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THE NATURAL HISTORY OF MODEL ORGANISMS

Peromyscus mice as a model
for studying natural variation
Abstract The deer mouse (genus Peromyscus) is the most abundant mammal in North America, and it

occupies almost every type of terrestrial habitat. It is not surprising therefore that the natural history

of Peromyscus is among the best studied of any small mammal. For decades, the deer mouse has

contributed to our understanding of population genetics, disease ecology, longevity, endocrinology

and behavior. Over a century’s worth of detailed descriptive studies of Peromyscus in the wild,

coupled with emerging genetic and genomic techniques, have now positioned these mice as model

organisms for the study of natural variation and adaptation. Recent work, combining field

observations and laboratory experiments, has lead to exciting advances in a number of fields—from

evolution and genetics, to physiology and neurobiology.

DOI: 10.7554/eLife.06813.001
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Introduction
Peromyscus is a genus of small North American

rodents known colloquially as deer mice (Emmons,

1840). When the first Peromyscus specimens were

shipped to European systematicists in the late 18th

century, their resemblance to the local wood

mouse prompted the designation Mus sylvaticus

(Hooper, 1968). At the time, little was known of

the diversity of rodents worldwide and most were

assigned the generic term Mus (Linnaeus, 1758).

The name Peromyscus (Gloger, 1841) was first

employed, albeit narrowly, in the middle of the

19th century. Quadrupeds of North America

(Audubon and Bachman, 1854) recognized only

three species now known to belong to Peromyscus,

and Mammals of North America (Baird, 1859)

included a mere 12. But by the turn of the 20th

century, Peromyscus included 143 forms, 42 of

which represented monotypic or good biological

species (Osgood, 1909). The genus saw several

additional revisions throughout the 20th century as

North American mammalogy matured and natural

history collections expanded. Today 56

species are recognized, the most widespread

and diverse being Peromyscus maniculatus

(Musser and Carleton, 2005).

Thus, although not immediately appreciated,

Peromyscus includes more species than any other

North American mammalian genus and, apart

from Mus and Rattus, more is known concerning

its biology in the laboratory than any other group

of small mammals (Figure 1; King, 1968;

Kirkland and Layne, 1989). Several disciplines

including ecology, evolution, physiology, repro-

ductive biology and behavioral neuroscience

have all employed Peromyscus, inspiring its label

as ‘the Drosophila of North American mammalogy’

(Dewey and Dawson, 2001). Arguably, the

emergence of Peromyscus as a model system

was propelled by our cumulative knowledge of

its fascinating and varied natural history.

Distribution and habitat
‘Within the range of one species (maniculatus) it

is probable that a line, or several lines, could be

drawn from Labrador to Alaska and thence to

southern Mexico throughout which not a single

square mile is not inhabited by some form of this

species’ (Osgood, 1909).

Wilfred H Osgood asserted that some form of

Peromyscus had been trapped in nearly every

patch of North America ever visited by a mammal

collector. Members of the genus are distributed

from the southern edge of the Canadian Arctic to

the Colombian border of Panama (Figure 2).

Various demographic and biogeographic factors

(e.g., Pleistocene glacial and pluvial cycles, pop-

ulation expansions, mountain range elevations
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and sea-level changes) have influenced the

diversity and distribution of deer mice (Sullivan

et al., 1997; Riddle et al., 2000; Dragoo et al.,

2006; Kalkvik et al., 2012; López-González

et al., 2014). The result is a mosaic of widespread

and restricted species ranges shaped by both

dispersal and vicariance events. Our knowledge

of the distributions, home ranges and habitat

preferences of deer mice comes primarily from

the trapping data and field notes of early natural

historians (e.g., Sumner, 1917; Dice, 1931;

Blair, 1940, 1951). Osgood’s influential 1909

taxonomic revision was built on examinations of

more than 27,000 specimens from diverse

locales that were collected primarily by the US

Biological Survey. Today, more than 120,000

Peromyscus specimens are accessioned in

Natural History museums across North America

and the United Kingdom (Table 1). These invalu-

able collections document more than a century of

dynamic relationships between deer mice and

their environment. For example, by comparing

past and present-day collecting locales, shifts in

the distributions of deer mice have been linked to

climate change (Moritz et al., 2008; Yang et al.,

2011; Rowe et al., 2014), and morphological

analyses of these museum specimens reveal how

deer mice respond to changing environments

(Grieco and Rizk, 2010).

Although not strictly commensal, deer mice

(particularly in New England) do enter human

households and partake of their larders.

According to legend, Walt Disney drew inspiration

for Mickey Mouse from the ‘tame field mice’

(most likely Peromyscus leucopus) that would

wander into his old Kansas City animation studio

(Updike, 1991). Nevertheless, Peromyscus are

most commonly trapped in woodlands and

brushlands and are also found in tropical and

temperate rainforests, grasslands, savannas,

swamps, deserts and alpine habitats (Figure 3;

Baker, 1968). Local adaptation to these various

environments has been the subject of much

recent inquiry (e.g., Linnen et al., 2013;

Natarajan et al., 2013; MacManes and Eisen,

2014), and the detailed cataloguing of pheno-

typic diversity by early naturalists inspired much

of this work. However, we still require a more

complete understanding of ecological diversity

across the entire genus, as well as an enlightened

view of phylogenetic relationships informed by

whole-genome sequences (see Box 1).

Adaptation to mountains, cities
and deserts
Among North American mammals, the deer mouse

is unparalleled in its ability to colonize an impressive

array of habitats. The remarkable elevational range

Figure 1. Simplified phylogeny depicting the relationships among muroid rodent model organisms. Peromyscus

belong to the Cricetidae family, which includes voles (Microtus), hamsters (Mesocricetus), and New World rats and

mice. Old World rats and mice belong to the Muridae family, which include the familiar laboratory rat (Rattus

norvegicus) and mouse (Mus musculus). Muridae and Cricetidae diverged roughly 25 million years ago. Schematic

based on based on phylogeny data from Steppan et al. (2004). Image credit, Nicole Bedford and Hopi Hoekstra.

DOI: 10.7554/eLife.06813.002
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of one subspecies (P. m. sonoriensis) stretches from

below sea level in Death Valley to above 4300

meters in the adjacent White and Sierra Nevada

mountain ranges (Hock, 1964). The ability of

deer mice to colonize and thrive in low-oxygen

environments is due, in part, to standing genetic

variation in globin genes (Snyder, 1981; Natar-

ajan et al., 2015). Storz and colleagues (2007,

2009) pinpointed several amino acid substitutions

that confer high hemoglobin-O2 affinity and

better aerobic performance at high altitudes.

Functional analyses have since identified how

Figure 2. North American distributions of eight Peromyscus species currently maintained as outbred laboratory

stocks (based on data from Hall, 1981). Some ranges are narrow and others are extensive, with many overlapping to

a large extent. Simplified tree indicating phylogenetic relationships among taxa is shown; branch lengths are

arbitrary (based on data from Bradley et al., 2007). The most widespread and ecologically diverse group is also the

best represented in the laboratory: six P. maniculatus subspecies are maintained in laboratories across the United

States. Collecting localities of colony founders are indicated by numbered squares (see also Table 2). Image credit,

Nicole Bedford and Hopi Hoekstra.

DOI: 10.7554/eLife.06813.003

Table 1. Museums with the largest collections of Peromyscus specimens

Collection Location No. specimens

Smithsonian National Museum of
Natural History

Washington, DC 38,406

Museum of Vertebrate Zoology Berkeley, CA 34,131

American Museum of Natural History New York, NY 19,234

Field Museum Chicago, IL 8939

Museum of Comparative Zoology Cambridge, MA 7754

Canadian Museum of Nature Ottawa, ON 6315

Academy of Natural Science Philadelphia, PA 2425

Natural History Museum London, UK 2238

DOI: 10.7554/eLife.06813.004

Bedford and Hoekstra. eLife 2015;4:e06813. DOI: 10.7554/eLife.06813 3 of 13

Feature article The natural history of model organisms | Peromyscus mice as a model for studying natural variation

http://dx.doi.org/10.7554/eLife.06813.003
http://dx.doi.org/10.7554/eLife.06813.004
http://dx.doi.org/10.7554/eLife.06813


precise mutations, and interactions among muta-

tions, affect hemoglobin-O2 affinity, demonstrat-

ing that the adaptive value of a given biochemical

substitution depends both on the local environ-

ment and the genetic background in which it

arises (Natarajan et al., 2013).

The process of adapting to urban environ-

ments also leaves its mark on the genome

(Pergams and Lacy, 2008; Munshi-South and

Kharchenko, 2010; Munshi-South and Nagy,

2014). By comparing the brain, liver and gonad

transcriptomes of urban and rural populations of

P. leucopus, Harris et al. (2013) identified

several genes associated with metabolism and

immune function exhibiting signatures of selec-

tion in New York City’s parklands. Similarly,

MacManes and Eisen (2014) identified renal

transcripts related to solute and water balance

experiencing purifying selection in the desert-

adapted species, Peromyscus eremicus. Further

study of these candidate genes will determine

their role in adaptation to new or extreme

environments.

Diet and predators
Generally deer mice are granivores, feeding

primarily on seeds, but fruits, fungi, green

vegetation and insects have been found among

their stomach contents and in the nest cavities of

their burrows (Gentry and Smith, 1968; Wolff,

1985). However, some species have evolved

seasonally specialized diets. In the winter, Per-

omyscus melanotis prey almost exclusively on

monarch butterflies that roost in Mexico’s central

highlands (Brower et al., 1985). Moreover, on

a remote island in British Columbia, Peromyscus

keeni feast on auklet eggs during the seabird

breeding season (Drever et al., 2000). Deer mice

are themselves common prey, contributing to the

diets of many predators such as weasels, skunks,

lynx, bobcats, foxes, coyotes, hawks and owls

(Luttich et al., 1970; Bowen, 1981;Montgomery,

1989; Van Zant andWooten, 2003). Indeed, avian

predation imposes strong selective pressure for

cryptic coloration in Peromyscus—a classic exam-

ple of local adaptation (Vignieri et al., 2010;

Linnen et al., 2013).

Parasites and disease
The diversity of parasites is documented for only

a few Peromyscus species, and very little is known

of the ecological factors that influence infection

dynamics. Common internal parasites include

pentastomid larvae, cestode tapeworms, nemat-

odes and trematodes (Whitaker, 1968; Pedersen

and Antonovics, 2013). External parasites include

Figure 3. The ecology of Peromyscus varies considerably both within and among species. (A) The forest-dwelling

deer mouse, P. maniculatus nubiterrae, perches high on a tree branch in Southwestern Pennsylvania. (B) The beach

mouse, P. polionotus phasma, takes shelter among the dune grasses on Florida’s Atlantic coast. (C) Its mainland

counterpart, the oldfield mouse, P. polionotus sumneri, is typically found in fallow fields and is sympatric with the

cotton mouse, P. gossypinus (D), which occupies adjacent stands of long leaf pine. Image credits: A, Evan P

Kingsley; B, JB Miller; C, D, Nicole Bedford.

DOI: 10.7554/eLife.06813.005
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lice, mites, fleas and ticks (Whitaker, 1968), the

latter two being vectors of plague and Lyme

disease, respectively (Allred, 1952; Burgdorfer

et al., 1982; Gage and Kosoy, 2005).

As a natural reservoir for Borrelia burgdorferi—the

bacterial agent of Lyme disease—Peromyscus is

the subject of much research on the pathogenesis

and transmission of the disease (Bunikis et al.,

2004; Ramamoorthi et al., 2005; Schwanz et al.,

2011; Baum et al., 2012). Peromyscus also fea-

tures in ecological modeling efforts to determine

how the diversity of the tick host community

impacts disease risk (LoGiudice et al., 2003,

2008). One hypothesis for the alarming recent

expansion of Lyme disease is that habitat frag-

mentation associated with human development

favors deer mouse populations at the expense of

other tick hosts (e.g., squirrels and shrews) that are

poor reservoirs for the disease (LoGiudice et al.,

2003; Schwanz et al., 2011). Peromyscus is also

a notorious carrier of the Sin Nombre hantavirus,

responsible for the deaths of 12 people in the

Four Corners area of the southwestern United

States in 1993.

Longevity
Mortality in natural populations is incredibly high

and driven by a combination of factors including

limited food supply, competition for territories

and predation (Bendell, 1959). As such, most

Peromyscus are thought to live less than a year

in the wild (Terman, 1968). However, early

investigators noted substantially longer natural

lifespans in their laboratory colonies (Sumner,

1922; Dice, 1933). With a twofold difference in

life expectancy, Sacher and Hart (1978) pro-

posed P. leucopus and Mus musculus as a lon-

gevity contrast pair. P. leucopus—which lives up

to 8 years and may remain fertile for 5—produces

fewer reactive oxygen species, exhibits enhanced

antioxidant enzyme activity and less oxidative

damage to lipids relative to the short-lived (~3.5
years) laboratory mouse (Sohal et al., 1993;

Shi et al., 2013). Measuring the biochemical

correlates of longevity in Peromyscus has been

integral to providing support for the oxidative

stress theory of aging (Ungvari et al., 2008).

Life history
The timing of life history events in Peromy-

scus—well documented from field and laboratory

studies alike—is highly variable both within and

among species. Yet studies contrasting the

reproductive and developmental patterns of wild

and domesticated deer mice have found few

significant differences (Millar, 1989; Botten

et al., 2000). Here, we highlight life history traits

in P. maniculatus, the most commonly used

laboratory species. Gestation ranges from 21 to

27 days (average 23.6) and average litter size is

4.6 pups (Millar, 1989). Juveniles first leave the

nest between 14 and 16 days of age (Vestal

et al., 1980) and become independent of their

mother between 18 and 25 days (Millar, 1989).

Box 1. Priorities for Peromyscus
research

Discovering as yet untapped ecological diversity

Much of our understanding of Peromyscus biology comes

from studies of two ubiquitous species that have proven

amenable to laboratory life—P. maniculatus and P.

leucopus. However, most Peromyscus species remain

comparatively understudied, particularly in Central Amer-

ica and Mexico where taxonomic diversity and endemism

(i.e., where species are unique to a given geographic

location) is greatest.

Sequencing more Peromyscus genomes and revising

their phylogeny

A comprehensive phylogeny based on genome-wide

DNA sequences would greatly facilitate the comparative

approaches that are the unique advantage of the

Peromyscus system. An annotated genome assembly is

currently available for P. maniculatus bairdii (Pman_1.0,

GenBank assembly accession GCA_000500345.1) and

draft sequences are available for P. californicus, P.

leucopus and P. polionotus (Baylor College of Medicine,

www.hgsc.bcm.edu/peromyscus-genome-project). Sev-

eral more Peromyscus genomes are being sequenced, but

still more are needed.

Identifying where Peromyscus can complement bio-

medical studies of other laboratory species

The genetically diverse Peromyscus could be used more

widely in biomedical research than previously thought.

Indeed, certain aspects of human biology—including

aging, epigenetics, retinal development and hematolo-

gy—have been suitably modeled in Peromyscus (e.g.,

Ungvari et al., 2008; Shorter et al., 2012; Arbogast

et al., 2013; Sun et al., 2014).

DOI: 10.7554/eLife.06813.006
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Captive females give birth to their first litter, on

average, at 84 days (Haigh, 1983), but males are

capable of siring offspring several weeks earlier.

The actual timing of sexual maturation in the

wild, however, is often dictated by population

density, food availability and season. In response

to short day length, many species exhibit

seasonal gonadal regression (Trainor et al.,

2006), increased aggression (Trainor et al.,

2007), impaired spatial memory (Workman

et al., 2009) and enhanced immune function

(Prendergast and Nelson, 2001). As such,

Peromyscus has emerged as a model system for

the study of photoperiodism (i.e., the ability to

seasonally modulate energetic demands by

tracking day length changes). Such studies have

been particularly fruitful for understanding the

mechanistic basis of gene by environment inter-

actions. For example, day length can reverse the

behavioral action of the hormone estradiol by

determining which estrogen receptor pathway is

expressed and consequently activated (Trainor

et al., 2007). While life history traits are strongly

affected by environmental cues, substantial ge-

netic variation in the neuroendocrine pathways

that control reproductive timing also exists, as

demonstrated by selection line experiments with

photoperiod responsive and nonresponsive

P. leucopus (Heideman et al., 1999; Heideman

and Pittman, 2009).

Mating system and parental care
While the majority of Peromyscus species are

promiscuous, monogamy has independently

evolved at least twice in the genus (Turner

et al., 2010). Both Peromyscus californicus

(Gubernick and Alberts, 1987; Ribble, 1991)

and Peromyscus polionotus (Smith, 1966;

Foltz, 1981) are socially and genetically monog-

amous, and both males and females contribute to

the care of offspring. P. californicus, in particular,

has become an important neurobiological model

for the study of male parental care (Bester-

Meredith et al., 1999; Trainor et al., 2003; Lee

and Brown, 2007; de Jong et al., 2009, 2010).

As a complement, the ability of monogamous

P. polionotus to hybridize with promiscuous

P. maniculatus allows geneticists to identify the

genetic basis of alternate mating systems and

their associated phenotypes, from genomic

imprinting (Vrana et al., 2000) to parental

investment and reproductive traits (e.g., Fisher

and Hoekstra, 2010).

Rosenfeld (2015) argues that parental and

social behaviors are particularly vulnerable to

endocrine disruption, as these traits are de-

pendent upon the organizational and activational

effects of androgens and estrogens. Mating

system variation between closely related species

of deer mice provides an opportunity to test this

hypothesis. P. maniculatus males exposed to the

endocrine disrupting compound bisphenol A

(BPA) during development displayed reduced

Video 1. Innate burrowing behavior in Peromyscus

can be directly observed in a laboratory setting. Here,

P. polionotus is busy constructing the long entrance

tunnel of its complex burrow. Video credit, Nicole

Bedford and Hopi Hoekstra.

DOI: 10.7554/eLife.06813.007

Figure 4. Genetic crosses between the pale beach

mouse P. polionotus leucocephalus (top row left) and

the darker mainland mouse P. p. polionotus (top row

right) result in first-generation F1 hybrids, all with

intermediate coloration (second row). Intercrosses

between F1 hybrids produce a variable F2 generation,

showing a continuous distribution of pigmentation

phenotypes ranging from light to dark (third and

fourth rows; Steiner et al., 2007). This segregation

pattern—initially described by Francis Sumner—is

among the earliest empirical evidence that several

discrete loci may collectively contribute to a quantitative

trait (Dobzhansky, 1937; see also Box 1). Image credit,

Nicole Bedford and Hopi Hoekstra.

DOI: 10.7554/eLife.06813.008
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spatial learning and exploratory behavior—traits

known to be associated with male–male compe-

tition for mates (Galea et al., 1996; Jašarević

et al., 2011). However, these behaviors—which

are not subject to sexual selection in fema-

les—were unaffected in BPA-exposed females.

By contrast, sexual selection favors the evolution

of mate guarding and territorial behavior in

monogamous males, and it is these traits (rather

than spatial learning or exploratory behavior) that

are compromised by endocrine disruption in

P. californicus (Williams et al., 2013).

Home building
Behavioral genetics studies have historically been

restricted to a handful of genetic model organ-

isms that display behaviors of unclear ecological

relevance (Fitzpatrick et al., 2005). Sufficient

resources are now available—from a medium-

density genetic linkage map (Kenney-Hunt et al.,

2014) to draft genome sequences (Baylor

College of Medicine, Peromyscus Genome Proj-

ect)—that we can attribute natural variation in

Peromyscus behavior to specific genetic variants.

For instance, P. maniculatus and P. polionotus

display considerable differences in stereotyped

burrowing behavior. P. maniculatus digs short,

simple burrows in contrast to the long, complex

burrows constructed by P. polionotus that consist

of an entrance tunnel, nest chamber and escape

tunnel (Dawson et al., 1988; Weber et al.,

2013). Remarkably, mice raised in the laboratory

for several generations recapitulate the species-

specific burrow architectures observed in nature

(Video 1). Furthermore, the complex burrows of

P. polionotus are derived (Weber and Hoekstra,

2009) and likely evolved through changes at only

a handful of genetic loci, each affecting distinct

behavioral modules (i.e., entrance tunnel length

and escape tunnel presence; Weber et al.,

2013). Next steps include isolating genetic

variants, understanding their effects on the

neural circuitry underlying burrowing behavior

and quantifying the adaptive value of burrowing

in the wild.

Pigmentation
Among the several cases of adaptive phenotypic

variation in Peromyscus, perhaps the most

obvious is coat coloration. Recent advances

Box 2. Peromyscus and the history
of evolutionary thought

The work of early Peromyscus biologists (particularly

Francis B Sumner) informed influential thinkers in pop-

ulation genetics and evolutionary biology, such as Sewall

Wright, Theodosius Dobzhansky and JBS Haldane. Since

most early 20th century geneticists came from experi-

mentalist backgrounds, many turned to naturalists for data

from wild populations (Provine, 1986). At the time,

Sumner’s work on geographic variation in Peromyscus

represented one of the few major studies of evolution in

natural populations. As such, Wright closely followed

Sumner’s analysis of phenotypic intergradation between

geographically contiguous P. maniculatus subspecies in

California (Sumner, 1918). Wright concluded that the

observed quantitative differences in coat color were

determined by the accumulation of several discrete (i.e.,

Mendelian) factors (Wright, 1932). The question of

whether continuous (or quantitative) traits are subject to

the same rules of inheritance as discrete characters was

central to the Modern Evolutionary Synthesis.

Between 1914 and 1930, Sumner carefully measured

several quantitative traits—most notably coat color—that

varied among geographically distinct subspecies of

Peromyscus, which he then crossed in the laboratory

(Figure 4; Sumner, 1930). Dobzhansky (1937) high-

lighted these data as empirical support for the multiple

gene hypothesis for the inheritance of quantitative traits.

Later, Haldane (1948) applied a theoretical model to the

gradient of increasing pigmentation observed in P.

polionotus populations from coastal to inland Florida

(Sumner, 1929). From these data, he estimated the local

strength of selection acting on a putative pigmentation

locus in the wild—the dominant white-cheek character

(Wc) identified by Blair (1944).

Peromyscus also featured in Dobzhansky’s studies of

reproductive isolation. Certain P. maniculatus subspecies

with overlapping geographic distributions are neverthe-

less separated by habitat, often with one subspecies

inhabiting prairie, open fields or sandy lake beaches, and

the other being exclusively forest-dwelling (Dice, 1931).

These sub-specific forms readily produce viable and fertile

offspring in the laboratory yet remain reproductively

isolated in the wild—a prime example of ecological

isolation (Dobzhansky, 1937). Peromyscus has thus been

a cornerstone of evolutionary biology for nearly a century.

These and other studies drew the attention of biologists in

many fields, launching the many, varied Peromyscus

research programs we see today.

DOI: 10.7554/eLife.06813.010
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have identified not only the genes, but also

the specific mutations, leading to local variation

in coat color. Beach mice (P. polionotus leuco-

cephalus) living on the coastal sand dunes and

barrier islands of Florida are considerably

paler than their inland counterparts (P. p.

subgriseus) that inhabit dark, loamy soils

(Figure 4; Howell, 1920; Sumner, 1929). For

beach mice on Florida’s Gulf Coast, light

coloration is due, in part, to a fixed single

nucleotide polymorphism (SNP) in the

melanocortin-1 receptor (Mc1r) coding region

(Hoekstra et al., 2006). However, this Mc1r

allele does not contribute to light pelage in

Florida’s Atlantic coast mice, suggesting that

the two populations converged on light color-

ation independently (Steiner et al., 2007).

Similarly, backgroundmatching in P. maniculatus

of the Nebraska Sand Hills affords a strong

selective advantage against avian predators

(Linnen et al., 2013). Yet, cryptic coloration is

a complex phenotype composed of multiple

component traits (i.e., tail stripe, dorsal-

ventral boundary, ventral color, dorsal bright-

ness and hue). Linnen and colleagues (2013)

identified multiple distinct mutations within

the Agouti locus, each associated with a differ-

ent color trait that independently affected

fitness. Thus, parallel studies of Peromyscus

pigmentation nicely illustrate the marriage

between classical natural history studies and

modern molecular techniques, thereby pro-

viding new insights into the molecular basis

of adaptation.

Peromyscus in the laboratory
Francis Sumner, considered the grandfather of

Peromyscus biology (see Box 2), first demon-

strated the feasibility of the deer mouse as

a laboratory organism in the 1910s and 20s. He

famously built the first Peromyscus ‘mouse

house’ in what is now referred to as Sumner

Canyon at the Scripps Institution in La Jolla,

California. When his Peromyscus work at Scripps

was discontinued, Sumner bequeathed his stocks

to Lee R Dice at the University of Michigan who

honed the methods for generating and maintain-

ing Peromyscus colonies in the 1930s and 40s.

During this time, Dice began to catalogue single

factor genetic mutations in his stocks (e.g., gray,

dilute, epilepsy). These mice served as the

founding strains for the Peromyscus Genetic

Stock Center (PGSC) established in 1985 by

Wallace Dawson at the University of South

Carolina, which currently maintains wild-derived

stocks of six species, as well as 13 coat-color

mutants and four additional mutants on

P. maniculatus genetic backgrounds. Additional

wild-derived stocks are kept in individual labora-

tories (Table 2) and still more mutants have been

cryopreserved. The PGSC also maintains an

Table 2. Current laboratory colonies of Peromyscus

Species Year Source population Location

1 P. californicus insignis 1979–1987 Santa Monica Mts., CA PGSC

2 P. eremicus sp. 1993 Tucson, AZ PGSC

3 P. polionotus subgriseus 1952 Ocala National Forest, FL PGSC

4a P. maniculatus bairdii 1946–1948 Ann Arbor, MI PGSC

4b P. m. sonoriensis 1995 White Mtn. Research Station, CA PGSC

4c P. m. rufinus 1998 Manzano Mtn., NM UNM

4d P. m. nubiterrae 2010 Powder Mill Nature Reserve, PA HU

4e P. m. rufinus 2014 Mt. Evans, CO UIUC

4f P. m. nebrascensis 2014 Lincoln, NE UIUC

5 P. leucopus sp. 1982–1985 Linville, NC PGSC

6 P. gossypinus gossypinus 2009 Jackson County, FL HU

7 P. melanophrys xenerus 1970–1978 Zacatecas, Mexico UIUC

8 P. aztecus hylocetes 1986 Sierra Chincua, Mexico UIUC

The year and population from which the founders were collected are noted. Numbers refer to collecting localities

shown in Figure 2. PGSC: Peromyscus Genetic Stock Center; UNM: University of New Mexico; HU: Harvard

University; UIUC: University of Illinois at Urbana-Champaign.

DOI: 10.7554/eLife.06813.009
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extensive online reference library (http://stkctr.

biol.sc.edu) with more than 3000 citations.

While the genetic causes and phenotypic

consequences differ among strains, Peromyscus

colonies are invariably susceptible to inbreeding

depression, which necessitates their maintenance

as relatively outbred stocks (Lacy et al., 1996;

Joyner et al., 1998). Thus, although the deer

mouse is amenable to laboratory life, its

biology has not been purposely altered by

generations of inbreeding or artificial selec-

tion. Life history traits and even behaviors such

as burrow construction or ultrasonic vocaliza-

tion are generally preserved in laboratory

strains (Dawson et al., 1988; Millar, 1989;

Kalcounis-Rueppell et al., 2010). Thus, the

traits we scrutinize in the laboratory (e.g.,

aerobic performance, photoperiodism, mating

and parental behavior) are arguably faithful

representations of phenotypes in nature. The

ability to study genetically diverse, wild-

derived mice under controlled laboratory con-

ditions has opened up several constructive

research programs centered on understanding

the phenotypic consequences of natural

genetic variation.

Conclusions
The tradition of dissecting the genetic basis of

ecologically relevant traits in the laboratory

began in the early 20th century; in Peromy-

scus, this effort was lead by Francis Sumner

and continues today. In an era of high-

throughput sequencing and expanding trans-

genic technologies, our concept of the genetic

model organism is rapidly changing. We can

now widen our focus to include the diverse and

naturally evolving species that may further our

understanding of life outside the laboratory.

The emergence of Peromyscus as a model

system has been largely driven by the wealth

of natural history information available for the

genus. Indeed, deer mice form the foundation

of much of our understanding of the biology of

small mammals. The multitude of ecological

conditions to which deer mice have adapted

has contributed to an impressive array of

biological diversity within a single, ubiquitous

genus. While this radiation is fascinating in its

own right, Peromyscus is arguably foremost

among nascent model systems that may aptly

model the genetic complexity of the human

condition, which too has long been shaped by

natural selection in the wild. We hope that the

continued development—primarily through

the growth of genetic and genomic resources—of

this model system will galvanize research in all

corners of biology.
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