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A Statistical Decision-Theoretic Framework for
Social Choice

Hossein Azari Soufiani∗ David C. Parkes † Lirong Xia‡

Abstract

In this paper, we take a statistical decision-theoretic viewpoint on social choice,
putting a focus on the decision to be made on behalf of a system of agents. In
our framework, we are given a statistical ranking model, a decision space, and a
loss function defined on (parameter, decision) pairs, and formulate social choice
mechanisms as decision rules that minimize expected loss. This suggests a general
framework for the design and analysis of new social choice mechanisms. We
compare Bayesian estimators, which minimize Bayesian expected loss, for the
Mallows model and the Condorcet model respectively, and the Kemeny rule. We
consider various normative properties, in addition to computational complexity
and asymptotic behavior. In particular, we show that the Bayesian estimator for the
Condorcet model satisfies some desired properties such as anonymity, neutrality,
and monotonicity, can be computed in polynomial time, and is asymptotically
different from the other two rules when the data are generated from the Condorcet
model for some ground truth parameter.

1 Introduction

Social choice studies the design and evaluation of voting rules (or rank aggregation rules). There
have been two main perspectives: reach a compromise among subjective preferences of agents, or
make an objectively correct decision. The former has been extensively studied in classical social
choice in the context of political elections, while the latter is relatively less developed, even though
it can be dated back to the Condorcet Jury Theorem in the 18th century [9].

In many multi-agent and social choice scenarios the main consideration is to achieve the second
objective, and make an objectively correct decision. Meanwhile, we also want to respect agents’
preferences and opinions, and require the voting rule to satisfy well-established normative proper-
ties in social choice. For example, when a group of friends vote to choose a restaurant for dinner,
perhaps the most important goal is to find an objectively good restaurant, but it is also important
to use a good voting rule in the social choice sense. Even for applications with less societal con-
text, e.g. using voting rules to aggregate rankings in meta-search engines [12], recommender sys-
tems [15], crowdsourcing [23], semantic webs [27], some social choice normative properties are still
desired. For example, monotonicity may be desired, which requires that raising the position of an
alternative in any vote does not hurt the alternative in the outcome of the voting rule. In addition,
we require voting rules to be efficiently computable.

Such scenarios propose the following new challenge: How can we design new voting rules with
good statistical properties as well as social choice normative properties?

To tackle this challenge, we develop a general framework that adopts statistical decision theory [3].
Our approach couples a statistical ranking model with an explicit decision space and loss function.
∗azari@google.com, Google Research, New York, NY 10011, USA. The work was done when the author
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Anonymity, neutrality
Monotonicity

Majority,
Condorcet Consistency Complexity Min. Bayesian risk

Kemeny Y Y N NP-hard, PNP
|| -hard N

Bayesian est. of
M1

ϕ (uni. prior) Y N N
NP-hard, PNP

|| -hard
(Theorem 3)

Y

Bayesian est. of
M2

ϕ (uni. prior) Y N N P (Theorem 4) Y

Table 1: Kemeny for winners vs. Bayesian estimators ofM1
ϕ andM2

ϕ to choose winners.

Given these, we can adopt Bayesian estimators as social choice mechanisms, which make decisions
to minimize the expected loss w.r.t. the posterior distribution on the parameters (called the Bayesian
risk). This provides a principled methodology for the design and analysis of new voting rules.

To show the viability of the framework, we focus on selecting multiple alternatives (the alternatives
that can be thought of as being “tied” for the first place) under a natural extension of the 0-1 loss
function for two models: letM1

ϕ denote the Mallows model with fixed dispersion [22], and letM2
ϕ

denote the Condorcet model proposed by Condorcet in the 18th century [9, 34]. In both models the
dispersion parameter, denoted ϕ, is taken as a fixed parameter. The difference is that in the Mallows
model the parameter space is composed of all linear orders over alternatives, while in the Condorcet
model the parameter space is composed of all possibly cyclic rankings over alternatives (irreflexive,
antisymmetric, and total binary relations).M2

ϕ is a natural model that captures real-world scenarios
where the ground truth may contain cycles, or agents’ preferences are cyclic, but they have to report
a linear order due to the protocol. More importantly, as we will show later, a Bayesian estimator on
M2

ϕ is superior from a computational viewpoint.

Through this approach, we obtain two voting rules as Bayesian estimators and then evaluate them
with respect to various normative properties, including anonymity, neutrality, monotonicity, the ma-
jority criterion, the Condorcet criterion and consistency. Both rules satisfy anonymity, neutrality,
and monotonicity, but fail the majority criterion, Condorcet criterion,1 and consistency. Admittedly,
the two rules do not enjoy outstanding normative properties, but they are not bad either. We also
investigate the computational complexity of the two rules. Strikingly, despite the similarity of the
two models, the Bayesian estimator forM2

ϕ can be computed in polynomial time, while computing
the Bayesian estimator forM1

ϕ is PNP
|| -hard, which means that it is at least NP-hard. Our results are

summarized in Table 1.

We also compare the asymptotic outcomes of the two rules with the Kemeny rule for winners,
which is a natural extension of the maximum likelihood estimator of M1

ϕ proposed by Fishburn
[14]. It turns out that when n votes are generated underM1

ϕ, all three rules select the same winner
asymptotically almost surely (a.a.s.) as n → ∞. When the votes are generated according toM2

ϕ,
the rule forM1

ϕ still selects the same winner as Kemeny a.a.s.; however, for some parameters, the
winner selected by the rule forM2

ϕ is different with non-negligible probability. These are confirmed
by experiments on synthetic datasets.

Related work. Along the second perspective in social choice (to make an objectively correct de-
cision), in addition to Condorcet’s statistical approach to social choice [9, 34], most previous work
in economics, political science, and statistics focused on extending the theorem to heterogeneous,
correlated, or strategic agents for two alternatives, see [25, 1] among many others. Recent work in
computer science views agents’ votes as i.i.d. samples from a statistical model, and computes the
MLE to estimate the parameters that maximize the likelihood [10, 11, 33, 32, 2, 29, 7]. A limitation
of these approaches is that they estimate the parameters of the model, but may not directly inform
the right decision to make in the multi-agent context. The main approach has been to return the
modal rank order implied by the estimated parameters, or the alternative with the highest, predicted
marginal probability of being ranked in the top position.

There have also been some proposals to go beyond MLE in social choice. In fact, Young [34]
proposed to select a winning alternative that is “most likely to be the best (i.e., top-ranked in the true
ranking)” and provided formulas to compute it for three alternatives. This idea has been formalized
and extended by Procaccia et al. [29] to choose a given number of alternatives with highest marginal

1The new voting rule forM1
ϕ fails them for all ϕ < 1/

√
2.
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probability under the Mallows model. More recently, independent to our work, Elkind and Shah
[13] investigated a similar question for choosing multiple winners under the Condorcet model. We
will see that these are special cases of our proposed framework in Example 2. Pivato [26] conducted
a similar study to Conitzer and Sandholm [10], examining voting rules that can be interpreted as
expect-utility maximizers.

We are not aware of previous work that frames the problem of social choice from the viewpoint
of statistical decision theory, which is our main conceptual contribution. Technically, the approach
taken in this paper advocates a general paradigm of “design by statistics, evaluation by social choice
and computer science”. We are not aware of a previous work following this paradigm to design
and evaluate new rules. Moreover, the normative properties for the two voting rules investigated in
this paper are novel, even though these rules are not really novel. Our result on the computational
complexity of the first rule strengthens the NP-hardness result by Procaccia et al. [29], and the
complexity for the second rule (Theorem 5) was independently discovered by Elkind and Shah [13].

The statistical decision-theoretic framework is quite general, allowing considerations such as estima-
tors that minimize the maximum expected loss, or the maximum expected regret [3]. In a different
context, focused on uncertainty about the availability of alternatives, Lu and Boutilier [20] adopt a
decision-theoretic view of the design of an optimal voting rule. Caragiannis et al. [8] studied the
robustness of social choice mechanisms w.r.t. model uncertainty, and characterized a unique social
choice mechanism that is consistent w.r.t. a large class of ranking models.

A number of recent papers in computational social choice take utilitarian and decision-theoretical
approaches towards social choice [28, 6, 4, 5]. Most of them evaluate the joint decision w.r.t. agents’
subjective preferences, for example the sum of agents’ subjective utilities (i.e. the social welfare).
We don’t view this as fitting into the classical approach to statistical decision theory as formulated
by Wald [30]. In our framework, the joint decision is evaluated objectively w.r.t. the ground truth in
the statistical model. Several papers in machine learning developed algorithms to compute MLE or
Bayesian estimators for popular ranking models [18, 19, 21], but without considering the normative
properties of the estimators.

2 Preliminaries

In social choice, we have a set of m alternatives C = {c1, . . . , cm} and a set of n agents. Let
L(C) denote the set of all linear orders over C. For any alternative c, let Lc(C) denote the set
of linear orders over C where c is ranked at the top. Agent j uses a linear order Vj ∈ L(C) to
represent her preferences, called her vote. The collection of agents votes is called a profile, denoted
by P = {V1, . . . , Vn}. A (irresolute) voting rule r : L(C)n → (2C \ ∅) selects a set of winners that
are “tied” for the first place for every profile of n votes.

For any pair of linear orders V,W , let Kendall(V,W ) denote the Kendall-tau distance between
V and W , that is, the number of different pairwise comparisons in V and W . The Kemeny rule
(a.k.a. Kemeny-Young method) [17, 35] selects all linear orders with the minimum Kendall-tau dis-
tance from the preference profile P , that is, Kemeny(P ) = arg minW Kendall(P,W ). The most
well-known variant of Kemeny to select winning alternatives, denoted by KemenyC , is due to Fish-
burn [14], who defined it as a voting rule that selects all alternatives that are ranked in the top
position of some winning linear orders under the Kemeny rule. That is, KemenyC(P ) = {top(V ) :
V ∈ Kemeny(P )}, where top(V ) is the top-ranked alternative in V .

Voting rules are often evaluated by the following normative properties. An irresolute rule r satisfies:

• anonymity, if r is insensitive to permutations over agents;
• neutrality, if r is insensitive to permutations over alternatives;
• monotonicity, if for any P , c ∈ r(P ), and any P ′ that is obtained from P by only raising the
positions of c in one or multiple votes, then c ∈ r(P ′);
• Condorcet criterion, if for any profile P where a Condorcet winner exists, it must be the unique
winner. A Condorcet winner is the alternative that beats every other alternative in pair-wise elections.
•majority criterion, if for any profile P where an alternative c is ranked in the top positions for more
than half of the votes, then r(P ) = {c}. If r satisfies Condorcet criterion then it also satisfies the
majority criterion.
• consistency, if for any pair of profiles P1, P2 with r(P1)∩r(P2) 6= ∅, r(P1∪P2) = r(P1)∩r(P2).
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For any profile P , its weighted majority graph (WMG), denoted by WMG(P ), is a weighted directed
graph whose vertices are C, and there is an edge between any pair of alternatives (a, b) with weight
wP (a, b) = #{V ∈ P : a �V b} −#{V ∈ P : b �V a}.
A parametric modelM = (Θ,S,Pr) is composed of three parts: a parameter space Θ, a sample
space S composing of all datasets, and a set of probability distributions over S indexed by elements
of Θ: for each θ ∈ Θ, the distribution indexed by θ is denoted by Pr(·|θ).2

Given a parametric modelM, a maximum likelihood estimator (MLE) is a function fMLE : S → Θ
such that for any data P ∈ S, fMLE(P ) is a parameter that maximizes the likelihood of the data.
That is, fMLE(P ) ∈ arg maxθ∈Θ Pr(P |θ).

In this paper we focus on parametric ranking models. Given C, a parametric ranking modelMC =
(Θ,Pr) is composed of a parameter space Θ and a distribution Pr(·|θ) over L(C) for each θ ∈
Θ, such that for any number of voters n, the sample space is Sn = L(C)n, where each vote is
generated i.i.d. from Pr(·|θ). Hence, for any profile P ∈ Sn and any θ ∈ Θ, we have Pr(P |θ) =∏
V ∈P Pr(V |θ). We omit the sample space because it is determined by C and n.

Definition 1 In the Mallows model [22], a parameter is composed of a linear order W ∈ L(C)
and a dispersion parameter ϕ with 0 < ϕ < 1. For any profile P and θ = (W,ϕ), Pr(P |θ) =∏
V ∈P

1
Zϕ

Kendall(V,W ), where Z is the normalization factor with Z =
∑
V ∈L(C) ϕ

Kendall(V,W ).

Statistical decision theory [30, 3] studies scenarios where the decision maker must make a decision
d ∈ D based on the data P generated from a parametric model, generallyM = (Θ,S,Pr). The
quality of the decision is evaluated by a loss functionL : Θ×D → R, which takes the true parameter
and the decision as inputs.

In this paper, we focus on the Bayesian principle of statistical decision theory to design social
choice mechanisms as choice functions that minimize the Bayesian risk under a prior distribution
over Θ. More precisely, the Bayesian risk, RB(P, d), is the expected loss of the decision d when
the parameter is generated according to the posterior distribution given data P . That is, RB(P, d) =
Eθ|PL(θ, d). Given a parametric model M, a loss function L, and a prior distribution over Θ, a
(deterministic) Bayesian estimator fB is a decision rule that makes a deterministic decision in D
to minimize the Bayesian risk, that is, for any P ∈ S , fB(P ) ∈ arg mindRB(P, d). We focus on
deterministic estimators in this work and leave randomized estimators for future research.
Example 1 When Θ is discrete, an MLE of a parametric modelM is a Bayesian estimator of the
statistical decision problem (M,D = Θ, L0-1) under the uniform prior distribution, where L0-1 is
the 0-1 loss function such that L0-1(θ, d) = 0 if θ = d, otherwise L0-1(θ, d) = 1.

In this sense, all previous MLE approaches in social choice can be viewed as the Bayesian estimators
of a statistical decision-theoretic framework for social choice whereD = Θ, a 0-1 loss function, and
the uniform prior.

3 Our Framework
Our framework is quite general and flexible because we can choose any parametric ranking model,
any decision space, any loss function, and any prior to use the Bayesian estimators social choice
mechanisms. Common choices of both Θ and D are L(C), C, and (2C \ ∅).
Definition 2 A statistical decision-theoretic framework for social choice is a tuple F =
(MC ,D, L), where C is the set of alternatives, MC = (Θ,Pr) is a parametric ranking model,
D is the decision space, and L : Θ×D → R is a loss function.

Let B(C) denote the set of all irreflexive, antisymmetric, and total binary relations over C. For
any c ∈ C, let Bc(C) denote the relations in B(C) where c � a for all a ∈ C − {c}. It follows
that L(C) ⊆ B(C), and moreover, the Kendall-tau distance can be defined to count the number of
pairwise disagreements between elements of B(C).

In the rest of the paper, we focus on the following two parametric ranking models, where the disper-
sion is a fixed parameter.

2This notation should not be taken to mean a conditional distribution over S unless we are taking a Bayesian
point of view.
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Definition 3 (Mallows model with fixed dispersion, and the Condorcet model) Let M1
ϕ denote

the Mallows model with fixed dispersion, where the parameter space is Θ = L(C) and given any
W ∈ Θ, Pr(·|W ) is Pr(·|(W,ϕ)) in the Mallows model, where ϕ is fixed.

In the Condorcet model,M2
ϕ, the parameter space is Θ = B(C). For any W ∈ Θ and any profile

P , we have Pr(P |W ) =
∏
V ∈P

(
1
Zϕ

Kendall(V,W )
)
, where Z is the normalization factor such that

Z =
∑
V ∈B(C) ϕ

Kendall(V,W ), and parameter ϕ is fixed.3

M1
ϕ and M2

ϕ degenerate to the Condorcet model for two alternatives [9]. The Kemeny rule that
selects a linear order is an MLE ofM1

ϕ for any ϕ.

We now formally define two statistical decision-theoretic frameworks associated withM1
ϕ andM2

ϕ,
which are the focus of the rest of our paper.
Definition 4 For Θ = L(C) or B(C), any θ ∈ Θ, and any c ∈ C, we define a loss function Ltop(θ, c)
such that Ltop(θ, c) = 0 if for all b ∈ C, c � b in θ; otherwise Ltop(θ, c) = 1.

Let F1
ϕ = (M1

ϕ, 2
C \ ∅, Ltop) and F2

ϕ = (M2
ϕ, 2
C \ ∅, Ltop), where for any C ⊆ C, Ltop(θ, C) =∑

c∈C Ltop(θ, c)/|C|. Let f1
B (respectively, f2

B) denote the Bayesian estimators of F1
ϕ (respectively,

F2
ϕ) under the uniform prior.

We note that Ltop in the above definition takes a parameter and a decision in 2C \ ∅ as inputs, which
makes it different from the 0-1 loss function L0-1 that takes a pair of parameters as inputs, as the
one in Example 1. Hence, f1

B and f2
B are not the MLEs of their respective models, as was the

case in Example 1. We focus on voting rules obtained by our framework with Ltop. Certainly our
framework is not limited to this loss function.
Example 2 Bayesian estimators f1

B and f2
B coincide with Young [34]’s idea of selecting the al-

ternative that is “most likely to be the best (i.e., top-ranked in the true ranking)”, under F1
ϕ and

F2
ϕ respectively. This gives a theoretical justification of Young’s idea and other followups under

our framework. Specifically, f1
B is similar to rule studied by Procaccia et al. [29] and f2

B was
independently studied by Elkind and Shah [13].

4 Normative Properties of Bayesian Estimators
All omitted proofs can be found in the full version on arXiv.
Theorem 1 For any ϕ, f1

B satisfies anonymity, neutrality, and monotonicity. f1
B does not satisfy

majority or the Condorcet criterion for any ϕ < 1√
2

,4 and it does not satisfy consistency.

Proof sketch: Anonymity and neutrality are obviously satisfied.

Monotonicity. Monotonicity follows from the following lemma.
Lemma 1 For any c ∈ C, let P ′ denote a profile obtained from P by raising the position of c in
one vote. For any W ∈ Lc(C), Pr(P ′|W ) = Pr(P |W )/ϕ; for any b ∈ C and any V ∈ Lb(C),
Pr(P ′|V ) ≤ Pr(P |V )/ϕ.

Majority and the Condorcet criterion. Let C = {c, b, c3, . . . , cm}. We construct a profile P ∗
where c is ranked in the top positions for more than half of the votes, but c 6∈ f1

B(P ∗).

For any k, let P ∗ denote a profile composed of k copies of [c � b � c3 � · · · � cm], 1 of
[c � b � cm � · · · � c3] and k − 1 copies of [b � cm � · · · � c3 � c]. It is not hard to verify that
the WMG of P ∗ is as in Figure 1 (a).

Then, we prove that for any ϕ < 1√
2

, we can find m and k so that
∑

V∈Lc(C) Pr(P |V )∑
W∈Lb(C)

Pr(P |W ) =

1+ϕ2k+···+ϕ2k(m−2)

1+ϕ2+···+ϕ2(m−2) · ϕ2 < 1. It follows that c is the Condorcet winner in P ∗ but it does not
minimize the Bayesian risk underM1

ϕ, which means that it is not the winner under f1
B .

3In the Condorcet model the sample space is B(C)n [31]. We study a variant with sample space L(C)n.
4Characterizing majority and Condorcet criterion of f1

B for ϕ ≥ 1√
2

is an open question.
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(a) The WMG of P ∗. (b) The WMGs of P1 (left) and P2 (right). (c) The WMG of P ′ (Thm. 3).

Figure 1: WMGs of the profiles for proofs: (a) for majority and Condorcet (Thm. 1); (b) for consistency
(Thm. 1); (c) for computational complexity (Thm. 3).

Consistency. We construct an example to show that f1
B does not satisfy consistency. In our con-

struction m and n are even, and C = {c, b, c3, c4}. Let P1 and P2 denote profiles whose WMGs are
as shown in Figure 1 (b), respectively. We have the following lemma.

Lemma 2 Let P ∈ {P1, P2},
∑

V∈Lc(C) Pr(P |V )∑
W∈Lb(C)

Pr(P |W ) = 3(1+ϕ4k)
2(1+ϕ2k+ϕ4k)

.

For any 0 < ϕ < 1, 3(1+ϕ4k)
2(1+ϕ2k+ϕ4k)

> 1 for all k. It is not hard to verify that f1
B(P1) = f1

B(P2) = {c}
and f1

B(P1 ∪ P2) = {c, b}, which means that f1
B is not consistent. �

Similarly, we can prove the following theorem for f2
B .

Theorem 2 For any ϕ, f2
B satisfies anonymity, neutrality, and monotonicity. It does not satisfy

majority, the Condorcet criterion, or consistency.

By Theorem 1 and 2, f1
B and f2

B do not satisfy as many desired normative properties as the Kemeny
rule for winners. On the other hand, they minimize Bayesian risk under F1

ϕ and F2
ϕ, respectively,

for which Kemeny does neither. In addition, neither f1
B nor f2

B satisfy consistency, which means
that they are not positional scoring rules.

5 Computational Complexity
We consider the following two types of decision problems.
Definition 5 In the BETTER BAYESIAN DECISION problem for a statistical decision-theoretic
framework (MC ,D, L) under a prior distribution, we are given d1, d2 ∈ D, and a profile P . We are
asked whether RB(P, d1) ≤ RB(P, d2).

We are also interested in checking whether a given alternative is the optimal decision.
Definition 6 In the OPTIMAL BAYESIAN DECISION problem for a statistical decision-theoretic
framework (MC ,D, L) under a prior distribution, we are given d ∈ D and a profile P . We are
asked whether d minimizes the Bayesian risk RB(P, ·).

PNP
|| is the class of decision problems that can be computed by a P oracle machine with polynomial

number of parallel calls to an NP oracle. A decision problem A is PNP
|| -hard, if for any PNP

|| problem
B, there exists a polynomial-time many-one reduction from B to A. It is known that PNP

|| -hard
problems are NP-hard.
Theorem 3 For any ϕ, BETTER BAYESIAN DECISION and OPTIMAL BAYESIAN DECISION for F1

ϕ

under uniform prior are PNP
|| -hard.

Proof: The hardness of both problems is proved by a unified reduction from the KEMENY WINNER
problem, which is PNP

|| -complete [16]. In a KEMENY WINNER problem, we are given a profile P and
an alternative c, and we are asked if c is ranked in the top of at least one V ∈ L(C) that minimizes
Kendall(P, V ).

For any alternative c, the Kemeny score of c underM1
ϕ is the smallest distance between the profile

P and any linear order where c is ranked in the top. We next prove that when ϕ < 1
m! , the Bayesian

risk of c is largely determined by the Kemeny score of c.
Lemma 3 For any ϕ < 1

m! , any c, b ∈ C, and any profile P , if the Kemeny score of c is strictly
smaller than the Kemeny score of b in P , then RB(P, c) < RB(P, b) forM1

ϕ.
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Let t be any natural number such that ϕt < 1
m! . For any KEMENY WINNER instance (P, c) for

alternatives C′, we add two more alternatives {a, b} and define a profile P ′ whose WMG is as
shown in Figure 3(c) using McGarvey’s trick [24]. The WMG of P ′ contains the WMG(P ) as a
subgraph, where the weights are 6 times the weights in WMG(P ).

Then, we let P ∗ = tP ′, which is t copies of P ′. It follows that for any V ∈ L(C), Pr(P ∗|V, ϕ) =
Pr(P ′|V, ϕt). By Lemma 3, if an alternative e has the strictly lowest Kemeny score for profile P ′,
then it the unique alternative that minimizes the Bayesian risk for P ′ and dispersion parameter ϕt,
which means that e minimizes the Bayesian risk for P ∗ and dispersion parameter ϕ.

Let O denote the set of linear orders over C′ that minimizes the Kendall tau distance from P and let
k denote this minimum distance. Choose an arbitrary V ′ ∈ O. Let V = [b � a � V ′]. It follows
that Kendall(P ′, V ) = 4 + 6k. If there exists W ′ ∈ O where c is ranked in the top position, then
we let W = [a � c � b � (V ′ − {c})]. We have Kendall(P ′,W ) = 2 + 6k. If c is not a Kemeny
winner in P , then for any W where d is not ranked in the top position, Kendall(P ′,W ) ≥ 6 + 6k.
Therefore, a minimizes the Bayesian risk if and only if c is a Kemeny winner in P , and if c does not
minimize the Bayesian risk, then b does. Hence BETTER DECISION (checking if a is better than b)
and OPTIMAL BAYESIAN DECISION (checking if a is the optimal alternative) are PNP

|| -hard. �

We note that OPTIMAL BAYESIAN DECISION in Theorem 3 is equivalent to checking whether a
given alternative c is in f1

B(P ). We do not know whether these problems are PNP
|| -complete. In

sharp contrast to f1
B , the next theorem states that f2

B under uniform prior is in P.
Theorem 4 For any rational number5 ϕ, BETTER BAYESIAN DECISION and OPTIMAL BAYESIAN
DECISION for F2

ϕ under uniform prior are in P.

The theorem is a corollary of the following stronger theorem that provides a closed-form formula
for Bayesian loss for F2

ϕ.6 We recall that for any profile P and any pair of alternatives c, b, that
wP (c, b) is the weight on c→ b in the weighted majority graph of P .
Theorem 5 For F2

ϕ under uniform prior, for any c ∈ C and any profile P , RB(P, c) = 1 −∏
b 6=c

1

1 + ϕwP (c,b)
.

The comparisons of Kemeny, f1
B , and f2

B are summarized in Table 1. According to the criteria we
consider, none of the three outperforms the others. Kemeny does well in normative properties, but
does not minimize Bayesian risk under either F1

ϕ or F2
ϕ, and is hard to compute. f1

B minimizes the
Bayesian risk under F1

ϕ, but is hard to compute. We would like to highlight f2
B , which minimizes

the Bayesian risk under F2
ϕ, and more importantly, can be computed in polynomial time despite the

similarity between F1
ϕ and F2

ϕ.

6 Asymptotic Comparisons
In this section, we ask the following question: as the number of voters, n → ∞, what is the
probability that Kemeny, f1

B , and f2
B choose different winners? We show that when the data is

generated fromM1
ϕ, all three methods are equal asymptotically almost surely (a.a.s.), that is, they

are equal with probability 1 as n→∞.
Theorem 6 Let Pn denote a profile of n votes generated i.i.d. fromM1

ϕ given W ∈ Lc(C). Then,
Prn→∞(Kemeny(Pn) = f1

B(Pn) = f2
B(Pn) = c) = 1.

However, when the data are generated fromM2
ϕ, we have a different story.

Theorem 7 For any W ∈ B(C) and any ϕ, f1
B(Pn) = Kemeny(Pn) a.a.s. as n → ∞ and votes in

Pn are generated i.i.d. fromM2
ϕ given W .

For any m ≥ 5, there exists W ∈ B(C) such that for any ϕ, there exists ε > 0 such that with
probability at least ε, f1

B(Pn) 6= f2
B(Pn) and Kemeny(Pn) 6= f2

B(Pn) as n → ∞ and votes in Pn
are generated i.i.d. fromM2

ϕ given W .

5We require ϕ to be rational to avoid representational issues.
6The formula resembles Young’s calculation for three alternatives [34], where it was not clear whether the

calculation was done for F2
ϕ. Recently it was clarified by Xia [31] that this is indeed the case.
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c4	


c5	


(a) W ∈ B(C) for m = 5. (b) Probability that g is different from Kemeny underM2
ϕ.

Figure 2: The ground truth W and asymptotic comparisons between Kemeny and g in Definition 7.

Proof sketch: The first part of Theorem 7 is proved by the Central Limit Theorem. For the second
part, the proof for m = 5 uses an acyclic W ∈ B(C) illustrated in Figure 2 (a). �

Theorem 6 suggests that, when n is large and the votes are generated fromM1
ϕ, it does not matter

much which of f1
B , f2

B , and Kemeny we use. A similar observation has been made for other voting
rules by Caragiannis et al. [7]. On the other hand, Theorem 7 states that when the votes are generated
fromM2

ϕ, interestingly, for some ground truth parameter, f2
B is different from the other two with

non-negligible probability, and as we will see in the experiments, this probability can be quite large.

6.1 Experiments

We focus on the comparison between rule f2
B and Kemeny using synthetic data generated fromM2

ϕ
given the binary relation W illustrated in Figure 2 (a). By Theorem 5, the computation involves
computing ϕΩ(n), which is exponentially small for large n since ϕ < 1. Hence, we need a special
data structure to handle the computation of f2

B , because a straightforward implementation easily
loses precision. In our experiments, we use the following approximation for f2

B .

Definition 7 For any c ∈ C and profile P , let s(c, P ) =
∑
b:wP (b,c)>0 wP (b, c). Let g be the voting

rule such that for any profile P , g(P ) = arg minc s(c, P ).

In words, g selects the alternative c with the minimum total weight on the incoming edges in the
WMG. By Theorem 5, the Bayesian risk is largely determined by ϕ−s(c,P ). Therefore, g is a good
approximation of f2

B with reasonably large n. Formally, this is stated in the following theorem.

Theorem 8 For any W ∈ B(C) and any ϕ, f2
B(Pn) = g(Pn) a.a.s. as n→∞ and votes in Pn are

generated i.i.d. fromM2
ϕ given W .

In our experiments, data are generated by M2
ϕ given W in Figure 2 (a) for m = 5, n ∈

{100, 200, . . . , 2000}, and ϕ ∈ {0.1, 0.5, 0.9}. For each setting we generate 3000 profiles, and
calculate the fraction of trials in which g and Kemeny are different. The results are shown in Figu-
ire 2 (b). We observe that for ϕ = 0.1 and 0.5, the probability for g(Pn) 6= Kemeny(Pn) is about
30% for most n in our experiments; when ϕ = 0.9, the probability is about 10%. In light of Theo-
rem 8, these results confirm Theorem 7. We have also conducted similar experiments forM1

ϕ, and
found that the g winner is the same as the Kemeny winner in all 10000 randomly generated profiles
with m = 5, n = 100. This provides a check for Theorem 6.
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