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ABSTRACT
With thousands of learners watching the same online lec-
ture videos, analyzing video watching patterns provides a
unique opportunity to understand how students learn with
videos. This paper reports a large-scale analysis of in-video
dropout and peaks in viewership and student activity, using
second-by-second user interaction data from 862 videos in
four Massive Open Online Courses (MOOCs) on edX. We
find higher dropout rates in longer videos, re-watching ses-
sions (vs first-time), and tutorials (vs lectures). Peaks in re-
watching sessions and play events indicate points of interest
and confusion. Results show that tutorials (vs lectures) and
re-watching sessions (vs first-time) lead to more frequent and
sharper peaks. In attempting to reason why peaks occur by
sampling 80 videos, we observe that 61% of the peaks ac-
company visual transitions in the video, e.g., a slide view to
a classroom view. Based on this observation, we identify five
student activity patterns that can explain peaks: starting from
the beginning of a new material, returning to missed content,
following a tutorial step, replaying a brief segment, and re-
peating a non-visual explanation. Our analysis has design
implications for video authoring, editing, and interface de-
sign, providing a richer understanding of video learning on
MOOCs.

Author Keywords
Video analysis; in-video dropout; interaction peaks; online
education; MOOC; peak detection.

ACM Classification Keywords
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Multimedia Information Systems: Video

INTRODUCTION
MOOCs often include hundreds of pre-recorded video clips.
Recent research on the first edX course, 6.002x, has shown

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
L@S 2014, March 04–05 2014, Atlanta, GA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2669-8/14/03 $15.00.
http://dx.doi.org/10.1145/2556325.2566239

that learners spend a majority of their time watching videos
[2, 23], but little research has been aimed at the click-level in-
teractions within MOOC videos. With thousands of learners
watching the same online lecture videos, video analytics can
provide a unique opportunity in understanding how learners
use video content and what affects their learning experience.

This paper analyzes click-level interactions resulting from
student activities within individual MOOC videos, namely
playing, pausing, replaying, and quitting. We analyze video
player interaction logs from four MOOCs offered on the
edX platform to identify temporal interaction patterns at the
second-by-second level. Specific focus is given to 1) in-video
dropout rates and 2) peaks associated with re-watching ses-
sions and play events.

Video dropout, i.e., navigating away from a video before
completion, is a measure of engagement. With more engag-
ing videos students might stay until later in the video, result-
ing in lower dropout. Instructors using videos in their peda-
gogy need to know what aspects of their videos are the most
engaging or most widely viewed. While existing analytics
tools provide access to this data, they do not consider differ-
ent video kinds (lecture or tutorial) and presentation styles
(slides, head shot, etc.) specific to the educational context.

When a significant number of students interact with a com-
mon portion of a video, the resultant data can be binned to
highlight peaks in the video timeline. Peaks in viewership
and student activity can precisely indicate points of inter-
est for instructors and students. These spikes, hereinafter re-
ferred to as interaction peaks, can indicate student confusion,
introduction of important concepts, engaging demonstrations,
or video production glitches. We manually inspected 80
videos from our set to understand why these peaks occur. One
notable observation we made is that the peaks often coincide
with visual transitions in a video, such as switching from a
slide to a classroom view, or from handwritten notes to a soft-
ware screencast. Combining the interaction data with visual
content analysis, we identified five student activity types that
can lead to a peak.

This paper makes the following contributions:

• A first MOOC-scale in-video dropout rate analysis, finding
higher dropout rates in longer videos, re-watching students
(vs first-time watchers), and tutorials (vs lectures).



• A first MOOC-scale in-video interaction peak analysis,
finding more frequent and sharper peaks in re-watching
students (vs first-time watchers) and tutorials (vs lectures).

• Categorization of student activities responsible for a peak:
starting from the beginning of a new material, returning to
missed content, following a tutorial step, replaying a brief
segment, and repeating a non-visual explanation.

• Data-driven design implications for video authoring, edit-
ing, and interface design in the context of MOOCs that re-
flect the temporal interaction patterns of students.

In the remainder of the paper, we discuss related work and our
analytical measures and methods. We then report results from
the in-video dropout and interaction peak analysis, and intro-
duce five activity categories that might be a cause of a peak.
We present design implications for better video learning ex-
periences, and conclude with limitations and future work.

RELATED WORK
Existing research on video engagement analysis has involved
three general methods: implicit user data (interaction log),
explicit user data (clicking the “important” button, voting),
and content analysis (visual, speech, or transcript analysis).

First, implicit user data has the benefit of requiring no ad-
ditional action on user’s part, because this data is automat-
ically captured by the system while users naturally interact
with videos. Shaw and Davis advocate using actual view-
ership data in modeling user interest [24]. Existing systems
leverage scrubbing [29], zooming and panning [3], and play-
ing and pausing [4] activities. SocialSkip [4] demonstrates
that modeling users’ video interactions can accurately cap-
ture user interest in information retrieval tasks. While our
work adopts the idea of using video clickstream data from
the literature, our analysis differs in that it uses large-scale
interaction data from MOOCs, and that it focuses on in-video
dropout and interaction peaks in the educational context.

Secondly, explicit user data can be collected by asking users
to make a specific action around their points of interest. Pre-
vious research used user rating data [20] or annotations [24].
CLAS [21] is a lecture video annotation tool where students
click a button when they find a part of the video important.
The system aggregates responses from all students in a class
to visualize important points. Deploying CLAS-like systems
at MOOC-scale will provide useful complementary data to
implicit user logs.

Content-based video analysis [25] has long been an active re-
search area. Previous research uses image analysis and com-
puter vision to extract keyframes [8], shot boundaries [18], or
visual saliency [11]. We add a simple pixel difference metric
to our analysis, and plan to incorporate more advanced tech-
niques in future work. In summary, to the best of our knowl-
edge, this work is a first MOOC-scale analysis for videos that
combines interaction data and content-based analysis.

Tools for temporal pattern analysis
Understanding temporal patterns in large-scale video data re-
quires powerful computational and visual tools. We present
existing research and systems for each.

Temporal pattern analysis of time-series data inspired the
analytical methods used in this work. Kleinberg [16] in-
troduced a burst model for detecting meaningful structure
in documents, and Jones and Diaz [12] applied this model
among other temporal features to identify temporal patterns
in search queries. Using search query and social media
streams, researchers categorized search query patterns and
trending events based on the shape of spikes [17, 13]. This
paper applies similar techniques to analyze video interaction
patterns, which is enabled by large-scale student data col-
lected from MOOCs.

Video analytics platforms can enable the visual sensemaking
of large-scale data. General purpose video platforms such
as Youtube provide advanced analytics [9, 28] for content au-
thors. These services include dashboards showing viewership
graphs over time for a video, and suggest focusing on rises
and dips. Our analysis considers more in-depth activity data
such as play, pause, and skip events on the player, and content
specific to educational videos, such as video kinds (lecture or
tutorial), presentation styles (slide, head shot, etc.), and visual
transitions between the presentation styles.

VIDEO INTERACTION DATASET
Our dataset consists of interaction logs from the edX video
player over four courses offered in Fall 2012. Each log entry
contains user name, time of access, video ID, event type, and
internal video time, as documented in [7]. A play event is
created when the user clicks the play button on the player
or scrubs the playhead to a new position while the video is
playing. A pause event is created when the user clicks the
pause button or scrubs the playhead to a new position when
the video is paused.

Table 1 summarizes information on the four courses and their
videos. We chose the courses offered at roughly the same
time to minimize the effect of changes in the edX platform,
logging method, and student population. They span differ-
ent institutions, subject fields (computer science, statistics, or
chemistry), and recording styles. One of the authors man-
ually labeled video types and presentation styles for all the
videos in the video set. Video types represent a pedagog-
ical purpose of a video, including introduction, tutorial, or
lecture. Presentation styles represent the visual format of
instruction: Powerpoint-style slide, code editor, head shot,
classroom recording, and handwritten tablet annotations sim-
ilar to those used in Khan Academy videos.

Data Processing Pipeline
Our data processing pipeline first reconstructs the watching
history of each viewer and then aggregates the per-viewer
history data to produce activity statistics for each second-
long segment of the video. Specifically, the first step converts
raw interaction log entries into watching segments. A watch-
ing segment keeps track of all continuous chunks of a clip
watched by a user. It includes start and end time for every



Course Subject University Students Videos Video Length Processed Events
6.00x Intro. CS & Programming MIT 59,126 141 7:40 4,491,648
PH207x Statistics for Public Health Harvard 30,742 301 10:48 15,832,069
CS188.1x Artificial Intelligence Berkeley 22,690 149 4:45 14,174,203
3.091x Solid State Chemistry MIT 15,281 271 6:19 4,821,837
Total 127,839 862 7:46 39,319,757

Table 1. Overview of the four edX courses in our dataset offered in Fall 2012. “Students” refers to the number of students who watched at least one
video, “Videos” is the number of all video clips posted, “Video Length” is the mean duration, and “Processed Events” is the number of total play and
pause events captured by the video player.

watched segment. The second step uses the segment infor-
mation to create second-by-second counts of viewers, unique
viewers, re-watching sessions, play events, and pause events.
Re-watching sessions only consider a student watching a seg-
ment of a video twice or more. Play and pause events in-
crement a bin count if the event is triggered within that bin.
Finally, such information can be queried upon request for sta-
tistical analysis and further processing.

The data processing module was implemented using Insights,
the open source learning analytics library [6], which supports
streaming events over SOA (Service-Oriented Architecture)
as well as handling requests for query and view. It also uses
Python, MongoDB, and the d3 visualization library [1].

ANALYSIS 1. IN-VIDEO DROPOUT
A dropout rate is defined by the percentage of students
who start watching a video but leave before the video fin-
ished playing entirely. The dropout rate can reveal the fac-
tors that affect students to leave a video, helping video au-
thors to consider them. Also, comparing this rate between
videos can illustrate the relative difference in engagement.
This analysis could provide valuable feedback to content cre-
ators whose courses are rapidly moving toward flipped envi-
ronments where content consumption occurs online. To our
knowledge, no previous work has studied the dropout rates
within individual MOOC videos.

Method
For a video of length n seconds, let viewcount(t) denote the
number of unique viewing sessions that include this second
for each video. We compute the dropout rate of all videos in
our set as: 1.0 - viewcount(n) / viewcount(0). Note that all
edX videos automatically start playing once the page is open,
which might affect the results.

Results
On average across all videos, about 55.2% of viewing ses-
sions (std=14.7) were dropouts before the end. Out of the
55.2% that dropped out, 36.6% (std=11.1) occurred within
the first 3% of the video length. This means that 18.6% of the
dropouts occur during the rest of the length. It is notable that
the dropout rate changes quite dramatically at the beginning
of a video.

Why do so many students leave the video very early on? The
student might have left the video shortly after it (auto-)started,
or the auto-play feature in the edX video player inadvertently
started a video. Misleading video titles or course navigation

Figure 1. Longer videos exhibit higher dropout rates. Our linear regres-
sion model uses the log-transformed video length (x-axis) to predict the
dropout rate (y-axis). The model fits the data well with r=0.55 with 95%
CI = [0.50, 0.59].

interfaces might be another reason. A tip for content own-
ers on YouTube analytics [9] states that viewers leaving be-
fore 5-10 seconds probably means the video keyword or title
might not accurately represent the content. Additional anal-
ysis looking at the common page navigation paths of these
early-dropping students might reveal issues with the video ti-
tle or course navigation structure.

The dropout rate increases with video length (Figure 1). Lin-
ear regression shows that the logarithmic value of the video
length significantly predicted the dropout rate (b = 0.13,
t(848) = 32.22, p <001). The overall model with the loga-
rithmic value of the video length also predicted the dropout
rate very well (adjusted R2 = 0.55, F(1, 848) = 1038, p
<0.001). This suggests that for a five-minute video, the pre-
dicted dropout is 53% (35% in the first 3%), whereas for a
20-minute video the rate goes up to 71% (47% in the first
3%). With longer videos, students might feel bored due to a
short attention span or experience more interruption.

A recent analysis of edX data [10] shows that learner engage-
ment drops significantly if the video length is longer than
6 minutes. Their analysis differs from ours in that they use
viewing session length as engagement, as opposed to second-
by-second dropout rates. Our analysis can provide additional
evidence to the finding that shorter videos are more engaging
because more students would drop out.

Another factor that might affect the dropout rate is whether
the student watches the video for the first time. Students that
are re-watching a video might have more specific information



Figure 2. Re-watching students tend to drop out more, which might
mean that re-watching students watch videos more selectively with a
more specific need.

needs and selectively watch a video. Our analysis verifies this
assumption as can be seen in Figure 2: the dropout rate of
re-watchers (78.6%, std=54.0) was much higher than that of
first-time watchers (48.6%, std=34.0). A Mann-Whitney’s U
test shows a significant effect (Z = -30.7, p <0.001, r = 0.74).

Finally, we look at how video production types affect the
dropout rate by comparing lecture videos and tutorial videos.
Tutorial videos showed higher dropout rate (61.3%, std=38.3)
than lecture videos (54.1%, std=36.3). A Mann-Whitney’s
U test shows a significant effect (Z = -5.29, p <0.001, r =
0.18). One explanation is that lecture videos contain first-
time introductions to concepts and sequential flow, whereas
tutorial videos contain step-by-step instructions students can
selectively review and follow along. The mean video length
was not significantly different between the two video types (p
>0.05), limiting the effect of video length in the result.

ANALYSIS 2. INTERACTION PEAKS
In addition to staying in a video or leaving, students also ac-
tively play, pause, or skip the video to learn at their own pace.
Uncovering meaningful patterns from these natural learning
activities can provide an in-depth look at video learning on
MOOCs. The temporal profiles of such patterns reveal time-
specific interest, which might indicate student confusion, pac-
ing issues in the video, useful information presented visually,
or important concepts. Course instructors can refer to such
information to attend to specific parts of a video. Comparing
peak profiles between pedagogically different videos (lecture
vs tutorial) can reveal the difference in students’ consump-
tion patterns, while comparison between watching contexts
(first-time vs re-watching) might highlight different purposes
in watching videos.

We investigate temporal peaks in the number of interaction
events in particular, where a significantly large number of stu-
dents show similar interaction patterns during a short time
window. We use the following two peak definitions.

• A re-watching session peak is a sudden spike in the num-
ber of re-watching sessions during a period inside a video.
We exclude first-time sessions because they tend to be

Figure 3. Even after aggregating data into bins of one second, the data
is noisy (green curve). Kernel-based smoothing reduces noise in the data
and helps salient patterns stand out (black curve).

more sequential. We instead focus on non-sequential, ran-
dom access activities. Note that this measure is not per
unique student. A student repeatedly watching a part of a
video five times adds five to our measure.

• A play event peak is a sudden spike in the number of play
events on the player. These events occur when a student
clicks the play button or scrubs the playhead to a new posi-
tion. We ignore autoplay events at the beginning of a video
because they do not represent student-initiated activity.

Method
Raw watching session and interaction data are noisy (green
curve in Figure 3). Identifying peaks in such noisy data
both manually and automatically becomes difficult due to lo-
cal maxima and false peaks. Following the bin-summarize-
smooth framework [27], we first bin the data into one-second
segments, which simplifies the computation and visualiza-
tion. We then count all points in each bin to represent an
aggregate number of events in a bin. To fight the noise and
excessive variance in data and compensate for lost statistical
power, we then apply smoothing to the binned and aggregated
data (black curve in Figure 3). The smoothing technique we
use is lowess (locally weighted scatterplot smoothing) [5],
with the smoothing parameter of 0.02 after testing various
values. A kernel smoother such as lowess is simple and effi-
cient, works well with binned data [26], and is computation-
ally tractable.

After smoothing, we apply a peak detection algorithm to both
re-watching session counts and play event counts. The algo-
rithm we use is a variant of the TwitInfo [19] algorithm. It
uses a weighted moving average and variance to detect unusu-
ally large number of events in time-series data, which applies
well to the video context. We tested with different parameters
in the algorithm to fit the time scale of our analysis, which is
much shorter (the order of seconds and minutes) than what
TwitInfo dealt with (hours and days).

One reason for using both replay and play counts is that they
might capture different behaviors. We observe that video con-
tent includes both a time-specific event (e.g., a visual transi-
tion from a talking head to a slide) and a coherent segment
that spans a longer period of time (e.g., a two-minute long ex-
planation of a theorem). Play events capture a more precise



Figure 4. The location of a peak is determined by three time points (start,
peak, and end). Width, height, and area determine the shape, sharpness,
and intensity of the peak.

timing of an event in a video, generally resulting in sharper,
spiky peaks. They respond better to student activities at one-
second granularity. Re-watching session counts tend to cap-
ture segments that occur over a longer period of time better,
generally resulting in smoother, wider peaks.

When a re-watching session peak and a play event peak over-
lap, we note that they point to a single event. When two peak
windows overlap, we pick the replay peak because replay
counts are always higher than play counts, possibly resulting
in more informed peaks.

The features of a peak, such as width, height, and area, can
indicate the strength of students’ collective, time-specific in-
terest. We compare these features between video types and
student contexts. Previous work considered similar constructs
in modeling temporal profiles of search queries [12]. A peak
is characterized by descriptive properties as shown in Fig-
ure 4. It includes both start and end time markers, which de-
termine the width or time duration of a peak. The peak point
is the highest point between the [start, end] range, which de-
termines the height. Finally, the area under a peak is the sum
of event counts during the peak time window, which denotes
the relative significance of a peak against the entire video.
Multiple peaks of differing profiles might appear within a
video clip. In reporting height, width, and area, we normal-
ize the values by scaling between 0 and 1 to address high
variability in event counts and durations across videos. For
width, height, and area, we take a normalized range against
the video duration, the maximum number of events, and the
sum of all event counts, respectively.

Peak Profile Comparison
We now explore peak profiles for different video styles and
watching behaviors. Overall, the mean number of peaks in
a video was 3.7 (std=2.1). Of those, 2.2 (std=1.8) were re-
play peaks, and 2.3 (std=1.5) of them were play event peaks,
which includes 0.8 duplicate peaks per video (i.e., play and
replay peaks were overlapping). Considering that a mean
video length was 7.8 minutes, a peak is detected roughly ev-
ery two minutes in a video. Some videos exhibited as many as
11 peaks, while others did not show a notable peak. Table 2
summarizes the results in this section.

The mean width of a peak was 2.7% (std=3.5), and the me-
dian width was 9 seconds. This means that peaks in our anal-
ysis generally spanned less than 10 seconds including the rise
and fall, which can point to highly time-specific events in a
video. In the next section we attempt to explain what kind of
events might be responsible for a peak.

The mean of normalized peak height was 7.7% (std=10.4)
of the maximum height. This indicates that most peaks were
quite small when compared against the maximum value of the
measure. For play events, the maximum height was autoplay
events at the beginning of the video, which gives a practical,
comparative measure of the intensity of a peak. For example,
if 10,000 students watched a lecture video and a peak had
a height of 50%, this indicates that 5,000 more play button
clicks were made within the peak range than in the time span
just before and after the peak.

Finally, the mean of normalized peak area was 4.1%
(std=4.5). This value maps to the activity dominance of a
peak. A dominant single peak for a video might indicate that
the peak was the single most important point of interest in the
video. Conversely, a video with more peaks leaves relatively
smaller area for individual peaks.

lectures vs tutorials
Tutorial videos generated stronger and more numerous peaks
than lecture videos. The mean number of peaks in tutorial
videos was 4.1 (std=1.9), compared to 3.6 (std=2.0) in lecture
videos. A Mann-Whitney’s U test shows a significant effect
(Z = -2.6, p <0.01, r = 0.09). Furthermore, peaks in tutorial
videos were wider in width (Z = -3.1, p <0.001, r = 0.06),
taller in height (Z = -7.5, p <0.001, r = 0.13), and larger in
area (Z = -5.5, p <0.001, r = 0.10) than those in lectures.
Where does this difference come from?

Tutorial videos generally contain step-by-step instructions
about solving a problem or using a tool. Many students follow
along instructions from a tutorial at their own pace, and peaks
normally occur at the step boundary. For example, a statistics
course included a tutorial video on running a t-test using a
statistics software package. In many cases, peaks occurred
when the instructor issued commands in the tool or explained
a key step in the solution, which might indicate that students
re-watched these steps to make sure they follow the steps cor-
rectly. On the other hand, lecture videos are less segmented in
structure with more continuous flows. Our observations show
that peaks in lecture videos often relate to visual transitions
in the video, such as from a slide to a talking head, or expla-
nations of important concepts, such as introducing a theorem.
While these points of interest in lecture videos attract many
students to re-watch, the interaction peaks are not as sharp as
in tutorial videos.

first-timers vs re-watchers
Re-watching sessions generated stronger and more numer-
ous peaks than first-time sessions. The mean number of
peaks in re-watching sessions was 2.2 (std=1.7), whereas the
mean was only 1.0 (std=1.3) in first-time sessions. A Mann-
Whitney’s U test shows a significant effect (Z = -14.7, p
<0.001, r = 0.35). Furthermore, re-watching session peaks



Video Group All Lecture Tutorial First timers Re-watchers
Peaks per Video 3.7 3.6 4.1 2.2 1.0
Normalized Height 7.7% 7.1% 10.2% 1.5% 3.1%
Normalized Width 2.7% 2.6% 3.1% 3.2% 3.7%
Normalized Area 4.1% 3.9% 4.8% 4.1% 4.7%

Table 2. Peak profile comparison reporting average values across all peaks detected for each video group. Tutorial videos resulted in more peaks than
lecture videos. Likewise, re-watching sessions resulted in more peaks than first-time sessions. All differences between lecture and tutorial, and first time
and re-watcing were statistically significant.

Peak Category All Lec. Tut.
Type 1. beginning of new material 25% 30% 12%
Type 2. returning to content 23% 25% 15%
Type 3. tutorial step 7% 0% 30%
Type 4. replaying a segment 6% 7% 1%
Type 5. non-visual explanation 39% 38% 42%
Number of videos 80 61 19
Peaks per video 3.6 3.6 3.5

Table 3. Five student activity types that lead to a peak are shown, along
with their frequency distribution as manually labeled by the authors.
We sampled 80 videos and labeled each peak to one of the activity types.
Only Type 5 does not involve a visual transition.

were wider in width (Z = -3.9, p <0.001, r = 0.07), taller in
height (Z = -23.8, p <0.001, r = 0.45), and larger in area (Z =
-2.9, p <0.001, r = 0.05) than first-time ones.

First-time watchers might watch videos more sequentially,
because they want to master the material by watching through
the lecture before diving deeper into specific parts. When re-
watching, students tend to watch videos more selectively. It is
notable that differences in peak height show a much higher ef-
fect size than differences in width and area. This suggests that
students selectively pick parts to re-watch rather than watch
through sequentially.

ANALYSIS 3. FIVE CAUSES FOR PEAKS
The peak profile analysis explains what peaks look like and
how frequently they occur in different videos, but it does not
reveal why they occur. We introduce a categorization of stu-
dent activities surrounding a peak, by combining the peak
profile analysis with visual content analysis. While our cat-
egorization is not conclusive, it provides an explanation of
which semantic and contextual aspects of video might be re-
sponsible for a peak. This analysis suggests that no one rea-
son can explain all peaks, and that video instructors should
respond to each peak differently.

Our informal observations suggest that visual transitions in
the video are often associated with a peak. A visual tran-
sition is a change between presentation styles shown in a
video. Presentation styles in our video set are slide, code,
talking head, classroom view, studio view, Khan-style tablet,
and demo videos. Example transitions include changes from
a slide to a talking head, a code editor to a demo video, a lec-
ture podium view to a slide, etc. These transitions are often
added at the production stage by video engineers, who mostly
rely on their experiences to determine transition points. Our
definition of visual transitions does not include incremental
changes within a single style, e.g., an instructor typing in a

Figure 5. We visualize three streams of data to analyze interaction peaks
in MOOC videos. The top graph shows play events, the middle graph
shows re-watching sessions, and the bottom graph shows pixel differ-
ences over time. Detected peaks are marked with a gray point. In this
example, the detected peaks coincide with a spike in pixel differences,
which indicate a visual transition in video.

new line of code in the code editor, adding an underline to
highlight text, and walking a few steps in a classroom view.

Method
To explore the connection between visual transitions and in-
teraction peaks, we apply a visual analysis technique to com-
plement the log analysis. We use an image similarity metric
that computes pixel differences between two adjacent frames
to quantify the amount of visual changes in the video. Our
pipeline first samples a video frame every second, computes
the image similarity using the standard technique, Manhat-
tan distance, and finally stores the pixel distance value. We
visualize this data to aid the following categorization process.

We sampled 80 videos out of 862 (9.3%) while keeping the
balance between video lengths, lectures vs tutorials, and pro-
duction styles. This set included 20 videos from each course.

The categorization process involved two phases. In the first
phase, researchers watched the selected videos, especially
paying attention to the detected peaks. The goal was to con-
struct a set of categories for peaks, using the open card sort-
ing method [22]. As the researchers watched videos, they
grouped peaks into rough categories based on common prop-
erties, such as the existence of visual transitions before or
after a peak window. They discovered five groups in this gen-



Figure 6. This peak represents the start of a new concept. The instructor
started presenting a formal definition of a concept (admissibility) after
changing the slide. The peak occurred when this concept explanation
started.

erative process and named each. Three data streams were vi-
sualized to help with the categorization process, namely play
events (Figure 5 top), re-watching sessions (Figure 5 middle),
and the pixel differences (Figure 5 bottom). In the second
phase, a researcher labeled all peaks in the 80 videos to one
of the categories generated in the first phase.

Results
Overall, 61% of the categorized peaks involved a visual tran-
sition before, and/or after the peak. The categories, their de-
scriptions, and frequency are shown in Table 3. We now de-
scribe each student activity category in detail.

Type 1: starting from the beginning of a new material
In this category (25% of all peaks), students browse to the
beginning of a new material, such as a new concept, exam-
ple, or theorem. A peak caused by such activity includes a
visual transition that precedes the peak. This indicates that
students are interested in the content that comes after the vi-
sual transition, which is often where new units start. Students
might want to review a confusing concept after mastering ear-
lier ones, or re-visit a theorem proof sequence. These peaks
might indicate good points to cut the longer video into shorter
segments, because they correspond to the beginning of a se-
mantically different unit. Figure 6 shows an example from an
AI course where a formal description of a concept (admissi-
bility) started after presenting a motivating idea.

Type 2: returning to missed content
In this category (23% of all peaks), students return to visual
content that disappears shortly after. A peak caused by such
activity includes a visual transition that follows shortly after
the peak. Often, the content that disappears is slides, code
snippets, or board notes, but not talking heads or zoomed out
views. An interpretation is that there is a pacing issue in the
video. The visual transition was maybe too abrupt, not giving
enough time for students to fully digest the content that dis-
appeared. They need more time on the material, but the video
view suddenly changed and prevented access to the material.

Figure 7. This peak represents students returning to see the code snip-
pet slide that disappeared after transitioning into the talking head. An
abrupt transition might not give students enough time to comprehend
what’s presented.

Figure 8. This peak represents students returning to a procedural step
demonstrating how to run a command inside a statistics package. Stu-
dents are more interested in following along the steps than the result
afterward, probably because they can see the same result in their own
application as well.

Also, note that what is shown during this peak type is often
the final content that is complete, such as fully working code
or a complete bullet point list. Many instructors make slides
that advance progressively instead of showing everything at
once to keep students’ attention focused. When re-watching,
students might want to skip to the final result without repeat-
ing all intermediate steps. Figure 7 shows an example where
the code snippet suddenly disappeared and transitioned into
the instructor talking.

Type 3. following a tutorial step
This category (7% of all peaks) is students following steps
in the tutorial. Tutorials often contain step-by-step instruc-
tions students can follow, in the form of issuing a command
or selecting a menu item from an application. Many students
pause or replay right before an action takes place, possibly
trying to replicate the step in their own tool. Since this was



Figure 9. This peak represents a short range of interesting segment sur-
rounded by visual transitions before and after. The instructor launched
a game application that demonstrates the concept discussed. This en-
gaging demo might have encouraged students to return to it.

Figure 10. This peak represents important remarks from an instructor,
without any visual transitions in the video. In this example the instructor
was making an important point about random actions in reinforcement
learning, the key topic of this AI lecture.

a recurring pattern in many of the tutorial videos, we assign
a separate category. Figure 8 shows an example from a tuto-
rial video where the instructor in the statistics course demon-
strated how to run a command from a statistics package.

Type 4. replaying a brief segment
In this category (6% of all peaks), visual transitions are lo-
cated both before and after the peak. This indicates that
students are interested in the content within the peak range.
While much less common than the other types, this type
gives more specific information about student behavior be-
cause reasons explaining both Type 1 and 2 can be applied
here. Figure 9 shows an example where the instructor briefly
showed a demo application (during peak), and explained an
underlying concept before and after the demo.

Type 5. repeating a non-visual explanation
In this category (39% of all peaks), students return to parts of
a video that have no visual transitions nearby. What triggers
a peak is non-visual activities in the video, such as a verbal
instruction with semantic importance. We note that in many
cases these peaks represent instructors introducing an impor-
tant concept, re-emphasizing what has already been covered
visually, or making a joke that results in a burst of laughter.
Figure 10 shows an example where a peak occurred within a
single slide. Here the instructor of the AI course explained the
concept of taking random actions to force exploration in rein-
forcement learning, which was the main topic of the video.

Are there differences between peak types?
We compared normalized width, height, and area between
peak types to see if peak categories, defined by the seman-
tics of the video, map to differences in the peak profile. We
first compared peaks accompanying visual transitions (Type
1, 2, 3, 4) and peaks with non-visual explanation (Type 5).
A Mann-Whitney’s U test shows a significant effect of height
(Z = -3.0, p <0.01, r = 0.18) and area (Z = -1.9, p <0.05, r =
0.11), but not of width. This shows that peaks were taller and
larger in size when they had visual transitions nearby. One
explanation might be that visual transitions, occurring at the
exact same time for all students, lead students to act similarly
around them. On the other hand, start and end times of a
salient activity are less clear for non-visual explanations.

Next, we looked at differences between individual categories.
A Kruskal Wallis test revealed a significant effect of cate-
gory on normalized height (χ2(4)=19.6, p <0.001). A post-
hoc test using Mann-Whitney tests with Bonferroni correc-
tion showed the significant differences between Type 1 and
Type 3 (p<0.01, r = 0.33), and between Type 3 and Type 5 (p
<0.001, r = 0.32). This suggests that tutorial step peaks (Type
3) were significantly taller than new material peaks (Type 1)
or non-visual explanation peaks (Type 5). There was no sig-
nificant effect found for normalized width or area. One expla-
nation might be that tutorial steps have a clear timestamp and
span a shorter period of time. For example, time between a tu-
torial instructor entering a command and hitting enter can be
very short. The student needs to pause the video within a very
short time range to capture the timing with the full command
entered. For new materials and non-visual explanations, a
few seconds of difference is not crucial, which might lead to
smoother peaks.

DESIGN IMPLICATIONS FOR MOOC VIDEO INTERFACES
The micro-level analysis of students’ video interaction in-
troduced in this paper can guide the design of better video
learning experiences. Our analysis shows that students inter-
act with MOOC videos differently, depending on the visual,
pedagogical, and stylistic properties of the video. A primary
finding from both the dropout and peak analyses is that stu-
dents selectively pick parts of videos to watch. And the parts
they choose tend to converge to form peaks. We argue that
course instructors, video production engineers, platform de-
signers, and even students can benefit from such information.
We present a set of design implications from our results for
different types of learners and videos addressed in this paper.



[authoring] Avoid abrupt visual transitions. Type 2 peaks
are likely to indicate too fast or abrupt transitions. These
peaks often accompany informative slides, which can be
made available outside the video as a screenshot or thumb-
nail for easier scanning and reviewing. Excessive visual tran-
sitions should be avoided because they might prevent students
from referring to earlier content.

[authoring] Make shorter videos. Long lecture videos lead
to a higher dropout rate. When determining points to seg-
ment long videos, Type 1 peaks can be useful points because
students watch from the beginning of that segment.

[interface] Enable one-click access for steps in tutorial
videos. Important steps in a tutorial get clear peaks. These
peaks can be used to automatically mark steps in a video,
making it easy for students to non-sequentially access these
points without having to rely on imprecise scrubbing. Tuto-
rial video interfaces such as ToolScape [14] adds an interac-
tive timeline below a video to allow step-by-step navigation.

[interface] Provide interactive links and screenshots for
highlights. Type 2 peaks suggest that missing content forces
students to return. Providing static screenshots of the peak-
creating informative frames might reduce the navigation over-
head for students. Video interfaces might even consider
multi-track streams, showing slide and instructor in separate
channels that are available all the time. Type 5 peaks at-
tract students with non-visual information, and our observa-
tion suggests that instructors make important points in these
peaks. Interactive links to these points can be useful for stu-
dents willing to find them later, which is especially difficult
due to the lack of visual cues.

[interface] Consider video summarization for selective
watchers. A common interaction pattern in our results is
non-sequential and selective watching. Students re-watching
videos tend to non-sequentially seek their points of interest.
Peaks can be used to effectively summarize highlights from a
video, which can be useful for students who re-watch or skim
through the content while auditing.

MOOC video analytics platform
Techniques presented in this paper can provide stakehold-
ers in a MOOC with richer data about micro-level video in-
teraction, which can help them make data-driven decisions
about planning, recording, editing, and revising videos. To
support exploration of in-video interaction data, we are cur-
rently building a prototype MOOC video analytics platform.
In addition to showing basic statistics per video, the enhanced
video player synchronizes the video playhead with an overlay
time bar on the visualization (Figure 11). This interface en-
ables visually connecting deep-linked video content to points
with salient patterns in the graph. We expect to support the
sensemaking process for course instructors, video production
engineers, and platform designers.

Course instructors can use MOOC video analytics to re-
spond to students’ interest and confusion while a course is be-
ing offered. Further, they can also use data-driven metrics to
revise videos for the next offering of the course. Video pro-
duction engineers can better allocate their resources in the

Figure 11. Our prototype video analytics dashboard supports synchro-
nized video playback for various interaction measures.

production effort. One concrete use case is to avoid excessive
visual transitions that lead to Type 2 peaks. Platform de-
signers can benefit from MOOC video analytics to enhance
the video player interface. For example, they can attach inter-
active bookmarks for peaks to improve in-video navigation.

While the analysis for this paper was done offline after the
courses were complete, the analytics platform can also handle
streaming events. This allows running our analytics frame-
work for currently active courses, so that instructors can ad-
dress student confusion inferred from the streaming video an-
alytics during virtual office hours or in discussion forums.

LIMITATIONS
While our analysis methods identified video navigation pat-
terns, understanding why we see these patterns is difficult.
Because MOOCs do not have access to a broader learning
context of a student, log entries cannot accurately represent
learners’ real intent (e.g., play a video but not watch). Also,
video interactions might depend on other pedagogical meth-
ods in a MOOC such as problem sets, discussion forums, and
exams. Furthermore, presentation quality or storyline might
also affect which parts of the video students come back to
watch, but our analysis does not incorporate such data. Fi-
nally, our analysis does not consider different learner goals in
MOOCs, such as completing, auditing, and disengaging [15].
Per-group analysis of our techniques might reduce noise and
help us better reason about the dropout and peak results.



FUTURE WORK AND CONCLUSION
This paper provides an in-depth look into how students in-
teract with MOOC videos. We analyze data from four live
courses on edX, focusing on in-video dropout rates, interac-
tion peak profiles, and student activity categorization around
peaks. We believe our data-driven analytic methods can help
improve the video learning experience.

For future work, we plan to analyze more courses, data
streams, and interaction patterns. We hope to analyze human-
ities and professional courses, and compare results against the
current data from science and engineering courses. Another
potential data stream is text from transcripts, textbooks, and
lecture slides. Text analysis can complement vision-based
techniques. In contrast to peaks, dips in viewership and inter-
action counts might be an informative pattern to investigate.
Dips might represent boredom and loss of interest.
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