bases. In practice, this restriction elimi-
nates a large swath of ‘optimal’ factorizations with nega-
tive basis/weight pairs, leaving a sparser and often more
interpretable basis (Lee & Seung, 1999).

3. Data
Our data consist of made and missed field goal attempt lo-
cations from roughly half of the games in the 2012-2013
NBA regular season. These data were collected by optical
sensors as part of a program to introduce spatio-temporal
information to basketball analytics. We remove shooters
with fewer than 50 field goal attempts, leaving a total of
about 78,000 shots distributed among 335 unique NBA
players.

We model a player’s shooting as a point process on the of-
fensive half court, a 35 ft by 50 ft rectangle. We will index
players with n ∈ {1, . . . , N}, and we will refer to the set
of each player’s shot attempts as xn = {xn,1, . . . , xn,Mn

},
where Mn is the number of shots taken by player n, and
xn,m ∈ [0, 35]× [0, 50].

When discussing shot outcomes, we will use yn,m ∈ {0, 1}
to indicate that the nth player’s mth shot was made (1) or
missed (0). Some raw data is graphically presented in Fig-
ure 1(a). Our goal is to find a parsimonious, yet expres-
sive representation of an NBA basketball player’s shooting
habits.

3.1. A Note on Non-Stationarity

As an exploratory data analysis step, we visualize the em-
pirical spatial correlation of shot counts in a discretized
space. We discretize the court into V tiles, and compute
X such that Xn,v = |{xn,i : xn,i ∈ v}|, the number
of shots by player n in tile v. The empirical correlation,
depicted with respect to a few tiles in Figure 2, provides
some intuition about the non-stationarity of the underlying
intensity surfaces. Long range correlations exist in clearly
non-stationary patterns, and this inductive bias is not cap-
tured by a stationary LGCP that merely assumes a locally
smooth surface. This motivates the use of an additional
method, such as NMF, to introduce global spatial patterns
that attempt to learn this long range correlation.

4. Proposed Approach
Our method ties together the two ideas, LGCPs and
NMF, to extract spatial patterns from NBA shooting data.
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LeBron James (315 shots)
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(d) LGCP-NMF

Figure 1. NBA player representations: (a) original point process
data from two players, (b) discretized counts, (c) LGCP surfaces,
and (d) NMF reconstructed surfaces (K = 10). Made and missed
shots are represented as blue circles and red ×’s, respectively.
Some players have more data than others because only half of the
stadiums had the tracking system in 2012-2013.

Given point process realizations for each of N players,
x1, . . . ,xN , our procedure is

1. Construct the count matrix Xn,v = # shots by player
n in tile v on a discretized court.

2. Fit an intensity surface λn = (λn,1, . . . , λn,V )T for
each player n over the discretized court (LGCP).

3. Construct the data matrix Λ = (λ̄1, . . . , λ̄N )T , where

Emp. cor. at (21, 44)
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Emp. cor. at ( 7, 28)
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Figure 2. Empirical spatial correlation in raw count data at two
marked court locations. These data exhibit non-stationary cor-
relation patterns, particularly among three point shooters. This
suggests a modeling mechanism to handle the global correlation.

λ̄n has been normalized s.t.
∑
λ̄n = 1

4. Find B,W for some K such that WB ≈ Λ, con-
straining all matrices to be non-negative (NMF).

This results in a spatial basis B and basis loadings for each
individual player, wn. Due to the superposition property
of Poisson processes and the non-negativity of the basis
and loadings, the basis vectors can be interpreted as sub-
intensity functions, or archetypal intensities used to con-
struct each individual player. The linear weights for each
player concisely summarize the spatial shooting habits of a
player into a vector in RK+ .

Though we have described a continuous model for concep-
tual simplicity, we discretize the court into V one-square-
foot tiles to gain computational tractability in fitting the
LGCP surfaces. We expect this tile size to capture all in-
teresting spatial variation. Furthermore, the discretization
maps each player into RV+ , providing the necessary input
for NMF dimensionality reduction.

4.1. Fitting the LGCPs

For each player’s set of points, xn, the likelihood of the
point process is discretely approximated as

p(xn|λn(·)) ≈
V∏
v=1

p(Xn,v|∆Aλn,v) (13)

where, overloading notation, λn(·) is the exact intensity
function, λn is the discretized intensity function (vector),
and ∆A is the area of each tile (implicitly one from now
on). This approximation comes from the completely spa-
tially random property of the Poisson process, allowing
us to treat each tile independently. The probability of the
count present in each tile is Poisson, with uniform intensity
λn,v .

Explicitly representing the Gaussian random field zn, the
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●

(a) Corner threes

●

(b) Wing threes

●

(c) Top of key threes

●

(d) Long two-pointers

Figure 3. A sample of basis vectors (surfaces) discovered by
LGCP-NMF for K = 10. Each basis surface is the normalized
intensity function of a particular shot type, and players’ shoot-
ing habits are a weighted combination of these shot types. Con-
ditioned on certain shot type (e.g. corner three), the intensity
function acts as a density over shot locations, where red indicates
likely locations.

posterior is

p(zn|xn) ∝ p(xn|zn)p(zn) (14)

=

V∏
v=1

e−λn,v
λ
Xn,v
n,v

Xn,v!
N (zn|0,K) (15)

λn = exp(zn + z0) (16)

where the prior over zn is a mean zero normal with covari-
ance Kv,u = k(xv, xu), determined by Equation 1, and z0
is a bias term that parameterizes the mean rate of the Pois-
son process. Samples of the posterior p(λn|xn) can be con-
structed by transforming samples of zn|xn. To overcome
the high correlation induced by the court’s spatial structure,
we employ elliptical slice sampling (Murray et al., 2010) to
approximate the posterior of λn for each player, and subse-
quently store the posterior mean.

4.2. NMF Optimization

We now solve the optimization problem using techniques
from Lee & Seung (2001) and Brunet et al. (2004), com-
paring the KL and Frobenius loss functions to highlight the
difference between the resulting basis vectors.

4.3. Alternative Approaches

With the goal of discovering the shared structure among
the collection of point processes, we can proceed in a few
alternative directions. For instance, one could hand-select
a spatial basis and directly fit weights for each individual
point process, modeling the intensity as a weighted com-
bination of these bases. However, this leads to multiple
restrictions: firstly, choosing the spatial bases to cover the
court is a highly subjective task (though, there are situations
where it would be desirable to have such control); secondly,
these bases are unlikely to match the natural symmetries of
the basketball court. In contrast, modeling the intensities
with LGCP-NMF uncovers the natural symmetries of the
game without user guidance.

Another approach would be to directly factorize the raw
shot count matrix X. However, this method ignores spatial
information, and essentially models the intensity surface
as a set of V independent parameters. Empirically, this
method yields a poorer, more degenerate basis, which can
be seen in Figure 4(c). Furthermore, this is far less numer-
ically stable, and jitter must be added to entries of Λ for
convergence. Finally, another reasonable approach would
apply PCA directly to the discretized LGCP intensity ma-
trix Λ, though as Figure 4(d) demonstrates, the resulting
mixed-sign decomposition leads to an unintuitive and visu-
ally uninterpretable basis.

5. Results
We graphically depict our point process data, LGCP repre-
sentation, and LGCP-NMF reconstruction in Figure 1 for
K = 10. There is wide variation in shot selection among
NBA players - some shooters specialize in certain types of
shots, whereas others will shoot from many locations on
the court.

Our method discovers basis vectors that correspond to vi-
sually interpretable shot types. Similar to the parts-based
decomposition of human faces that NMF discovers in Lee
& Seung (1999), LGCP-NMF discovers a shots-based de-
composition of NBA players.

Setting K = 10 and using the KL-based loss function, we
display the resulting basis vectors in Figure 3. One basis
corresponds to corner three-point shots 3(a), while another
corresponds to wing three-point shots 3(b), and yet another
to top of the key three point shots 3(c). A comparison be-
tween KL and Frobenius loss functions can be found in Fig-
ure 4.

Furthermore, the player specific basis weights provide a
concise characterization of their offensive habits. The
weightwn,k can be interpreted as the amount player n takes
shot type k, which quantifies intuitions about player behav-
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● ●● ●● ●● ●● ●● ●● ●● ●● ●●

LeBron James 0.21 0.16 0.12 0.09 0.04 0.07 0.00 0.07 0.08 0.17
Brook Lopez 0.06 0.27 0.43 0.09 0.01 0.03 0.08 0.03 0.00 0.01
Tyson Chandler 0.26 0.65 0.03 0.00 0.01 0.02 0.01 0.01 0.02 0.01
Marc Gasol 0.19 0.02 0.17 0.01 0.33 0.25 0.00 0.01 0.00 0.03
Tony Parker 0.12 0.22 0.17 0.07 0.21 0.07 0.08 0.06 0.00 0.00
Kyrie Irving 0.13 0.10 0.09 0.13 0.16 0.02 0.13 0.00 0.10 0.14
Stephen Curry 0.08 0.03 0.07 0.01 0.10 0.08 0.22 0.05 0.10 0.24
James Harden 0.34 0.00 0.11 0.00 0.03 0.02 0.13 0.00 0.11 0.26
Steve Novak 0.00 0.01 0.00 0.02 0.00 0.00 0.01 0.27 0.35 0.34

Table 1. Normalized player weights for each basis. The first three columns correspond to close-range shots, the next four correspond
to mid-range shots, while the last three correspond to three-point shots. Larger values are highlighted, revealing the general ‘type’ of
shooter each player is. The weights themselves match intuition about players shooting habits (e.g. three-point specialist or mid-range
shooter), while more exactly quantifying them.

● ●● ●● ●● ●● ●● ●● ●● ●● ●

(a) LGCP-NMF (KL)

● ●● ●● ●● ●● ●● ●● ●● ●● ●

(b) LGCP-NMF (Frobenius)

● ●● ●● ●● ●● ●● ●● ●● ●● ●

(c) Direct NMF (KL)

● ●● ●● ●● ●● ●● ●● ●● ●● ●

(d) LGCP-PCA

Figure 4. Visual comparison of the basis resulting from various approaches to dimensionality reduction. The top two bases result from
LGCP-NMF with the KL (top) and Frobenius (second) loss functions. The third row is the NMF basis applied to raw counts (no spatial
continuity). The bottom row is the result of PCA applied to the LGCP intensity functions. LGCP-PCA fundamentally differs due to the
negativity of the basis surfaces. Best viewed in color.

ior. Table 1 compares normalized weights between a selec-
tion of players.

Empirically, the KL-based NMF decomposition results in
a more spatially diverse basis, where the Frobenius-based
decomposition focuses on the region of high intensity near
the basket at the expense of the rest of the court. This can be

seen by comparing Figure 4(a) (KL) to Figure 4(b) (Frobe-
nius).

We also compare the two LGCP-NMF decompositions to
the NMF decomposition done directly on the matrix of
counts, X. The results in Figure 4(c) show a set of sparse
basis vectors that are spatially unstructured. And lastly, we
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Figure 5. Average player test data log likelihoods for LGCP-
NMF varying K and independent LGCP. For each fold, we held
out 10% of each player’s shots, fit independent LGCPs and ran
NMF (using the KL-based loss function) for varying K. The
predictive performance of our representation improves upon the
high dimensional independent LGCPs, showing the importance
of pooling information across players.

depict the PCA decomposition of the LGCP matrix Λ in
Figure 4(d). This yields the most colorful decomposition
because the basis vectors and player weights are uncon-
strained real numbers. This renders the basis vectors unin-
terpretable as intensity functions. Upon visual inspection,
the corner three-point ‘feature’ that is salient in the LGCP-
NMF decompositions appears in five separate PCA vectors,
some positive, some negative. This is the cancelation phe-
nomenon that NMF avoids.

We compare the fit of the low rank NMF reconstructions
and the original LGCPs on held out test data in Figure 5.
The NMF decomposition achieves superior predictive per-
formance over the original independent LGCPs in addition
to its compressed representation and interpretable basis.

6. From Shooting Frequency to Efficiency
Unadjusted field goal percentage, or the probability a
player makes an attempted shot, is a statistic of interest
when evaluating player value. This statistic, however, is
spatially uninformed, and washes away important variation
due to shooting circumstances.

Leveraging the vocabulary of shot types provided by the
basis vectors, we model a player’s field goal percentage for
each of the shot types. We decompose a player’s field goal
percentage into a weighted combination of K basis field
goal percentages, which provides a higher resolution sum-
mary of an offensive player’s skills. Our aim is to estimate
the probability of a made shot for each point in the offen-
sive half court for each individual player.

6.1. Latent variable model

For player n, we model each shot event as

kn,i ∼ Mult(w̄n,:) shot type
xn,i|kn,i ∼ Mult(B̄kn,i

) location

yn,i|kn,i ∼ Bern(logit−1(βn,kn,i)) outcome

where B̄k ≡ Bk/
∑
k′ Bk′ is the normalized basis, and the

player weights w̄n,k are adjusted to reflect the total mass
of each unnormalized basis. NMF does not constrain each
basis vector to a certain value, so the volume of each ba-
sis vector is a meaningful quantity that corresponds to how
common a shot type is. We transfer this information into
the weights by setting

w̄n,k = wn,k
∑
v

Bk(v). adjusted basis loadings

We do not directly observe the shot type, k, only the shot
location xn,i. Omitting n and i to simplify notation, we can
compute the the predictive distribution

p(y|x) =

K∑
k=1

p(y|k)p(k|x)

=

K∑
z=1

p(y|k)
p(x|k)p(k)∑
k′ p(x|k′)p(k′)

where the outcome distribution is red and the location dis-
tribution is blue for clarity.

The shot type decomposition given by B provides a nat-
ural way to share information between shooters to reduce
the variance in our estimated surfaces. We hierarchically
model player probability parameters βn,k with respect to
each shot type. The prior over parameters is

β0,k ∼ N (0, σ2
0) diffuse global prior

σ2
k ∼ Inv-Gamma(a, b) basis variance

βn,k ∼ N (β0,k, σ
2
k) player/basis params

where the global means, β0,k, and variances, σ2
k, are given

diffuse priors, σ2
0 = 100, and a = b = .1. The goal of this

hierarchical prior structure is to share information between
players about a particular shot type. Furthermore, it will
shrink players with low sample sizes to the global mean.
Some consequences of these modeling decisions will be
discussed in Section 7.

6.2. Inference

Gibbs sampling is performed to draw posterior samples of
the β and σ2 parameters. To draw posterior samples of
β|σ2, y, we use elliptical slice sampling to exploit the nor-
mal prior placed on β. We can draw samples of σ2|β, y
directly due to conjugacy.
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Figure 6. (a) Global efficiency surface and (b) posterior uncer-
tainty. (c-f) Spatial efficiency for a selection of players. Red in-
dicates the highest field goal percentage and dark blue represents
the lowest. Novak and Curry are known for their 3-point shoot-
ing, whereas James and Irving are known for efficiency near the
basket.

6.3. Results

We visualize the global mean field goal percentage surface,
corresponding parameters to β0,k in Figure 6(a). Beside
it, we show one standard deviation of posterior uncertainty
in the mean surface. Below the global mean, we show
a few examples of individual player field goal percentage
surfaces. These visualizations allow us to compare play-
ers’ efficiency with respect to regions of the court. For in-
stance, our fit suggests that both Kyrie Irving and Steve
Novak are below average from basis 4, the baseline jump
shot, whereas Stephen Curry is an above average corner
three point shooter, valuable information for a defending
player. More details are available in the supplemental ma-
terial.

7. Discussion
We have presented a method that models related point pro-
cesses using a constrained matrix decomposition of inde-
pendently fit intensity surfaces. Our representation pro-

vides an accurate low dimensional summary of shooting
habits and an intuitive basis that corresponds to shot types
recognizable by basketball fans and coaches. After visual-
izing this basis and discussing some of its properties as a
quantification of player habits, we then used the decompo-
sition to form interpretable estimates of a spatially shooting
efficiency.

We see a few directions for future work. Due to the rela-
tionship between KL-based NMF and some fully genera-
tive latent variable models, including the probabilistic la-
tent semantic model (Ding et al., 2008) and latent Dirichlet
allocation (Blei et al., 2003), we are interested in jointly
modeling the point process and intensity surface decom-
position in a fully generative model. This spatially in-
formed LDA would model the non-stationary spatial struc-
ture the data exhibit within each non-negative basis surface,
opening the door for a richer parameterization of offensive
shooting habits that could include defensive effects.

Furthermore, jointly modeling spatial field goal percentage
and intensity can capture the correlation between player
skill and shooting habits. Common intuition that play-
ers will take more shots from locations where they have
more accuracy is missed in our treatment, yet modeling
this effect may yield a more accurate characterization of
a player’s habits and ability.

We also see potential spatio-temporal extensions of our
model. For instance, the per-game occurrence of shots over
the course of a season or the daily occurrence of crimes
within a city can be viewed as a spatio-temporal point pro-
cess. We can extend the LGCP-NMF framework by in-
troducing temporal correlation in the weights of the NMF
decomposition. This may decouple spatial patterns from
temporal patterns in the data, revealing interesting struc-
ture and offering a reduced representation.
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