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ABSTRACT. Junctions with the structure AgTS/S(CH2)nT//Ga2O3/EGaIn (where S(CH2)nT is a 

self-assembled monolayer, SAM, of n-alkanethiolate bearing a terminal functional group T) 

make it possible to examine the response of rates of charge transport by tunneling to changes in 

the strength of the interaction between T and Ga2O3. Introducing a series of Lewis acidic/basic 

functional groups (T = –OH, –SH, –CO2H, –CONH2, and –PO3H) at the terminus of the SAM 

gave values for the tunneling current density, J(V) in A/cm2, that were indistinguishable (i.e., 

differed by less than a factor of 3) from the values observed with n-alkanethiolates of equivalent 

length. The insensitivity of the rate of tunneling to changes in the terminal functional group 

implies that replacing weak van der Waals contact interactions with stronger hydrogen- or ionic 

bonds at the T//Ga2O3 interface does not change the shape (i.e., the height or width) of the 

tunneling barrier enough to affect rates of charge transport. A comparison of the injection 

current, J0, for T = –CO2H, and T = –CH2CH3—two groups having similar extended lengths (in 

Å, or in numbers of non-hydrogen atoms)—suggests that both groups make indistinguishable 

contributions to the height of the tunneling barrier. 

TEXT. Studies of the electrical behavior of junctions based on self-assembled monolayers, 

SAMs, and having the structure AgTS/S(CH2)nT//Ga2O3/EGaIn have revealed several surprising 

insensitivities of the rates of charge transport across the SAM to the structure of the terminal 

group (T) of the SAM.1-5 (Here, AgTS indicates a template-stripped silver substrate,6 EGaIn is 

eutectic gallium indium alloy, and Ga2O3 is a surface oxide that forms at the surface of EGaIn 

almost immediately upon exposure to air.7) One current interest in the interpretation of data for 

charge transport obtained with EGaIn top-electrodes is the contribution of the non-covalent van 

der Waals T//Ga2O3 top-interface to the shape of the tunneling barrier. When the group T is 

aliphatic, simple aromatic, or polar but not strongly Lewis-acidic or Lewis-basic—a range of 
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groups differing widely in electronic and molecular structure—details of the atomic/electronic 

structure of the group seems relatively unimportant, and the contribution of T to the rate of 

tunneling appears to come primarily from its contribution to the width of the barrier.4, 5, 8 In 

(possible) contrast, n-alkanethiolates show an odd/even effect9 (which might be a reflection of 

interface structure); T = ferrocene and its derivatives produce large rectification ratios (R > 

100),10-14 and certain terminal groups (in other systems) have been reported to have large 

influences on tunneling currents.15-20 To rationalize these results, this work systematically 

examined T groups capable of interacting with the surface of Ga2O3, with strengths between van 

der Waals and covalent bonds, and determined whether these groups (and the strengths of their 

interactions with the top Ga2O3/EGaIn electrode) changed rates of tunneling.  

We have introduced a series of protic polar groups (T = –CO2H, –SH, –PO3H2, –OH, –

CONH2) into the interface between the electrically conducting Ga2O3 layer8 and the insulating 

methylene (–(CH2)n–) portion of the SAM. These polar groups are capable, in principle, of 

interacting with the surface of the Ga2O3 either as Lewis acids or bases, and thus, more strongly 

than the aprotic polar T groups,4 and the nonpolar aromatic and aliphatic T groups we have 

studied before.5 We focused on two particular questions: i) Do these Lewis acidic or basic groups 

at the T//Ga2O3 interface change the current density (J in A/cm2 at applied bias V) through these 

junctions? ii) How do these changes in structure affect the apparent dependence of the charge 

injection current density (J0), and the tunneling decay constant (β) (as defined by the simplified 

Simmons equation21 for tunneling, eq. 1)? 

J(V) = J0(V)e-βd  = J0(V)10- βd /2.303     (1) 

A tunneling junction of the form AgTS/A(CH2)nT//Ga2O3/EGaIn has two different interfaces: 
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i) a covalent or ionic so-called “bottom” interface between the anchoring atom A and the Ag,TS 

and ii) a van der Waals interface between T and the Ga2O3. The structure of the anchoring group 

(A) has little influence on the rate of  tunneling (for example, replacing AgTSS(CH2)nCH3 with 

AgTSO2C(CH2)n-1CH3 does not significantly change this rate).2 The effect of structural variations 

at the top interface—where the strength of the interaction between the T and Ga2O3 could, in 

principle, change from a weak physical interaction (i.e., van der Waals interaction) to a much 

stronger chemical bond—is a question relevant to the relationship between the molecular-level 

structure of the SAM and its properties as a tunneling barrier.  

This paper follows a physical-organic design in studying charge transport across EGaIn-based 

junctions: that is, we varied only the structure of the terminal group T, while keeping other 

components of the SAM (i.e., its thiolate anchoring group and polymethylene backbone              

(‒(CH2)n‒) and the electrodes the same. This strategy minimized changes in the structure of the 

SAM unrelated to the group T and the T//Ga2O3 interface. (It cannot, of course, entirely 

eliminate them, since the structure of the group T may influence the structure of the 

polymethylene unit). We incorporated various terminal groups T into these junctions, and 

analyzed trends in J(V) with T, assuming that the contributions of all other components of the 

junction remained consistent with those well-established for n-alkanethiolates. We chose the 

Lewis acidic/basic groups (–SH, –OH, –CONH2, –CO2H and –PO3H2) based on their ability, in 

principle, to interact chemically (i.e., using interactions beyond electrostatic contacts, by 

hydrogen bonding, coordination, or formation of covalent bonds) with the gallium oxide of the 

top-electrode. The relevant values of pKa, in water, for these groups are: –PO3H2 = 2.4 (pKa1), 

7.1 (pKa2); –CO2H = 4.8; –SH = 10.3; –OH = 18; –CONH2 = 25.22  
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The structural and electrical characteristics of the AgTS/S(CH2)nT//Ga2O3/EGaIn junction are, 

by now, generally well-established.7, 8, 10, 23-26 In prior work, we concluded that i) the resistance 

of the Ga2O3 film does not contribute significantly to the resistance of the junction;7, 8, 23, 24, 27 ii) 

the surface of the film in contact with the SAM in the “conical tip”24 electrode we use is rough, 

and only a small (although reproducible) fraction (~10-4) of the apparent area of contact between 

Ga2O3/EGaIn tip and the SAM (as estimated by microscopy) is in effective electrical contact.8  

The rate of charge transport in these junctions is compatible with a model based on hole 

transport through a potential barrier provided by the electrically insulating SAM, and the 

interfaces between top- and bottom-electrodes.19, 28 We have roughly estimated the shape of this 

potential barrier using known values of work functions for silver (-4.5 eV relative to vacuum),29 

and EGaIn (-4.3 eV).7 For a cluster of n-alkanethiolates (n-decanethiolate, SC10) bound to Ag, 

we used density functional theory (DFT) to estimate the values of the frontier orbital energies—

the highest occupied molecular orbital, HOMO (-4.89 eV), and lowest unoccupied molecular 

orbital, LUMO (-2.92 eV). Table S1 (in the Supporting Information) summarizes the potentials 

calculated for n-alkanethiolates and ω-carboxyl-alkanethiolates on Ag. 

In a molecular junction, the width of the tunneling barrier (d, eq.1) is commonly 

approximated by the length of the molecules comprising the SAM that separates the two 

electrodes, but it is still unclear which components of the molecule should be considered to 

belong to the insulating tunneling barrier. The tunneling barrier certainly includes all of the 

insulating –(CH2)n– units, but it might also include the anchoring atom (S), and the terminal 

group T in van der Waals contact with Ga2O3. We do not know, with precision, the shape (height 

and width of the energy profile) of the barrier associated with a van der Waals interface between 
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group T and Ga2O3 (Figure S7); we assume that it is the highest potential in the barrier 

(potentially close to vacuum at 0 eV). As a starting point in the analysis of the width of the 

barrier, we defined the injection current for d = 0 Å to be that obtained by extrapolation of a 

series of n-alkanethiolates S(CH2)nH (n = 16 to n = 0), and included both the anchoring atom and 

the distal hydrogen atom (Figure 1b).  

We fabricated “unflattened” conical-tip EGaIn electrodes and selected those that were free of 

visible surface asperities (using procedures described elsewhere,8 and in the Supporting 

Information) to measure current density, J(V), across T-terminated alkanethiolates on AgTS. 

Figure 2 shows J(V) data for T being  either a methyl group (T = –CH3)—represented by the 

dashed reference line—or a Lewis acid/base functional group. We do not know the ionization 

state of the protic groups T in the SAM, and arbitrarily assume a protonated state for each SAM 

when calculating the total molecular length (from the anchoring atom to the very distal hydrogen 

atom). In order to account for uncertainty associated with protonation state and molecular length, 

the horizontal bar for each point in Figure 2 includes estimated lengths of both protonated and 

deprotonated states. The Supporting Information (Figure S5) contains a summary of the 

histograms describing all measurements of log|J| (V = +0.5 V). The values of J (V = +0.5 V) for 

alkanethiolates terminated with protic groups T were not significantly different from the methyl-

terminated alkanethiolates (i.e., they differ by less than a factor of 3). This result suggests that 

introducing Lewis-acidic or -basic groups that have the potential to coordinate gallium oxide or 

hydroxide in the T//Ga2O3 interface does not change the shape of the barrier enough to affect the 

tunneling conductance of the junctions.  
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Although we have no quantitative measure of the strength of the interaction between EGaIn 

and the surface of the SAM, we have one clear qualitative indication that the interaction is 

stronger for T = –CO2H than for T = –CH3. Upon retraction of the EGaIn conical tip electrode 

from the surface (for T = –CO2H, Figure S2), the tip adhered to the SAM. Although this tip is 

“sticky” (and thus, we infer, interacts more strongly with the surface of the SAM than other 

surfaces we have examined; for example, the surface of n-alkanethiolates on Ag), the measured 

current density is indistinguishable from n-alkanethiolate standards of the same length. 

Moreover, the adhesion does not result in electrically “shorted” junctions. This observation 

suggests qualitatively that terminal CO2H groups form, at least in part, hydrogen or coordination 

bonds with the gallium oxide, but that these bonds do not change the rate of charge transport 

detectably. The inference that Ga2O3 can act as a base (i.e., a hydrogen bond acceptor) agrees 

with work by Ito and coworkers.30 We infer that a terminal T = –CO2H group forms bonds with 

the Ga2O3 of the top-electrode that are stronger than van der Waals interactions involving T = –

CH3 and other groups, but that these bonds do not increase observably the tunneling current 

relative to a top interface having the weak van der Waals interaction of a T = –CH3 group.31, 32  

To investigate further the influence of the interaction between T = –CO2H and the Ga2O3 of 

the EGaIn top electrode on the rate of charge transport, we investigated a range of lengths of ω-

carboxyl-alkanethiolates (Figure 3). The Supporting Information contains histograms of data for 

log |J| for carboxyl-terminated molecules. Yields of working junctions for the carboxyl-

terminated SAMs (100%) were as high or higher than those composed of n-alkanethiolates. 

Standard deviations of measured currents for ω-carboxyl-alkanethiolates were smaller than those 

of the n-alkanethiolates: the σlog calculated from the Gaussian fitting was ~0.3 for SAMs bearing 

terminal carboxyl groups, but ~0.5 for SAMs of n-alkanethiolates on AgTS (Figure S5 and S6). 
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We note that σlog ~ 0.3 indicates that ~67% of the junctions give values of J (V = +0.5V) that fall 

within a range differing by a factor of 4 (across multiple junctions, tips, and users). This narrow 

distribution indicates that EGaIn-based junctions based on a T//Ga2O3 contact is reproducible 

and replicable, and suggests that the formation of a weak bond at the SAM//Ga2O3 interface 

increases the stability of the junction on measurements of J(V).  

To determine the contribution of a terminal carboxyl group (T = –CO2H) to the shape—the 

height and width—of the tunneling barrier, we compared the tunneling current densities with 

length-matched n-alkanethiolates (T = –CH3). We estimated the width, d, of the tunneling barrier 

using three different assumptions (Figure 4 and 5): i) d[Å]  = the total length of the molecular 

SAM in Å, from the center of the anchoring atom (sulfur) to the center of the distal atom 

assumed to be closest to the top electrode. Thus, for example, d[Å] for S(CH2)10H would be 12.9 

Å for the S to C distance of the (CH2)10 unit, plus 1.0 Å for the terminal hydrogen; that for 

S(CH2)9CO2H would be 11.8 Å for the S to C distance of the (CH2)9 unit, plus 3.1 Å for             

T = –CO2H; ii) d[S(CH2)nT] = the sum of the number of methylene (CH2) units, the anchoring 

atom (here S), and the non-hydrogen atoms of the terminal functional group, (thus, for example, 

d[S(CH2)nT] for S(CH2)10H would be 10 methylene units and 1 sulfur atom; that for 

S(CH2)9CO2H would be 9 methylene units, 1 sulfur atom, and 2 non-hydrogen atoms, C and O, 

from T) and iii) d[(CH2)n] is determined only by the number of methylene (CH2) units, (thus, for 

example, d[(CH2)n] for S(CH2)10H would be 10 methylene and that for S(CH2)9CO2H would be 9 

methylene units). 

Figure 4 shows a plot of log|J(+0.5 V)| vs. d[Å]  for different lengths of carboxyl-terminated 

alkanethiolates, and for n-alkanethiolate standards (dashed line). The linear-least square fit (R2 = 
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0.99) of <log|J(+0.5V)|> to equation 121, 33 yielded the injection current ( log|J0(+0.5V)|) and the 

tunneling attenuation coefficient (β (in Å-1)). The injection current for the carboxyl-terminated 

alkanethiolates (log|J0(0.5V)| = 3.6 ± 0.2 A/cm2) was indistinguishable from that of the methyl 

terminated n-alkanethiolate standards (log|J0(0.5V)| = 3.7 ± 0.2 A/cm2) when considering the 

entire length (measured in Å) of the SAM from the sulfur atom to the distal hydrogen atom of the 

carboxyl group in contact with Ga2O3. 

The Simmons equation (eq. 1) fits the experimental observations (Figure 4) qualitatively in 

this experiment (as in many other experiments).8, 34, 35 There are, however, unresolved questions 

in most of these experiments about the interpretation of the parameters J0, β, and d. The 

attenuation parameter β describes the falloff in tunneling current with distance, and is remarkably 

consistent (β = 0.73-0.89 Å-1 or 0.9-1.1 nC-1) for a large number of studies of n-alkanethiolates 

on gold and silver, and of n-alkyl groups bonded directly to silicon.28, 34-38 The value of the 

injection current, J0, is interpreted to be characteristic of a hypothetical junction in which the 

SAM has zero length d, but in which the characteristics of the Ag/S and T//Ga2O3 interfaces is 

preserved. For all compounds (other than those with (CH2)n groups so short that the AgS and T 

groups interact directly), we expected the contribution to J0 from the Ag-S interface to be the 

same for all experimental junctions of the form Ag/S(CH2)nT//Ga2O3/EGaIn. For compounds 

where T is not a methyl group, however, there is a question about the meaning of d (a parameter 

which defines the width of the tunneling barrier): viz, should T be considered as part of the 

insulating tunneling barrier, or a part of the electrically conducting Ga2O3 interface, or as some 

hybrid between the two? To address this question, we have plotted J(V) as a function of the 

number of non-hydrogen atoms (here, S and C and/or O) and as a function only of the number of 

methylene groups in the molecules of the junction. Figure 5a shows that the former plot yields 
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effectively indistinguishable least-square fits for the trend derived from SAMs of ω-carboxyl-

alkanethiolates and from SAMs of n-alkanethiolates, with the same value of J0 at 0.5 V; the latter 

yields parallel lines, but quite different values of J0. These data are compatible with the 

conclusion that the contribution of the carboxyl group to the width of the tunneling barrier is 

equivalent to that of an ethyl (–CH2CH3) group, and not to that of a group whose electronic 

properties make it part of the electronically conducting part of the interface, or one that changes 

the shape of the tunneling barrier (relative to T = –CH3 of n-alkanethiolates) in a way that 

significantly (at the resolution of our experiments) influences tunneling currents.  

The value of β for the carboxyl-terminated SAMs (β = 0.74 ± 0.02 Å-1, 0.94 ± 0.05 nCH2
-1) is 

also indistinguishable from that of the n-alkanethiolate standards (β = 0.78 ± 0.03 Å-1, 0.92 ± 

0.04 nCH2
-1). This similarity in the tunneling decay coefficient suggests that the attenuation in 

tunneling current through the SAM is not substantially influenced by the chemical nature of the 

top interface, or of the electrical dipoles that we associate with these polar groups T, over the 

range of compounds summarized in Figures 2 and 3.  

We conclude that replacing a terminal n-alkyl group (T) of an n-alkanethiolate of the same 

total length (e.g. T = –CH2CH3) at the SAM//Ga2O3 interface with a Lewis acid/base              

(e.g. T = –CO2H), does not influence the tunneling current. Junctions of the same length (d[Å] or 

d[S(CH2)nT]) and with composition AgTS/S(CH2)nT//Ga2O3, where T = –CH3, –OH, –SH, –

CO2H, –CONH2, and –PO3H, all have tunneling currents that are indistinguishable (e.g. within a 

factor of 3). The introduction of protic polar groups at the T//Ga2O3 interface by the group T 

does not change the shape (i.e., the height or width relative to n-alkanethiolates) of the tunneling 

barrier enough to influence the rate of charge tunneling observably (a conclusion that is 
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reinforced by data from studies of other organic groups, including a number of simple aromatics 

and uncharged polar groups).4, 5 The similarity of the injection current (J0) for junctions derived 

from data using SAMs terminated in ‒CH3 or ‒(CH2)nCH3 (depending on the size of the group to 

be compared) and for junctions from SAMs terminated in a variety of other functional groups 

(including simple aromatic groups,5 polar aprotic groups with large dipole moments,4 and the 

polar, protic groups studied here) indicates that these T//Ga2O3 interfaces are all very similar in 

their contribution to the tunneling barrier. 

A comparison of J0 for T = –CO2H and T = –CH2CH3 for similar extended lengths (Å) or 

number of non-hydrogen atoms is compatible with the hypothesis that both act primarily as 

(equivalent) contributors to the width of the tunneling barrier. Any difference in their 

contribution to the energetic topography of the tunneling barrier does not appear as differences in 

our experimental measurements. 
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Figure 1. a) Components of the AgTS/S(CH2)nT//Ga2O3/EGaIn junction, where n is the number of 
methylene units (CH2), and T is a terminal functional group; here n = 9 and T = CH3. A tilt angle 
of 11º from the surface normal was applied to the SAM.39 The inherent roughness of the Ga2O3 
film and the SAM-bound AgTS substrate contributes to an effective electrical contact area that is 
~10-4 the geometrical contact area.8 The van der Waals contact distance was estimated by adding 
the van der Waals radius of the terminal H atom of the SAM and the O atom of the Ga2O3 film. 
We do not know the height or width of the energy profile associated with the van der Waals 
interface. b) Definition of the molecular length in Å of the insulating molecular component from 
an all trans-extended configuration using Chem3D software. The distance is calculated from the 
center of the sulfur anchoring atom to the center of the distal hydrogen atom that is presumably 
closest to the EGaIn top electrode. 
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Figure 2. <log|J|> at +0.5 V versus molecular length for n-alkanethiolate standards and 
alkanethiolates bearing terminal Lewis acidic or basic functional groups. The two points for 
protonated (●) or deprotonated (○) ω-substituted -alkanethiolate SAM take into account the 
difference in the estimated molecular length associated with the protonation state of the SAM 
(right point, protonated state; left point, deprotonated). The molecular length was estimated using 
an all trans-extended configuration from the sulfur atom to the final hydrogen atom using 
Chem3D software. 
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Figure 3. A series of methyl- and carboxyl-terminated alkanethiolates used to form SAMs for the 
determination of J0 and β. 
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Figure 4. a) Plot of the Gaussian mean values of log|J| at +0.5 V versus molecular length 
(calculated in Å for an all trans-extended conformation) for ω-carboxyl-alkanethiolates and n-
alkanethiolate standards on Ag.TS The least-squares lines are not distinguishable. b) The distance 
is calculated from the sulfur atom to the final hydrogen atom as shown.  
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Figure 5. a) Plot of the Gaussian mean values of log|J| at +0.5 V versus molecular length in 
number of non-hydrogen atoms (n + m: n is the number of non-hydrogen atoms of the 
polymethylene chain and m is the number of non-hydrogen atoms (in linear connection) of T; 
here, n is 11 and m is 2 for T = ‒CO2H) for carboxyl-terminated alkanethiolates and n-
alkanethiolate standards of similar length on AgTS. b) Plot of the Gaussian mean values of log|J| at 
+0.5 V versus molecular length in number of methylene units (CH2) for carboxyl-terminated 
alkanethiolates and n-alkanethiolate standards on Ag.TS The final methylene unit of the terminal 
methyl group ‒(CH2)H group is included in the total number of methylene units. 

 


