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Abstract 

 Some molecules change shape upon receiving photons of certain frequencies, but here 

we study light-induced deformation in ordinary dielectrics with no special optical effects. All 

dielectrics deform in response to light of all frequencies. We derive a dimensionless number to 

estimate when light can induce large deformation. For a structure made of soft dielectrics, 

with feature size comparable to the wavelength of light, the structure shapes the light, and the 

light deforms the structure. We study this two-way interaction between light and structure by 

combining the electrodynamics of light and the nonlinear mechanics of elasticity. We show 

that optical forces vary nonlinearly with deformation and readily cause optomechanical snap-

through instability. These theoretical ideas may help to create optomechanical devices of soft 

materials, complex shapes, and small features. 

 

Keywords:  optical forces, Maxwell stress, soft materials, optomechanics, optomechanical 

instability 
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1    Introduction 

 In 1862 Maxwell predicted that light of any frequency exerts a force on an illuminated 

surface [1]. The experimental confirmation came in 1900 [2], but such optical forces are feeble, 

and their practical uses have only arrived in recent decades, after lasers became widely available. 

Lasers are now used to move solid particles [3, 4], deform liquid interfaces [5, 6], bend slender 

rods [7, 8], and stretch cells [9, 10] (Fig. 1). Optomechanic devices have emerged as a vibrant 

field of research and development [11-15]. 

 This paper develops the optomechanics of soft materials. Optical forces are feeble, but 

are stronger than forces that are feebler. We derive a dimensionless number to estimate when 

optical forces are large enough to induce large deformation in soft materials (Section 2). We 

then formulate a general method to calculate the light-induced large deformation (Section 3). 

Our task is simplified by two considerations:  the optical properties of soft materials are 

insensitive to deformation, and mechanical motion is much slower than optical oscillation. 

Consequently, we calculate each increment of deformation using the Maxwell stress averaged 

over a single period of optical oscillation. On the other hand, because the feature size of a device 

may be comparable to the wavelength of the light, in general we do not average the Maxwell 

stress over space. We apply the method to a sheet of soft dielectric between two opposing lasers 

(Sections 4-7). We show that optical forces vary nonlinearly with deformation and readily cause 

optomechanical snap-through instability. 

 Light-induced deformation has also been studied in materials containing molecules 

capable of changing shape upon receiving photons of certain frequencies [16-21]. Such light-

sensitive molecules achieve significant deformation at relatively low intensity of light. Here we 

focus on dielectrics with no special optical effects. Ordinary dielectrics achieve large light-

induced deformation only when the dielectrics are soft and the light is intense. Soft dielectrics 

constitute a large family of materials. This diversity will enable the choice of materials to meet 

various demands in applications, such as large deformation, facile fabrication, low cost, and 
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biocompatibility. Maxwell stress has been used to calculate optical forces on stiff dielectrics [7, 

8], and estimate deformation of soft dielectrics [22-24]. Optical forces enable two-way 

interactions between light and structures. For a structure made of soft dielectrics, the structure 

shapes the light, and the light deforms the structure. Here we formulate the optomechanics of 

soft materials that accounts for the two-way coupling between light and structure. We combine 

electrodynamics of light and nonlinear mechanics of elasticity.  

 Optical forces have been studied intensely, but have not been used to create devices of 

soft dielectrics. The potential, however, is enormous. Research in soft materials in the recent 

decade has led to a broad perspective: the softness enables materials to deform in response to 

stimuli, and the deformation provides functions [25]. Deformation links many stimuli to many 

functions. Thus, the deformation of a dielectric elastomer links a voltage to a force [26], the 

deformation of a hydrogel links a change in acidity in a solution to a change in the focal length of 

a lens [27], the swelling of an elastomer seals an oil well for hydraulic fracture [28, 29], and the 

deformation of a gel and an elastomer enables ionic music and ionic skin [30, 31]. Soft materials 

can be fabricated with feature sizes as small as several micrometers [32-35] and moduli as low 

as ~ 00Pa1  [35-37]. It is conceivable that optical forces will enable devices of soft materials, 

complex shapes, and small features. We hope that theoretical ideas described here will aid the 

creation of this technology. 

  

2    Magnitude of Optical Forces 

 Light is a time-dependent electromagnetic field. Maxwell used the electromagnetic field 

to calculate the optical forces in the vacuum. His result is applicable to a medium of constant 

permittivity and permeability. The electromagnetic field in a given medium without free charge 

or current satisfies the Maxwell equations: 0/  tbe , 0/  tdh , 0 d  and 

0 b . The field further satisfies the constitutive equations ed   and hb  , where   is 
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the permittivity and   is the permeability of the medium. At an interface between two media, 

the field satisfies the boundary conditions:   0
12
 bbn ,   0

12
 ddn ,   0

12
 een  and 

  0
12
 hhn , where n is the unit vector normal to the interface, and the subscripts indicate 

the two media. Associated with the electromagnetic field in each medium is the Maxwell stress 

[38]: 
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The Maxwell stress is a second-rank tensor, and is a field in the medium. 

 The Maxwell stress can be used to calculate the electromagnetic forces acting on an 

object. For example, consider two plates of conductor separated by a narrow gap of vacuum (Fig. 

2). The voltage applied between the two plates causes an electric field in the vacuum, in the 

direction normal to the plates. Equation (1) predicts three components of Maxwell stress. One 

component is tensile in the vertical direction, and the other two components are compressive in 

the horizontal directions. The tensile Maxwell stress in the vertical direction causes the two 

plates to attract each other. This attractive electrostatic force balances a pair of mechanical 

forces that pull the plates apart. The horizontal components of the Maxwell stress are also 

commonly used in electromechanical systems. For example, when a dielectric sheet is partially 

placed in between the two plates, the horizontal Maxwell stress draws the sheet into the area 

between the two plates [39].  

 Equation (1) indicates that Maxwell stress scales with 2e  and 2h , as well as with the 

square root of their product, eh . Recall that /1c  is the speed of light in the medium, 

and he  is the flux of energy (i.e., the energy of light crossing a plane normal to the direction of 

propagation per unit time per unit area). Consequently, the magnitude of the Maxwell stress 

scales as  2/ caP , where P is the power and a the width of a beam of light. For representative 

values of a laser, W1.0P , m1a  and m /s1 03 8c , we estimate the Maxwell stress 
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  Pa3 00~/ 2caP . By comparison, the elastic modulus is ~ Pa1 011  for stiff materials such as 

silicon, but is ~100Pa for a soft gel. Thus, the Maxwell stress due to a laser can cause small 

strains in stiff materials, but large strains in soft materials.  

 We compare the magnitudes of the optical forces to those of other forces by forming 

dimensionless numbers. For example, to stretch a cell by a large strain, the Maxwell stress 

 2/ caP  needs to be comparable to the elastic modulus of the cell, G . This consideration leads 

to a dimensionless number  GcaP 2/ . Similar considerations lead to dimensionless numbers 

that compare the optical force with other types of forces, including forces due to thermal 

fluctuation, viscous flow, surface tension, elastic bending, and elastic stretching (Table 1). The 

larger the numbers are, the greater the effect of optical forces will be. 

 Estimates of these dimensionless numbers agree with existing experimental observations 

(Fig. 1). For example, optical forces can overcome elasticity and cause deformation in two ways: 

bend stiff materials and stretch soft materials. In bending a stiff material, such as a slender rod 

of silicon, choosing power W1.0P , width nm3 1 0a , length m3 0L  and modulus 

GPa80G , we get     4// 24

GcaPaL . In stretching a soft material such as a cell, choosing 

power W7.0P , size μm1 0a  and modulus Pa1 0G , we get   2/ 2 GcaP . Both estimates 

show that optical forces are sufficient to cause deformation, agreeing with experimental 

observations [7, 9]. The two dimensionless numbers differ by the factor  4

/aL , where L is the 

length and a the width of the beam. This factor is huge for a representative value of 1 00~/aL , 

enabling the optical forces to bend a stiff material, even though the modulus G  is large. The 

high moduli of stiff materials, however, limit substantial change of shape to a single type: 

bending of slender rods. By contrast, soft materials can achieve large deformation of many types, 

and may potentially lead to devices of many kinds. The remainder of this paper focuses on the 

optomechanics of soft materials. 

 



Journal of Applied Mechanics 

12/20/2014 6 

3    Optomechanics of Two-Way, Light-Structure Interaction 

 We now develop the optomechanics of soft materials to account for the two-way, light-

structure interaction. Our task is simplified by two considerations. First, the permittivity and 

permeability of a soft dielectric are insensitive to deformation [40]. A soft dielectric is a three 

dimensional network of polymer. The number of crosslinks between the polymer chains is much 

smaller than the number of monomers constituting the chains. The crosslinks turn a liquid into 

a solid, but negligibly affect permittivity and permeability. That is, the electromagnetic property 

of a crosslinked dielectric is essentially the same as that of the corresponding liquid dielectric. 

Here we assume that the permittivity and permeability are independent of deformation.  This 

assumption allows us to calculate the optical forces in soft materials using the Maxwell stress.  

 Second, optical frequency is much larger than mechanical frequency. The frequency of 

mechanical vibration scales as /1 Ga , where a is the feature size, G the elastic modulus, and 

  the density. For representative values, m1 06a , Pa1 03G  and 33 kg/m1 0 , the 

frequency of mechanical vibration is Hz1 0~ 6 , which is much lower than the frequency of light, 

~ Hz1 014 . That is, each period of mechanical oscillation corresponds to a large number of 

periods of electromagnetic oscillation. Consequently, each state of deformation is determined by 

the Maxwell stress averaged over a single period of the electromagnetic oscillation. On the other 

hand, because the feature size of a device may be comparable to the wavelength of the light, in 

general we do not average the Maxwell stress over space.  

 Under these simplifications, we develop the optomechanics of soft materials by 

combining the nonlinear mechanics of elasticity and the electrodynamics of light. The nonlinear 

mechanics of elasticity is well-established [41]. A material body is represented by a sum of many 

small pieces. Each piece is named after its place X  when the body is in the undeformed state. 

The piece X  occupies a place x  when the body is in a deformed state at time t . The function 

 t,Xxx   describes the history of the deformation of the body. The deformation gradient is 
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 
KiiK

XtxF  /,X . The nominal stress  ts
iK

,X  relates to the true stress  t
ij

,x  as 

F/det
jKiKij

Fs . On a piece of volume  XVd , we prescribe mass   VdX  and force 

  Vt d,
~

XB . On a piece of area  XAd  normal to the unit vector 
K

N , we prescribe a force 

 XAT
i
d

~
. We add “~” to distinguish the body force from the magnetic field, and the traction 

from the Maxwell stress. The balance of forces requires that 22 /
~

/ txBXs iiKiK    in the 

volume and that 
iKiK

TNs
~

  on the surface.  

 The electrodynamics of light is also well-established [42]. In a deformed state of the body, 

the electric field  t,xe  is sinusoidal in time,       tit expRe, xExe  , where   is the 

frequency of the light, and complex-valued field  xE  is the phasor of the electric field. Phasors 

for the other fields are similarly defined,  xH ,  xD  and  xB . We assume that the material is 

dielectric, with no free charge or current density. Under this assumption, the Maxwell equations 

in terms of phasors are 0 D , BE i , 0 B , and DH i . The Maxwell stress 

affects deformation through its average over a period of electromagnetic oscillation, 

 






/

0
d2/ tTT

ijij
. An evaluation of this integral gives that [43] 
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where *

i
E  and *

i
H  are the complex-conjugates of 

i
E  and 

i
H , respectively.  

 We write the true stress 
ij

  as the sum of that due to the elastic deformation and that due 

to the time-averaged Maxwell stress: 

  
 

ij

iK

jK

ij
T

F

WF







F

Fdet
  (3) 

where  FW  is the Helmholtz free energy associated with the stretching of the material. For an 

incompressible material, 1det F  and (3) becomes that 
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 

ijij

iK

jKij
T

F

W
F 




 

F
 (4) 

where   is the Lagrange multiplier, to be determined as a part of the solutions to boundary-

value problems.  

 To account for the two-way interaction between the light and the structure, such a 

boundary-value problem is solved in incremental steps. Starting with an undeformed state, we 

apply mechanical and optical loads of small amplitudes, determine the optical field by solving an 

eigenvalue problem over the body of a fixed configuration, and determine the increment of the 

displacement field by solving a boundary-value problem. Then we use the increment of 

displacement to update the configuration of the body, and increase the loads by a small amount. 

We repeat the procedure for many steps to obtain the final deformed state. The optical field is 

Eulerian, and the elastic field is Lagrangian. This mixed specification poses an interesting 

challenge for general numerical method, which we do not pursue in this paper. Instead, we focus 

on a special case to describe optomechancial phenomena of potential significance in 

applications. 

 

4    A Sheet of Soft Dielectric between Two Opposing Lasers 

 We apply the theory to a thin sheet of a dielectric between two opposing lasers (Fig. 3). 

The refractive index is n  in the sheet, and is outn  in the outside medium. The sheet has the 

dimensions  
321

L,L,L  in the undeformed state, and dimensions  
321

l,l,l  in the deformed state. 

The effect of surface tension is taken to be negligible. 

 The two lasers have the same frequency and intensity, propagating as plane waves in the 

opposite directions. Let  
LL

HE ,  be the field of the laser from the left side of the dielectric, and 

 
RR

HE ,  be the field of the laser from the right side of the dielectric. We further assume that the 

fields 
L

E  and 
R

E  are symmetric with respect to the mid-plane of the dielectric. Consequently, 
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the two lasers generate optical forces of equal magnitude in opposite directions, and keep the 

mid-plane of the sheet stationary in space. Let the coordinates  
321

,, xxx  coincide with the 

directions of the fields and propagations, with 0
3
x  at the mid-plane of the dielectric. The 

fields of the lasers are  
3

out

0
exp xikEE

L
 ,  

3

out

0

out exp/ xikEH
L

 ,  
3

out

0
exp xikEE

R
  and 

 
3

out

0

out exp/ xikEH
R

  , where  
0

2outout  n  is the permittivity of the outside medium,   

is the permeability of both the dielectric and the outside medium, 
0

E  is the amplitude of the 

electric field, 
0

outout /cnk   is the wavenumber of the lasers,   is the frequency of the lasers, 

and 
0

c  is the speed of light in the vacuum. 

 The thickness of the dielectric is comparable to the wavelength of the lasers in the sheet, 

  nc /2
0

 , but the in-plane dimensions of the sheet are much larger than  . Thus, we will 

consider only homogeneous deformation of principal stretches 
111

/ Ll , 
222

/ Ll  and 

333
/ Ll . 

 Both in the dielectric and outside, the components of the electric field are EE 
1

 and 

0
32
 EE , and the components of the magnetic field are HH 

2
 and 0

31
 HH . Equation 

(2) shows that only the principal Maxwell stresses are nonzero: 

   22

21
4

1
HETT   ,  22

3
4

1
HET    (5) 

The dielectric is assumed to be incompressible, 1
321
 , so that (4) becomes that 

  
 

31

1

21

131

,
TT

W










  (6) 

  
 

32

2

21

232

,
TT

W










  (7) 

We represent the elasticity of the dielectric using the neo-Hookean model [44]: 

      3
2

,
2

21

2

2

2

121





G

W  (8) 
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where G  is the shear modulus of the dielectric.  

 For the time being, we assume that the sheet is subject to no external mechanical forces. 

The balance of forces in the 
1

x  and 
2

x  directions requires that the resultant forces vanish, 

0
33

0
32

0
31

 
ll

dxdx  . The balance of force in the 
3

x  direction requires that the stress in the 

dielectric equals the Maxwell stress, out

33
T . Inserting these boundary conditions to (6) and 

(7), and using (8), we get 

   2

3

2

131
  Gtt  (9) 

   2

3

2

232
  Gtt  (10) 

where 

  
3

0
1

3

1
d

1 3

xT
l

t
l

 , 
12

tt  , 
3

out

33
TTt   (11) 

Equation (11) writes the optical forces as the equivalent mechanical stresses acting on the 

dielectric (Fig. 3c).  Once the optical field is known in the dielectric and the outside medium, (5) 

gives the Maxwell stresses, and (9)-(11) determine the stretches. 

 

5    Total Reflection 

 Consider the special case that the two lasers are fully reflected at the surfaces of the sheet. 

This total reflection may be achieved by coating the sheet with conducting films. In this case, no 

optical field exists inside the sheet, and only the Maxwell stress in the outside medium, out

3
T , 

causes the sheet to deform. The electric field on the right hand side of the sheet is the 

superposition of the incident wave and the reflected wave, 

        
33

out

3

out

0right
expexp lxikxikEE    (12) 

       
33

out

3

out

0

out

right
expexp/ lxikxikEH    (13) 

Consequently, (2) gives 2

0

outout

3
ET  , known as the radiation pressure. The same radiation 
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pressure exists on the left-hand side. The radiation pressure is independent of the thickness of 

the dielectric and the polarization of the lasers. These conclusions are consistent with existing 

experiments and calculations [45, 46]. 

 

6    Sheet Optically Matched with the Medium Outside 

 Next consider the case that the sheet and the outside medium are optically matched, 

outnn  . If we only apply the laser on the right side,  
RR

HE , , Equation (2) gives 0
21
 TT  

and 2/2

0

out

33
ETT  , so that the net optical forces vanish. However, if we apply two 

opposing lasers, the optical field will be the superposition of the two lasers, giving 

 
30

cos2 kxEE   and  
30

sin/2 kxEiH  . Equations (2) and (11) give the equivalent 

stresses    
33

2

01
/sin klklEt  , 

12
tt   and 0

3
t . As the thickness of the sheet changes, 

1
t  

changes between tensile and compressive, and vanishes as 
3

kl . Applying the equivalent 

stresses to (9) and (10), we obtain the state of deformation (Fig. 4). When the thickness of the 

sheet is the multiples of the half-wavelength of the lasers, the optical forces vanish. To maintain 

the same deformation, the amplitude of the lasers needs to be infinitely large.  

 The optical force varies nonlinearly with the deformation, and can readily cause 

optomechanical instability. Such instability has been observed in optomechanical systems 

involving slender rods of stiff materials [15], but has not been reported in optomechanical 

systems of soft materials. To illustrate the basic behavior, consider a sheet placed between the 

two opposing lasers, clamped at the top and the bottom, and then pulled by a mechanical force f 

(Fig. 5a). The clamps constrain the sheet in the horizontal direction, 1
1
 , and the sheet is 

incompressible, 
23

/1   . Thus, (7) gives 

  









2

2

2

2

313

32

0

1sin


 G

ll

f

kl

kl
E  (14) 
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We plot the force-stretch relation for a sheet between lasers of a fixed amplitude (Fig. 5b). As the 

stretch 
2
  increases, the thickness of the dielectric 

3
l  decreases, and the optical force decreases 

to negative, returns to positive, and then decreases again. Consequently, the force-stretch curve 

reaches the peak, goes down, and then goes up again. This curve corresponds to a snap-through 

instability. When the force f is programed to increase gradually, the sheet initially elongates 

gradually. Upon reaching the peak of the curve, the sheet suddenly stretches greatly. 

Furthermore, when the force is programed to increase and then decrease gradually, the sheet 

snaps forward and backward, undergoing hysteresis. We plot Fig. 5b using a sheet of the 

undeformed thickness  0.2
3

L . If we use a thicker sheet, the force-stretch curve will have 

multiple peaks and valleys, since the deformed thickness will go through several periods of the 

sinusoidal optical force. We have also tried various other types of mechanical constraints and 

loads, and found that the snap-through instability occurs in many configurations. 

 

7    Sheet Optically Mismatched with the Medium Outside 

 Now consider the case that the sheet and the outside medium are optically mismatched, 

outnn  . Each incident wave will cause both transmitted and reflected waves. The net optical 

field can be solved analytically, giving [42, 47] 
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where    nnnn  outout /  measures the optical mismatch and 
0

/cnk   is the wavenumber 



Journal of Applied Mechanics 

12/20/2014 13 

of the light inside the sheet. Here 
in

E  and 
in

H  are the net field inside the sheet, and 
right

E  and 

right
H  are the net field on the right side of the sheet.  Because of the symmetry of the setup, we do 

not list 
left

E  and 
left

H . 

 Inserting the optical field into (5), we obtain the Maxwell stresses: 
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where 
0

2 n  is the permittivity of the dielectric. Because of the symmetry of the setup, we do 

not list the Maxwell stress on the left side of the sheet.  Note that the through-thickness Maxwell 

stress, 
3

T , is constant in each medium, independent of the positions. In general, the values of 

3
T  in different media are different. This difference causes a nonzero equivalent stress in the 

through-thickness direction. The in-plane Maxwell stresses are sinusoidal functions of 
3

x . We 

plot the Maxwell stresses when the sheet is at two specific thicknesses, 
3

l  and  5.1
3

l  (Fig. 

6). When  
3

l , the value of 
3

T  in the sheet differs from that outside. This difference gives a 

nonzero equivalent stress, even though the in-plane Maxwell stresses average out. By contrast, 

when  5.1
3

l , the value of 
3

T  in the sheet is the same as that outside, so that the equivalent 

stress vanishes. 

 The equivalent stresses are 
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Inserting the optical forces into (9) and (10), we determine the stretches of the sheet. We note 

several differences between the optically mismatched case (Fig. 7) and the optically matched 

case (Fig. 6). As 
3

l  the optical mismatch ensures that the lasers cause an optical force, so 

that 2

00
E  now is finite. For a thick dielectric, the in-plane optical forces vanish, but the optical 

mismatch causes a finite through-thickness optical force in general. The optical force pulls the 

sheet in the thickness direction when outnn  , but compresses the sheet in the thickness 

direction when outnn  . 

 

8    Maxwell Stress as a Boundary Condition 

 We have added the Maxwell stress as the part of the stress-stretch relation in (3). We 

have also transformed the Maxwell stress into the equivalent stress in the calculation of the 

dielectric sheet. This method is generally applicable. For a dielectric of constant permittivity and 

permeability, with no free charge or current, the Maxwell equations ensure that 

  tc   /2 heT  [42, 46]. If we further assume that the Maxwell stress affects deformation 

through its time average, and the electromagnetic field is a sinusoidal function of t, we find that 

  0/  the  and 0 T . We let  
ijiKjKij

FWF   /e F  be the stress due to elasticity, 

leave the equation  
KiiK

XtxF  /,X  unchanged, and change the equation for the balance of 

forces to 22e /
~

/ txBXs
iiKiK
  , where the nominal stress e

iK
s  satisfies F/detee

iKjKij
sF . 

These equations are the same as the equations in nonlinear elasticity. However, the boundary 

condition now should be modified to be  
jijijijij

nTTtn  oute ~
 . In addition to the mechanical 

traction 
i

t
~

, the difference of the Maxwell stress in the medium outside and that in the dielectric 

should be added on the boundary. We can solve such a problem by deriving the electromagnetic 
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field in deformed state, calculating the Maxwell stress field, prescribing the difference of the 

Maxwell stress on the boundary, and applying the governing equations of nonlinear elasticity. 

 

9    Concluding Remarks 

 Our calculations show that optical forces can cause large deformation of soft materials. 

We show that optical forces vary nonlinearly with deformation and readily cause 

optomechancial snap-through instability. We describe the optomechanics of light-induced large 

deformation in structures of any shape. Optomechanics combines electrodynamics of light and 

nonlinear mechanics of elasticity. For a soft dielectric with no special optical effects, its 

optomechanical behavior is fully specified by three material constants: the permittivity, 

permeability, and shear modulus. Structures made of soft dielectrics are sensitive to geometry, 

creating an enormous space for innovation in conceptual design, computation, and fabrication. 

 Optical forces enable two-way, light-structure interaction. A structure shapes a light, and 

the light deforms the structure. One potential application of the optomechanics of soft materials 

concerns using light to control light. For example, in the field of structural colors, a structure of 

a feature size comparable to optical wavelength interacts with light through scattering, 

diffraction or interference [48-55]. One may use soft materials to make the structures, and then 

use optical forces to deform the structures and change the optical behavior. One can also 

conceive optical circuits reconfigurable by optical forces. A second potential application 

concerns the transduction between light and other stimuli. Many soft materials deform in 

response to stimuli such as stress [53-55], electric field [26, 51], acidity and humidity [27-29, 52]. 

Thus, the deformation of soft materials enables the transduction between stimuli of different 

types. It is conceivable, for example, that devices can be created using ordinary soft dielectrics to 

perform optochemistry. We hope that the theoretical ideas developed here will aid in the 

creation of devices using light-induced large deformation. 
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            (a) Trap and move a rigid particle                       (b) Deform an interface between liquids 
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                        (c) Bend a stiff material                                          (d) Stretch a soft material 

Fig. 1  Optical forces cause motions of various kinds. (a) Optical tweezers trap a rigid particle 
and move it in a liquid. (b) A beam of light deforms the interface between two liquids. (c) Light 
in two waveguides causes an evanescent optical field in the space between the waveguides, and 
bends them. (d) Two beams of laser stretch a cell. 
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Fig. 2  The Maxwell stress in the vacuum between two parallel plates of conductor separated by a 

narrow gap of vacuum. The applied voltage   induces electric charges Q  on the two plates, as 

well as an electric field E and a Maxwell-stress field in the vacuum between the two plates. The 
Maxwell stress is a tensor with three principal components, tensile in the vertical direction, and 
compressive in the two horizontal directions. The three components have the same magnitude, 

22

0
/E , where 

0
  is the permittivity of the vacuum. The tensile Maxwell stress in the vertical 

direction causes the two plates to attract each other. This attractive electrostatic force is 
balanced by a mechanical force P. 
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(a) undeformed state 

 
(b) deformed state 

                
(c) equivalent mechanical stress 

Fig. 3  Two anti-parallel lasers deform a thin sheet of a soft dielectric. The refractive index is n  

in the dielectric, and outn  in the outside medium. (a) In the undeformed state, the dielectric has 

the dimensions  
321

L,L,L . (b) In the deformed state, the dielectric deforms to the dimensions 

 
321

l,l,l . The electromagnetic fields of the left and right lasers are  
LL

H,E  and  
RR

H,E , 

respectively. The lasers generate the Maxwell stress in the dielectric and outside. (c) The 
Maxwell stress causes equivalent mechanical stress acting on the dielectric. 
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Fig. 4  Deformation induced by optical forces in a dielectric optically matched to the outside.   
is the wavelength of the laser inside the dielectric. (a) The out-of-plane stretch as a function of 

the amplitude of the input optical field. When the thickness of the deformed dielectric, 
3

l , 

approaches the multiples of the half wavelength,  5.1,0.1,5.0 …, all components of the optical 

force approach zero, so that amplitude of the input optical field, 
0

E , becomes larger and larger 

to maintain the deformation. (b) and (c) The in-plane stretches as functions of the out-of-plane 

stretch. (d) The stretches depend on the thickness of the undeformed dielectric, 
3

L . The 

dielectric is optically matched with the outside, so that the out-of-plane component of the 

optical force vanishes, 0
333

out

 TTt , but the in-plane components of the optical force in 

general do not vanish,  
3

0
3131

d/1
l

xTlt  and  
3

0
3232

d/1
l

xTlt . When  5.1,0.1,5.0
3

L  

and so on, all components of the optical force vanish, and the dielectric does not deform. When 

/
3

L , the in-plane components of the optical force average out, 0
21
 tt , and the 

dielectric does not deform. 
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Fig. 5  Optomechanical snap-through instability. (a) A thin sheet of dielectric is placed in the 
optical field of two anti-parallel lasers. The dielectric is clamped at the top and bottom, and is 
pulled by a mechanical force f in the vertical direction. (b) In the presence of the optical field, 
the force-displacement curve is not monotonic, leading to a snap-through instability. 
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Fig. 6  Maxwell stresses in a dielectric optically mismatched with the outside. Because 

12
TT  , only 

1
T  and 

3
T  are plotted. (a) When 

3
l , both 

1
T  and 

2
T  average to zero, 

but 
3

out

3
TT  . (b) When  5.1

3
l , all three components of the optical force vanish. 
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Fig. 7  Deformation induced by optical forces in a dielectric optically mismatched with the 

outside. (a) The out-of-plane stretch changes with the amplitude of the optical field. At  
3

l , 

the optical mismatch gives rise to a nonzero optical force, so that the deformation is maintained 

by a finite amplitude of the optical field, 0E . By contrast, at  5.1
3

l , all components of the 

optical force vanish, so that the deformation cannot be maintained by an optical field of finite 
amplitude. (b) and (c) The in-plane stretches as functions of the out-of-plane stretch. (d) When 

the dielectric and the outside are optically mismatched, 
33

out

TT   in general, and the out-of-

plane component of the optical force deforms the dielectric even when /
3

L . 
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Table 1. Dimensionless numbers of optical forces relative to other forces 

types of motion dimensionless 
numbers 

meanings of parameters 

Trap a rigid particle against 
its Brownian motion. Tk

a

ca

P

B

3

2
 B

k : Boltzmann constant 

T : temperature 

Move a rigid particle in a 
viscous liquid. v

a

ca

P

2
 

 : viscosity 

v : velocity of the moving 

laser source 
Deform an interface 

between liquids against 
surface tension. 



a

ca

P
2

 
 : surface energy 

Bend a stiff material against 
elasticity. 

4

2

1









a

L

Gca

P
 

G : shear modulus 

Stretch a soft material 
against elasticity. Gca

P 1
2

 
G : shear modulus 

 
 

 


