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ABSTRACT  

This paper investigates the influence of the atmosphere used in the fabrication of top-electrodes 

from the liquid eutectic of gallium and indium (EGaIn) (so-called “EGaIn” electrodes), and in 

measurements of current density, J(V), across self-assembled monolayers (SAMs) incorporated 

into AgSR//Ga2O3/EGaIn junctions, on values of J(V) obtained using these electrodes.  A gas-

tight measurement chamber was used to control the atmosphere in which the electrodes were 

formed, and also to control the environment in which the electrodes were used to measure 

current densities across SAM-based junctions.  Seven different atmospheres—air, oxygen, 

nitrogen, argon, and ammonia, and air containing vapors of acetic acid and water—were 

surveyed using both “rough” conical-tip electrodes, and “smooth” hanging-drop electrodes. (The 

manipulation of the oxide film during the creation of the conical-tip electrodes leads to 

substantial, micron-scale roughness on the surface of the electrode, the extrusion of the drop 

creates a significantly smoother surface). Comparing junctions using both geometries for the 

electrodes, across a SAM of n-dodecanethiol, in air, gave log|J|mean = -2.4 ± 0.4 for the conical 

tip, and log|J|mean = -0.6 ± 0.3 for the drop electrode (and thus Δlog|J| ~ 1.8); this increase in 

current density is attributed to a change in the effective electrical contact area of the junction. To 

establish the influence of the resistivity of the Ga2O3 film on values of J(V), junctions 

comprising a graphite electrode and a hanging-drop electrode were compared in an experiment 

where the electrodes did, and did not, have a surface oxide film; the presence of the oxide did not 

influence measurements of log |J(V)|, and therefore did not contribute to the electrical resistance 

of the electrode.  The presence of an oxide film did, however, improve the stability of junctions, 

and increase the yield of working electrodes from ~70% to ~100%.  Increasing the relative 

humidity (RH) in which J(V) was measured did not influence these values (across methyl (CH3)- 



 3

or carboxyl (CO2H)-terminated SAMs) over the range typically encountered in the laboratory 

(20-60% RH). 

 

INTRODUCTION 

 Measurements of tunneling currents across insulating self-assembled monolayers (SAMs) 

are revealing the relationships between atomic/molecular-level structures of organic matter and 

this prototypically quantum behavior.  The use of eutectic gallium indium alloy (EGaIn) 

electrodes in large-area (~100 µm2) junctions1-9 of the form AgTS/SAM//Ga2O3/EGaIn is a 

particularly convenient technique to use for physical-organic studies of charge transport across 

SAMs.1-15  The role of gallium oxide (Ga2O3)—a film that forms spontaneously on the surface of 

the EGaIn1,16,17— is technically important in this type of junction, and must be understood in 

order to interpret results obtained using it; this oxide film might, in principle, influence the 

electrical characteristics of the top interface (the interface between the SAM, the Ga2O3 film, and 

the EGaIn), the mechanical stability of the junctions, and/or the sources of the dispersion (or 

spread, as measured by standard deviation) in the data.  A number of factors might contribute to 

these characteristics, including the gaseous environment (i.e., the concentrations of O2, H2O, and 

other volatile components in the atmosphere) in which the EGaIn-based top electrode is formed, 

and the gaseous environment in which it is used. The history of use of the electrode, and the 

roughness (and thus the area of physical contact of the surface of the oxide with the SAM), are 

also important. 

The objectives of this work were to determine i) the influence of the atmosphere in which 

Ga2O3/EGaIn “conical-tip” and “spherical hanging-drop” electrodes were formed and used on 

their electrical properties; ii) the influence of the Ga2O3 film (both when present, and when 
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minimal or absent) on the absolute value, and standard deviation, of measurements of current 

density J at voltage V (J(V), A·cm-2); and iii) the influence of the roughness of the Ga2O3 film on 

measurements on J(V).  

The gallium oxide film, and the interface between this film and the SAM, are technically 

the most complicated components of the AgTS/SAM//Ga2O3/EGaIn junction.  The Ga2O3 film—a 

thin (nominally ~0.7 nm16) film that forms on the surface of EGaIn upon exposure to air or O2—

is crucial to the characteristics and performance of the Ga2O3/EGaIn junction; it facilitates the 

formation of electrode tips with useful shapes and sizes.  (In particular, it is the basis for the 

mechanical stability of what we call “conical tips”6,17).  It allows the formation of tips with small 

radii of curvature (~25 µm).  It permits measurements across small areas of contact (~100 µm2 

nominal area) as determined by optical microscopy—values substantially less than that in terms 

of the area of electrical contact involved in tunneling.  

Measurements of charge transport across SAMs made over the course of several years 

using EGaIn-based junctions in ambient atmospheric conditions have suggested that the 

adsorption of adventitious materials from the atmosphere on the Ga2O3 film is normally not an 

important influence on the measured current density, or on the yield of working junctions (i.e. 

the ratio of non-shorting junctions to all measured junctions).  For example, measurements of  

current density (J(V), A/cm2 – J at applied bias V) are consistent and reproducible across 

samples and users; the distribution of data (log standard deviation, σlog) ranges from ~0.2 to ~0.5 

(from experiments replicated by multiple user)18 for n-alkanethiolates on AgTS or AuTS and ~0.1 

– 0.2 for n-alkanecarboxylates3 on AgTS (probably supported on a thin AgOX surface film) in air 

(a value of σlog ~0.3 corresponds to a range from ×0.5 to ×2.0 of the mean). 
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Formation of the conical tips, however, result in a rough (at the nanometer to micrometer 

scale), if flexible and compliant, Ga2O3 film.  Although the Ga2O3 film is sufficiently electrically 

conductive that its resistance does not contribute significantly to, or  interfere with, tunneling 

currents measured across SAMs,16 its roughness leads to areas of electrical contact between the 

top Ga2O3/EGaIn electrode and the SAM-bound bottom electrode that are ~10-4 the geometrical 

contact area (as measured by optical microscopy).1,19  We estimate that this value of 10-4 

partitions into two components, a 10-3
 contribution from the roughness of Ga2O3 and 10-1 from 

the roughness of the silver substrate.1,20,21   

We designed a gas-tight chamber to control the atmospheric environment (i.e. the identity 

and concentration of the gas(es) comprising the atmosphere) in which we formed the 

Ga2O3/EGaIn electrodes, and (separately) in which we measured rates of charge transport across 

the molecular junction (Figure 1).  The design of the chamber made it possible to change the 

composition of the atmosphere before and during formation of the tip and the junction, and 

independently, during measurements of J(V).  The Supporting Information details the design and 

operation of the chamber. 

We measured rates of charge transport through junctions incorporating two different 

substrates i) a SAM formed from n-dodecanethiol (SC12) or 12-mercaptododecanoic acid 

(SC11CO2H)  on template-stripped silver (AgTS)22; the resulting junctions have the form       

AgTS-S(CH2)11T//Ga2O3/EGaIn, where T = CH3 or CO2H, and ii) a freshly cleaved, bare, 

graphite substrate23,24 formed by gluing a highly-ordered pyrolytic graphite chip to a metal shim 

(to form a junction we describe as HOPG//Ga2O3/EGaIn).  We also tested two different 

Ga2O3/EGaIn top-electrode geometries—a conical tip and spherical hanging-drop (Figure 1B).  

The contact surface of the conical-tip electrode is rough due to asperities in the oxide, these 
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surface irregularities result during the formation of the tip (in particular, when the neck of the 

EGaIn breaks at the point of rupture).1,16,19  Fabrication of the hanging-drop electrode, by 

contrast, does not require the EGaIn to rupture (Figure 1), and the surface of the electrode is 

therefore qualitatively smoother than that of a conical tip, and has (we believe) a thinner and 

more flexible Ga2O3 film.  We measured junctions using both top electrode geometries in seven 

different environments:  dry air (from a cylinder of compressed air), humid air (5-80% relative 

humidity (RH)), argon, nitrogen, oxygen, anhydrous ammonia, or air containing acetic acid.  By 

forming the electrode in gases that have low concentrations of oxygen, we were able to limit or 

eliminate the formation of the oxide film on the EGaIn electrode.  

This work led to four main conclusions. i) The gallium oxide on the surface of EGaIn 

contributes to the mechanical stability of the electrode, and is important for reproducible 

measurements of current density, J(V), with narrow dispersions in data, σlog. ii) The oxide film 

does not contribute significantly to the resistance of the junction.  iii) Measurements of J(V) 

using Ga2O3/EGaIn electrodes are not affected by changes in relative humidity over a range 

normally encountered in the laboratory. Junctions incorporating carboxyl terminated SAMs gave 

current densities at 5% RH that were approximately ×10 lower than at higher RH levels. iv) 

Junctions using hanging drop electrodes result in higher values of J(V) than junctions using 

conical tip electrodes by Δlog|J|mean ~ 2 to 3.  We attribute this difference in J(V) to differences 

in surface roughness between the conical and spherical drop electrodes. 

BACKGROUND 

Ga2O3/EGaIn top-electrode in molecular junctions.  We use the Ga2O3/EGaIn-based 

junctions primarily for physical-organic studies—that is, studies that correlate trends in the 

structure of the molecules composing the SAM with trends in current density J(V) (rather than 
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for studies that establish absolute values of J(V)), for three reasons: i) The Ga2O3/EGaIn 

electrode makes it possible to form junctions with highly ordered SAMs conveniently (without 

expensive equipment and delicate operation of instruments), rapidly, and with high yields 

(>90%).  It also yields very reproducible data (as do EGaIn-based measurements using other 

systems, such as cross-bar and microfluidic devices).19,25  ii) The ease of use of this electrode 

makes it straightforward to collect large numbers (500–1000) of data per day, and therefore to 

generate reliable statistical information about replicability and reproducibility.  iii) It can take 

full advantage of the ability of organic synthesis to provide easy access to a range of molecular 

structures appropriate for the formation of SAMs, and for testing hypotheses about relationships 

between tunneling current densities and molecular structure.1-3,5,26-28   

Although the focus of our work is on physical-organic studies, we emphasize that we 

consider the absolute reproducibility and replicability of studies with conical tips (both flattened1 

and unflattened2-4) to be good relative to other methods (typically, one standard deviation in a fit 

of a Gaussian curve to the data  corresponds to a factor of two to three in the value of J(V), 

although this number depends on several factors, including the structure of the molecules making 

up the SAM, the geometry of the tip, and the roughness of the surface of the metal of the bottom 

electrode). 

Electrical properties of Ga2O3/EGaIn. Under ambient conditions, a thin self-limiting 

layer of Ga2O3 forms very rapidly16 on the surface of bulk EGaIn.17  When using EGaIn as a 

“soft” electrode, the resistivity of the oxide film might, in principle, influence measurements of 

electrical current or potential.  We previously estimated the resistance of the Ga2O3 layer on 

EGaIn1 by measuring the resistance of Ga2O3/EGaIn electrodes on a HOPG substrate forming a 

junction with the structure HOPG//Ga2O3/EGaIn.  We inferred an ohmic mechanism of 
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resistance, because log|J(V)| increased linearly with increasing voltage:  the resistance of the 

oxide calculated for the Ga2O3 film was RGa2O3 = 3.3×10-4 Ω·cm-2.  This resistance is lower (by a 

factor of 10) than the resistance of a SAM composed of the shortest alkanethiolate (SCH3, SC1) 

(RSC1 = 1.0×10-3 Ω·cm-2). 

The electrical29-31 and physical properties of gallium oxide, and its reactivity towards 

different chemicals,32-34 depends strongly on the method by which it is formed  (the Supporting 

Information discusses the chemical reactivity of gallium oxide briefly). Gallium oxide, formed 

spontaneously on the surface of the EGaIn electrode, is probably much less structured and more 

conducting than pure gallium oxide (formed by vapor deposition at high temperatures29, thermal 

annealing30, or by epitaxial growth on GaAs31). 

Simeone et al.1 have compared a liquid drop of Hg and a conical tip Ga2O3/EGaIn 

electrode in measurements of a Fe/FeOX susbtrate; where the FeOX was the most resistive 

component of the junction. He created electrodes with equivalent nominal contact areas, and 

found the current density of the conical tip electrode was ~10-3 the value measured from the Hg-

drop electrode.  They concluded that the difference in current density was due to the fact that the 

Ga2O3/EGaIn conical-tip electrodes had a lower effective electrical contact area (probably due to 

the roughness of the electrode) than did the liquid Hg drop electrode.  

Reactivity of Ga2O3 with water.  Metal oxides have a higher surface free energy than 

hydrophobic n-alkanethiolate-based SAMs, and a partial monolayer of water forms on their 

surface at 10% relative humidity (RH) and a complete monolayer of water is believed to be 

present at 20% RH.35  At higher levels of RH, multilayers of water form on the metal oxide 

substrate.36  It is uncertain if this presumptive film of water persists (or in what form it persists) 

when the electrode is in contact with a hydrophobic SAM.  For a SAM with a hydrophobic 
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surface (here we use SAMs of n-dodecanethiolate on AgTS), spontaneous de-wetting is plausible 

at the interface between the SAM and the asperities on the surface of the Ga2O3.  We also do not 

know the interfacial pressure of these asperities in contact with the SAM; this pressure might be 

sufficient to exclude water.  It is also possible that local heating at the interface between the 

Ga2O3 and the SAM due to tunneling current (plausibly 102 A/cm2)37 might dry the contact 

regions.  

We note and emphasize that the unknown influence of water on the electrical properties 

of a junction is not an uncertainty that is unique to EGaIn-based junction; this problem is 

relevant to all tunneling junctions that make measurements in ambient conditions. 

EXPERIMENTAL 

SAMs of Alkanethiolates.  We used AgTS substrates bearing SAMs of n-

dodecanethiolate (SC12) as the standard (or reference) for comparison; measurements of current 

density across this SAM are well-characterized and replicable across many users.1,3  We also 

used SAMs bearing a hydrophilic, polar terminal carboxylic acid (SC11COOH) on AgTS: this 

SAM, which has a higher affinity for water molecules than does SC12,
38 allowed us to study the 

effect of environmental humidity on measurements of J(V). 

Graphite substrate for examining atmospheric effects.  We chose graphite (SP3 

HOPG, SPI Inc.) as a bottom electrode in some of our studies to provide a flat, well-defined 

surface that was unreactive toward the Ga2O3/EGaIn top electrode, unreactive toward O2, and 

hydrophobic.39,40  By using a freshly formed HOPG surface—generated by mechanical cleavage 

of the top layers of a piece of graphite glued to a metal shim—we could create a clean, flat, 

electrically conducting surface (r.m.s. roughness of 0.3-0.5 nm according to SPI technical 

specifications).  By using graphite electrodes, we were able to attribute the majority of the 
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variations observed as a result of changes in the environment to the Ga2O3 film, rather than to 

some other part of the junction.   

Geometries of the EGaIn Electrode.  We used two different Ga2O3/EGaIn electrode 

geometries: “selected” conical tips (Figure 1C), and spherical hanging-drops (Figure 1D).  The 

conical tip is formed by bringing an extruded drop of EGaIn into contact with the silver substrate 

surface, and then pulled away from the surface until the neck ruptures into two parts (or 

“cones”).6,17  “Selected” conical tips (which we used here, show no visible asperities during 

formation) are distinct from “as-formed” conical tips.  A conical tip formed during the rupture of 

the neck may have surface asperities which reflect the processes occurring during formation.  

One can reduce these asperities by pre-flattening the electrode on a flat surface— compressing 

any “as-formed” asperities—prior to use in a junction. A description of the “pre-flattened” tip 

method is found in the Supplemental Information.     

“Selected” Conical Tips.  Conical tips are easy to make, and enable the rapid fabrication 

of junctions that have a smaller nominal contact area (50 to 1000 µm2) than those generated 

using the larger hanging-drop electrode.  In our experience, junctions formed from conical-tip 

electrodes are less likely to short (~90% yield of working junctions) than hanging-drop 

electrodes of EGaIn (~30-60% yield).  We assume that a large contact area and sensitivity to 

perturbation by mechanical vibration contributes to the lower yields of working junctions for the 

hanging-drop electrode, but have not studied the origins of these differences.  

 Visible asperities (i.e. whiskers) form on the surface of conical tips during the rupture of 

the neck (Figure 1B); these asperities are not reproducible, and contribute to dispersions in J(V) 

data.  On average, the creation of a visible tip asperity occurs in approximately four of every ten 

tips formed. In order to avoid the ambiguities associated with such asperities, we examined the 
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tip with a microscope after formation, and selected for use the conical tips that are free of visible 

surface irregularities. If a conical tip electrode forms visible asperities, it is discarded either by 

physical removal of the tip and extrusion of a fresh drop of EGaIn, or by reconnecting the tip 

with the EGaIn on the substrate and withdrawing the EGaIn into a new tip.  This selection of 

conical-tip electrodes facilitates the collection of data with a narrow distribution (σlog).  

 “Hanging-Drop” Electrode. Hanging-drop electrodes of EGaIn were used in certain 

experiments on both graphite and on SAMs as substrates.  Hanging-drop electrodes allowed us to 

i) compare rates of charge transport across junctions with and without the gallium oxide film, ii) 

correlate data from different environments, including those where a conical tip cannot be formed 

or is not stable, and iii) reduce the uncertainty in the contact area of the junction resulting from 

any effects of atmosphere. Figure S1 shows SEM images suggesting the surface roughness 

associated with conical tips and spherical drops of Ga2O3/EGaIn. 

 Environmental Conditions.  We used dry air from a compressed source (AI UZ300, 

Airgas Inc.) and generated low-oxygen atmospheres (<0.02% O2 – our limit of detection) using 

Ar (99.999% purity, #AR UHP300, Airgas Inc.) or N2 (99.999% purity, #NI UHP300, Airgas 

Inc.). For experiments in low-O2 atmospheres, we began electrical measurements across the 

junction once the O2 sensor (R-17D, Teledyne Analytical Instruments) indicated an O2 

concentration value of  <0.2% (the minimum detectable reading for the instrument).  We 

generated reactive atmospheres using O2 and NH3 gases (O2 #OX300 and anhydrous NH3 #AM 

AH35, Airgas).  The acetic acid environment was generated by evaporation of glacial acetic acid 

(17.4 M, Sigma Aldrich) into a flowing stream of air.  We did not control the concentration of 

the acetic acid in the vapor phase. 

RESULTS AND DISCUSSION 
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Performance of EGaIn Junctions in Alternate Environments on Graphite 

Substrates.  For measurements on graphite (no SAM present) bottom electrodes, the 

environmental chamber was conditioned first with the target atmosphere, followed immediately 

by extrusion of an EGaIn drop (conical-tip electrodes were first formed in air before 

environmental conditioning of the chamber) or formation of a conical tip electrode).  The EGaIn 

electrode, thus fabricated, was lowered onto the graphite substrate to form an electrical junction.  

Figure 2 displays histograms of log|J(-0.5 V)| collected using hanging-drop electrodes on 

graphite substrates; Table 1 summarizes these measurements.  We did not observe a significant 

difference in the electrical characteristics of the EGaIn drop electrode when we changed the 

environment (between dry air, O2, Ar, and N2) in which it was formed and the junction was 

measured (Figure 2A-D); in particular, the mean values and standard deviations of log|J| (in units 

of A/cm2) are indistinguishable (log|J| = 4.4, σlog = 0.25).  EGaIn drops formed in air and O2 

have surface films of Ga2O3, while those formed in N2 or Ar either do not, or have only a thin or 

partial film:  We therefore conclude that the Ga2O3 film does not contribute to the resistance of 

the junction and also does not influence the effective electrical contact area.  This conclusion 

reinforces similar conclusions reached in previous but different studies.1,16   

 Hanging Drop Electrodes Formed in Air or O2 and Measured in Air or O2. Figure 2 A 

and B summarizes measurements using hanging-drop electrodes formed in O2-containing 

atmospheres (air and O2, respectively) and a HOPG substrate;   we assume that the surface of 

these drop electrodes have a Ga2O3 film that is chemically similar to that formed on conical tip 

electrodes (although not as severely buckled and probably—because it is less buckled and 

folded—substantially thinner and more compliant).  Forming the electrode in a high-O2 

atmosphere (> 99.8%) rather than air does not influence the resistance of the oxide film, or that 
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of the junction formed with a graphite substrate.  Thus, the resistance of the oxide is not sensitive 

to small changes in the O2 concentration in which it is formed, and—as observed previously—is 

too small to influence the tunneling currents measured though SAMs. 

Junctions using a conical tip electrode on a HOPG substrate were measured in selected 

atmospheres of air, argon, and anhydrous ammonia.  Figure S5 of the SI summarizes these data.  

As we observed with measurements using a drop electrode, there was no significant difference 

between measurements obtained with electrodes formed in air, and measured in air or argon.  We 

conclude that the presence of O2 in the atmosphere during measurements of J(V) does not play a 

role in the resistance of the junction.  The surface roughness of the conical tip electrodes 

correlated with a decrease of the measured current density: the difference between the smoother 

hanging-drop electrodes and the rougher conical tip electrodes was log|J|mean ~1.3. 

 Hanging Drop Electrodes Formed in Ar or N2 and Measured in Ar or N2. Atmospheres of 

N2 (Figure 2C) or Ar (Figure 2D) contained O2 concentrations at less than 0.2%.  We believe that 

the low-O2 environments resulted in EGaIn drops that certainly did not have the same Ga2O3 

film that normally forms on the surface of EGaIn in air, and may only have a partial, or 

incomplete, thin film.  Junctions formed with these electrodes on a graphite substrate had values 

of log|J|mean similar to those formed under air and pure O2.  This result confirms that the presence 

or absence of the oxide on the electrode surface has no influence on the mean value of J(V). 

This observation is consistent with previous inferences;1,16  the oxide film seems to serve 

primarily as a solid, conducting layer that resists compression, that bends easily, and that 

fractures on extension.  This layer allows the formation of stable junctions in high yield, but does 

not contribute significantly to the electrical resistance of the junction.1 
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Hanging Drop Electrodes Formed in “Reactive” Vapor and Measured in “Reactive” 

Vapor. When drops were formed in an atmosphere of anhydrous ammonia (Figure 2E), the value 

of log|J|mean seems to be slightly lower than junctions formed under air, O2, N2, or Ar, but the 

distribution was broader than those junctions, and the statistical significance of the difference 

was low.  Ammonia vapor thus appears to be similar to N2 or Ar as an “inert atmosphere,” but 

with some other currently undefined surface chemistry contributing to a broader dispersion in 

values of J(V). 

Measurements in air containing high concentrations of acetic acid (AcOH) vapor 

appeared to be bimodal (Figure 2F).  We speculate that the low values of log|J|mean observed 

reflect a surface covered with a film of a gallium or indium acetate (or a multilayer soap) but we 

have no evidence that directly supports this conjecture. 

The Influence of Gaseous Environments on the Electrical Characteristics of 

AgTSS(CH2)11CH3//Ga2O3/EGaIn Junctions.  We measured charge tunneling across junctions 

using hanging drop electrodes and “selected” conical tips showing no visible asperities. 

 Formation of “Selected” Unflattened Conical Tip Electrodes.  We first conditioned the 

environmental chamber with air (from a compressed source) and subsequently formed conical tip 

electrodes (Figure 1B).  After formation of the tip, the gas feed to the chamber was either left 

unchanged, or changed to another atmosphere, and the electrical characteristics of the junctions 

were measured. When a junction shorted, we purged the chamber with air and formed a new tip, 

and again purged the chamber with the atmosphere to be examined.  

We were unable to form conical tip electrodes under either Ar or N2 (Table 1) because, in 

the absence of O2, the structurally stabilizing oxide film does not form.  When attempting to 

form the conical tip by retracting the drop following contact with the substrate, the drop detached 
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from the syringe rather than stretching and breaking.  Histograms of log|J(-0.5V)| collected from 

junctions of conical Ga2O3/EGaIn tips formed in air and then used in measuring current densities 

across a AgTSSC12/Ga2O3/EGaIn junction in air, O2, Ar, and N2 showed no significant difference 

(Figure 3).   

 Conical Tip Electrodes Formed in Air and Measured in Ar, N2, NH3,and HOAc/Air. 

Measurements obtained under a N2 atmosphere (Figure 3C) provided log|J|mean values similar to 

those measured in air.  The majority of measurements in Ar (Figure 3D) are also similar, 

although they include several outlying points near log|J| ~ 0.5 (these points are not included in 

the Gaussian fitting) and a few at log |J| = +4.2; the latter are shorted junctions. 

The cluster of data at log|J| ~0.5 may be a result of junctions in which the Ga2O3 film 

ruptured (Figure S1C shows such ruptures) while the tip was in contact with the SAM; in this 

circumstance, because the concentration of O2 is low, the gallium oxide film would not reform.  

The resulting junction, post rupture, would plausibly have a greater area of effective electrical 

contact than junctions formed with typically rough conical tips, and thus give a mean value of 

log|J(V)| approximately two to three times greater than typical conical tips.  This increase in 

contact area is observed when comparing the log|J| values of conical tip and drop junctions 

measured on SAM substrates.  In air, log|J|drop - log|J|conical ≈ 1.8 , while in a nitrogen 

environment the difference is ~2.8.  These values are in rough agreement with those reported by 

Simone et al.1 where the conformal nature of a Hg drop caused an observed increases  of ~103 in 

J(V) relative to the contact area of a conical tip junction. 

Interestingly, junctions measured in the ammonia atmosphere gave values with log|J|mean 

= +0.4 (Figure 3E)—an increase of approximately three orders of magnitude relative to values in 

air, O2 and N2 (Figure 3 A,B,C) and approximately the same as the cluster of values observed 
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under Ar (Figure 3D).  We did not observe electrical shorts in the ammonia atmosphere.  To 

eliminate the possibility of damage to the SAM from exposure to ammonia, we changed the 

atmosphere from ammonia vapor to air (with the same EGaIn tip electrode and without changing 

the substrate) and the measured current density returned to that expected in air (Figure S6). We 

conclude, therefore, that the ammonia does not damage the SAM.  There seem to be at least two 

possible rationalizations for the behavior in NH3, both of which would increase J(V) by 

increasing the effective electrical contact area (relative to measurements in air):  i) In one, the 

ammonia would provide (perhaps by corrosion of the Ga2O3) a thinner and more easily 

deformable (and hence more compliant) oxide film than the one formed in air: ii) In a second, the 

ammonia would act as an “inert gas”, similar to Ar, and prevent the growth of an oxide film in 

regions where the film is cracked.  Why all of the measurements in ammonia would present this 

behavior, and only a few in Ar, is not evident from the available data, although adsorption of 

NH3 on the surface of the EGaIn is a plausible possibility.  

The data obtained using a conical tip formed in air and measured in a HOAc/air 

atmosphere were too scattered to provide a useful interpretation beyond the fact that the acetic 

acid seems to be reactive toward the Ga2O3 and/or the SAM.   

 Junction Measurements Using Hanging Drop Electrodes. We also formed junctions 

using hanging drop EGaIn electrodes on n-dodecanethiolate (SC12) modified AgTS substrates 

(Figure 4).  The drops were first formed in air—thus ensuring they had a Ga2O3 film on their 

surface.  Measurements in air resulted in log|J| = -0.6, compared to -2.4 for conical tips in the 

same atmosphere.  We attribute this increase in current density (Δlog|J| ~1.8; |J|drop/|J|conical ~100) 

to an increase in electrical contact area; hanging-drop electrodes have a lower surface roughness 

and therefore better conformal contact with the substrate than conical tips.  In measurements 



 17

taken in low-O2 atmospheres (Ar and N2), we observed an additional increase in current density 

to log|J| = +0.3 with drop electrodes resulting in Δlog|J| ~2.8 (|J|drop/|J|conical ~1000).  This 

increase, again, is probably due to the rupture of the oxide film on the drop electrode, resulting in 

junctions having no Ga2O3 film at the top interface between SAM and top-electrode.  

When we formed and measured the hanging-drop electrode in N2, the yield of working 

junctions was 7%: all but one junction formed with the SAM resulted in an electrical short at 

some inconsistent point during measurements (consisting of 20 J-V scans), the J-V characteristics 

of the trace demonstrated an electrical short.  Portions of the traces were measured at log |J| = 

+0.3, suggesting the creation of an oxide-free junction prior to the failure of the junction.  

Figure 5 summarizes all junctions (comprising conical and drop electrodes and SAMs of 

n-dodecanethiolate) that resulted in data appropriate for a Gaussian fitting, including outliers.  

Although junctions formed using conical-tip and drop electrodes have different current densities 

when measured under air (or oxygen containing atmospheres), both top-electrode geometries 

result in similar performance in low-oxygen environments.   This observation suggests that, in 

low-oxygen environments, differences in roughness of these two types of electrode do not make 

the two measurements of current density distinguishably different.  We speculate that in low-

oxygen atmospheres, ruptures on the electrode may result in regions of contact between eutectic 

metal and the SAM, instead of the Ga2O3 film; the liquid metal would have a different wetting or 

conformal contact with the SAM, resulting in an increase in the measured current density for the 

junction due to an increase in the effective electrical contact area. 

Effect of Relative Humidity on Measurement of J(V).  We examined the effect of 

relative humidity on both graphite and SAM-based junctions.  We used the conical-tip electrode 

to contact the SAM, and a hanging-drop electrode to contact the graphite.  Figure 6 indicates that 
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J(V) is insensitive to humidity on both the graphite substrate (HOPG//Ga2O3/EGaIn, square) and 

the SAM (AgTS-S(CH2)11CH3//Ga2O3/EGaIn, circle). Junctions having a carboxylic acid-

terminated SAM (triangle) were not sensitive to changes in humidity (over a range typically 

encountered in the laboratory, (20-60 RH%).  In a separate study,41 measurements of SC11CO2H 

SAMs in ambient conditions gave J(V) = -2.1 (~ 35% RH) while SC11CH3 SAMs gave J(V) = -

1.3 (~45% RH), both giving σlog = 0.4; these values are consistent with our measurements 

(within one standard deviation of the error) and demonstrate that SAMs of SC11CO2H gives J(V) 

values lower than those of SC11CH3.  We observe, however, that for carboxyl-terminated SAMs 

at 5% RH, where we expect the system to be dry, there is a decrease in the J(V) measured.  We 

speculate that some water condensation in the junction at higher values of RH provides either i) a 

slight decrease in the height of the tunneling barrier (relative to air), or ii) a slight increase in the 

area of effective electrical contact (depicted in Figure S7). 

 

CONCLUSIONS 

We had two objectives in this work.  i) To investigate the influence of different 

environmental conditions (i.e., different gases surrounding the Ga2O3/EGaIn tip and the junctions 

at room temperature) on fabrication of the tip, and on the measured current densities, J(V), 

across the tunneling junctions.  ii) To study the influence of the surface roughness associated 

with the Ga2O3 on measurements of J(V) by comparing results obtained with the rougher conical 

tip and the smoother, although less stable, hanging drop. We summarize our findings in four 

points. 

The Ga2O3 film does not contribute to the resistivity of the junction.  Junction 

measurement on graphite using hanging-drop electrodes formed under N2 or Ar (presumably 
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with little or no oxide film) demonstrated current densities similar to measurements made with 

hanging-drop electrodes formed in the presence of O2, possessing a film of Ga2O3 on the 

electrode surface (Figure 2).  Measurements on SAMs using conical-tip electrodes (Figure 3) 

also demonstrated current densities similar to those in junctions formed either in low-oxygen 

(Ar, N2) or O2-containing (air, O2) atmospheres.  For these measurements, the conical tips were 

first formed in air (ensuring a Ga2O3 film on the electrode), and then measured in different 

atmospheres.  Measurements in an ammonia atmosphere were the only ones giving J(V) values 

different from measurements in air, possibly due to adsorption of ammonia to the oxide film, or 

some other interaction with the gas.  

The use of electrodes with thicker or thinner Ga2O3 films thus does not seem to influence 

the resistance of the top electrode and has no observable effect on J(V) measurements. This 

conclusion is consistent with our previous conclusions that the resistance of the Ga2O3 film is at 

least an order of magnitude smaller than the shortest alkyl SAM (methylthiolate), and 

consequently does not contribute significantly to the overall resistance of the tunneling 

junction.1,16 

 The Ga2O3 film on the EGaIn electrode influences junction stability.  The presence of 

the Ga2O3 film increases the yields of working electrodes (>70%) and the reproducibility of the 

area of electrical contact with the bottom substrate, and thus contributes to the generation of 

reproducible values of J(V),with standard deviations of σlog~0.3.  Junctions consisting of conical 

tip and hanging-drop electrodes created in air, and measured in O2-containing atmospheres, had 

working yields of 100%.  For junctions measured in low-oxygen atmospheres, the working yield 

decreased to a range between  60-85%.  This decrease suggests that the presence of oxygen, 

contributes to improved electrode performance and to reproducibility in J(V) measurements by 
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reforming the oxide film on the EGaIn electrodes.  Under low-oxygen environments, 

measurements of J(V) had larger standard deviations, perhaps due to cracking of the oxide film 

and idiosyncratic increases in the contact of the SAM with liquid EGaIn.   

At the beginning of our studies of tunneling across SAMs using “EGaIn” electrodes, we 

used a conical shaped Ga2O3/EGaIn, but did not understand the characteristics of this electrode 

in any detail.  Uncertainties included the importance of the roughness of the oxide film, the 

variability in the area of electrical contact of the EGaIn film with the surface of the SAM, and 

the influence of the surface chemistry of the EGaIn film on the performance of the top electrode.  

This work, in combination with other studies,1,16 enables us to resolve problems associated with 

the characteristics of EGaIn electrode, and the contribution to the stability and reproducibility of 

tunneling junctions.  

There is no statistically distinguishable effect of normal humidity fluctuations on 

measurements of current density using EGaIn-based junctions.  Current density 

measurements on graphite, methyl-, and carboxyl-terminated SAM substrates are not 

significantly influenced by changes in the relative humidity (RH) within a range typically 

encountered in the laboratory (20-60% RH).  When the atmosphere is dry (RH <5%), 

measurements of current density decreased across carboxyl-terminated SAMs but not across 

methyl-terminated SAMs.  This observed decrease in current density may reflect a change in the 

interface of the very hydrophobic carboxyl-terminated SAM with the Ga2O3 film (Figure S7).  At 

low humidity there is no or little water layer(s) adsorbed on the surfaces of the Ga2O3 and the 

CO2H-terminated SAM.  The surface free energy of the CO2H-terminated SAMs (unlike that of 

methyl-terminated SAMs) may induce formation of a water layer onto its surface at higher 

values of RH. 
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Surface roughness in the EGaIn electrode influences J(V).  Because the rupture of the 

EGaIn neck during formation of the conical tip is not entirely replicable, the surface film of 

Ga2O3 of conical tips has a significant, but unquantified roughness (Figure S1 A and B).  

Formation of the drop electrode, on the other hand, does not require this rupture, and is therefore 

smoother (Figure S1 C). 

The oxide film on the hanging drop electrode seems more flexible and thinner than that 

formed on the conical electrode. These characteristics (or others) results in higher values of J(V) 

than those obtained with a conical tip the same SAM: measurements across a C12 SAM in air 

give log|J|mean = -2.4 for a conical tip and log|J|mean = -0.6 for a drop electrode; Δlog|J|~1.8 (e.g., 

|J|drop/|J|conical ~100). The only difference that we have identified between these two 

measurements is the roughness of the Ga2O3 film, and thus the electrode surface.  When we 

compare measurements in the N2 atmosphere, we observed that log|J|mean for a drop electrode is 

higher by a factor of ~2.8 than log|J|mean for a conical electrode (|J|drop/|J|conical~1000).  We 

suggest that the thin, compliant oxide film on the hanging drop electrode leads to more 

conformal contact with the surface of the SAM. In these comparisons the only uncontrolled 

variable was the roughness of the oxide film, all variables were held constant to the best of our 

abilities.   

These results parallel results from Simeone et al.,1 where a conformal Hg drop electrode 

measured on an Fe2O3/Fe substrate gave ~103 higher current density values than an EGaIn 

conical tip electrodes on the same substrate.  In both cases, increases in electrode roughness lead 

to weaker electrical contact, and to a decrease in the measured current density.  We note that our 

results do not take into account the influence of the roughness of the substrate, which might also 

influence the electrical contact area of the junction. 
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Figure 1.  A cross sectional illustration of the environmental chamber (not to scale) (A), a 

schematic representation of methods to form either a conical-tip or hanging-drop Ga2O3/EGaIn 

electrodes from an extruded drop (B), microscopic images of a conical Ga2O3/EGaIn tip (C) and 

drop electrode (D).  In some instances, during the formation of conical tips a whisker forms (C).  

These tips are often discarded, and a new tip is formed until the rupture does not create such an 

asperity.  Further information about the operation of the chamber can be found in the Supporting 

Information.  
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Figure 2.  Histograms of the current density of EGaIn drop electrode junctions on a graphite 

substrate.  Measurements were collected in an atmospheric chamber where we altered the 

composition of the environment in which the tips were formed and junctions were measured. 

“Tip Formed” represents the atmosphere in which the electrode was formed in; “Junction 

Measurement” refers to the atmosphere in which the junction is created (using the electrode 

formed in the “Tip Formed” atmosphere). The gases used were:  A, compressed air; B, oxygen; 

C, nitrogen; D, argon; E, anhydrous ammonia; F,and acetic acid in air . Current density values 

(log|J(-0.5V)|) are estimated from Gaussian fit to the histogram.  Number of scans (Ntraces), 

number of junctions (Njunctions) mean (for log|J|), and standard deviation (σlog) are presented for 

each atmosphere.  A summary of data obtained by fitting Gaussian curves to histograms for each 

atmosphere is given in G. 
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Figure 3.  Histograms of current density measured with Ga2O3/EGaIn conical tip electrodes on a 

dodecanethiol SAM substrate forming junctions with the structure                                         

AgTS-S(CH2)11CH3//Ga2O3/EGaIn.   “Tip Formed” represents the atmosphere in which the 

electrode was formed in; “Junction Measurement” refers to the atmosphere in which the junction 

is created (using the electrode formed in the “Tip Formed” atmosphere).  All tips were first 

formed in air, junction formation and measurements were collected within the target atmosphere  

Junctions were formed under: A, air; B, oxygen; C, nitrogen; D, argon; E, ammonia; F, acetic 

acid vapor in air.  Current density values (log|J(-0.5V)|) are estimated from Gaussian fit to the 

histogram.  Number of scans (Ntraces), number of junctions (Njunctions), mean (for log|J|), and 

standard deviation (σlog) are presented for each atmosphere.  The Gaussian fit for argon (D) was 

measured for the first mode of the data at log(J) = -2.2.  No Gaussian was fit to the acetic acid 

data (F).  A summary of Gaussian fit data for each atmosphere is given in G. 
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Figure 4.  Histograms of current density measured with Ga2O3/EGaIn hanging-drop electrodes 

on a dodecanethiol SAM substrate forming junctions with the structure                                          

AgTS-S(CH2)11CH3//Ga2O3/EGaIn.  Junctions were formed under: A, air; B, oxygen; C, argon; 
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and D, nitrogen.  Additionally E displays measurements from a drop electrode formed and 

measured under nitrogen; to prevent the formation of an oxide film on the drop. Current density 

values (log|J(-0.5V)|) are estimated from Gaussian fit to the histogram.  Number of scans 

(Ntraces), number of junctions (Njunctions), mean (for log|J|), and standard deviation (σlog) are 

presented for each atmosphere. 

 

Figure 5.  Collection of log|J|mean values for Ga2O3/EGaIn electrodes, both conical tip and 

hanging drop, forming junctions on a dodecanethiol SAM substrates in various atmospheres.  
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Figure 6.  Plot of influence of humidity on the current density of conical tip Ga2O3/EGaIn 

electrodes on HOPG graphite (square), AgTS-S(CH2)11CH3 (circle), and AgTS-S(CH2)11COOH 

(triangle) substrates.  Measurements were performed in a humidity-controlled atmospheric 

chamber. A hanging-drop electrode was used on the graphite substrate, a conical-tip electrode 

was used on the SAMs. 
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Table 1.  Summary of tip formation and junction performance in various atmospheres 

  Conical Tip (Selected) Hanging Drop 

Atmosphere 
of Tip 

Formation 

Atmosphere 
of Junction 

Measurement 

log |J(-0.5V)| 
(A/cm2)| 

σlog Yield (%) 
Atmosphere 

of Tip 
Formation 

Atmosphere 
of Junction 

Measurement 

log |J(-0.5V)| 
(A/cm2) 

σlog Yield (%) 

  

S
C

12
 S

A
M

 

   Air    Air -2.4 0.4 100    Air    Air -0.6   0.3 100 

   Air    O2 -2.4 0.7 100    Air    O2 -1.2   0.4 100 

   Air    Ar  -2.2a  0.2a   60    Air    Ar  0.3   0.08a   80 

   Air    N2 -2.5 0.4 100    Air    N2  0.3  0.07a   83 

   Air    NH3  0.4 0.8   85    Air    NH3     

   Air HOAc vapor  — —     64    Air HOAc vapor       

   
G

ra
ph

it
e 

(H
O

P
G

)    Air    Air  3.3 0.2 100    Air    Air 4.6 0.3 100 
   Air    O2  3.1 0.1 100    O2    O2 4.3 0.3   88 
   Air    Ar   Ar   Ar 4.4 0.3 100
   Air    N2      N2    N2 4.4 0.1 100 

   Air    NH3  
     NH3    NH3 4.0 0.5 100 

   Air HOAc vapor       HOAc vapor HOAc vapor 3.2, 3.9b 0.2   94 
a Gaussian distribution calculated for data near the mean, excluding anomalous data  
b The data seems to have a bimodal distribution 
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AUTHOR INFORMATION 

Corresponding Author 

* E-mail:  gwhitesides@gmwgroup.harvard.edu 

Present Addresses 

† Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, 

Cambridge, MA, 02138 

ACKNOWLEDGMENT 

JB, HY, CB, and MT were funded by a subcontract from Northwestern University under DOE 

award No. DE-SC00000989. Partial salary support for BB was provided by NSF award CHE-

1152196. DG was funded through the Research Experience for Undergraduates program through 

NSF awards PHY-0646094 and DMR-0820484.  Surface characterization was performed at the 

Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure 

Network (NNIN), which is supported by the National Science Foundation under NSF award no. 

ECS-0335765. CNS is part of Harvard University. 

 



 34

ABBREVIATIONS 

EGaIn, eutectic gallium indium; SAM, self-assembled monolayer; AgTS, template-stripped 

silver; HOPG, highly ordered pyrolytic graphite; AcOH, acetic acid; RH, relative humidity;  

SEM, scanning electron microscope. 
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