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Background: Mammographic density represents epithelial and stromal proliferation, while 

Insulin-like growth factor (IGF)-1, IGF-binding protein (IGFBP)-3, growth hormone (GH) 

and estrogen, may influence cellular proliferation. However, whether these growth factors 

independently, or in combination with estrogen, influence mammographic density in 

premenopausal women remains unclear.  

Material and methods: Growth factors were assessed in 202 ovulating premenopausal 

women participating in the Energy Balance and Breast cancer Aspects (EBBA)-I study. 

Estrogen was assessed in serum, and daily in saliva, throughout a menstrual cycle. Computer-

assisted mammographic density (Madena) was obtained from digitized mammograms (days 

7-12 of the menstrual cycle). Associations between growth factors, estrogen and percent 

mammographic density, were studied in regression models.  

Results: Women with a mean age of 30.7 years had a mean percent mammographic density 

of 29.8%. Among women in the strata (above median split) of IGF-1 (>25 nmol/l) or GH 

(>0.80 mlU/l), we observed that an increase in salivary 17β–estradiol, was associated with a 

higher odds for having higher percent mammographic density (>28.5 %). The odds ratios 

(ORs) per standard deviation increase of 17β-estradiol, were 1.81 (95% confidence interval 

[CI] 1.08-3.03) in the high IGF-1 stratum, and 2.08 (95% CI 1.10-3.94) in the high GH 

stratum. Furthermore, women in this strata of growth factors (above median) who had an 

overall average 17β–estradiol above median (>16.8 pmol/l), had higher ORs for having higher 

percent mammographic density (>28.5%): IGF-1 4.13 (95% CI 1.33-12.83), and GH 4.17 

(95% CI 1.41-12.28).  

Conclusion: Growth factors, in combination with cycling estrogen, were associated with 

percent mammographic density, of potential clinical relevance.  

 

 

 

 

 

 

 

 

 

 

Introduction 
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Mammographic density represents epithelial and stromal proliferation, and is a strong 

biomarker for breast cancer development [1]. Ovarian steroid hormones and growth factors, 

on the other hand, increase cellular proliferation in the breast, which may be reflected through 

mammographic density. Furthermore, the growth hormone (GH)–insulin-like growth factor-1 

(IGF-1) signaling pathway, has been associated with breast cancer [2,3], and IGF-1 is 

suggested to influence cellular proliferation and inhibit apoptosis through the activation of 

PI3/Akt pathway, in both normal breast cells and breast cancer cell lines [4,5].  The level of 

IGF-1 is regulated by GH, and modulated by insulin-like growth factor-binding protein-3 

(IGFBP-3). However, whether IGF-1, IGFBP-3 and GH, independently or in combination 

with ovarian steroid hormones, influence mammographic density among premenopausal 

women, remains unclear [6,7].  

Mammographic density may be described by percent and absolute density. While 

percent mammographic density represents the fibroglandular tissue and fat tissue, absolute 

mammographic density represents the dense area. Mammographic density has been reported 

to vary during the menstrual cycle [8,9], and breast cancer risk factors, including the use of 

exogenous hormones, have been studied mostly in relation to, and associated with, percent 

mammographic density [10,11] and breast cancer development [12,13]. Recently, endogenous 

sex hormone levels and percent mammographic density were associated with breast cancer 

risk, both independently and in combination [14]. Interestingly, it has been hypothesized that 

a crosstalk operates between estrogen and the GH-IGF-1 signalling pathways in cells [15-18]. 

Thus, it is interesting to examine whether the variation in the GH-IGF axis in combination 

with circulating concentrations of estrogen is associated with mammographic density, 

described by both percent and absolute density in premenopausal women.  

Previously, in the Norwegian Energy Balance and Breast cancer Aspects (EBBA)-I 

study, we have observed a positive association between daily circulating ovarian sex 

hormones and mammographic density, using a modified Wolfe classification [19]. In 

addition, 17β-estradiol profiles were associated with traditional breast cancer risk factors, 

such as age at menarche [19,20], insulin, adult height and metabolic profile in adulthood 

[21,19,22]. These associations also point to the need for further studies of estrogen in 

combination with the GH-IGF signalling pathway and mammographic density. 

Thus, the purpose of this study is to examine whether IGF-1, IGFBP-3 and GH, in 

combination with circulating concentrations of daily 17β-estradiol, are associated with 

mammographic density in premenopausal women. A unique aspect of the current study is the 

measurement of estrogen in both serum and daily in saliva. The daily salivary 17β-estradiol 
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measured throughout an entire menstrual cycle represents biologically free active estrogen 

[23]. To facilitate comparisons with other studies and factors affecting various types of breast 

density, both percent and absolute density have been included. 

 

Materials and methods: 

Participants and study design 

The Norwegian EBBA–I study was conducted in 2000–2002 in Tromsø. It included 204 

healthy women aged 25-35 years, with regular menstrual cycles (length 22-38 days) [19,22]. 

The women did not use any daily medication, or steroid contraceptives, in the 6 months prior 

to recruitment, they were not pregnant or lactating, and had no gynaecological or chronic 

disorders (e.g. diabetes, hypothyroidism) [19]. Participants’ characteristics, including 

reproductive and lifestyle factors, were collected by a trained nurse using questionnaires and 

interviews at the time of recruitment. Recall and memory-probing aids, including a lifetime 

calendar, were used to date specific life events. Two women were excluded due to missing 

mammographic data, resulting in 202 participants in the present study.  

 

Clinical examination 

All participants underwent clinical examinations at the Clinical Research Centre, University 

Hospital of North Norway, Tromsø. They attended three scheduled visits during their 

menstrual cycle, after onset of the menstrual bleeding (first visit days 1-5, second visit days 7-

12 and third visit days 21-25). Anthropometric measurements were conducted with 

participants wearing light clothing and no footwear. Height was measured to the nearest 0.5 

cm, and weight to the nearest 0.1 kg on a regularly calibrated electronic scale. Body mass 

index (BMI) was calculated as weight in kilograms per height in square meter (kg/m2). Waist 

circumference (WC) was measured to the nearest 0.5 cm, 2.5 cm above the umbilicus. A 

whole body scan was obtained at the second visit for the estimation of the total percentage of 

fat tissue, using dual-energy X-ray absorptiometry (DEXA; DPLX-L 2288, Lunar Radiation 

Corporation, Madison, WI, USA). The percentage of fat tissue was estimated using Lunar 

software. 

 

 

 

 

Collection and analysis of fasting serum samples 
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Fasting serum samples were drawn in the morning from the antecubital vein at the three 

scheduled visits. Serum glucose was measured enzymatically using the hexokinase method at 

the Department of Clinical Chemistry, University Hospital of North Norway, Tromsø.   

 

Collection of hormones – IGF-1, IGFBP-3, GH and estrogen 

Fasting morning blood samples of insulin, IGF-1 and IGFBP-3, were obtained at the first 

scheduled visit, and fasting serum concentrations of GH was obtained at the second scheduled 

visit. Insulin, IGF-1 and IGFBP-3, were measured in serum stored at –70oC for up to 3 years 

until analysis took place at the Hormone Laboratory, University Hospital of Oslo, Aker. 

Serum insulin was measured by radioimmunoassay (RIA) using kits from Linco Research Inc 

(St.Charles, MO, USA). IGF-1 and IGFBP-3, measured as glycosylated, were determined by 

ILMA, Immulite 2000 (Diagnostic Products Co, Los Angeles, CA, USA). GH was measured 

in serum, stored at –70oC for up to 10 years until analysis, which took place at the Hormone 

Laboratory, University Hospital of Oslo, Aker. DELFIA kits from PerkinElmer Life Sciences 

(Wallac Oy, Turku, Finland) were used for the GH analysis. The coefficients of variation 

(CVs) derived from the laboratories were as follows: 7-10% for IGF-1 and 6% for IGFBP-3. 

For GH the average intra-assay variability was 1.9%, and the inter-assay variability ranged 

from 5.5% for low pools (0.29 mlU/l) to 2.5% for high pools (38.7 mlU/l). 

 Fasting serum 17β-estradiol concentrations were measured consecutively, by direct 

immunometric assay (Immuno-1, Bayer Diagnostics, Norway), at the three scheduled visits 

during the menstrual cycle.  

The participants self-collected daily morning saliva samples, into plastic tubes 

pretreated with sodium azide, starting on the first day of bleeding, for one menstrual cycle, 

according to collection protocols previously established at the Reproductive Ecology 

Laboratory, Harvard University, USA [19,24,25]. Levels of salivary 17β-estradiol 

concentrations, were measured in daily saliva samples from 20 days (reverse cycle days −5 to 

−24; with the last day of the menstrual cycle designated -1) using 125I-labelled RIA kits 

(#39100, Diagnostic Systems Laboratories, Webster, TX, USA), along with published 

modifications of the manufacturer’s protocols [19]. Overall average 17β-estradiol 

concentrations, was calculated using daily levels of 17β salivary- estradiol. All samples were 

run in duplicate, and from a single participant, all samples were run together in the same assay 

with women randomly assigned to assay batches. The CVs were calculated based on the high 

and low value pools included in each assay.  
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Salivary assays have higher variability than serum assays, because their measuring 

levels are one to two orders of magnitude lower in concentration. In the present study 

measurements of 17β-estradiol at the start and end of the menstrual cycles had higher CV’s. 

The sensitivity of the 17β-estradiol assay (the lowest 17β-estradiol concentration 

distinguishable from 0 at a 95% level) was 4 pmol/l.  Average intra-assay variability was 9%, 

and inter-assay variability ranged from 23% for low pools, to 13% for high pools. Therefore, 

we included 17β-estradiol measurements from aligned cycle days -7 to +6 in the linear 

models. All cycles of the participants were aligned based on the identification of the mid-

cycle drop in salivary 17β-estradiol concentration (aligned cycle day 0). The drop provides an 

estimate of the day of ovulation [26]. A drop in 17β-estradiol could not be identified for 14 

women, hence their cycles could not be aligned and they were not included in the statistical 

analysis. Overall salivary 17β-estradiol concentrations were calculated for all 202 women, 

whereas hormonal indices (e.g. follicular, mid-menstrual and luteal phases) were calculated 

only for the women with aligned cycles (n=188).   

 

Mammograms and mammographic density  

Bilateral two-view mammograms were obtained from all women, during the second 

scheduled visit (between cycle days 7 and 12 after onset of bleeding), at the Centre of Breast 

Imaging, University Hospital of North Norway, Tromsø, using a standard protocol [19,27].  

The left craniocaudal mammograms were digitized and imported into a computerized 

mammographic density assessment program (Madena), developed at the University of 

Southern California School of Medicine (Los Angeles, CA, USA) [28,29]. The density 

measurements were conducted by a trained reader (G. Ursin). These were done as follows: 

First a region of interest (ROI) [13] that included the entire breast, but excluded light artifacts 

such as the pectoralis muscle, prominent veins and fibrous strands was outlined. The 

mammogram reader then used a tinting tool to tint pixels considered to represent areas of 

mammographic density. The Madena software estimated the number of tinted pixels within 

the ROI. Absolute mammographic density represents the tinted pixels within the ROI, and 

percent mammographic density is the ratio of absolute mammographic density to the total 

breast area multiplied by 100. The mammograms were read in four batches, with an equal 

number of mammograms in each batch. A duplicate reading of 26 randomly selected 

mammograms from 2 of the batches showed a Pearson’s correlation coefficient of 0.97. The 

reader was blinded to any characteristics of the study population.  
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Statistical analysis 

To study the associations between characteristics of the women and percent and absolute 

mammographic density, we used Students t-test. Linear mixed models for repeated measures 

were used to investigate the association between fasting high or low serum concentrations of 

IGF-1, IGFBP-3 and GH, in combination with salivary 17β-estradiol concentrations 

throughout an entire menstrual cycle, and the study outcomes; percent and absolute 

mammographic density. This was done to take into account a potential combined effect of 

growth hormones and cycling estrogen throughout the menstrual cycle among premenopausal 

women in relation to mammographic density. 

 Based on plausible biological mechanisms, and previous findings suggesting a 

threshold effect between growth factors and breast cancer development [2], we stratified the 

regression analysis by median split of IGF-1 (25 nmol/l) and GH (0.80 mlU/l). Multivariable 

logistic and linear regression models were used to assess the associations between GH, IGF-1, 

estrogens and mammographic density. In the logistic regression models median split of 

percent and absolute mammographic density were used as dependent variables, >28.5% 

[yes/no], > 32.4 cm2 [yes/no] and the GH-IGF-1 axis, and measures of 17β-estradiol (serum, 

salivary; overall, mid-menstrual, follicular, luteal and area under curve) throughout a 

menstrual cycle as independent variables. The 17β-estradiol levels were included as 

categorical variables (median split) and as continuous variables with one standard deviation 

(SD) increase. In the linear regression models, both percent and absolute mammographic 

density were used as dependent variables, and the GH-IGF-1 axis, and measures of 17β-

estradiol throughout a menstrual cycle as independent variables. The 17β-estradiol levels were 

included as continuous variables with one SD increase.  

The variables, including the breast density measures, were approximately normally 

distributed, thus no transformations were needed. Moreover, there were no observations of 

any outliers that could be driving the associations. Based on previously established 

observations, including results from the same study population [19] and suggested biological 

mechanisms, which may influence breast  density, growth factors or levels of estradiol, 

several models were tested, including a variety of potentially confounding variables. We 

tested whether adjustments for potentially confounding factors such as age (continuous in 

years), BMI (continuous in kg/m2), age at menarche (continuous in years), number of children 

(continuous in numbers), previous oral contraceptive use (categorical, yes/no), alcohol intake 

(continuous in units/week), smoking habits (categorical, yes/no), energy intake (continuous in 

kJ/day) and leisure time activity (continuous in metabolic equivalents [METs] hours/week) 
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influenced our estimates. Previous oral contraceptive use, age at menarche, alcohol intake, 

smoking habits, energy intake and leisure time activity were all tested as potential 

confounders, but as these factors did not influence our results they were not included in the 

final model. The adjustment factors in the final model were age, BMI and number of children. 

IGF-1 and IGFBP-3 were adjusted for each other when appropriate. The area under the curve 

(AUC) for estradiol was calculated for each participant with an aligned cycle (days -10 to +9) 

using the trapezium rule [30]. The results were considered statistically significant when two-

sided p <0.05. The analyses were conducted with SPSS version 21.0. 

 

Ethical considerations 

All the participating women signed an informed consent form. The Regional Committee for 

Medical Research Ethics and the Norwegian Data Inspectorate approved the study. 

 

Results 

Selected general characteristics of the study participants are provided in Table 1. Among 

women with a mean age of 30.7 years, a mean salivary 17β-estradiol concentration of 17.9 

pmol/l, a mean percent mammographic density of 29.8% (median 28.5%), and a mean 

absolute mammographic density of 34.7 cm2 (median 32.4 cm2) was observed (Results not 

presented in table). Age, parity and body composition (BMI, waist circumference and total 

tissue fat) were inversely associated with both percent mammographic density (>28.5 %) and 

absolute mammographic density (>32.4 cm2). We observed IGF-1, IGFBP-3 and growth 

hormone independently, and in association with percent and absolute mammographic density, 

and no trends were observed (Table 1).  

We examined women with high and low levels of growth factors (median split of IGF-

1, IGFBP-3 and GH) in combination with mean salivary 17β-estradiol concentrations, 

throughout the mid-menstrual phase in relation to percent mammographic density. When we 

compared women with high IGF-1 (>25 nmol/l) and lower percent mammographic density 

(≤28.5%), with women with high IGF-1 (>25 nmol/l) and higher percent mammographic 

density (>28.5%); we observed a 38.3% difference in overall average 17β-estradiol (p = 

0.023). Similarly, women with either high IGFBP-3 (>100 nmol/l) or high GH (>0.80 mlU/l) 

and lower percent mammographic density (≤28.5%), compared with women with higher 

percent mammographic density (>28.5%), we observed a difference in overall average 17β-

estradiol of 34.1% (p = 0.024) and 34.2% (p = 0.013), respectively. Among women with low 

IGF-1 (≤25 nmol/l), low IGFBP-3 (≤100 nmol/l) or low GH (≤0.80 mlU/l), we observed no 
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difference in mean salivary 17β-estradiol concentrations for those with higher or lower 

percent mammographic density (Figure 1). The IGF-1:IGFBP-3 ratio showed the same pattern 

as described for IGF-1 and IGFBP-3 alone (data not shown).  

When we stratified by median split of IGF-1, IGFBP-3 and GH, and examined the 

mean salivary 17β-estradiol concentrations throughout the mid-menstrual phase in relation to 

absolute mammographic density, (≤ 32.4 cm2, > 32.4 cm2) no differences were observed 

(results not shown in table). 

In stratified analysis of growth factors (median split), the association between 17β-

estradiol (both as a continuous and binary [median split] variable) and percent mammographic 

density was further evaluated in multivariable analysis (adjusted by age, BMI and number of 

children, and IGFBP-3 or IGF-1 when appropriate). In women with high IGF-1 (>25 nmol/l) 

or high GH (>0.80 mlU/l), a one SD increase in overall average salivary 17β–estradiol was 

associated with a 1.81 (95% confidence interval [CI] 1.08-3.03) and 2.08 (95% CI 1.10-3.94) 

times higher odds for having higher percent mammographic density (>28.5%), respectively. 

Similarly, in women with high levels of IGF-1 or GH, overall average 17β–estradiol above 

versus below median (16.8 pmol/l), was associated with a 4.13 (95% CI 1.33-12.83) and 4.17 

(95% CI 1.41-12.28) times higher odds for having higher percent mammographic density 

(>28.5%), respectively. In women with IGFBP-3 (>100 nmol/l), the corresponding odds was 

3.62 (95% CI 1.15-11.38) (results not shown in table). When we subdivided the menstrual 

cycle into mid-menstrual, follicular and luteal phases, we observed adjusted ORs comparable 

to the results listed above for overall salivary 17β-estradiol. In contrast, serum estrogen was 

not associated with percent mammographic density (Tables 2 and 3). The current study did 

not reveal any association between IGF-1, IGFBP-3 and GH in combination with 17β-

estradiol and absolute mammographic density (Results not shown in table). 

Linear regression was also performed with percent and absolute mammographic 

density as continuous variables. There were no associations between high IGF-1, estrogens 

and mammographic density in the linear regression models. However, among women with 

high GH (>0.80 mlU/l), a one SD increase in overall average and follicular phase salivary 

17β–estradiol was positively associated with percent mammographic density. Thus, no 

associations were found when we used absolute mammographic density as the dependent 

variable (Supplementary table 1 and 2). The association between percent mammographic 

density and different categories of 17β-estradiol and IGF-1 (low 17β-estradiol –low IGF-1, 

low 17β-estradiol –high IGF-1, high 17β-estradiol –low IGF-1, and high 17β-estradiol –high 

IGF-1) were also tested. The category with both high 17β-estradiol and high IGF-1 showed an 
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increased OR for having high percent mammographic density; however the other categories 

were not associated with having high percent mammographic density (results not shown in 

table). 

To test for interaction between the 17β-estradiol variables, and IGF-1, IGFBP-3 or 

GH, all variables were first dichotomized and then entered into logistic regression models 

with interaction terms. In addition, we tested for interaction between 17β-estradiol as a 

continuous variable, and growth factors as dichotomized variables. We observed statistically 

significant interactions between the IGF-1 and AUC of salivary 17β-estradiol, and mid-

menstrual salivary 17β-estradiol, and between GH and overall salivary 17β-estradiol (Tables 2 

and 3). 

 

Discussion 

In the present study, we observed that premenopausal women with higher levels of growth 

factors, in combination with daily salivary 17β-estradiol, have higher odds for having higher 

percent mammographic density, independent of age, BMI and number of children. In women 

with high IGF-1 (>25 nmol/l), or high GH (>0.80 mlU/l), there was a positive relationship 

between 17β-estradiol and percent mammographic density, with up to a doubling in odds by 

one SD increase of salivary 17β-estradiol. These findings were further strengthened in women 

with high IGF-1 or high GH, combined with levels above median of daily cycling 17β –

estradiol (>16.8 pmol/l), as these women had a three- to four times higher odds for having 

higher percent mammographic density (>28.5%).  

The present results extend our own [19], and previous reports [31-33], as we observed 

a positive association between growth factors in combination with estrogen and 

mammographic density, not only an association between estrogen alone and mammographic 

density. Interestingly, a crosstalk between IGF-1 and estrogen in breast cancer development 

has been hypothesized [15-18]. Recently, GH action was studied in a panel of estrogen 

receptor-positive breast cancer cell lines, and GH significantly enhanced 17β-estradiol-

stimulated proliferation in these cells. Interestingly, the combination of GH and 17β-estradiol 

overcame inhibition of IGF-I receptor activity to restore proliferation [18]. These observations 

support a potential joint effect of growth factors and estrogen on breast cancer development. 

Our observations are also partly supported by others [33]. Among premenopausal women, 

positive associations were observed both between IGF-1 and between estrogen and percent 

mammographic density. However, estrogen was assessed on six consecutive days in relation 
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to ovulation and one day in the luteal phase in urine, but interestingly when they adjusted for 

BMI, the association was attenuated [33].  

Interestingly, we did not observe any clear association between any of the growth 

factors alone and percent mammographic density, which is consistent with other studies. 

Recently, no association between GH, IGF-1 and percent and absolute mammographic density 

was observed for either premenopausal or postmenopausal women [6], which correspond to 

the results ofothers [34-36]. Furthermore, our observation of an association between IGF-1 

and percent mammographic density, mainly seen among women with higher levels of IGF-1 

suggest a threshold effect. This association is indirectly supported by Hankinson and co-

authors as they observed an increased breast cancer risk among premenopausal women in the 

upper tertile of IGF-1 only [2]. Whether a linear association or a threshold effect exists 

between growth factors and percent mammographic density may be questioned, but our 

findings of no linear association with an interaction between growth factors, in combinations 

with continuous estrogen and percent mammographic density lends support to a threshold 

effect between growth factors and mammographic density. Other findings may also indirectly 

support a threshold effect only among women with high percent mammographic density. In a 

cohort study from the Netherlands, women aged 35 and older with percent mammographic 

density above 25%, had a 2 times increased odds ratio for breast cancer development [37]. 

Moreover, recently percent mammographic density above 25% was associated with later 

increased postmenopausal breast cancer risk [1]. These results partly support a threshold 

effect, and support our cut off of 28.5% for percent mammographic density as an appropriate 

cut off level. 

To note, our observed association between growth factors in combination with 

estrogen and percent mammographic density, were not observed with absolute 

mammographic density. These findings can partly be explained by the fact that absolute 

mammographic density reflect the dense breast tissue, while percent mammographic density 

reflects fibroglandular and fat tissue [38]. Moreover, such an association between growth 

factors and percent mammographic density has been suggested to reflect cumulative exposure 

of hormones and growth factors in breast stroma and epithelium to stimulate cell division 

[39,38].  Thus, estrogen and growth factors may influence not only the dense area, but the 

stroma and the surrounding adipose tissue. Importantly, others have observed that	
  

fibroglandular and fat tissue may have independent effects on breast cancer development [40].  

Altogether, even if plausible mechanisms have been suggested, and has been 

supported by experimental studies [41], less is known about the association of the GH-IGF 
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signaling pathway, estrogen and mammographic density. Recently, estrogen and IGF-1 have 

been observed to have synergistic effects on the growth of breast cancer cells [41]. Moreover, 

GH regulates the production of IGF-1, and around 99% of circulating IGF-1 is bound to 

IGFBP-3. IGF binds to the tyrosine kinase receptor, which induces an intracellular signalling 

cascade. IGF-1 receptor activation  primarily leads to proliferation and differentiation [42]. 

The GH, IGF-1 and IGFBP-3 levels are age dependent and decrease after puberty. Some 

studies have examined the GH-IGF signaling pathway in association with mammographic 

density, for both premenopausal and postmenopausal women, but the results are indifferent 

[43,44,34]. For postmenopausal women, however, the growth factor levels, estrogen levels 

and mammographic densities are lower than that for premenopausal women. This may explain 

in part, why no associations between these growth factors and mammographic density have 

been observed for postmenopausal women [34,35,43].  Thus, the higher levels of cyclic 

estrogen and serum level of growth factors may be more likely to capture the aetiologically 

relevant exposure period, and may explain in part why the associations are more pronounced 

among premenopausal women [45]. Furthermore, estrogen and mammographic density varies 

throughout the menstrual cycle and this could partly explain why some studies that measure 

estrogen in serum did not show associations with mammographic density [31,46]. Variations 

in the populations may also be explained by the fact that variations in IGF-1 levels have been 

observed in relation to single-nucleotide polymorphisms as well as lifestyle factors (such as 

age, nutrition, hepatic function) [47].   

Recently, both an independent and a combined effect of endogenous sex hormone and 

percent mammographic density were observed on breast cancer risk [14]. Postmenopausal 

women in the highest tertile of estradiol and with the highest percent mammographic density 

(>24.0%) had an increased breast cancer risk [14]. These observations support that, including 

circulating endogenous estrogen, may add additional information about the complexity using 

mammographic density as a biomarker for breast cancer development.  

Thus, our findings of an association between growth factors, estrogen and percent 

mammographic density with a threshold effect are supported by plausible biological 

mechanisms, and suggested as a crosstalk in cells between the signalling pathways for 

estrogens and IGF-1[15,16]. Importantly, GH and IGF-1 signalling, together with estrogens, 

is essential for the development of the mammary gland, particularly the terminal end-buds. It 

has also been found that during lactation, IGF-1 plays an important role in the maintenance of 

the adult mammary gland [48-50]. Furthermore, percent mammographic density refers to the 

structure of the adipose, epithelial and connective tissue in the breast [51]. Thus, the growth 
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factors and estrogens in combination, are key factors in proliferation of breast cells and are 

potential drivers for breast cancer development [41]. 

In the present study, we observed a positive association between IGFBP-3 and percent 

mammographic density, which is in contrast to others [3]. However, the association between 

IGFBP-3 and breast cancer risk may differ according to whether IGFBP-3 is measured as 

intact, fragmented or total [52]. In our study, serum IGF-1 and IGFBP-3 are measured once in 

serum, but have long half-lives and little daily variations. This seems to be adequate for 

measuring the long-term levels of these peptides [53]. However, GH is normally secreted 

episodically with 7-10 peaks per day, but importantly with a more constant fasting morning 

level, as is the case for many other cycling biological markers and the half-life in serum is 

shorter than that for IGF-1. To minimize these variations, GH was assessed in fasting morning 

samples, as is the case for all other growth factors. However, caution should be exerted when 

interpreting the results.  

The current study benefited from several unique features, such as salivary 

measurements of concentrations of unbound 17β-estradiol collected daily across an entire 

menstrual cycle [23,54], following strict procedures [19] and validated methods [26]. Among 

ovulating premenopausal women, the estrogen levels vary considerably throughout the 

menstrual cycle, and by using daily salivary samples, we were able to measure the free 

biologically active form of estrogen, which is considered to be the ideal measure among 

ovulating premenopausal women [23,26].  Thus, we were able to capture the continuous 

estrogen exposure of the women. Moreover, standardized repeated hormone levels in serum 

were also included. 

Furthermore, mammograms were taken during a narrow time frame in the late 

follicular phase (days 7-12), thereby avoiding the bias of variation in mammographic density 

during the menstrual cycle [55].  The validated computer-assisted method has been observed 

to quantify mammographic density, and shown to give a superior prediction of breast cancer 

risk compared with qualitative methods [28]. All mammograms were read by one experienced 

blinded reader, and the assessed mammographic density was negatively associated with age, 

BMI and number of children [56,57]. Thus, we have adjusted for these confounders in the 

multiple analyses. The study population was homogenous with healthy women aged 25-35 

years from the same cultural background. However, the small sample size of the current study 

and small number of earlier reports underlines the need for further studies. 

In conclusion, based on the biological mechanisms suggested and previous reports, the 

present findings are unique in character, supporting that IGF-1, IGFBP-3 and GH, in 
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combination with cycling bioactive estrogen, may be associated with percent mammographic 

density in premenopausal women. This combination of biomarkers may also be important in 

clinical settings. However, our results are based on a relatively small sample size and should 

be interpreted with caution. Hence, there is a need for replication in larger studies. 
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Table 1 Characteristics of the study population by median split of percent and absolute 
mammographic density: The Norwegian Energy Balance and Breast cancer Aspects (EBBA)-
I study (n=202) a 

 
 Percent mammographic 

densitye (%)  Absolute mammographic 
densitye (cm2) 

 

 
≤28.5 

(n=101)a 
>28.5 

(n=101)a  ≤32.4 
(n=101)a 

>32.4 
(n=101)a  

Characteristics Mean (SD) Mean (SD) p-
value Mean (SD) Mean (SD) p-

value 
Age (years) 31.54 (2.72) 29.88 (3.18) <0.001 31.48 (2.80) 29.94 (3.14) <0.001 
Education (total years) 16.14 (3.20) 16.01 (2.88) 0.771 15.92 (2.99) 16.23 (3.09) 0.467 
Body compositionb       
  BMI (kg/m2) 26.15 (3.90) 22.66 (2.73) <0.001 25.42 (4.07) 23.39 (3.19) <0.001 
  Waist circumference (cm) 84.43 (9.92) 74.83 (6.93) <0.001 82.45 (10.35) 76.81 (8.35) <0.001 
  Tissue fat, DEXA scan                  
(%)e 37.95 (6.72) 30.54 (6.55) <0.001 36.39 (7.50) 32.10 (7.10) <0.001 

Reproductive factors       
  Parity (no children)  1.35 (1.21) 0.49 (0.84) <0.001 1.25 (1.14) 0.58 (1.02) <0.001 
  Age at menarche (years) 12.87 (1.31) 13.35 (1.40) 0.011 12.91 (1.34) 13.31 (1.39) 0.038 
  Cycle length (days) 27.87 (3.00) 28.67 (3.22) 0.069 27.78 (3.10) 28.76 (3.10) 0.026 
Serum concentrationsc       
  Glucose (mmol/l) 5.15 (0.59) 4.90 (0.51) 0.002 5.10 (0.62) 4.95 (0.49) 0.049 
  Insulin (pmol/l) 90.42 (61.26) 80.96 (57.60) 0.260 91.06 (68.26) 80.32 (48.97) 0.200 
  IGF-1 (nmol/l) 24.66 (6.27) 25.36 (6.41) 0.439 24.23 (6.00) 25.79 (6.59) 0.079 
  IGFBP-3 (nmol/l) 100.51 (15.93) 100.38 (14.17) 0.951 98.63 (15.17) 102.27 (14.75) 0.085 
  Growth hormone (mlU/l) 3.03 (4.90) 4.21 (7.02) 0.175 3.13 (5.19) 4.11 (6.85) 0.260 
Serum hormonesc       
   Estradiol (pmol/l)  149.60 (72.54) 144.60 (48.67) 0.567 153.07 (73.06) 141.10 (47.24) 0.170 
Salivary hormonesd       
  Overall average 17β-estradiol 
(pmol/l)  17.55 (8.78) 18.50 (8.73) 0.441 17.63 (8.42) 18.43 (9.09) 0.515 

Lifestyle factors       
  Energy intake (kJ/day) 7.94 (1.94) 8.27 (1.85) 0.218 7.89 (1.93) 8.32 (1.85) 0.106 
  Previous use of OC (%) 1.16 (0.37) 1.18 (0.39) 0.708 1.18 (0.39) 1.16 (0.37) 0.708 
  Leisure time (MET 
hours/week) 62.49 (121.61) 53.03 (37.64) 0.456 59.99 (121.14) 55.50 (39.55) 0.724 

  Alcohol (units/week) 2.56 (3.10) 3.24 (3.61) 0.154 2.50 (3.13) 3.30 (3.57) 0.091 
  Current smokers (%) 1.76 (0.43) 1.78 (0.42) 0.710 1.77 (0.42) 1.77 (0.42) 0.970 
 
NOTE: All analyses have used Students t-test 
BMI, body mass index; DEXA, dual-energy X-ray; IGF-1, insulin-like growth factor-1; IGFBP-3, insulin-like 
growth factor binding protein-3; OC, oral contraceptives; MET, metabolic equivalents; SD, standard deviations. 
 
aNumbers may vary due to missing information. 
bMeasurements at days 1-5 after onset of menstrual cycle. 
cSerum samples in early follicular phase: days 1-5 after onset of menstrual cycle. 
dDaily saliva samples throughout an entire menstrual cycle. 
eMammograms and total tissue fat (DEXA) were taken days 7-12 (mid-cycle phase). 
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Table 2 Odds ratios (ORs) with 95 % Confidence interval (CI) for higher percent 
mammographic density (>28.5%) by estrogen among premenopausal women, stratified by 
median split of insulin-like growth factor (IGF)-1.  
 

 IGF-1 
 ≤25 nmol/l n=105a >25 nmol/l n=99a Interaction 
Hormones OR 95% CI OR 95% CI p-value 
Serum 17β-estradiol (pmol/l)      
Early follicularb      
  ≤130.0 1.00 (Referent) 1.00 (Referent)  
  >130.0 1.15 (0.43-3.12) 1.57 (0.56-4.43) 0.776 
Estradiol per 1 SD (61.59 pmol/l) 0.84 (0.47-1.52) 1.22 (0.77-1.95) 0.461 
      
Salivary 17β -estradiol (pmol/l)      
Overallc      
  ≤16.8 1.00 (Referent) 1.00 (Referent)  
  >16.8 1.21 (0.42-3.46) 4.13 (1.33-12.83) 0.056 
Estradiol per 1 SD (8.79 pmol/l) 1.52 (0.81-2.82) 1.81 (1.08-3.03) 0.356 
      
Mid-menstrualc      
  ≤16.9 1.00 (Referent) 1.00 (Referent)  
  >16.9 1.10 (0.35-3.44) 4.35 (1.42-13.35) 0.028 
Estradiol per 1 SD (8.98 pmol/l) 1.38 (0.67-2.86) 1.80 (1.09-2.97) 0.183 
      
Folliculare      
  ≤17.5 1.00 (Referent) 1.00 (Referent)  
  >17.5 1.35 (0.44-4.16) 3.84 (1.20-12.26) 0.057 
Estradiol per 1 SD (9.58 pmol/l) 1.39 (0.69-2.80) 1.99 (1.14-3.48) 0.101 
      
Lutealf      
  ≤15.5 1.00 (Referent) 1.00 (Referent)  
  >15.5 1.91 (0.61-6.00) 5.26 (1.67-16.56) 0.071 
Estradiol per 1 SD (9.22 pmol/l)  1.28 (0.64-2.57) 1.62 (1.02-2.58) 0.282 
      
AUCg (pmol/l x cycle)      
  ≤251.25 1.00 (Referent) 1.00 (Referent)  
  >251.25 1.25 (0.40-3.90) 4.35 (1.42-13.35) 0.038 
AUC per 1 SD (133.01 pmol/l x cycle)   1.38 (0.67-2.86) 1.81 (1.10-3.01) 0.176 
 
NOTE: All analyses have used multivariable logistic regression models, and are adjusted for age (continuous), 
body mass index (continuous), number of children (continuous), and IGFBP-3 (continuous). 
AUC, area under curve; CI, confidence interval; IGF-1, insulin-like growth factor-1; IGFBP-3, insulin-like 
growth factor binding protein-3; OR, odds ratio; SD, standard deviation. 
 
aNumbers may vary due to missing information. 
bSerum samples in early follicular phase: days 1-5 after onset of menstrual cycle. 
cDaily saliva samples throughout an entire menstrual cycle. 
dDaily saliva samples in mid-menstrual phase: aligned cycle days -7,+6 
eDaily saliva samples in follicular phase: aligned cycle days -7,-1. 
fDaily saliva samples in luteal phase: aligned cycle days 0,+6 
gAUC estimated from aligned cycle days -10,+9 

P=0.243	
  
P=0.155	
  

c)	
  

e)	
  

	
  

	
  

a)	
  

	
  

e)	
  

c)	
  
	
  

	
  



Frydenberg et.al 01.07.2015 
 

21 
 

Table 3 Odds ratios (ORs) with 95 % Confidence interval (CI) for higher percent 
mammographic density (>28.5 %) by estrogen among premenopausal women, stratified by 
median split of growth hormone (GH). 
 

 GH  
 ≤0.80 mlU/l n=102a >0.80 mlU/l n=93a Interaction 
Hormones OR 95% CI OR 95% CI p-value 
Serum 17β -estradiol (pmol/l)      
Early follicularb      
  ≤130.0 1.00 (Referent) 1.00 (Referent)  
  >130.0 1.00 (0.35-2.78) 2.27 (0.76-6.73) 0.321 
Estradiol per 1 SD (61.59 pmol/l) 1.08 (0.59-1.98) 1.02 (0.63-1.63) 0.743 
      
Salivary 17β -estradiol (pmol/l)      
Overallc      
  ≤16.8 1.00 (Referent) 1.00 (Referent)  
  >16.8 0.88 (0.30-2.61) 4.17 (1.41-12.28) 0.024 
Estradiol per 1 SD (8.79 pmol/l) 1.57 (0.91-2.69) 2.08 (1.10-3.94) 0.256 
      
Mid-menstruald      
  ≤16.9 1.00 (Referent) 1.00 (Referent)  
  >16.9 1.16 (0.37-3.59) 3.05 (1.02-9.12) 0.170 
 Estradiol per 1 SD (8.98 pmol/l) 1.56 (0.89-2.75) 2.06 (1.06-4.00) 0.328 
      
Folliculare      
  ≤17.5 1.00 (Referent) 1.00 (Referent)  
  >17.5 1.19 (0.38-3.73) 4.09 (1.27-13.12) 0.083 
Estradiol per 1 SD (9.58 pmol/l) 1.40 (0.83-2.37) 2.78 (1.29-6.03) 0.063 
      
Lutealf      
  ≤15.5 1.00 (Referent) 1.00 (Referent)  
  >15.5 2.34 (0.71-7.77) 3.70 (1.25-10.96) 0.361 
Estradiol per 1 SD (9.22 pmol/l) 1.69 (0.94-3.03) 1.58 (0.88-2.84) 0.949 
      
AUCg (pmol/l x cycle)      
  ≤251.25 1.00 (Referent) 1.00 (Referent)  
  >251.25 1.33 (0.43-4.12) 3.05 (1.02-9.12) 0.586 
AUC per 1 SD (133.01 pmol/l x cycle) 1.60 (0.91-2.83) 2.06 (1.05-4.04) 0.348 
  
NOTE: All analyses have used multivariable logistic regression models, and are adjusted for age (continuous), 
body mass index (continuous), and number of children (continuous). 
AUC, area under curve; CI, confidence interval; GH, growth hormone; OR, odds ratio; SD, standard deviation. 
 
aNumbers may vary due to missing information. 
bSerum samples in early follicular phase: days 1-5 after onset of menstrual cycle. 
cDaily saliva samples throughout an entire menstrual cycle. 
dDaily saliva samples in mid-menstrual phase: aligned cycle days -7,+6 
eDaily saliva samples in follicular phase: aligned cycle days -7,-1. 
fDaily saliva samples in luteal phase: aligned cycle days 0,+6 
gAUC estimated from aligned cycle days -10,+9	
  


