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ABSTRACT 14 

The fossilization of organic remains and shell material by calcium phosphate 15 
minerals provides an illuminating, but time-bounded, window into Ediacaran—16 
Cambrian animal evolution. For reasons that remain unknown, phosphatic fossil 17 
preservation declined significantly through Cambrian Series 2. Here we investigate 18 
the phosphorus (P) sources for phosphatic Cambrian carbonates, presenting 19 
sedimentological, petrographic, and geochemical data from the Cambrian Series 2–20 
3 Thorntonia Limestone, Australia, some of the youngest Cambrian strata to display 21 
exceptional phosphatic preservation of small shelly fossils. We find that within 22 
Thorntonia sediments, phosphate was remobilized by organic decay and bacterial 23 
iron reduction, with subsequent reprecipitation largely as apatite within the 24 
interiors of small shelly fossils. We discuss the merits of bioclastic-derived, organic 25 
matter-bound, or iron-bound P as potential sources to these strata. Petrographic 26 
observations suggest that the dissolution of phosphatic skeletal material did not 27 
source P for fossil preservation. In contrast, high organic carbon contents imply 28 
significant organic fluxes of P to Thorntonia sediments. Sedimentology and iron-29 
speciation data indicate that phosphorus enrichment occurred during times of 30 
expanded anoxic, ferruginous conditions in subsurface water masses, suggesting 31 
that phosphorus adsorption to iron minerals precipitating from the water column 32 
provided a second significant P source to Thorntonia sediments. Simple 33 
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stoichiometric models suggest that by themselves neither organic carbon burial nor 34 
an iron shuttle can account for the observed phosphorus enrichment. Thus, we infer 35 
that both processes were necessary for the observed phosphorus enrichment and 36 
subsequent fossil preservation in the Thorntonia Limestone.  37 

 38 

INTRODUCTION 39 

Phosphorite and phosphatic carbonate define a spectrum of sedimentary lithologies 40 

enriched in the authigenic calcium phosphate mineral apatite (Kazakov, 1937; Baturin 41 

and Bezrukov, 1979; Riggs, 1986; Cook and Shergold, 1986; Cook et al., 1990; Föllmi, 42 

1996; Trappe, 2001). The punctuated temporal distribution (Cook and McElhinny, 1979; 43 

Cook and Shergold, 1984, 1986) and evolving spatial distribution (Brasier and Callow, 44 

2007) of phosphatic lithologies through Earth history suggest that unique and restrictive 45 

physical (Filippelli and Delaney, 1992) and/or chemical (e.g., Föllmi, 1996) conditions 46 

govern phosphate deposition in time and space.  47 

 There are many reasons to want to understand this distribution.  Perhaps foremost 48 

is the practical concern for understanding how ore-grade sedimentary phosphorites form 49 

(e.g., Cook and Shergold, 1986). As with petroleum, phosphate ores are approaching 50 

peak production, while global demand continues to rise (Cordell et al., 2009; Filippelli, 51 

2011).  At the same time, biogeochemists increasingly invoke perturbations to the ancient 52 

phosphorus cycle to explain inferred fluctuations in biological productivity, organic 53 

carbon burial and oxidant accumulation over geological time-scales (Tyrrell, 1999; 54 

Bjerrum and Canfield, 2002; Saltzman, 2005; Holland et al., 2006; Konhauser et al., 55 

2007; Algeo and Ingall, 2007; Planavsky et al., 2010; Swanson-Hysell et al., 2012). 56 

Finally, phosphatic deposits provide a direct window into evolutionary history through 57 
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the exceptional preservation of fossils (Cook, 1992; Bengtson and Zhao, 1997; Xiao and 58 

Knoll, 2000; Butterfield, 2003; Porter, 2004a).   59 

 A global phosphogenic window coincides with major evolutionary innovation 60 

during the Ediacaran and Cambrian periods (Cook and Shergold, 1984; 1986; Cook, 61 

1992). Much of our knowledge of early animal diversification derives from 62 

biomineralized and soft-bodied metazoans replaced and/or templated by phosphate 63 

minerals (Bengtson et al., 1990; Xiao and Knoll, 1999; 2000; Donoghue et al., 2006; 64 

Dornbos et al., 2006; Kouchinsky et al., 2012). Phosphatization taphonomy is tied to the 65 

biogeochemical cycle of phosphorus and, for reasons that remain unknown, a major 66 

decline in the incidence of phosphatic lithologies and phosphatic fossil preservation 67 

occurs during Cambrian Series 2 (Cook and McElhinny, 1979; Porter, 2004b; Donoghue 68 

et al., 2006). To understand the loss of phosphatic lithologies, and the consequent closure 69 

of the Cambrian phosphatization taphonomic window, we must first understand how 70 

phosphorus entered the sediment column and how it was subsequently redistributed and 71 

concentrated around skeletal elements. In this paper, we ask specifically: what was the 72 

source of phosphorus to phosphatic carbonates characterized by exceptional skeletal 73 

preservation?  74 

 Geochemistry provides one avenue to address this question. A common view 75 

holds that enhanced delivery of reactive phosphorus (i.e., phosphorus that may undergo 76 

biogeochemical transformations within the sediment column) to the sea floor is the 77 

primary variable governing the development of phosphatic lithologies (e.g., see Föllmi, 78 

1996, and references therein; Papineau, 2010). In modern marine environments, the 79 

delivery of reactive phosphorus to the sea floor occurs predominantly in association with 80 
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two phases (e.g., Delaney, 1998; Benitez-Nelson, 2000): phosphorus bound within 81 

organic matter (Redfield, 1958) and/or phosphorus adsorbed to/co-precipitated with 82 

particulate iron minerals (herein referred to as the ‘Fe-P shuttle’) (Berner, 1973; Shaffer, 83 

1986; Feely et al., 1991; Feely et al., 1998; Poulton and Canfield, 2006). To examine the 84 

extent to which these reactive phosphorus sources contributed to ancient phosphatic 85 

deposits, we report high-resolution phosphorus and iron speciation data, stable carbon 86 

isotope measurements, and trace element concentrations for the phosphatic Thorntonia 87 

Limestone, Georgina Basin, Australia (Cambrian Series 2–3; Southgate, 1988; Southgate 88 

and Shergold, 1991), and, for comparison, the overlying non-phosphatic Arthur Creek 89 

Formation. We explore the possibility that bioclastic-bound, organic-bound, and iron-90 

bound P sourced the Thorntonia phosphatic carbonates and develop simple mathematical 91 

models to assess the relative importance of organic- and iron-bound P. We find that while 92 

the high organic carbon content of the Thorntonia Limestone suggests that organic-bound 93 

P contributed significantly to authigenic apatite formation, C to P ratios indicate that 94 

organic-bound P was insufficient to account entirely for the observed phosphorus 95 

enrichment. Sedimentology and iron speciation data indicate that these formations 96 

accumulated under anoxic, ferruginous subsurface water masses, allowing for the 97 

possibility that P adsorbed to iron minerals precipitating from the water column 98 

augmented organic-bound P delivery to the sediment column. Nonetheless, simple 99 

mathematical models indicate that, by itself, iron-bound phosphorus delivery is also 100 

incapable of accounting for the observed phosphorus enrichment. Thus, we infer that both 101 

organic-bound and iron-bound phosphorus sources were necessary for the development 102 

of the fossil-bearing phosphatic carbonates of the Thorntonia Limestone. 103 
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 104 

GEOLOGIC BACKGROUND 105 

The Centralian Superbasin is a laterally extensive intracratonic basin that initiated during 106 

Neoproterozoic transcontinental rifting of Rodinia. Regional tectonic events subsequently 107 

dissected the superbasin into a mosaic of discrete, asymmetric, polyphase foreland basins 108 

(Fig. 1a; Walter et al, 1995; Lindsay, 2002; Dunster et al., 2007). Here, we focus on the 109 

phosphatic Cambrian strata of the southern Georgina Basin (Cook and Shergold, 1986; 110 

Southgate, 1988; Southgate and Shergold, 1991), which deposited variably and 111 

diachronously across the basin (Cook and Shergold, 1986; Southgate, 1988; Howard, 112 

1990; Southgate and Shergold, 1991; Dunster et al., 2007).  113 

 The Narpa Group encompasses Cambrian Series 2 and Series 3 stratigraphy of the 114 

southern Georgina Basin (Fig. 1b; Ambrose et al., 2001; Dunster et al., 2007). Deposition 115 

of its lowermost member, the phosphatic Thorntonia Limestone, reflects a major 116 

transgression and expansion of the Georgina Basin. For this reason, the basal contact of 117 

the Thorntonia Limestone can unconformably overlie the Shadow Group, conformably 118 

and gradationally overlie the Shadow Group, or overlie and re-work crystalline basement 119 

(Fig. 1b). The rest of the Narpa Group records a basin-wide, shallowing-upward 120 

succession that transitions from outer (lower Arthur Creek Formation), middle (upper 121 

Arthur Creek Formation) and inner ramp (Steamboat Sandstone) depositional 122 

environments into a flat-topped carbonate platform (Arrinthrunga Formation; Ambrose et 123 

al., 2001; Dunster et al., 2007). 124 

 Trilobite biostratigraphy assigns Thorntonia rocks to the Ordian and early 125 

Templetonian stages of Australian chronostratigraphy (Laurie, 2004a,b; Dunster et al., 126 
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2007), correlative to Cambrian Series 2, Stage 4 and, possibly, lowermost Series 3, Stage 127 

5 (Fig. 1b; Babcock and Peng, 2007; Peng and Babcock, 2011). Trilobite biozones within 128 

the Arthur Creek Formation are diagnostic for the Australian regional Ordian–129 

Boomerangian stages (Laurie, 2004a, b; Dunster et al., 2007), correlative to uppermost 130 

Stage 4 of Cambrian Series 2 through to the Guzhangian Stage of Cambrian Series 3 (Fig. 131 

1b; Babcock and Peng, 2007; Peng and Babcock, 2011). 132 

 133 

METHODS 134 

We examined the sedimentology and lithofacies associations of the Thorntonia and 135 

Arthur Creek formations within drill core NTGS 99/1 reposited at the Northern Territory 136 

Geological Survey, Alice Springs, Australia. With a water-cooled saw, we cut 534 three-137 

cm-long, quarter-core samples perpendicular to bedding at ~10-25 cm resolution between 138 

597.58 and 347.98 meters core depth (mcd). Each sample was again divided 139 

(perpendicular to bedding) into two subsamples, one half designated as a hand-sample or 140 

thin-section billet, the other half pulverized with a steel ring mill. Each hand-sample 141 

billet was micro-drilled along individual laminations for carbonate carbon (δ13Ccarb) and 142 

carbonate oxygen (δ18Ocarb) isotopic analysis. The evolved CO2 was measured against an 143 

in-house reference gas on a VG Optima dual-inlet mass spectrometer attached to a VG 144 

Isocarb preparation system. We report isotopic values in the V-PDB per mil (‰) 145 

notation. Standard reproducibility was 1σ = < 0.1‰ and 0.2‰ for δ13Ccarb and δ18Ocarb, 146 

respectively. 147 

 Sample powders were divided for carbon, phosphorus, iron, and trace element 148 

geochemical analyses aimed at diagnosing the sediment- and water-column geochemistry 149 
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at the time of phosphatic carbonate deposition. To determine carbon mass fractions, we 150 

acidified 5-10 g of powdered sample with cold, 2.5 M hydrochloric acid. The resulting 151 

insoluble residue (i.e., the non-carbonate fraction, comprised predominately of 152 

siliciclastics and organic matter) was isolated by filtration, rinsed thoroughly with de-153 

ionized water, then dried and weighed. The total carbonate fraction was estimated as the 154 

weight percent difference between the bulk sample and the insoluble residue. To 155 

determine the weight percent of total organic carbon (TOC) and its isotopic composition 156 

(δ13Corg), aliquots of the insoluble residue were combusted within a Carlo Erba NA 1500 157 

Analyzer attached to a Thermo Scientific Delta V Advantage isotope ratio mass 158 

spectrometer. Reproducibility of δ13Corg for an acetanilide standard was 0.16‰ (1σ). Of 159 

the 100 samples processed, 29 were analyzed in duplicate and yielded an analytical 160 

reproducibility of 1σ = 0.07 weight percent (wt.%) TOC. Finally, we estimated the wt.% 161 

of silicate phases (either clastic or authigenic) as the wt.% of the insoluble fraction minus 162 

the wt.% of the TOC fraction. 163 

 The speciation of phosphorus (P) was determined with a modified sequential 164 

extraction methodology for marine sediment (Ruttenberg, 1992). Here, 150-200 mg of 165 

rock powder was sequentially extracted with 10 mL each of (1) 0.3 M sodium-citrate/1 M 166 

sodium bicarbonate/0.14 M sodium dithionite (pH = 7.5) for P bound to 167 

reducible/reactive ferric iron minerals (PFe), (2) 1 M sodium acetate (pH = 4.0) for 168 

carbonate fluorapatite, biogenic hydroxyapatite, and carbonate-bound P (Pauth+carb), (3) 1.2 169 

M cold HCl for crystalline fluorapatite (Pxl), and (4) 1.2 M cold HCl after a 2 hour 170 

ignition at 550°C for organic P (Porg). To prevent P readsorption during the first two 171 

extraction steps, two 5 mL 1 M MgCl2 washes were performed post-extraction. 172 
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Phosphorus in extracts and wash solutions (except PFe) was analyzed 173 

spectrophotometrically (Thermo Genesys 6) by the molybdate-blue method (Strickland 174 

and Parsons, 1972; Ruttenberg, 1992); PFe was measured by inductively coupled plasma 175 

optical emission spectrometry (ICP-OES; Varian Vista-MPX). We note that Ruttenberg 176 

(1992) ascribes P-speciation phase (3), Pxl, to detrital fluorapatite of igneous and 177 

metamorphic origin. We abbreviate this phase as ‘xl’ for ‘crystalline’ so as to remove 178 

reference to a genetic mechanism (i.e., detrital) for an operationally-defined phase based 179 

on a chemical extraction procedure. We hypothesize about the origin of this phase in 180 

greater detail in the discussion. 181 

 To verify the efficiency of the sequential extraction method, total P (PT) values 182 

were determined independently (SGS Mineral Services Group) by inductively coupled 183 

plasma atomic emissions spectrometry (ICP-AES) after a standard four acid digestion 184 

(HF-HClO4-HCl-HNO3). These analyses also provide the additional major and trace 185 

metal concentrations reported below. To account for variable dilution by siliciclastic 186 

influx, we report element concentrations normalized to aluminum (Al) in wt.%/wt.% and 187 

ppm/wt.% units for major and trace elements, respectively. 188 

 To determine the speciation of iron within our samples, we applied a modified 189 

version of the sequential extraction method of Poulton and Canfield (2005). Here, 80-100 190 

mg of rock powder was sequentially extracted with 10 mL each of (1) 1 M sodium-191 

acetate, adjusted to pH 4.5 with acetic acid to extract Fe associated with carbonate phases 192 

such as siderite and ankerite (Fecarb); (2) 0.28 M sodium dithionite, adjusted to pH 4.8 193 

with 0.2 M acetic acid/0.25 M tri-sodium citrate, for iron oxides such as hematite and 194 

goethite (Feox); and (3) 0.2 M ammonium oxalate/0.17 M oxalic acid for magnetite 195 



 9 

(Femag). The boiling chromium reduction distillation of Canfield et al. (1986) was used to 196 

quantify sulfur (S) within pyrite from the insoluble residues derived from carbonate 197 

dissolution. We used a pyrite stoichiometry (FeS2) to relate the extracted S back to iron 198 

(Fepy). Total Fe (FeT), which comprises the sum of the diagenetically highly reactive 199 

phases (FeHR = Fecarb + Feox + Femag + Fepy), as well as unreactive Fe (FeU; predominately 200 

silicate-bound Fe), was determined via a boiling HF-HNO3-HClO4 extraction on an 201 

additional aliquot of sample powder. All iron concentrations were measured by atomic 202 

absorption spectrometry (AAS). Eight replicates of one sample, 572.64 mcd, yield a RSD 203 

of 2%, 13%, and 71% for Fecarb, Feox, and Femag, respectively. The high RSD of the latter 204 

two phases result from measured quantities close to the instrument detection limit; that is, 205 

the average wt.% ± 1σ for the eight Fe-speciation replicates is 0.110±0.002, 0.016±0.002, 206 

and 0.001±0.001 for Fecarb, Feox, and Femag, respectively. At higher Fe concentrations for 207 

each fraction, the RSD is <5% for each stage, and this is also the case for Fepy and FeT 208 

(Poulton and Canfield, 2005). 209 

 210 

RESULTS 211 

Lithofacies descriptions and paleoenvironmental interpretations for the Thorntonia 212 

Limestone and Arthur Creek Formation from drill core NTGS 99/1  213 

Markings on drill core NTGS 99/1 assign 598.4–580.1 mcd, 580.1–558.7 mcd, and 214 

558.7–554.7 mcd to the informal lower, middle, and upper members, respectively, of the 215 

Thorntonia Limestone (previously Hay River Formation), and 554.7–103.2 mcd to the 216 

Arthur Creek Formation (previously Marqua Formation; Ambrose et al., 2001; Dunster et 217 

al., 2007). In this study, we characterized the sedimentology and geochemistry of the 218 



 10 

entire Thorntonia Limestone and the lowermost ~200 m of the lower Arthur Creek 219 

Formation. 220 

 221 

Thorntonia Limestone 222 

The Shadow Group is absent from NTGS 99/1. Here, the Thorntonia Limestone directly 223 

overlies Paleoproterozoic granite basement. The basal meters of the lower Thorntonia 224 

member include lithic fragments and sand grains within dolomudstone, with minor cubic 225 

pyrite crystals (Fig. 2a). More generally, the lower Thorntonia consists of dolomudstone 226 

and peloidal dolowackestone, with pervasive structural dissolution textures creating a 227 

stylolaminated to stylobedded fabric (Fig. 2b). Southgate and Shergold (1991) designated 228 

the basal, arkosic, terrigenous unit as a low-stand system tract, and the overlying stylolitic 229 

carbonate as a condensed transgressive / high-stand system tract. 230 

 Below 575.92 mcd (the lower Thorntonia Limestone) and from 580.1 - 575.92 231 

mcd (the middle Thorntonia Limestone), the bulk lithology is dolostone. Stratigraphically 232 

above this horizon, up to the middle–upper Thorntonia Limestone contact at 558.7 mcd, 233 

the bulk lithology is limestone. Nevertheless, petrographic observation of the bulk 234 

limestone lithofacies above 575.92 mcd reveals rare euhedral dolomite rhombs within an 235 

otherwise calcimudstone or calciwackestone matrix. 236 

 The middle Thorntonia contains four interbedded and interlaminated lithofacies 237 

that occur within generally coarsening-upward meter- to sub-meter-scale packages (Fig. 238 

2c). These lithofacies include: (1) black to medium gray carbonate mudstone; (2) dark to 239 

medium gray peloidal, bioclastic, and, occasionally, intraclastic wackestone; (3) medium 240 

to light gray peloidal and bioclastic packstone; and (4) medium to light gray bioclastic 241 
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grainstone. Carbonate mudstone or wackestone lithofacies define the base of each 242 

package and interlaminate or alternate gradationally on a centimeter to decimeter scale. 243 

These carbonate mud-dominated lithologies typically grade upward into, and contact 244 

sharply with, laminae and beds of packstone. When present, thin beds of bioclastic 245 

grainstone overlie packstone beds. These grainstone beds display basal erosional contacts 246 

with millimeter to half-centimeter-scale topography, and an upper contact that is either 247 

sharp or erosional and overlain by beds of black to medium-gray carbonate mudstone. In 248 

other cases, the upper contact is diffuse and conformable with beds of medium-gray 249 

packstone or wackestone (Fig. 2d). There is a broad up-core trend: packages initiate with 250 

progressively coarser lithologies and terminate with progressively thicker grainstone 251 

beds. The nature of deposition of the Thorntonia Limestone within NTGS 99/1 is 252 

consistent with the phosphatic lithofacies model from the northeast Georgina Basin 253 

(Cycle mP of Southgate, 1988). Southgate and Shergold (1991) assign these shallowing-254 

upward cycles to the transgressive system tract. 255 

 We interpret the lithologic association of the middle Thorntonia to reflect 256 

deposition within a subtidal to intertidal depositional environment. Mudstone, 257 

wackestone, and packstone beds accumulated from suspension sedimentation in calm 258 

settings that lacked significant tidal, wave, or storm activity. The coarser grain size and 259 

subtle current-generated stratification observed in grainstone beds reflect a higher energy 260 

depositional environment. Grainstone beds reveal no internal grading, but do show 261 

evidence for amalgamation and winnowing of carbonate mud by currents or waves. 262 

Deposition under the influence of waves is also manifest in rosettes of brachiopod and 263 

trilobite shell fragments along basal scour surfaces of bioclastic grainstone beds (Fig. 2d). 264 
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Dunster et al. (2007) interpreted the black, carbonaceous carbonates of the Thorntonia 265 

Formation to represent deposition under dysoxic to anoxic conditions. 266 

 In NTGS 99/1, the upper Thorntonia encompasses a 4 meter-thick vuggy, 267 

fossiliferous dolopackstone with laminae, beds, and pockets of bioclastic dolograinstone 268 

(Fig. 2e). When present, dolospar crystals form a mosaic around bioclasts (primarily of 269 

lingulate brachiopods). In addition to representing a prominent matrix constituent, 270 

bioclasts occur as cumulate along dissolution seams.  271 

 Petrography of apatite distribution. Apatite displays three predominant modes 272 

within the middle and upper Thorntonia Limestone. First, within bioclast-rich carbonate 273 

lithologies, apatite occurs primarily as the internal molds (steinkerns) of conical small 274 

shelly fossils or, more commonly in the upper Thorntonia Limestone, as lingulate 275 

brachiopod skeletal debris (Fig. 3a). Apatite also occludes gaps between, and templates 276 

the exterior of, silica-replaced skeletons (Fig. 3a). Second, in rare instances, apatite 277 

occurs as cement within bioclastic grainstone lithologies (Fig. 3b), Third, within mud-278 

supported, suspension-deposited carbonate, apatite occurs as sub-angular to sub-rounded 279 

coarse-silt to medium-sand-size grains, and as silt- to fine-sand-size, tabular or undulose 280 

grains within well-sorted, thin beds (Fig. 3c). Due to the textural maturity and fine grain-281 

size of these lithologies, we cannot say conclusively whether these grains were eroded, 282 

transported and winnowed from a site of apatite authigenesis (i.e., allochthonous apatite 283 

grains) or whether they were sourced with a detrital siliciclastic influx. We favor the 284 

interpretation that these grains represent re-worked authigenic grains (i.e., intraclasts of 285 

authigenic cement and steinkern bioclasts) because we observe no comparable-size 286 
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detrital siliciclastic grains. Below, we discuss the origin of these grains in light of 287 

geochemical data. 288 

 289 

Arthur Creek Formation 290 

Within NTGS 99/1, the basal 10 m of the lower Arthur Creek encompasses a petroleum-291 

generating, massive black shale (Fig. 2e), or ‘hot shale’ (e.g., Dunster et al., 2007), 292 

succeeded by planar, undulose, and corrugated interlaminae of black to dark gray organic 293 

matter- and clay-rich shale and siltstone with medium to light gray calcimudstone and 294 

dolomudstone. This shale also contains rare interbeds of very fine-grained bioclastic 295 

packstone and grainstone (Fig. 2f). Clay- and iron-oxide-rich laminae include sub-296 

rounded to angular, very well sorted, monocrystalline quartz and authigenic pyrite 297 

crystals, the latter of which often occlude pore space. Horizontal alignment of clay 298 

minerals indicates that compaction enhanced the physical expression of lamination. 299 

Commonly below ~490 mcd, and only rarely above, decimeter-scale light gray limestone 300 

nodules displace surrounding laminations and retain faint remnants of lamination, 301 

indicating nodular development during compaction, but before lithification (Fig. 2g). We 302 

interpret individual laminae to reflect the gravitational settling of fine particles suspended 303 

by dilute turbidity currents that wafted sediment towards the basin interior, consistent 304 

with an outer-ramp depositional environment (Dunster et al., 2007). The fetid, 305 

carbonaceous black shale and black, carbonaceous, laminated dolostone suggest 306 

deposition under dysoxic to anoxic conditions (Dunster et al., 2007). 307 

 In the upper meters of the measured lower Arthur Creek, a second lithofacies 308 

interbeds with the laminated facies (Fig. 2h). This facies includes interbeds of light gray 309 
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calcimudstone and siliciclastic siltstone. Rare truncation of undulatory laminae indicates 310 

intermittent deposition under the influence of currents. This facies is a harbinger of the 311 

more proximal, oxygenated ramp environment of the overlying upper Arthur Creek 312 

Formation (Dunster et al., 2007), which was not measured in this study. Southgate and 313 

Shergold (1991) assign the lower Arthur Creek to a transgressive system tract. 314 

 315 

Geochemistry of the Thorntonia Limestone and Arthur Creek Formation 316 

A generalized stratigraphic column of the Thorntonia and lower Arthur Creek is shown in 317 

Figure 4a alongside chemostratigraphic variation in δ13Ccarb (Fig. 4b), δ18Ocarb (Fig. 4c) 318 

and δ13Corg (Fig. 4d). Cross-plots of δ13Ccarb and δ18Ocarb display no statistically 319 

significant co-variation (Fig. 4e), thereby suggesting that δ13Ccarb values, at least, 320 

represent the primary seawater isotopic composition. The δ13Ccarb curve generated for 321 

NTGS 99/1 displays two positive peaks, the first in the middle Thorntonia (563.92 mcd) 322 

and the second in the Arthur Creek (506.51 mcd). Consistent with trilobite 323 

biostratigraphy (Laurie, 2004a,b), we correlate the middle Thorntonia excursion to the 324 

Ordian–early Templetonian isotopic event and the Arthur Creek excursion to the Late 325 

Templetonian–Floran event (Fig. 4b; Lindsay et al., 2005). This assignment corroborates 326 

regional isotopic variation in the southern Georgina, Amadeus, and Daly Basins (Lindsay 327 

et al., 2005) and, further afield, to the Argentine Precordillera (Gomez et al., 2007), the 328 

Great Basin, U.S.A. (Saltzman, 2005), South China (Zhu et al., 2004; Guo et al., 2010), 329 

and northwest China (Wang et al., 2011). 330 

 Small magnitude discontinuities in δ13Ccarb chemostratigraphy occur across the 331 

informal member boundaries of the Thorntonia Limestone (Fig. 4b). These 332 
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discontinuities likely represent erosive events or hiatuses in deposition. In support of the 333 

former interpretation, an increase in Zr/Al occurs across the middle/upper Thorntonia 334 

contact (Supplementary Figure 1). Elevated Zr/Al ratios define erosional surfaces where 335 

high-energy currents winnow fine-grained, low-density siliciclastics (characterized by 336 

Al) and concentrate high-density minerals (characterized by Zr; Vine and Tourtelot, 337 

1970). Unlike carbon isotopes, secondary fluid migration does not affect the Zr/Al ratio. 338 

Thus, this proxy confirms sediment winnowing during deposition of the upper 339 

Thorntonia. Regionally, the Thorntonia Limestone—Arthur Creek Formation contact 340 

represents a sequence boundary, with karstification developed along this surface in the 341 

western margin of the basin (Dunster et al., 2007). While the formation boundary within 342 

NTGS 99/1 represents a sharp lithologic break, δ13Ccarb values display general continuity 343 

across this boundary (Fig. 4b), suggesting either relative temporal continuity or fortuitous 344 

resumption of deposition with similar carbon isotopic composition. Isopach maps of the 345 

Arthur Creek show that the formation thickens to the east-southeast, where the NTGS 346 

99/1 drill core intercepted the maximum depocenter of the preserved basin margin 347 

(Dunster et al., 2007). Thus, under the former scenario, the Thorntonia Limestone—348 

Arthur Creek Formation boundary within NTGS 99/1 could represent a correlative 349 

conformity of the regional sequence boundary, with limited time missing across this 350 

lithologic contact. 351 

 Within NTGS 99/1, δ13Corg displays co-variation with δ13Ccarb within the lower 352 

Thorntonia Limestone and no co-variation with δ13Ccarb within either the middle/upper 353 

Thorntonia or the Arthur Creek formations (Fig. 4d,f; lower Thorntonia: R2 = 0.75; 354 

middle/upper Thorntonia: R2 = 0.04; Arthur Creek: R2 = 0.2). TOC varies from 0.1-2.9 355 
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wt.% in the Thorntonia, displaying a generally increasing trend in the lower Thorntonia 356 

and high variance in the middle Thorntonia. TOC ranges from 0.1 to 2.5 wt.% in the 357 

lower Arthur Creek, with higher values at the base of the formation, decreasing towards a 358 

mean of 0.1 wt.% TOC in the upper 100 m of the measured core interval (Fig. 4d). 359 

Despite the lack of covariance between δ13Ccarb and δ13Corg in strata of the middle/upper 360 

Thorntonia and the Arthur Creek Formation, one trend emerges: high (> 1.0 wt.%), 361 

medium (0.2 < wt.% < 1.0), and low (< 0.2 wt. %) TOC correlate with light, 362 

intermediate, and heavy δ13Corg values (Fig. 4d). That is, the lightest δ13Corg values occur 363 

in the most organic- and phosphorus-rich lithofacies, the middle Thorntonia Limestone 364 

(cf., Bartley et al., 1998, and Guo et al., 2013). The latter two TOC bins generally 365 

correspond to samples from the Arthur Creek below and above ~430 mcd, respectively, 366 

which is the transition between the laminated facies and the interbedded carbonate 367 

mudstone–siliciclastic shale and siltstone facies.  368 

 Total phosphorus (PT) within the Thorntonia Limestone ranges up to 3.9 wt.% 369 

(Fig. 5a). PT increases systematically within the lower Thorntonia and the lowermost 370 

middle Thorntonia, followed by an additional increase around 575 mcd. We note that the 371 

transition from dolostone (stratigraphically below 575.92 mcd) to limestone 372 

(stratigraphically above 575.92 mcd) within drill core NTGS 99/1 occurs just below this 373 

jump in P content (Figs 5a,b). The overlying meters of the middle and upper Thorntonia 374 

display high variance in PT. In contrast, the maximum value of PT within the Arthur 375 

Creek is 0.4 wt.%, but is typically much lower with a median of 0.03 wt.% and 1st and 3rd 376 

quartile values of 0.02 and 0.04 wt.%, respectively (Fig. 5a).  377 
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 We tested the fidelity of the P sequential extraction method by comparing the sum 378 

of the operationally-defined pools (PT = Pxl + Pauth+carb + Porg + PFe) to the total 379 

phosphorus content determined by ICP-AES analysis. The consistency between these two 380 

measurement techniques (slope of linear regression = 1.1, R2 = 0.88; Fig. 5e) increases 381 

confidence in the values of the constituent sequential extraction phases. In both the 382 

Thorntonia Limestone and the Arthur Creek Formation, the operationally-defined Pxl and 383 

Pauth+carb phases dominate PT, while Porg and PFe contribute a negligible fraction (Fig. 5b). 384 

The median (1st, 3rd quartile) percent contribution to PT are: Pxl = 91.5% (77.5, 94.4), 385 

Pauth+carb = 7.5% (3.7, 19.5), and Porg = 0.4% (0.2, 1.5). PFe was measured only on a subset 386 

of samples, but this phase contributes minimally to PT (a median of 0.1% with 1st and 3rd 387 

quartiles of 0.0 and 0.4%, respectively). 388 

 Total iron (FeT) varies from 0.06-1.49 wt.% in the Thorntonia Limestone and 389 

from 0.32-2.71 wt.% in the Arthur Creek Formation (Fig. 5c).  In general, FeT is lowest 390 

where PT is highest. Based on the slope of linear regression, 88% of FeT resides in FeHR 391 

phases within the Thorntonia (R2 = 0.92; Fig. 6a). In contrast, within the Arthur Creek, 392 

~48% of FeT resides in FeHR (R2 = 0.57; Fig. 6a), consistent with the higher siliciclastic 393 

fraction for these lithologies. The lower coefficient of determination for the Arthur Creek 394 

Formation reflects a decrease in FeHR/FeT from 0.66 at the base of the formation to ~0.3 395 

near the top of the measured core interval. Reduced iron phases, Fepy and Fecarb, dominate 396 

FeHR in both formations, while oxidized and partially oxidized iron phases, Feox and 397 

Femag, contribute a minimal fraction (Fig. 5c). Based on the slope of the linear regression, 398 

82% of FeHR resides as Fecarb within the lower Thorntonia (R2 = 0.62; Fig. 6c) while Fepy 399 

accounts for only a minor contribution that has no statistically significant correlation with 400 
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FeHR (Fig. 6b). As such, the gradual decrease in FeHR within the lower Thorntonia reflects 401 

a systematic decrease in Fecarb from very high values of 1.3 wt.%, to ~0.3 wt.%. In the 402 

middle and upper Thorntonia, 64% of FeHR resides as Fepy (R2 = 0.95; Fig. 6b) and 31% 403 

resides as Fecarb (R2 = 0.82; Fig. 6c). For the lower Arthur Creek, ~73% and 26% of FeHR 404 

reside in Fepy (R2 = 0.94; Fig. 6b) and Fecarb (R2 = 0.72; Fig. 6c), respectively.  405 

 When we parse the Fe-speciation data of the middle Thorntonia Limestone 406 

samples by lithology, we see a similar partitioning of Fe phases as when we group all 407 

samples within members (as presented above). Within the dolostone of the middle 408 

Thorntonia (580.1 – 575.92 mcd), 98% of FeT resides in FeHR (R2 = 0.99); in contrast, 409 

within the limestone of the middle Thorntonia (575.92 mcd – 558.7 mcd), 89% of FeT 410 

resides in FeHR (R2 = 0.95). Likewise, within middle Thorntonia dolostone, 67% (R2 = 411 

0.94) and 27% (R2 = 0.69) of FeHR resides in Fepy and Fecarb, respectively; within the 412 

middle Thorntonia limestone, 68% (R2 = 0.96) and 30% (R2 = 0.86) of FeHR resides in 413 

Fepy and Fecarb, respectively. 414 

 Within NTGS 99/1, the median (1st, 3rd quartile) percent acid insoluble fraction 415 

(i.e., silicates) within the Thorntonia is 8.3% (5.3, 17.0) as compared to 44.0% (32.8, 416 

54.3) for the Arthur Creek (Supplementary Figure 1). TOC/Al ratios are higher and more 417 

variable in the Thorntonia than for the Arthur Creek (Supplementary Figure 1). Fe/Al 418 

ratios and Mn/Al ratios decline throughout the lower Thorntonia (save for a couple of 419 

high values in the upper Thorntonia; Supplementary Figure 1). The detrital-associated 420 

trace element ratio Zr/Al is low and variable within the Thorntonia compared to the 421 

Arthur Creek Formation and displays an abrupt increase across the middle/upper 422 

Thorntonia boundary. (See Supplementary Information for a discussion of aluminum-423 
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normalized concentrations of redox-sensitive and bioessential trace metals; 424 

Supplementary Figure 2.) 425 

 426 

DISCUSSION 427 

How do these geochemical data inform our understanding of the source of phosphorus to 428 

phosphatic Thorntonia carbonates and, more broadly, the loss of phosphatic lithologies 429 

and consequent closure of the phosphatization taphonomic mode during Cambrian Series 430 

2? To address these questions, we combine petrographic observations with P-speciation 431 

data to quantify authigenic apatite within the Thorntonia Limestone. In turn, we explore 432 

the possibility that P bound within bioclasts, organic matter, or iron minerals sourced the 433 

observed P within these lithologies. Finally, we present a mathematical framework for 434 

which to deconvolve the relative contribution of the two most likely sources—P bound 435 

with organic matter or iron minerals—to authigenic apatite nucleation.  436 

 437 

Source(s) of phosphorus to the Thorntonia Limestone and Arthur Creek Formation 438 

How much of the apatite within the Thorntonia Limestone and Arthur Creek Formation 439 

must we account for with P delivery shuttles? Phosphorus speciation provides a 440 

(semi)quantitative measure of the partitioning of phosphorus within a sedimentary 441 

succession. The majority of P extracted from NTGS 99/1 is operationally classified as 442 

fluorapatite of detrital igneous and/or metamorphic origin (Pxl; Ruttenberg, 1992) and 443 

constitutes a median (1st, 3rd quartile) of 91.5% (77.5, 94.4) of PT. However, we have 444 

three reasons to question this genetic interpretation. First, as described above, 445 

petrographic observations reveal that apatite within the Thorntonia Limestone occurs 446 
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predominantly as the internal molds of small shelly fossils (Fig. 3a) or, occasionally, as 447 

cement within bioclastic grainstone (Fig 3b), both indications of an authigenic origin. 448 

Given the thermal history of the Georgina Basin, which reached temperatures necessary 449 

to develop Type II kerogen (Dunster et al., 2007), burial diagenesis should have increased 450 

the crystallinity of authigenic phosphate minerals (Shemesh, 1990).  It is thus not 451 

surprising that authigenic apatite formed within marine sediment during the Cambrian is 452 

now operationally classified as crystalline igneous and metamorphic apatite (sensu Föllmi 453 

et al., 2005). Second, within mud-supported, suspension-deposited carbonate, apatite 454 

occurs as coarse-silt- to medium-sand-size grains. Given that we observe no comparable 455 

size detrital siliciclastic grains, we suggest these grains are eroded, transported and 456 

winnowed authigenic grains. Third, if the Pxl phase comprised fluorapatite sourced to the 457 

basin along with a detrital siliciclastic influx, we would predict that it should correlate 458 

with the siliciclastic-associated heavy element Zr/Al ratio. We observe no correlation 459 

between Pxl and Zr/Al (Fig. 5f). Thus, consistent with petrographic observations, we 460 

conclude that the Pxl pool largely represents authigenic apatite and, therefore, we must 461 

account for this phase with a delivery shuttle of P to the sediment column.  462 

 463 

Bioclastic apatite as a source of phosphorus for authigenic apatite precipitation? 464 

Lingulid brachiopods comprise a fraction of the bioclasts identified in samples analyzed 465 

petrographically for carbonate sedimentology and apatite distribution. The presence of 466 

these phosphatic bioclasts raises two issues. First, samples that contain apatite bioclasts 467 

will have a wt.% PT that overestimates the quantity of authigenic apatite. Determining the 468 

actual wt.% of P within authigenic apatite for these samples would require subtracting the 469 
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wt.% of bioclastic P from the bulk wt.% PT determined by phosphorus speciation 470 

geochemistry. One method for determining the wt.% of P within primary phosphatic 471 

bioclasts would be to use quantitative point-count data to determine the volume of 472 

bioclasts, then to multiply this volume by the density of dahllite to determine the mass 473 

(wt.%) of P. Given that the percent of primary phosphatic bioclasts visually 474 

(qualitatively) rarely exceeds the percent of phosphatic steinkerns and sand-sized 475 

authigenic grains (see discussion above), we move forward without quantitative estimates 476 

of the wt.% of bioclastic P under the caveat that, for lingulid brachiopod-bearing 477 

bioclastic lithologies, PT overestimates authigenic apatite within a sample.  478 

 Second, the observation of bioclasts of primary phosphatic shells raises the 479 

possibility that in situ dissolution of these bioclasts may have contributed to high pore-480 

water phosphate concentration and facilitated subsequent authigenic precipitation. 481 

However, petrographic observations show that inarticulate brachiopod and other 482 

phosphatic skeletons are not unusually abundant in phosphate-rich Thorntonia horizons, 483 

and conversely that authigenic phosphate is not unusually abundant in those samples with 484 

the highest abundances of phopshatic skeletons. Nor do these remains show marked 485 

evidence of dissolution. Thus, the sedimentation of phosphatic skeletal material does not 486 

seem capable of sourcing the phosphate now found in Thorntonia rocks. Further, in situ 487 

dissolution of phosphatic bioclasts would necessitate pore fluids that promoted the early 488 

dissolution of apatite shells without concurrent dissolution of the calcium carbonate 489 

shells and sediment molded and/or replaced by the precipitation of authigenic calcium 490 

phosphate minerals. For these reasons, we do not invoke phosphatic skeleton-derived P as 491 

a significant source for authigenic apatite precipitation. Nevertheless, if phosphatic 492 
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skeleton dissolution were to have sourced P for authigenic apatite, then the required 493 

quantity of organic and iron-bound P (discussed below) would lessen proportionately. 494 

 495 

Organic-bound phosphorus as a source of phosphorus for authigenic apatite 496 

precipitation? 497 

Particulate organic carbon represents the main delivery shuttle of phosphorus to the 498 

sediment column in the modern ocean (e.g., Delaney, 1998; Benitez-Nelson, 2000), and 499 

so we ask whether organic carbon could have sourced the observed amount of P within 500 

beds of the Thorntonia Limestone and the Arthur Creek Formation. Perhaps the simplest 501 

model for organic-bound P delivery is to assume that organic matter arrived at the sea 502 

floor with a Redfield Corg:Porg molar ratio of ~106:1 (Redfield, 1958). However, Corg:Porg 503 

of organic matter within marine sediment and, therefore, sedimentary rocks, is commonly 504 

much higher than the Redfield ratio as a result of the preferential remineralization of P-505 

rich organic compounds within the water-column (Clark et al., 1998) or within the 506 

sediment column (Ingall et al., 1993, Ingall and Jahnke, 1997; Van Cappellen and Ingall, 507 

1996; Jilbert et al., 2011). Corg:Porg molar ratios within the Thorntonia Limestone range 508 

from 79:1 up to 17,000:1 [median (1st, 3rd quartile) = 1,389:1 (521:1, 3619:1)]. Likewise, 509 

Corg:Porg molar ratios within the Arthur Creek Formation range from 43:1 up to 11,770:1 510 

[median (1st, 3rd quartile) = 903:1 (360:1, 3,372:1)]. Thus, Corg:Porg molar ratios within 511 

these lithologies deviate substantially from the Redfield ratio and, at face value, suggest 512 

extensive preferential Porg loss during organic matter respiration.  513 

 When organic respiration occurs within the sediment column, liberated Porg may 514 

‘sink-switch’ and precipitate as authigenic phosphate minerals (Ruttenberg and Berner, 515 
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1993), as is likely the case for the development of phosphatic strata within the Thorntonia 516 

Limestone. With respect to phosphorus speciation terminology, ‘sink-switching’ would 517 

transfer P from the Porg phase to either the authigenic Pxl or the Pauth+carb phase. In that 518 

regard, Corg:PT should provide a better estimate of the retention of organic-bound P to the 519 

sedimentary environments of the Thorntonia Limestone and Arthur Creek Formation 520 

(Ingall et al., 1993; Ruttenberg and Berner, 1993; Anderson et al., 2001; Algeo and Ingall, 521 

2007). Corg:PT ranges from 0.1–16:1 within the Thorntonia Limestone with a median (1st, 522 

3rd quartile) value of 2.5:1 (1.2:1, 4.8:1). For the non-phosphatic Arthur Creek Formation, 523 

Corg:PT  ranges from 5–157:1 with a median (1st, 3rd quartile) value of 17.4:1 (7.6:1, 524 

44.5:1). Thus, with the exception of four samples, Corg:PT molar ratios for both the 525 

Thorntonia Limestone and the Arthur Creek Formation fall well below the canonical 526 

Redfield ratio (Fig. 5d). From this perspective, both the Thorntonia Limestone and the 527 

Arthur Creek Formation retain more P than would be expected based on organic matter 528 

delivery with a molar Corg:Porg ratio equal to or greater than the Redfield ratio.  529 

 Preferential Corg remineralization or hydrocarbon migration relative to P retention 530 

may have resulted in a molar C:PT lower than the Redfield ratio. The required > 90% loss 531 

of Corg (see below) appears to be common in relatively organic-lean sediment deposited 532 

on oxic Cenozoic seafloors (Anderson et al., 2001); however, given the organic carbon 533 

content of Thorntonia samples, and accepting sedimentological and geochemical 534 

arguments for anoxic deposition of the Thorntonia Limestone (see below), such loss 535 

would have required massive remineralization under anoxic pore water conditions. 536 

δ13Ccarb values do not show the distinctly light values that might be expected in this 537 

circumstance (Schrag et al., 2013). Assuming that all phosphorus was delivered via 538 
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organic matter with a Redfield ratio and was subsequently retained within the sediment 539 

column, the discrepancy between the Redfield ratio and the measured C:PT provides a 540 

minimum estimate of Corg loss (estimated quantitatively in a later section).  541 

 Organic carbon loss may also occur during low-grade metamorphism (Raiswell 542 

and Berner, 1987). Since the lithology of the Thorntonia Limestone precludes a confident 543 

application of the suggested metrics to account for this loss (Raiswell and Berner, 1987), 544 

we cannot evaluate how much this process may have contributed to the discrepancy 545 

between measured Corg:PT values and the Redfield ratio. However, we can explore 546 

whether an additional phosphorus delivery shuttle augmented organic-bound P delivery 547 

to the sea floor during deposition of the Thorntonia Limestone and Arthur Creek 548 

Formation. We discuss this possibility in a later section. 549 

 Notably, phosphatic strata of the middle Thorntonia Limestone have the highest 550 

measured wt. % TOC and the lightest δ13Corg values preserved within this sedimentary 551 

succession (Fig. 4c). A similar relationship has been document in Proterozoic basins and 552 

attributed to differential recycling of organic matter in benthic mats (e.g., Bartley et al., 553 

1998; Guo et al., 2013). Within the Thorntonia Limestone, this relationship may result 554 

from a difference in the primary isotopic composition of organic matter sourcing 555 

phosphatic strata, from variable in situ remineralization of the sedimentary organic 556 

carbon reservoir, or from some combination of these two processes. We do not have an 557 

independent line of evidence (e.g., compound specific biomarkers) to distinguish between 558 

these possibilities. Instead, we note that acceptance of either of these hypotheses to 559 

explain the observed correlation between P content and δ13Corg values makes a prediction 560 

for the mechanism of P delivery. For the case of an isotopically distinct organic carbon 561 
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source to the middle Thorntonia Limestone, the C:P ratio of this source must have been 562 

much lower than the canonical Redfield ratio of 106C:1P. For the case of limited Corg 563 

remineralization within phosphatic strata, an alternative P delivery shuttle to the sediment 564 

column must have augmented organic-bound P delivery. 565 

 566 

Iron-bound phosphorus as a source of phosphorus for authigenic apatite 567 

precipitation? 568 

If our estimates of organic-bound P delivery fail to account for the phosphate necessary 569 

for the observed Thorntonia apatite content, what alternative source could supply this P? 570 

A growing body of literature calls upon P adsorbed to the surface or co-precipitated with 571 

metal oxides, particularly iron (oxyhydr)oxide particles, as an important shuttle of 572 

phosphorus to the sea floor (Berner, 1973; Shaffer, 1986; Feely et al., 1991; Feely et al., 573 

1998; Poulton and Canfield, 2006). Additionally, under anoxic conditions, Fe(II)-574 

phosphates (e.g., vivianite, strengite) may play a more important role for marine P 575 

cycling than previously considered (e.g., März et al., 2008; Dellwig et al., 2010; Jilbert 576 

and Slomp, 2013). Thus, the release of adsorbed/co-precipitated Fe-bound P to sediment 577 

pore waters has previously been invoked as a necessary and significant source of P for 578 

sedimentary apatite nucleation (Krom and Berner, 1981; Schuffert et al., 1994, 1998; 579 

Slomp et al., 1996; Shen et al., 2000; März et al., 2008; Jilbert and Slomp, 2013). 580 

 Could the Fe-P shuttle have augmented organic-bound P delivery to Thorntonia 581 

and Arthur Creek sediments? In the modern, oxygenated ocean, iron mobility is generally 582 

limited to particulate fluxes of insoluble Fe3+ phases (Martin and Meybeck, 1979; 583 

Poulton and Raiswell, 2002). Under these conditions, we might predict Fe-bound P 584 
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delivery to these environments to be proportional to the (predominantly siliciclastic) 585 

particulate Fe(III) flux. In contrast, under anoxic conditions the reductive dissolution of 586 

iron (oxyhydr)oxides by dissimilatory iron reduction or by dissolved sulfide during early 587 

diagenesis generates soluble Fe2+ that is subsequently redistributed to anoxic slope and 588 

basinal environments (Canfield et al., 1996; Severmann et al., 2008; 2010; see review in 589 

Lyons and Severmann, 2006). This so-called ‘intrabasin iron shuttle’ provides a 590 

mechanism for decoupling iron delivery to the seafloor from siliciclastic sources and, 591 

therefore, we hypothesize that it allows for the delivery of P adsorbed to detrital Fe(III) 592 

minerals, Fe(II)-phosphate minerals (e.g., März et al., 2008; Dellwig et al., 2010; Jilbert 593 

and Slomp, 2013) and P adsorbed to/co-precipitated with Fe(III)-minerals formed from 594 

the oxidation of ferrous iron in the water column (cf., Mayer and Jarrell, 2000). In this 595 

regard, under either an oxic or an anoxic Cambrian water-column, Thorntonia and Arthur 596 

Creek sediments could have received substantial Fe-bound P; however, we note that the P 597 

contribution from the Fe-bound P shuttle would have been larger if these sediments 598 

accumulated under an anoxic water column. 599 

 The redox state of the southern Georgina Basin water column during deposition of 600 

these middle Cambrian strata can be assessed using data on the speciation and enrichment 601 

of sedimentary iron minerals. This geochemical method is most commonly applied to 602 

fine-grain siliciclastic lithologies, where the ratios of various mineralogical phases are 603 

interpreted to reflect specific and calibrated environmental redox conditions (Canfield et 604 

al., 1992; Raiswell and Canfield, 1998; Raiswell et al., 2001; Poulton and Raiswell, 605 

2002). On the basis of empirical evidence, FeHR/FeT above 0.38 within fine-grain 606 

siliciclastic lithologies indicates sediment accumulation under an anoxic water-column 607 
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(Raiswell and Canfield, 1998; Raiswell et al., 2001; Poulton and Raiswell, 2002), while 608 

FeHR/FeT below a value of ~0.22 is suggestive of oxic conditions (Poulton and Raiswell, 609 

2002; Poulton and Canfield, 2011); additionally, in the case of anoxia, Fepy/FeHR 610 

differentiates ferruginous (<0.7-0.8) from euxinic (>0.8) conditions (Anderson and 611 

Raiswell, 2004; Poulton et al., 2004; März et al., 2008; Poulton and Canfield, 2011). 612 

 The Arthur Creek Formation includes a siliciclastic facies (the ‘hot shale’) that is 613 

ideal for iron-based redox proxies (Poulton and Canfield, 2005). FeT within the Arthur 614 

Creek ‘hot shale’ ranges up to ~2.7 wt.% (Fig. 6a) and almost all measured highly 615 

reactive iron resides in reduced iron minerals (Fig. 6b,c). FeHR/FeT and FePY/FeHR 616 

indicate an anoxic, ferruginous redox environment during deposition of the ‘hot shale’ 617 

(Fig. 6a,b). In contrast, strata of the interlaminated siliciclastic shale/siltstone and 618 

carbonate calcimudstone facies of the Arthur Creek Formation (directly overlying the 619 

‘hot shale’) contain a lower siliciclastic component, and this requires special attention in 620 

interpreting a paleo-redox environment. We note that each iron-speciation sample 621 

integrates 3 cm of stratigraphy; therefore, for this lithofacies, our sample preparation 622 

method homogenized multiple laminae of pure siliciclastic shale/siltstone and pure 623 

carbonate mudstone. Yet, despite the diluting carbonate component, FeHR is partitioned 624 

within this lithofacies in the same proportionality as the ‘hot shale’ (Fig. 6b,c). In this 625 

regard, iron speciation data for this lithofacies of the Arthur Creek Formation are 626 

consistent with the anoxic, ferruginous redox environment inferred for the underlying 627 

‘hot shale’. 628 

 Strata of the Thorntonia Limestone are composed almost entirely of carbonate, 629 

and for this reason we do not to interpret these iron speciation data within the canonical, 630 
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siliciclastic-derived redox framework. Instead, we emphasize that the black, organic-rich 631 

carbonate strata of the middle/upper Thorntonia Limestone (Fig. 2c), biomarker and 632 

organic geochemistry of the Thorntonia and Arthur Creek petroleum systems (Boreham 633 

and Ambrose, 2005), and trace element data (Supplementary Information) are 634 

qualitatively consistent with iron speciation metrics for the Arthur Creek Formation ‘hot 635 

shale’ (Fig. 6) for an anoxic depositional environment during accumulation of the 636 

phosphatic middle/upper Thorntonia Limestone. Thus, we conclude that the Fe-oxide 637 

bound P shuttle likely augmented organic-bound P delivery to the Thorntonia and Arthur 638 

Creek sediment column. Further, if one accepts the sedimentological and geochemical 639 

evidence for sediment accumulation under an anoxic, ferruginous water column, this then 640 

allows for the possibility that Fe(II)-phosphates provided a second, potentially significant 641 

source of P to Thorntonia sediments.  642 

 Nevertheless, the limited contribution of Feox to FeHR in both the Thorntonia and 643 

Arthur Creek (Fig. 5c), the low PFe values (Fig. 5b), and the present decoupling of P 644 

within the Thorntonia from FeHR phases (Fig. 5g) all suggest that any P delivered to 645 

Thorntonia sediments via the Fe-P shuttle must have been subsequently decoupled from 646 

iron particles within the sediment column. One way to explain this decoupling is through 647 

the reductive dissolution of Fe oxides in anoxic pore-waters. This suggestion is consistent 648 

with petrological observations that require wholesale remobilization of P before 649 

precipitation within shell interiors (Fig. 3a,b). Thus, the present distribution of P in the 650 

Thorntonia Limestone, spatially decoupled from either iron or organic carbon sources, 651 

confounds easy attribution to primary source vectors. In the following section we 652 
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integrate C, Fe, and P geochemical data to explore the relative contribution from organic-653 

bound and iron-bound P delivery sources. 654 

 655 

Assessing the relative importance of organic-bound versus iron-bound phosphorus 656 

to authigenic apatite precipitation 657 

To begin, we estimate whether organic matter degradation alone could provide sufficient 658 

phosphorus for the observed apatite content in the Thorntonia Limestone. We then 659 

quantify how much of this estimated organic carbon must have been lost through 660 

remineralization to reconcile the observed wt.% TOC within these strata. To do so, we 661 

use a Redfield stoichiometry (Redfield, 1958) to relate the measured sedimentary weight 662 

percent phosphorus to the associated flux of organic carbon necessary for this phosphorus 663 

delivery. Redfield stoichiometry varies in space and time due to, for instance, taxonomic 664 

variability in biomolecular and cellular composition and nutrient availability regulating 665 

biosynthetic allocation (e.g., Geider and LaRoche, 2002). Moreover, water-column 666 

heterotrophy increases the C:P ratio of particulate organic carbon delivered to the 667 

sediment-water interface (Clark et al., 1998). To be conservative, we assume no water-668 

column remineralization and adopt the canonical Redfield ratio (106C:1P) in the 669 

calculations below. We also adopt the combined organic-bound and authigenic 670 

phosphorus phases determined from the phosphorus speciation extraction as an estimate 671 

of the original flux of phosphorus delivered to the sediment via organic matter. This 672 

calculation provides a conservative estimate because we neglect iron-adsorbed and 673 

carbonate-bound P as potential sources for authigenic apatite (as these can represent 674 
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primary sources of phosphorus to the sediment column), and we assume no diffusive loss 675 

of phosphate from pore-water contemporaneous with sedimentary apatite authigenesis.  676 

 Following the above arguments, our estimate for the weight percent organic 677 

carbon delivered to the sediment column ( ) that can account for the measured 678 

phosphorus content is given by: 679 

     (1) 680 

where R is the adopted Redfield ratio and αC and αP represent the molar weights of 681 

carbon and phosphorus, respectively (Slomp et al., 2004). We estimate the percentage of 682 

organic carbon remineralization necessary to reconcile the difference between the 683 

delivery estimate, , and the measured wt.% total organic carbon ( ) within 684 

Thorntonia and Arthur Creek rocks (Slomp et al., 2004) as: 685 

 .    (2) 686 

This value represents an estimate of organic carbon remineralization in the time between 687 

delivery to the sediment-water interface and lithification. Applying these equations to 688 

samples within the phosphorus-enriched middle and upper Thorntonia yields a median 689 

 of 18.6 wt.% and a median loss of 97.8% of this estimated delivery flux (Fig. 7). For 690 

comparison, applying these equations to samples from the Arthur Creek indicates a 691 

median organic carbon loss estimate of 74.0% from a median organic carbon delivery 692 

estimate, , of only 1.1 wt.% (Fig. 7). If, instead, we consider more typical ratios of 693 

Corg:Porg delivered to the sediment column, that is, C:P >> 106:1 (Ingall et al., 1993; Van 694 

Cappellen and Ingall, 1996; Clark et al., 1998; Algeo and Ingall, 2007), then the required 695 
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Corg delivery ( ) and the estimated %  loss increase proportionally. Likewise, any 696 

diffusive/advective loss of phosphate from the sediment column prior to lithification 697 

(Ingall et al., 1993; Slomp et al. 2002; 2004) would increase the requisite and, thus, 698 

the inferred %  loss.  699 

 If organic carbon represented the sole delivery source of phosphorus to the 700 

sediment column, what would have been the oxidant demand for the organic carbon 701 

remineralization estimated above? Dissimilatory microbial metabolisms couple the 702 

remineralization of sedimentary organic carbon to the reduction of an oxidant (primarily 703 

O2, NO3
-, SO4

2-, and Fe3+; Konhauser, 2007). Thus, a portion of the estimated organic 704 

carbon loss can be accounted for in the early diagenetic minerals pyrite and siderite, 705 

which form from microbial dissimilatory sulfate and ferric iron respiration, respectively. 706 

In the following calculations, we assume the stoichiometry of Fe-(oxyhydr)oxide 707 

reduction, where one mole of organic carbon is remineralized per four moles of siderite 708 

produced: 709 

 CH2O + 8H+ + 4Fe(OH)3  4Fe2+
(aq) + CO2 + 11H2O    (3) 710 

 4Fe2+
(aq) + 4CO2 + 4H2O  4FeCO3 + 8H+,     (4) 711 

and sulfate reduction, where four moles of organic carbon are remineralized per mole of 712 

pyrite produced: 713 

 4CH2O +  2SO4
2-  2H2S + 4HCO3

-      (5) 714 

  Fe2+
(aq) + 2H2S  FeS2 + 4H+ .       (6) 715 

We note that if Fe2+ for pyrite formation were also reduced locally it would require 716 

additional Corg consumption, akin to Eqn. (3). 717 
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 To correct for the presence of siderite within samples, we relate the measured 718 

molar quantity of siderite to the Fe3+ respiration stoichiometries of Eqns. 3 and 4 to 719 

estimate the necessary weight percent of organic carbon consumed to produce this 720 

siderite ( ): 721 

 (7) 722 

where γ converts measured values in moles to wt.%. Likewise, to correct for the presence 723 

of pyrite, we relate the measured molar quantity of pyrite within each sample to the 724 

stoichiometry of SO4
2- respiration (Eqns. 5 and 6) in order to estimate the weight percent 725 

of organic carbon remineralized to produce this pyrite ( ): 726 

 .  (8) 727 

Equation (8) does not account for any Corg consumed to reduce iron for pyrite (e.g., Eqn. 728 

3). In this regard, Eqns. 8 and 9 conservatively underestimate the weight percent of 729 

organic carbon remineralized to form pyrite for the case that iron was reduced locally, 730 

rather than sourced as Fe2+. 731 

With these estimates, we augment Eqn. (2) as: 732 

  .     (9) 733 

This exercise yields a corrected median %  loss for the middle and upper Thorntonia 734 

members of 96.2%, not significantly different than the estimate from Eqn. 2 (Fig. 7). In 735 

contrast, and with the exception of phosphorus-enriched samples in the uppermost 736 

measured meters, the corrected median loss for the Arthur Creek indicates that there is an 737 
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Ĉorg
* − Corg +Cpyrite +Csiderite( )
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excess wt.% of organic carbon to account for the observed wt.% phosphorus (Fig. 7). 738 

However, the observed quantity of siderite within Thorntonia and Arthur Creek samples 739 

may represent a late diagenetic addition to the sediment column and, thus, may not have 740 

formed through local iron respiration consuming Corg. If this were the case, the % Corg 741 

loss would be less than the value estimated by Eqn. (9), and closer to the value 742 

determined by Eqn. (2). 743 

 With sulfate and ferric iron accounted for, the only quantitatively important 744 

remaining oxidant is molecular oxygen (Konhauser, 2007). In this regard, and if the 745 

above assumptions hold, the implication is that the majority of the hypothesized organic 746 

carbon loss was through respiration using molecular oxygen. We define a ratio of the 747 

estimate of organic matter consumed through anoxic respiration (that is, with Fe3+ and 748 

SO4
2-: Csiderite and Cpyrite, respectively) to the estimate of Corg loss not accounted for by 749 

this estimated anoxic remineralization. We calculate the ratio of anoxic to oxic 750 

respiration as: 751 

 .    (10) 752 

In solving Eqn. (10), we obtain a median (1st, 3rd quartile) value of 0.02 (0.1, 0.4) for the 753 

middle and upper Thorntonia members. This is to say that a median 2% of the estimated 754 

organic carbon delivery required to source the observed phosphorus content was 755 

remineralized through anoxic pathways—98% must have been remineralized with 756 

molecular oxygen to explain the absence of this organic carbon from measured samples. 757 

If, however, one assumes a diffusive loss of either sulfide or ferrous iron from the 758 

sediment column (i.e., the numerator underestimates the organic carbon consumed by 759 

anoxic remineralization), the estimated percent of anoxic remineralization becomes a 760 



 34 

minimum. If such diffusive loss occurred, then the proportion of Corg remineralized 761 

through oxic respiration would be less than 98% and approach 0% as the sedimentary 762 

production of sulfide and/or Fe2+ through microbial dissimilatory redox reactions 763 

quantitatively consumed . While we cannot determine the diffusive flux of 764 

reductants from Thorntonia or Arthur Creek sediments based on preserved geochemical 765 

signals, we note that such a diffusive loss would be possible if the redox boundary 766 

resided within the water column. 767 

 The calculated weight percent organic carbon required to deliver the observed 768 

phosphorus is notable; the median value, 18.6 wt.%, exceeds organic carbon export to the 769 

sea floor in most modern marine environments (Hedges and Keil, 1995). While such low 770 

organic carbon preservation efficiencies (or, as we describe, high %  loss estimates) 771 

commonly occur within modern marine environments, they typify depositional 772 

environments with low sediment accumulation rates (< ~0.02 cm/yr) or oxygenated shelf 773 

settings (> 20 μM bottom-water O2; Canfield, 1994; Hedges and Keil, 1995). While we 774 

cannot provide unequivocal evidence that substantial aerobic carbon respiration did not 775 

consume most of the Corg originally delivered to the Thorntonia sediment column, we 776 

find it difficult to reconcile how such substantial aerobic respiration could have 777 

proceeded without concurrently driving the sediment column anoxic, providing a 778 

negative feedback on the efficiency of organic carbon respiration. Moreover, we note that 779 

the oxidant demand to remineralize this magnitude of organic carbon is difficult to 780 

reconcile with Cambrian oxygen levels, perhaps 15 – 50% present atmospheric 781 

concentrations (Dahl et al., 2010; Bergman et al., 2004; for alternative views, see Berner, 782 

2006; Garrels and Lerman, 1984). Nevertheless, it remains a possibility that episodes of 783 
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intense aerobic respiration—and efficient capture of released P within authigenic 784 

phases—account for Thorntonia Limestone phosphatic carbonate precipitation (although 785 

see Föllmi et al. (2005) for discussion of a Miocene phosphogenic episode in which P 786 

sourced from aerobic respiration was ruled out). If, however, one accepts the conclusion 787 

that organic burial alone does not provide an adequate source of phosphorus to the 788 

sediment column, then an additional source of P must have been present during 789 

Thorntonia deposition. 790 

 Phosphorus adsorbed onto and/or co-precipitated with metal oxide particles 791 

provides a second potential source of P to the sediment column whose importance 792 

depends, in part, on the magnitude of the flux of metal oxides to the sediment column 793 

(Shaffer, 1986; Feely et al., 1990; Feely et al., 1998; Poulton and Canfield, 2006). 794 

Accordingly, we estimate phosphorus delivery under the assumption of an appreciable 795 

iron-bound P flux, for simplicity based entirely on P adsorbed to iron (oxyhydr)oxides. 796 

This assumption is consistent with the order-of-magnitude calculations presented above; 797 

nonetheless, we acknowledge that other metal oxides, particularly manganese, play an 798 

important role in the cycling of phosphorus (e.g., Dellwig et al., 2010). 799 

 Ideally, iron-speciation measurements could provide the basis for a quantitative 800 

estimate of Fe-bound P delivered to the sediment column. But before we can perform 801 

such a calculation, we ask whether the Feox, Femag, Fecarb, and Fepy pools as determined by 802 

iron speciation in carbonate-rich strata of the Thorntonia Limestone and Arthur Creek 803 

Formation reflect primary depositional reservoirs, or if post-depositional diagenesis could 804 

have converted iron into, out of, or between these phases of the highly reactive iron pool? 805 

Specifically, if these lithologies experienced closed system (with respect to mass) 806 
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diagenetic remobilization of Fe, then it is likely that appreciable amounts of Fe were 807 

transferred between highly reactive iron phases (e.g., the formation of Fecarb and Fepy 808 

through the reduction of an Feox precursor phase). In this regard, the value for FeHR would 809 

still accurately represent the primary iron pool—and could thus be used in calculations of 810 

Fe-bound P delivery—however calculations involving any individual FeHR phase (e.g., 811 

Feox, Fecarb) would not provide robust estimates of Fe-bound P. Alternatively, if these 812 

lithologies underwent open system diagenesis, the resulting addition or loss of Fe from 813 

the FeHR pool (from any and/or all constituent phases) would render any calculation based 814 

on the iron speciation data suspect. While we cannot eliminate the possibility of Fe 815 

addition during open system diagenesis, we note that Fe-speciation data for the 816 

Thorntonia Limestone and Arthur Creek Formation are consistent with other redox 817 

proxies (see above) favoring the view that the highly reactive iron species to these rocks 818 

record a substantial depositional flux. 819 

 In the following discussion we provide a methodology to address the potential 820 

contribution of the Fe-P shuttle to Thorntonia and Arthur Creek sediments under the 821 

assumption of limited or closed system iron diagenesis. To this end, we employ iron 822 

speciation data from these lithologies for illustrative calculations. These calculations 823 

provide a consistency argument given that organic-bound P was likely insufficient to 824 

account for the measured P content. Throughout this discussion, we introduce and 825 

emphasize the caveats inherent to the use of a diagenetically mobile element in these 826 

calculations.  827 

 The molar ratio of the co-precipitation of phosphorus onto iron (oxyhydr)oxide 828 

particles conforms to a distribution coefficient (KD) model that scales linearly to the 829 
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ambient seawater phosphate concentration ([Psw]) (Feely et al., 1991; 1998; Konhauser et 830 

al., 2007): 831 

 .       (11) 832 

Thus, to estimate the delivery of iron-bound phosphorus, , we multiply an estimate of 833 

iron oxide delivery ( ) by the adsorption coefficient of phosphorus to iron oxides 834 

(KD) for a given estimate of seawater phosphate concentration ([Psw]): 835 

        (12) 836 

where γ converts measured values (in wt.%) to moles as required in the definition of the 837 

adsorption coefficient. Within anoxic pore-waters, a fraction of the iron oxides delivered 838 

to the sediment column will be reduced by dissimilatory iron reduction and converted to 839 

ferrous iron, and these ions will either precipitate as pyrite or iron carbonate, or 840 

advect/diffuse to the overlying water column. Accordingly, a full accounting of  841 

would include all of these conservation and loss terms. The estimate would become a 842 

lower bound on  if we ignored the ferrous iron loss flux, which in any event is 843 

unconstrained, and included only the measured iron oxide (Feox), pyrite (Fepy) and iron-844 

carbonate phases (Fecarb). We note, however, that at least some of the measured Fe (most 845 

obviously the Fecarb phase) may have originated from diagenetic remobilization of iron to 846 

these carbonates. (For the lower Thorntonia Limestone, Fecarb comprises a median (1st, 3rd 847 

quartile) of 76.8 % (71.3, 81.8) of the total iron pool; in contrast, for the phosphatic 848 

middle/upper Thorntonia and for the Arthur Creek Formation, Fecarb accounts for only 849 
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28.7 % (22.3, 33,2) and 20 % (15.15, 23.5) of FeT, respectively.) In this regard, this 850 

calculation may overestimate . 851 

 Magnetite may form through the reductive dissolution of mixed ferrous–ferric 852 

oxide phases (e.g., Zegeye et al., 2012), and, as such, could be considered in the 853 

summation of primary iron oxide minerals ( ); however, magnetite may also form 854 

during prograde metamorphism, in which case inclusion of this phase would over-855 

estimate the primary ferric iron flux to the sediment column. We include Femag within our 856 

calculation because the authigenic pathway likely exceeds weathering and metamorphic 857 

overprints for this depositional environment. (Regardless, within NTGS 99/1 magnetite 858 

represents a negligible component of FeT, therefore this assumption does not alter the 859 

illustrative estimate for .) Therefore, we rewrite Eqn (12) in the approximate form: 860 

  .   (13) 861 

 A host of seawater ions—notably silica, trace metals and rare earth elements—862 

compete with phosphorus for adsorption sites on the surface of iron oxide particles (e.g., 863 

Berner, 1973; Trocine and Trefry, 1988; Olivarez and Owen, 1989; Trefry and Metz, 864 

1989; Feely et al., 1991; Feely et al., 1998; German et al., 1990; Konhauser et al., 2007). 865 

Thus, the choice of KD depends on the assumption of the seawater composition of 866 

Cambrian oceans. As these element concentrations are broadly unknown for the 867 

Paleozoic Era, we focus here only on the role of the major seawater constituent dissolved 868 

silica in competition for iron-surface anion sites. Following Siever’s (1992) inference of 869 

cristobalite saturation for early Phanerozoic seawater ([SiSW] = 0.67 mM), Konhauser et 870 

al. (2007) determined experimentally a KD = 0.0108 for ferrihydrite at this silica 871 

saturation state. Notably, the linear range of the KD model depends on the phosphorus 872 
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concentration of ambient seawater. At cristobalite saturation, the linearity of the KD 873 

model saturates above ~5 μM [Psw]. This is to say that the co-precipitation and delivery of 874 

phosphorus bound to iron oxides remains constant at and above this ambient seawater 875 

phosphate concentration.  876 

 Hence, we adopt [Psw] = 5 μM to calculate a maximum estimate for  at the 877 

adopted [SiSW]. We emphasize that the chosen value of 5 µM is a simplistic assumption 878 

and that water column phosphorus concentrations are affected by variable environmental 879 

factors that are difficult to generalize, even under well-constrained modern conditions. 880 

Nevertheless, this adopted phosphate concentration is consistent with modern anoxic 881 

environments, including the Black Sea and Cariaco Basin (Shaffer, 1986; Scranton et al., 882 

2006). For example, in the Black Sea, higher phosphate concentrations in the ferruginous 883 

chemocline than in the underlying sulfidic waters result from the dissolution of settling 884 

Fe-oxides and the release of adsorbed phosphate (Brewer and Murray, 1973). Similar 885 

processes are suggested to explain the phosphate concentrations (up to 9 µM dissolved P) 886 

in the ferruginous Lake Matano (Crowe et al., 2008) where the release of Fe(III)-bound P 887 

at the chemocline is balanced by the precipitation of Fe(II)-phosphates below the 888 

chemocline. 889 

 Applying Eqn. (13) to samples from the middle and upper Thorntonia members 890 

yields a median estimate for iron-bound P of 0.1 wt.% as compared to a median estimate 891 

of 0.2 wt.% for the Arthur Creek (Fig. 7).  In this formulation, phosphorus delivery by 892 

iron oxides is proportional to the highly reactive iron phases (FeHR) determined from iron 893 

speciation geochemistry. While FeHR/FeT decreases between the P-enriched middle / 894 

upper Thorntonia members and the Arthur Creek, the observed increase in FeT within the 895 
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Arthur Creek compensates such that the molar estimate of , and, thus,  remains 896 

roughly constant between the two formations. As such, and if the above assumptions 897 

hold, this implies that the relative contribution of the Fe-P shuttle to the observed weight 898 

percent sedimentary P was much greater during deposition of the Arthur Creek Formation 899 

because of the lower wt.% PT measured throughout this formation. Indeed, the median 900 

estimate of  = 0.2 wt.% for the Arthur Creek greatly exceeds the median measured PT 901 

(0.03 wt.%; Fig. 7). In contrast, the median estimate of  = 0.1 wt.% for the middle and 902 

upper Thorntonia members provides only ~10% of the median measured PT (0.98 wt.%; 903 

Fig. 7), and proportionally less for samples with the highest measured PT approaching 4 904 

wt.%. Likewise, any diffusive loss of P from the sediment column prior to lithification 905 

would increase the requisite  and, in the case of the Thorntonia, increase the 906 

deficiency between the observed PT and P hypothesized to have been delivered associated 907 

with Feox ( ). 908 

 The formulation of our equations may significantly overestimate Fe-bound P 909 

delivery for two reasons. First, our calculations adopt a KD value based on an estimate of 910 

contemporaneous seawater silica concentrations. Second, our calculations adopt a 911 

seawater phosphate concentration that maximizes the potential for phosphorus delivery 912 

by the iron shuttle. If we presumed a higher seawater silica concentration (that is, 913 

decreased KD), or if, for an assumed [SiSW], we also assumed a lower [PSW], then we 914 

would calculate a lower P delivery flux per unit Feox. Thus, both of these changes would 915 

yield a lower estimate of  for a given iron flux to the sediment column.  916 
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 Some iron minerals are more effective P delivery shuttles than others. The 917 

capacity for iron minerals to scavenge and deliver phosphorus to the sea floor depends on 918 

a number of factors, including the surface density of adsorption sites, which in part is 919 

related to mineral surface area. In this regard, amorphous to poorly crystalline phases will 920 

scavenge more phosphate than highly crystalline phases. (We note, however, that 921 

progressive crystallization may result in the subsequent desorption of P from adsorption 922 

sites. If this desorption occurs within the sediment column, outside the length-scales of 923 

advection/diffusion with the overlying water-column, Fe-bound P could provide a 924 

significant source of P to the sediment column.) Here we assumed ferrihydrite as the 925 

carrier phase (Konhauser et al., 2007), however, a range of other iron minerals form 926 

during anaerobic Fe2+ oxidation (e.g., Kappler and Newman, 2004; Zegeye et al., 2012). 927 

For instance, in the only detailed study of Fe mineralogy in a ferruginous water column 928 

(Lake Matano, Indonesia), Zegeye et al. (2012) found that ferrihydrite was quantitatively 929 

transformed to carbonated green rust (‘fougerite’) during settling through the water 930 

column, with more minor formation of magnetite. Unfortunately, no experimental data 931 

currently exist for P adsorption to green rust under the chemical conditions likely 932 

encountered in Cambrian oceans (e.g., Lake Matano has relatively low [Si]). However, 933 

adsorption of oxyanions to green rust tends to be far higher than for ferrihydrite (Randall 934 

et al., 2001), and thus such a finding highlights the need to consider multiple and varied 935 

carrier phases for the ancient Fe-P shuttle. An iron carrier phase with an adsorption 936 

coefficient (KD) with respect to P greater than ferrihydrite could have delivered more P to 937 

Thorntonia sediments for a given iron flux to the sea floor. 938 
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 Are there other scenarios in which the delivery of Fe-bound P could have been 939 

greater than that inferred from the formulations of equations 11 through 13? To answer 940 

this question it is necessary to address whether the measured FeHR is an accurate proxy 941 

for the contribution of Feox to the sediment column, or whether it could underestimate the 942 

original Feox flux ( ), and, thus,  to the sediment column. Next, we explore 943 

hypothetical redox scenarios in which Fe-bound P could contribute more substantially to 944 

authigenic apatite. Without an independent line of evidence that the constituent phases of 945 

the highly reactive iron pool represent the primary fluxes of iron to the sediment column, 946 

we choose not to advocate for this possibility for the Thorntonia Limestone. 947 

Nevertheless, with regard to the broader question of the mechanism for phosphatic 948 

carbonate deposition, we find it informative to evaluate the circumstances in which the 949 

Fe-bound delivery shuttle could contribute substantially to phosphogenesis and 950 

phosphatic carbonate deposition. 951 

 One can envision a spectrum of scenarios for the relative magnitudes of Feox 952 

delivery to and Fe2+ loss from the sediment column. These scenarios fall within three 953 

generalized categories: Feox delivery (1) greater than, (2) nearly equal to, or (3) less than 954 

Fe2+ diffusive/advective loss. In the following discussion we discount scenario (3) 955 

because such an imbalance defines an unsustainable Fe cycle. To begin, we consider the 956 

scenario that (1) Feox delivery exceeds Fe2+ loss. This can result from two opposing redox 957 

regimes. (1a) If the majority of Feox delivered to the sediment column were stabilized 958 

within oxygenated pore-water then this would preclude widespread iron reduction. In this 959 

instance, only a small amount P would be liberated from the Feox delivery shuttle, and 960 

Feox would dominate FeHR. (1b) Alternatively, if sedimentary electron donors (e.g., Corg) 961 
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contributed to pore-water anoxia, some fraction of the delivered Feox would be reduced to 962 

Fe2+, and any P bound to these Feox particles would be released to pore-waters. To 963 

maintain the low Fe2+ loss fraction defining this scenario, any Fe2+ ions produced must be 964 

captured quantitatively within authigenic ferrous iron minerals. In this instance, 965 

sedimentary Fe would be partitioned amongst Feox, Fecarb, and Fepy phases, and the 966 

dominance of the latter two minerals would imply that much of the original Feox flux was 967 

reduced. Notably, with regard to P delivery, either scenario for high Feox delivery relative 968 

to Fe2+ loss predicts that the measurement of sedimentary FeHR represents a close 969 

approximation of the magnitude of P delivery associated with the Fe-P shuttle ( ). If, 970 

for example, the Fe cycle were operating in this manner at the time of deposition of the 971 

middle and upper Thorntonia members then, under the above assumptions, the Fe-shuttle 972 

would be constrained to have contributed a median of ~10% PT (as determined from Eqn. 973 

13) and, therefore, could not represent a dominant source of P for the observed 974 

enrichment. 975 

 If scenarios 1a and 1b cannot source significant amounts of Fe-bound P to 976 

phosphatic lithologies, can scenario 2? Like scenario (1b) above, scenario (2) necessitates 977 

a redox environment that facilitates the reductive dissolution of the majority of Feox 978 

delivered to the sediment column, regardless of the size of this flux. In contrast, scenario 979 

(2) is distinguished from scenario (1) by the condition that the majority of the 980 

sedimentary Fe2+ produced must escape to the overlying water column, resulting in less 981 

capture of Fe2+ ions in authigenic minerals. Such diffusive loss requires anoxia within the 982 

water-mass overlying the sediment column. As above, Fe retained within the sediment 983 

can reside in any combination of Feox, Fecarb, and/or Fepy phases. Notably, Scenario (2) 984 
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allows for the measured FeHR value to significantly underestimate iron oxide delivery to 985 

the sea floor ( ) and, therefore, to underestimate the Fe-P shuttle ( ). If, for 986 

example, the Fe cycle were operating with an extensive benthic flux of Fe2+ to the water 987 

column during deposition of the middle Thorntonia Limestone, and if a mechanism 988 

existed to preferentially retain the delivered P, then the Fe-P shuttle could have provided 989 

a significant proportion of the observed P to these phosphatic strata, that is, greater than 990 

the ~10% estimated from Eqn. (13). 991 

 In summary, simple models of Fe-bound P delivery estimates ( ), as determined 992 

from Eqn. (13), indicate that this delivery shuttle could have sourced the measured P 993 

content of the Arthur Creek Formation. In contrast, our estimates of Fe-bound P can only 994 

account for a median of 10% of the P content the Thorntonia Limestone. (This estimate 995 

assumes that FeHR in Thorntonia rocks reflects deposition from the water column. To the 996 

extent that Thorntonia iron minerals reflect open-system diagenesis, this estimate would 997 

be even lower.) Only by invoking a major diffusive loss of iron from the Thorntonia 998 

sediment column with subsequent capture of delivered P within authigenic phases—a 999 

scenario for which we do not advocate, yet do not find inconsistent with the assumption 1000 

of limited diagenesis—could Fe-bound P have provided a more substantial contribution 1001 

to phosphatic carbonates of the Thorntonia Limestone. 1002 

  1003 

CONCLUSIONS 1004 

 Within drill core NTGS 99/1, phosphorus enrichment is confined to the middle 1005 

and upper members of the Thorntonia Limestone, and petrographic observations reveal 1006 

that this enrichment reflects authigenic apatite mineral nucleation primarily associated 1007 
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with the interior of bioclasts and, more rarely, as cement in bioclastic grainstone. Under 1008 

the canonical model that phosphorus bound within organic matter represents the only 1009 

significant delivery flux of phosphorus to the sediment column, molar Corg:PT well below 1010 

the Redfield ratio requires significant Corg loss or a second delivery source of phosphorus 1011 

to Thorntonia sediments. 1012 

 Interpreted together, sedimentological observations and iron speciation data 1013 

suggest that sediment within the southern Georgina Basin accumulated under anoxic, 1014 

ferruginous conditions. This redox diagnosis is consistent with previous research 1015 

documenting the propensity for anoxic, ferruginous conditions in subsurface water 1016 

masses of late Neoproterozoic and Cambrian oceans (Canfield et al., 2008) driven by the 1017 

relative fluxes of electron donors (organic carbon) and electron acceptors (reactive Fe, 1018 

sulfate) into a basin (Johnston et al., 2010). If correct, the conclusion of an active iron 1019 

redox cycle contemporaneous with the deposition of the Thorntonia Limestone and 1020 

Arthur Creek Formation provides a second mechanism for augmented sedimentary 1021 

phosphorus delivery—phosphorus adsorbed to particulate iron minerals.  1022 

 The stoichiometries of delivery estimates and remineralization reactions indicate 1023 

that the phosphorus content of the Arthur Creek Formation is easily accounted for by any 1024 

combination of phosphorus associated with organic matter and/or iron oxide fluxes. 1025 

However, the observed phosphorus content of the Thorntonia is difficult to reconcile with 1026 

reasonable fluxes of either organic-bound or iron-bound phosphorus alone. Thus, we 1027 

suggest that both sources were necessary to account for Thorntonia Limestone phosphatic 1028 

carbonate deposition. 1029 
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  The discontinuous nature of phosphorite and phosphatic carbonate through Earth 1030 

history speaks to discontinuous mechanisms of formation. We hypothesize that redox-1031 

mediated phosphorus delivery via the Fe-P shuttle, rather than a discontinuous organic 1032 

carbon flux, provides the more intermittent mechanism for phosphorus delivery to the 1033 

sediment column. That said, ferruginous bottom waters appear to have been widespread 1034 

in Proterozoic oceans, whereas phosphatic carbonates are not.  Thus, the episodic nature 1035 

of phosphate deposition must additionally depend on the fate of phosphate after it enters 1036 

the sediment column.  Where the oxic-anoxic interface lies well within the water column, 1037 

microbial reduction of ferric iron within the sediments will remobilize P, with a high 1038 

probability of escape back to the water column.  Where phosphate in solution is trapped 1039 

by skeletons, however, or bound to decay-resistant materials such as chitinous 1040 

exoskeletons, mineral phosphate may be reprecipitated in sediments.  With this in mind, 1041 

it would appear that delivery mechanisms, post-delivery fate within sediments, and 1042 

evolution all contributed to the observed geological record of Cambrian phosphate 1043 

accumulation. 1044 
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Figure captions: 1517 

Figure 1: (A) Areal extent of the constituent basins of the Neoproterozoic Centralian 1518 

Superbasin. The black dot marks the drill locality for core NTGS 99/1 in the southern 1519 

Georgina Basin. (B) Chronostratigraphy and lithostratigraphic nomenclature for the 1520 

Northern Territory outcroppings of Cambrian strata within the southern Georgina Basin 1521 

(modified from Dunster et al., 2007). The symbol “(?)” reflects uncertainties in 1522 

correlating regional Australian trilobite Zones with International Cambrian System 1523 

designations. 1524 

 1525 

Figure 2: Lithofacies of the Thorntonia Limestone and Arthur Creek Formation in NTGS 1526 

99/1. (A) Sandy dolostone of the lower Thorntonia Limestone, just above the contact 1527 

with the underlying Paleoproterozoic granite basement (~595.8 – 595.6 mcd). (B) 1528 

General character of the mottled-to-stylonodular, dolomitic lower Thorntonia Limestone 1529 

(584 – 580.5 mcd). (C) Characteristic meter to sub-meter scale lithologic alternations and 1530 

color variation within limestone of the middle Thorntonia Limestone (577.7 – 571.4 1531 

mcd). (1) Denotes black and dark gray calcimudstone; (2) denotes lighter gray 1532 

calcimudstone, wackestone and packstone; and (3) denotes limestone grainstone. Note 1533 

the general up-package coarsening and lightening, often without cyclic or predictable 1534 

variation. (D) Bioclastic grainstone to mudstone transition from 570.15 – 570.05 mcd 1535 

(middle Thorntonia Limestone; all limestone). (E) Appearance of the vuggy, bioclastic 1536 

dolomitic grainstone of the upper Thorntonia Limestone (left) and the overlying basal 1537 

‘hot shale’ of the lower Arthur Creek Formation (right). Contact at 554.7 mcd. (F) The 1538 

laminated siliciclastic shale/siltstone and calcimudstone facies of the lower Arthur Creek 1539 

Formation. (G) Light-gray early diagenetic nodule (calcimudstone) displacing dark-gray 1540 

laminations within the lower Arthur Creek Formation at 532.8 – 532.65 mcd (arrows 1541 

mark the exterior of the nodule). (H) General appearance of the interbedded siliciclastic 1542 

mudstone/siltstone and calcimudstone (neomorphosed to microspar) facies of the lower 1543 

Arthur Creek Formation above ~430 mcd. 1544 

 1545 

Figure 3: Photomicrographs under plane-polarized light of authigenic apatite distribution 1546 

within the middle Thorntonia Limestone. (A) A limestone packstone with apatite 1547 
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replacement specifically targeting the interior of conical small shelly fossil elements at 1548 

570.35 mcd. (B) Wholesale matrix and grain phosphatization at of a limestone at 575.17 1549 

mcd. (C) Dispersed, allochthonous grains of authigenic apatite within a limestone at 1550 

560.69 mcd (see text for discussion of origin). 1551 

 1552 

Figure 4: Lithology and stable isotope chemostratigraphy of the Thorntonia Limestone 1553 

and lower Arthur Creek Formation within drill core NTGS 99/1. For all panels, data for 1554 

the lower and middle/upper Thorntonia Limestone are plotted in open and solid blue 1555 

circles, respectively, while data for the Arthur Creek Formation are plotted in solid red 1556 

circles. (A) Generalized stratigraphic column depicting the lithology of the lower, middle, 1557 

and upper Thorntonia Limestone and the lower Arthur Creek Formation. Lithologic 1558 

abbreviations: Siliciclastics: slts = siltstone; Carbonates: mds = mudstone; wks = 1559 

wackestone; pks = packstone; grn = grainstone. Vertical axis reflects meters core depth 1560 

from the surface. (B) Carbonate carbon isotopic composition (relative to V-PDB). (C) 1561 

Carbonate oxygen isotopic composition (relative to V-PDB). (D) Total organic carbon 1562 

isotopic composition (symbol size scaled to wt.% total organic carbon (TOC)). (E) Cross-1563 

plot of carbonate carbon and carbonate oxygen isotopic composition. (F) Cross-plot of 1564 

organic carbon and carbonate carbon isotopic composition. 1565 

 1566 

Figure 5: Phosphorus and iron speciation geochemistry, molar C:P ratios, and 1567 

correlations between P and other geochemical metrics within the Thorntonia Limestone 1568 

and Arthur Creek Formation. (A) The weight percent of total phosphorus (filled green 1569 

circles) and subtotal phosphorus (open green circles) for those samples whose PFe 1570 

concentrations were not determined from P-speciation geochemistry. Weight percent total 1571 

Fe (open red circles) from Fe-speciation geochemistry. Note the logarithmic scale to 1572 

emphasize, in particular, the P content of the middle and upper Thorntonia Limestone. 1573 

(B) The weight percents of operationally-defined phosphorus phases as determined by 1574 

phosphorus-speciation geochemistry. Note the logarithmic scale. See text for discussion 1575 

of the operationally-defined P phases. (C) The weight percents of iron phases as 1576 

determined by iron-speciation geochemistry. Note the logarithmic scale. (D) The molar 1577 

ratio of organic carbon to total phosphorus. Grey line intersects the axis at C:P = 106:1, 1578 
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the canonical Redfield ratio. (E) Correlation between the weight percent phosphorus 1579 

within individual samples as determined from ICP-AES versus that determined by the 1580 

sequential extraction method (see Methods section). Slope of linear regression = 1.1; R2 = 1581 

0.88. (F) Correlation between the zirconium to aluminum ratio (ppm/%) and the 1582 

operationally-defined Pxl phase (see text for discussion) determined from phosphorus 1583 

speciation geochemistry. (G) Cross-plot of the weight percent of highly reactive iron 1584 

species (FeHR; oxides, magnetite, pyrite, and iron carbonates) determined from iron-1585 

speciation geochemistry versus the weight percent of total phosphorus determined from 1586 

phosphorous-speciation geochemistry. 1587 

  1588 

Figure 6: Iron-speciation geochemistry. For all panels, data for the lower and 1589 

middle/upper Thorntonia Limestone are plotted in open and solid blue circles, 1590 

respectively, while data for the laminated facies and interbedded siliciclastic/carbonate 1591 

mudstone facies of the Arthur Creek Formation are plotted in solid and open red circles, 1592 

respectively. Data from the Arthur Creek ‘hot shale’ appear as solid red circles with a  1593 

black outline. (A) A cross-plot of the weight percent total iron (FeT) versus the weight 1594 

percent iron within highly reactive phases (FeHR; oxides, magnetite, pyrite, and iron 1595 

carbonates). We plot slopes of 1 and 0.38 as a reference for comparing these carbonate 1596 

data to previously published iron-speciation data, but we do not advocate interpreting 1597 

carbonate data (blue circles) within the canonical siliciclastic framework. Slope of 1598 

regressions (not plotted) reflect the percentage of the total iron residing in highly reactive 1599 

phases (lower Thorntonia = 57%, R2: 0.53; middle/upper Thorntonia = 89%, R2: 0.95; 1600 

laminated facies of the Arthur Creek = 53%, R2: 0.44; interbedded siliciclastic shale / 1601 

siltstone and carbonate mudstone facies of the Arthur Creek = 26%, R2: 0.90). (B) A 1602 

cross-plot of the weight percent highly reactive iron (FeHR) versus the weight percent iron 1603 

within pyrite (Fepy). We plot slopes of 1 and 0.8 for reference (see (a)). Slope of 1604 

regressions (not plotted) reflect the percentage of the highly reactive iron residing within 1605 

pyrite (lower Thorntonia = 17%, R2: 0.07; middle/upper Thorntonia = 64%, R2: 0.95; 1606 

laminated facies of the Arthur Creek = 75%, R2: 0.95; interbedded siliciclastic shale / 1607 

siltstone and carbonate mudstone facies of the Arthur Creek = 30%, R2: 0.50). We note 1608 

that the linear regression for the ‘hot shale’ (Fepy = 0.8*(FeHR)-0.2) is the same for the 1609 
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lower Arthur Creek laminated facies exclusive of the ‘hot shale’ data. (C) A cross-plot of 1610 

the weight percent highly reactive iron (FeHR) versus iron carbonate (Fecarb). Slope of 1611 

regressions (not plotted) reflect the percentage of the highly reactive iron residing within 1612 

iron carbonate (lower Thorntonia = 82%, R2: 0.62; middle/upper Thorntonia = 31%, R2: 1613 

0.82; laminated facies of the Arthur Creek = 25%, R2: 0.68; interbedded siliciclastic shale 1614 

/ siltstone and carbonate mudstone facies of the Arthur Creek = 52%, R2: 0.73). We note 1615 

that the linear regression for the ‘hot shale’ (Fecarb = 0.25*(FeHR)+0.15) is similar for the 1616 

lower Arthur Creek laminated facies exclusive of the ‘hot shale’ data (Fecarb = 1617 

0.20*(FeHR)+0.15). 1618 

 1619 

Figure 7: Assessing the potential contribution of organic-bound and iron-bound 1620 

phosphorus (P) to authigenic apatite precipitation. For the case of organic-bound P 1621 

delivery (left), the dashed boxes depict the median estimated weight percent organic 1622 

matter (wt.% ) necessary to account for the measured wt.% sedimentary P based on 1623 

equation (1) with a Redfield ratio of 106C:1P. Dark grey boxes represent the median 1624 

wt.% total organic carbon (TOC) measured within samples. Light gray boxes represent 1625 

the corrected wt.%  (see discussion leading to equation (9)). All values plotted to 1626 

scale. Organic carbon delivery can account for all of the P within the Arthur Creek 1627 

Formation. In contrast, the blank area within the dashed Thorntonia Limestone box 1628 

represents the amount of  that would have to have been remineralized to account for 1629 

the observed sedimentary P content if it were sourced by organic-bound P alone. 1630 

 For the case of iron-bound P delivery (right), the dashed boxes depict the median 1631 

measured wt.% PT within samples while the dark grey boxes represent the estimated 1632 

delivery of iron-bound P ( ) as determined from equation (13) assuming a partition 1633 

coefficient for ferrihydrite and a seawater phosphate concentration of 5 μm (see text for 1634 

discussion). All values plotted to scale. In this regard, and under these assumptions, the 1635 

Fe-P delivery shuttle can account for all of the P within the Arthur Creek Formation. In 1636 

contrast, only by invoking Fe2+ loss from the sediment column and preferential capture of 1637 

Fe-bound P within authigenic phases, could the Fe-P shuttle have contributed more 1638 

substantially (> ~10%) to the phosphatic carbonate of the Thorntonia Limestone. 1639 
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