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In the annals of Earth history, few associations have proven more iconic or durable than that 

between animals and oxygen.  As early as 1919, the experimental physiologist August Krogh (1) 

explored the relationship between O2 and animal anatomy, and forty years later J.R. Nursall (2) 

posited  explicitly that metazoans appear as fossils only in uppermost Proterozoic rocks because 

pO2 was insufficient to support animal physiology before this time.  Preston Cloud, the first great 

historical geobiologist, championed this idea (3), and in recent years it has been bolstered by 

geochemical data that place redox transition in broad synchrony with the first animal body fossils 

(4).  Now, however, Mills et al. (5) challenge this view of life, at least in its simplest form.  

The phylogenetic relationships of basal metazoans have become more clouded in recent 

years, but analyses least associated with apparent systematic errors place sponges as the sister 

group or grade to all other animals (6,7). For this reason, as well as the clear antiquity of many 

poriferan lineages (8), living sponges may provide our best physiological guide to ancestral 

animals.  Experiments by Mills et al. (5) on the temperate demosponge Halichondria panicea 

(Fig. 1A) indicate that these animals can grow and feed at oxygen levels as low as 0.5 to 4% of 

present day levels (PAL), a condition likely to have characterized surface oceans long before the 

Ediacaran Period. Importantly, this species grows in shallow, well-oxygenated environments and 

apparently has no special adaptations to low oxygen. The experimental data therefore support 

previous theoretical suggestions that, by virtue of their basic body plan, with essentially every 

cell in contact with seawater (Fig. 1B), ancestral sponges and early diploblastic animals would 

have had only modest oxygen requirements (9,10).  Thus, oxygen availability probably provided 

little impediment to the origin of animal multicellularity.   

The hypothesis that animals originated in a low oxygen world gains further support from 

two independent sources.  The first is ecological. The full range of oxygen tensions likely to have 



characterized Neoproterozoic oceans can be found today, including oxygen minimum zones 

(OMZs) where pO2 can be exceedingly low. Even where oxygen falls to 1-3% PAL, however, 

animals, mostly tiny and unmineralized, thrive (11; due to substrate effects, sponges are often 

absent from the soupy sediments that characterize OMZs).  Secondly, increasing geochemical 

data support the view that oxygen levels remained low – perhaps only a few percent PAL – in the 

mid-Neoproterozoic oceans where animals are thought to have originated (10, and papers cited 

therein). 

 Thus, as Mills et al. argue, explanations for animal origins must be sought elsewhere.  

Complex multicellular organisms in multiple clades share key features of genetics and cell 

biology (12), and these illuminate the mechanisms by which animals evolved complex structure.  

By themselves, however, these characters do not address selection pressures that may have 

favored simple multicellularity in Neoproterozoic oceans.  These must lie elsewhere, for 

example, in advantages of feeding or defense against protistan predators (13). Both fossils and 

molecular clocks suggest that eukaryovorus protists (protists that feed by ingesting other 

eukaryotic cells) radiated during the Neoproterozoic Era (14).  Just as carnivory is thought to 

have provided an ecological driver for Cambrian animal evolution, this change in the biological 

environment of Neoproterozoic oceans might have facilitated the evolution of multicellarity in 

stem group metazoans. 

Does this mean, then, that oxygen was irrelevant to early animal evolution?  Not at all. 

There is a serious disconnect between molecular clock and biomarker evidence for the origin of 

sponges in Cryogenian oceans and their widespread appearance as fossils in Cambrian rocks (8). 

Mills et al.’s experiments offer tantalizing evidence that while sponges may be able to tolerate 

very low oxygen conditions, they are sensitive to fluctuating anoxia, and that, as in bilaterian 



animals, smaller forms may cope better with low oxygen than larger ones. Thus, if the trends 

exhibited by Halichondria are substantiated in other sponges, it may be that sponges were able to 

evolve in Cryogenian seaways, but remained rare, limited to small size, and difficult to fossilize. 

As molecular divergence estimates simply inform us about the temporal origins of a group, and 

not its paleo-abundance or ecological dominance, the experiments of Mills et al. may help to 

explain some of the discordance between molecular and fossil records.     

Equally important, at the minimum oxygen levels capable of supporting sponges, most 

familiar animals would die, so there must be more to the story.  Oxygen may not have lit the fuse 

for the Cambrian Explosion, but it might have supplied some fuel.  Oxygen requirements reflect 

size, transport mechanisms within tissues, and metabolic demand, and the metazoans found in 

dysoxic waters (O2 present but in low amounts) tend to be tiny (11).  The famous Ediacaran 

macrofossils may not reflect the earliest animals, but along with a number of forms with 

controversial affinities, they do record the oldest large animals capable of widespread 

preservation (15).  Moreover, in modern dysoxic environments, one functional class of animals is 

notably rare or absent: carnivores, the postulated ecological drivers of Cambrian diversification 

(16).  Thus, while the redox transformation of global oceans may postdate the origin of animals 

by more than 100 million years, it does approximate the emergence of large animals capable of 

fossilization and carnivores capable of fomenting biological revolution within the metazoan 

ecological landscape.  The threshold values needed to sustain such animals was perhaps not 

especially higher than the minimal requirements for animal life (10,11,16,17), but there are clear 

differences between oxygen levels permitting animal life, and those permitting large, diverse, 

and ecologically important animals.  



It is possible, then, that modestly rising oxygen levels facilitated Ediacaran and Cambrian 

animal evolution, as envisaged by Cloud and other pioneers.  Following Butterfield (18), 

however, Mills et al. suggest the intriguing alternative that Ediacaran oxygen transition was a 

reflection rather than cause of animal diversification.   In this view, filter-feeding animals cleared 

surface oceans of dense bacterial populations, while planktonic bilaterians expedited export from 

surface waters via rapidly sinking fecal pellets, lessening the oxygen demand of surface waters 

and, thereby, promoting oxygen enrichment.  In no small part, this hypothesis depends on the 

view that Proterozoic oceans maintained high bacterial concentrations, determined more by the 

absence of filter feeders than by alternative controls such as nutrient supply and viral lysis. It 

also requires types of animals little observed before the Cambrian. Nonetheless, this is a 

hypothesis worth considering as Earth scientists strive to build a more complete picture of 

Ediacaran life and environments.  Even if we accept the premise that animal diversification 

helped to ventilate Ediacaran oceans, however, we needn’t view the relationship between oxygen 

and animal evolution as one-way.  Insofar as we are not making the parallel error of assuming 

that insufficient oxygen was present beforehand, increasing oxygenation would have made new 

types of animal life possible: metazoans with the greater size, mineralized armor, and higher 

oxygen demands first recorded in Cambrian rocks.  

Thus, the coupling of oxygen and early animal evolution, so central to generations of 

geobiological thought, is not dead, although, following Mills et al., we can bid adieu to simplistic 

textbook versions for the origin of animals.  In its place, new hypotheses are taking shape, 

reflecting novel approaches from paleontology, geochemistry and comparative physiology.  In 

this telling, the focus is not on animals per se but rather on specific anatomies, physiologies and 

functions that collectively result in high oxygen demand.  Nor is our sense of Ediacaran 



environmental history likely to persevere as one in which low Proterozoic oxygen tensions gave 

way rapidly to an essentially modern world.  Rather, as predicted by some models of 

Phanerozoic environmental history (19), the rise of oxygen to present day levels is beginning to 

look protracted, with relatively low pO2 in Cambrian oceans (20) giving way over many millions 

of years to oxygen tensions equal to or greater than the present.  Continuing research, then, will 

increasingly focus on Paleozoic evolution and environments, with the sequential appearances of 

large and heavily skeletonized invertebrates, enormous predatory fish, and even giant 

dragonflies, interpreted in the context of protracted atmospheric evolution. New geochemical 

proxies will be needed to provide a more nuanced accounting of environmental history, and they 

must be complemented by expanding physiological research on animals in low oxygen 

environments.  With their novel experiments on sponges, Mills et al. help to show the way 

forward. 
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Fig. 1. (A) The marine demosponge Halichondria panicea investigated by (5); note cm scale in 

foreground. (B) TEM through body of the calcareous sponge Sycon coactum. The ability of 

sponges to tolerate low oxygen is probably related to their basic body design, with only two cell 

layers, the external pinacoderm (p) and the internal choanoderm (c), separated by a largely inert 

mesohyl (m). Both cell layers are in direct contact with seawater (sw), and diffusion distances for 

oxygen to any cell are short (note 5 μm scale bar). Thus, sponges and other small thin animals 

may have been able to tolerate low Proterozoic oxygen levels; however, larger, metabolically 

active animals, particularly carnivores, would have been excluded. Images courtesy of D. Mills 

(A) and S. Leys (B). 
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