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Abstract
We compute the non-zero temperature conductivity of conserved flavor currents in conformal field

theories (CFTs) in 2+1 spacetime dimensions. At frequencies much greater than the temperature, ~! �
k
B

T , the ! dependence can be computed from the operator product expansion (OPE) between the

currents and operators which acquire a non-zero expectation value at T > 0. Such results are found to

be in excellent agreement with quantum Monte Carlo studies of the O(2) Wilson-Fisher CFT. Results for

the conductivity and other observables are also obtained in vector 1/N expansions. We match these large

! results to the corresponding correlators of holographic representations of the CFT: the holographic

approach then allows us to extrapolate to small ~!/(k
B

T ). Other holographic studies implicitly only

used the OPE between the currents and the energy-momentum tensor, and this yields the correct leading

large ! behavior for a large class of CFTs. However, for the Wilson-Fisher CFT a relevant “thermal”

operator must also be considered, and then consistency with the Monte Carlo results is obtained without a

previously needed ad hoc rescaling of the T value. We also establish sum rules obeyed by the conductivity

of a wide class of CFTs.
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I. INTRODUCTION

Conformal field theories (CFTs) constitute the best characterized quantum systems without

quasiparticle excitations. Their non-zero temperature dissipative dynamics can be treated by

extensions of Boltzmann-like approaches designed for quasiparticle dynamics [1]; the Boltzmann

approach is di�cult in general, thus limited in practice. Much additional insight can be gained

from a modern perspective based upon holographic ideas [2], which does not assume a quasiparticle

decomposition of the spectrum at any stage. CFTs are also important as models of quantum critical

points in condensed matter, notably for the superfluid-insulator transition of bosons in a periodic

potential in two spatial dimensions [3–5].

In recent work by three of us [2], we computed the T > 0 conductivity of a lattice model for

this superfluid-insulator transition using quantum Monte Carlo simulations; after carefully taking

the T ! 0 limit of the lattice model, we obtained the T > 0 conductivity of a conserved current

of the CFT, and this was compared with the predictions of a semi-phenomenological holographic

theory. The latter theory included terms up to four derivatives in the metric and a gauge field

conjugate to the conserved current. We found consistency between the two approaches after an ad

hoc rescaling of the temperature between the two methods. Related T > 0 results were obtained

in Ref. 6 and 7, T = 0 results are in Refs. 8 and 9, and the e↵ects of disorder were considered in

Ref. 10.

The present paper will significantly improve on our previous analysis by using more specific

field-theoretic information on the CFTs under consideration. We will work mainly with the 2+1

dimensional CFT with O(N) symmetry described by the Wilson-Fisher fixed point, and determine

the conductivity of the conserved O(N) current. We will compute the operator product expansion

(OPE) of the current operators in terms of other operators of the CFT, and use this to constrain

the high frequency behavior of the conductivity. We find excellent agreement of such results

with Monte Carlo studies of the O(2) model upon taking into account a scalar field conjugate to a

relevant perturbation of the CFT. Next, we will connect the high frequency behavior to holography,

and use it to make predictions for the conductivity at lower frequencies without an ad hoc rescaling

of temperature.

From a broader perspective, our analysis shows how the finite temperature properties of CFTs

can be analyzed by systematically including the influence of low dimension operators to constrain

the short-time behavior, and then using holography to extrapolate to longer times. In theories

with quasiparticles, the extrapolation from short to long times is generally made via the Boltzmann

equation; here, we argue that the corresponding extrapolation for CFTs without quasiparticles can

be made by a combination of the OPE with holography.

We present here the structure of the high frequency, or short time, behavior of the conductivity

as given by the OPE for a general CFT in 2+1 dimensions. With spacetime co-ordinates (⌧, x, y),

the conductivity is related to the two-point correlator of a conserved current J
x

(we suppress indices

of global flavor symmetries). We work in the Euclidean time signature, and then the conductivity

3



is
�(i!

n

)

�
Q

= � 1

!
n

hJ
x

(!)J
x

(�!)i
T

+ a possible contact term , (1)

where ! ⌘ (!
n

, 0, 0), and in some cases a diamagnetic ‘contact’ term may be present; here !
n

refers

to Matsubara frequencies which are integral multiples of 2⇡T , but the conductivity is defined at

all ! by analytic continuation. To make contact with the condensed matter literature, we have

explicitly displayed a factor of the quantum unit of conductance

�
Q

=
(e⇤)2

~ , (2)

where e⇤ is the e↵ective charge of the carriers (e⇤ = 2e for the superfluid-insulator transition of

Cooper pairs); the ratio �/�
Q

is then a dimensionless function whose values we will present here.

Note that, in the condensed matter literature (e⇤)2/h = 2⇡�
Q

is often used as a definition of the

quantum unit of conductance.

The OPE specifies the behavior of the product of a pair of operators when they approach

the same point in spacetime: the product is replaced by a sum over the operators of the CFT

with universal coe�cients [11, 12]. These OPE coe�cients ultimately allow one to compute all

local correlators of the CFT at T = 0. At T > 0, the OPE expansion is applicable for times

|t| < ~/(k
B

T ) (we will set ~ = k
B

= 1 in subsequent expressions), but cannot be used directly for

longer times which are naturally sensitive to the global topology of spacetime, and in particular

to the periodic boundary conditions along the Euclidean temporal direction. For our purposes, it

is useful to work in frequency space, and to express the OPE as the product of 2 operators when

they carry a common large Euclidean frequency. One of our primary results is the following OPE

of the product of 2 currents

lim
|!n|�p

J
x

(!)J
x

(�! + p) = �|!
n

| �1 �(3)(p) � C
|!

n

|��1
O(p)

+
C
T

!2
n

h
T
xx

(p) � T
yy

(p) � 12�(T
xx

(p) + T
yy

(p))
i
+ · · · , (3)

where ! ⌘ (!
n

, 0, 0) and p is a fixed 3-momentum with p ⌘ |p|. The structure of this OPE

was deduced by computing correlators of the operators on the left-hand-side with those on the

right-hand-side using the 1/N expansion of the O(N) model; it is also consistent with correlators

deduced from holography. Taking an expectation of the above equation at any temperature will

lead to both sides being proportional to �(3)(p). Here �1 is limiting value of the conductivity

as |!
n

| � T , O is a possible scalar operator in the OPE with scaling dimension �, T
µ⌫

is the

energy-momentum tensor, and C, C
T

, and � are OPE coe�cients.

The terms in Eq. (3) involving the energy-momentum tensor have been implicitly included in

previous studies [2, 13, 14]. In the holographic approach, these terms arise from the coupling,

�, of the Weyl tensor to the gauge flux [13, 15]; the value of � obeys the exact bound [13, 14]
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|�|  1/12. It is also interesting to note the resemblance of the energy-momentum terms in Eq. (3)

to the Sugawara construction [16, 17] of the energy-momentum tensor from the OPE of currents in

CFTs in 1+1 dimension; indeed, the term proportional to � is T
xx

+ T
yy

= �T
⌧⌧

, the Hamiltonian

density.

We can use Eq. (3) to determine the frequency dependence of the conductivity in the regime

~|!
n

| � k
B

T (we will henceforth set ~ = k
B

= 1). We simply evaluate the expectation value of

the right-hand-side in an equilibrium thermal ensemble defined by the CFT, and indeed we have

only displayed terms in Eq. (3) which have a non-zero expectation value at T > 0. By this method

we obtain from Eqs. (1) and (3)

�(i!
n

)

�
Q

= �1 + b1

✓
T

!
n

◆�

+ b2

✓
T

!
n

◆3

+ · · · , !
n

� T , (4)

where the dimensionless numbers b1, b2 are related to the OPE coe�cients C and C
T

respectively.

This expression shows that the term associated with the operator O is important when there is a

scalar operator with a scaling dimension � < 3. For the O(N) Wilson-Fisher CFT there is indeed

such an operator: it is the “thermal” operator O
g

, whose introduction breaks no symmetry and

drives the CFT into a non-critical state. We note that the label “thermal” descends from critical

phenomena terminology, and is not meant to imply that O
g

introduces a non-zero T ; such an

operator has a coupling g in the action, and g has to be tuned to a critical value g = g
c

to realize

the CFT. The operator O
g

has scaling dimension � which takes the value

�
g

= 3 � 1/⌫ , (5)

where ⌫ is the correlation length exponent. For N = 2, we have ⌫ ⇡ 2/3, and so the O = O
g

term

in Eqs. (3) and (4) is more important than that due to the energy-momentum tensor, at least at

large !
n

.

The previous analysis [2] did not allow for an operator O with � < 3. Indeed, there is no

such operator for numerous physically interesting CFTs involving Dirac fermions coupled to gauge

fields, including QED3. For these CFTs, the analysis of Ref. [2] can be used without modifica-

tion. However, for O(N) Wilson-Fisher CFT, it is necessary to extend the analysis to include

the relevant operator O
g

; such an extension was briefly noted in Ref. 18, but its consequences

were not appropriately analyzed. After such an extension here, we find excellent compatibility

between Monte Carlo, operator product expansions, and holography, without any ad hoc rescaling

of temperature.

We will begin our analysis by computations in the vector 1/N expansion for the O(N) Wilson-

Fisher CFT in Section II. With many details relegated to the Appendix, we obtain results for

OPE coe�cients and thermal expectation values. Section III presents our Monte Carlo results on

the N = 2 Wilson-Fisher CFT, and compares them with the 1/N expansion. Section IV turns to

holography: by matching the large frequency behavior with the Monte Carlo results, we are able
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to extrapolate to low frequency properties of the conductivity. Section V presents a few results for

CFTs with Dirac fermions. Finally, in Section VI we use the OPE analysis to prove conductivity

sum rules.

We close this introduction by summarizing our notations for the operators under consideration

in Table I, as they appear in Sections II-IV.

O �O ` hOi
T

Holographic dual

�
↵

(1 + ⌘)/2 0 0 �
O

g

⇠ �2
↵

3 � 1/⌫ 0 BT 3�1/⌫ '
J
µ

2 1 0 A
µ

T
µ⌫

3 2 H
µ⌫

T 3 g
µ⌫

TABLE I. Main operators of the CFT describing the O(N) Wilson-Fisher CFT in 2+1 dimensions. �O, `
are the scaling dimension and spin of the operators, respectively. The properties of the conserved current
J
µ

(with flavor index suppressed) and energy-momentum tensor T
µ⌫

are general for any CFT in 2+1
dimensions.

II. O(N) CFT

The theory of primary interest to us is described by the partition function for a O(N) vector

field �
↵

, ↵ = 1, . . . , N ,

Z =

Z
D�

↵

exp

✓
�
Z

x


1

2
(@�

↵

)2 +
v

2N

�
�2
↵

� N/g
�2
�◆

, (6)

where
R
x

⌘ R
d3x is the integral over 2+1 dimensional spacetime, v parametrizes the quartic

non-linearity, and g is the tuning parameter across a quantum phase transition between phases

where O(N) symmetry is broken and present. We have written this field theory in a somewhat

unconventional notation to facilitate a 1/N expansion; to the extent possible, we follow the notation

in Ref. [19]. In the limit v ! 1 this theory reduces to the O(N) non-linear sigma model. However,

it is a subtle matter to identify the thermal operator in the strict v = 1 theory, as was discussed

in Ref. [19]. We will therefore keep v finite for now, but will shortly indeed take the v ! 1 limit

when it no longer interferes with the scaling limit.

We will primarily be interested in the conductivity of this theory at the quantum critical point

g = g
c

as a function of frequency, !, and absolute temperature T . Without loss of generality, we

focus on one of the conserved O(N) currents of this theory,

J
x

= �1@x�2 � �2@x�1 . (7)

The computationally challenging regime is at low frequencies |!| ⌧ T , where we have the dis-

sipative dynamics of the CFT relaxing to thermal equilibrium. However, controlled and reliable
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studies are possible at high frequencies ! � T . In this section, we will present the results of a

1/N expansion of the behavior of the conductivity in this ! � T regime using the OPE in Eq. (3).

The leading term in Eq. (3) is given by the constant �1 which has been computed earlier. For

completeness, we note its value in the 1/N expansion [20, 21] for the theory Z

�1 =
1

16

✓
1 � 1

N

64

9⇡2
+ O(1/N2)

◆
. (8)

The terms in Eq. (3) involving the energy-momentum tensor have been discussed previously

in di↵erent formulations [2, 13, 14]. We can use holography to compute the 3-point correlator

between J
x

, J
x

, and T
µ⌫

as described in Ref. [14], and then deduce the structure of the OPE: this

computation in described in Appendix A. We can also compute the same 3-point correlator in the

1/N expansion as described in Ref. [14], and again obtain Eq. (3) with specific values of the OPE

coe�cients: this is also described in Appendix A. The 1/N expansion for � for the theory Z is [14]

� = � 1

12
+ O(1/N) . (9)

Similarly, the 1/N expansion for C
T

is

C
T

=
4

N
+ O(1/N2) . (10)

For the O(N) field theory in Eq. (6), there is a relevant scalar operator O which we denote O
g

because it is generated by tuning g away from the quantum critical point. This is the operator

O
g

⇠ �2
↵

with scaling dimension in Eq. (5).

We will compute the OPE coe�cient of O
g

in the 1/N expansion of Z. An important subtlety

arises in the definition of O
g

in such an expansion, as we now describe. The scaling limit of the

large N expansion also involves taking the limit [22] v ! 1 in the action in Eq. (6). But in this

limit, we see from Eq. (6) that �2
↵

= N/g, a constant. Consequently, the correspondence O
g

⇠ �2
↵

,

assumed in Ref. 18, does not define an appropriate non-constant thermal operator at v = 1. A

proper definition of O
g

requires a more careful analysis of the N ! 1 and v ! 1 limits [19]. We

decouple the quartic term in Z by a Hubbard-Stratonovich field e� and write

Z =

Z
D�

↵

De� exp
 

�1

2

Z

x

"
(@�

↵

)2 +
ip
N
e�
�
�2
↵

� N/g
�
+
e�2

4v

#!
. (11)

It is the field ie� which we will identify with the operator O
g

. This identification is motivated

by the following identities between the one- and two-point correlators of �2
↵

and e� (which can be

7



obtained by taking appropriate functional derivatives of source terms) [19]

⌦
�2
↵

(x)
↵
=

N

g
+ i

p
N

2v

D
e�(x)

E
;

⌦
�2
↵

(x)�2
�

(0)
↵� ⌦�2

↵

(0)
↵2

=
N

v
�(3)(x) � N

4v2

D
e�(x)e�(0)

E
�
D
e�(0)

E2�
. (12)

So up to unimportant additive terms, the correlators of �2
↵

are equal to those of (
p
N/(2v))ie�. As

reviewed in Ref. [19], the correlators of ie� have a sensible scaling limit in a theory in which we take

the v ! 1 limit already in the action in Eq. (11). So we identify O
g

⇠ ie�, and then set v = 1 in

subsequent computations. Note, however, that Eqs. (12) become trivial at v = 1, and so v has to

be kept finite only in deducing the correlators of �2
↵

. Specifically, we define the “thermal” operator

by

O
g

(x) = C
�

ie�(x) , (13)

where the cuto↵-dependent constant C
�

will be chosen so that the two-point correlator of O
g

is

normalized as

hO
g

(p)O
g

(�p)i � hO
g

i2 = �16p3�2/⌫ . (14)

The pre-factor of 16 is chosen for convenience in the 1/N expansion: we find in Appendix B that

C
�

= 1 at N = 1. With these definitions and normalizations, we can compute the value of the

OPE coe�cient C
g

: we find in Appendix B that

C
g

=
1

4
p
N

+ O(1/N3/2) . (15)

With all the ingredients in the OPE at hand, we can proceed to the determination of T > 0

behavior of the conductivity from Eq. (3). For this, we need the expectation values of O
g

and T
µ⌫

at T > 0: these are determined in Appendix C.

For the operator O
g

we obtain

hO
g

i
T

� hO
g

i
T=0 ⌘ BT 3�1/⌫ (16)

with

B =
p
N⇥2


1 � 1.8914

N
+ O(1/N2)

�
, (17)

where

⇥ ⌘ 2 ln

 p
5 + 1

2

!
. (18)

For the purposes of comparing with our Monte Carlo results, it useful to express this result in a

form that is independent of our arbitrary normalization of O
g

in Eq. (14). We take the Fourier

8



transform of Eq. (14) to real space to obtain

hO
g

(x)O
g

(0)i ⌘ A

x6�2/⌫
(19)

with

A = � 27�2/⌫�(3 � 1/⌫)

⇡3/2�(�3/2 + 1/⌫)
. (20)

From Eqs. (20) and (17) we can construct the universal ratio which is independent of the normal-

ization convention of O
g

:

⌥ =

p
A

B
=

4

⇡⇥2
p
N


1 +

0.8941

N
+ O(1/N2)

�
. (21)

This ratio will be compared with quantum Monte Carlo results for N = 2 in Section III; its value

will also be useful in the holographic analysis in Section IV.

For the T > 0 expectation value of the energy-momentum tensor, we have for any CFT

hT
xx

i
T

= hT
yy

i
T

= �1

2
hT

⌧⌧

i
T

= H
xx

T 3 , (22)

where we have implicitly subtracted from these expectation values their T = 0 value; H
xx

is a

universal number characterizing the CFT. This equation manifestly shows the tracelessness of T
µ⌫

in a CFT, which holds at finite temperature. The computation in Appendix C shows that in the

N = 1 limit of the O(N) model

H
xx

=
N

4⇡

Z 1

⇥

d"
("2 � ⇥2)

e" � 1
+

⇥3

3

�
. (23)

Collecting our results, we can now insert Eqs. (16) and (23) into Eq. (3) and obtain the large

frequency behavior of the conductivity in the O(N) CFT:

�(i!
n

)

�
Q

= �1 + C
g

B

✓
T

!
n

◆3�1/⌫

+ 24 C
T

�H
xx

✓
T

!
n

◆3

+ · · · . (24)

Note that this is the result for Euclidean frequencies !
n

> 0. We show in Appendix C that the

result agrees precisely with explicit computation of the conductivity in the N = 1 theory, which

appears in Eq. (C12). The result Eq. (24) shows that the combination C
g

B is also independent of

the normalization convention of O
g

.

The analytic continuation i!
n

! ! + i0+ of Eq. (24) to real frequencies ! > 0 yields:

�(!/T )

�
Q

= �1 + b1
⇥
Re(i�g) + i Im(i�g)

⇤✓T

!

◆�g

� i b2

✓
T

!

◆3

+ · · · , (25)
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where �
g

= 3 � 1/⌫. We note that for finite N > 1, the scaling dimension �
g

is not an integer,

making both the real and imaginary parts of �(!/T ) to scale like (T/!)�g at large !/T . For

instance if we set ⌫ = 2/3, this yields �
g

= 3/2, thus Re(i3/2) = Im(i3/2) = 1/
p
2. In contrast, the

N = 1 limit is special because �
g

is an integer, 2, and thus only the real part scales like (T/!)2,

while the imaginary part decays faster, i.e. as (T/!)3. In the case of CFTs that do not have a

scalar operator with scaling dimension � < 3 in the JJ OPE, the real and imaginary parts of the

conductivity at asymptotically large and real frequencies behave di↵erently. The imaginary parts

decays as (T/!)3 due to the energy-momentum tensor, while the real part decays faster due the

presence of other operators. This is the case for certain CFTs involving Dirac fermions discussed

in Section V. It is also the case for the holographic models previously considered [13, 15], as shown

in Ref. [23].

III. QUANTUM MONTE CARLO

In order to perform e�cient Quantum Monte Carlo simulations of Eq. (6) for N = 2 it is useful

to introduce a simple lattice model in the same universality class. For this purpose we use a

quantum rotor model defined in terms of phases ✓
~r

living on the sites, ~r, of a two-dimensional

square lattice:

Hqr =
U

2

X

~r

1

2

✓
1

i

@

@✓
~r

◆2

� µ
X

~r

1

i

@

@✓
~r

�
X

h~r,~r0i
t cos(✓

~r

� ✓
~r

0) . (26)

Here �i@/@✓
~r

is usually identified with the angular momentum of the quantum rotor at site ~r,

which is the canonical conjugate of ✓
~r

. However, it can also be viewed as the deviation from an

average (integer) particle number and this model is therefore in the same universality class as the

Bose Hubbard model. The on-site repulsive interaction, U , then hinders large deviations from

the mean particle number while t characterizes the hopping between nearest neighbor sites. For

completeness, we include a chemical potential µ although the case of integer filling that we focus

on here corresponds to µ = 0.

As discussed in Ref. 2, it is possible to directly simulate Eq. (26) using quantum Monte Carlo

(QMC) techniques. However, it is useful to further simplify the model by employing the Villain

approximation [24] where the cos ✓ term is replaced by a sum of periodic Gaussians centered at

2⇡m (where m is an integer): exp(t�⌧ cos(✓)) ' exp(t�⌧)
P

m

exp(�1
2t�⌧(✓ � 2⇡m)2), preserving

the periodicity of the Hamiltonian in ✓. A standard Trotter decomposition can then be performed

where the imaginary time, � = 1/T , is divided into L
⌧

time slices of size �⌧ = �/L
⌧

. One

then arrives at a model defined in terms of an integer-valued current J = (J⌧ , Jx, Jy) with J⌧ the

angular momentum (or particle number) living on the links of a 2 + 1 dimensional discrete lattice

10



of dimensions L ⇥ L ⇥ L
⌧

: [20, 25, 26]

Z
V

⇡
X

{J}

0
exp

2

4� 1

K

X

(⌧,~r)

✓
1

2
J

2
(⌧,~r) � µ

U
J⌧

(⌧,~r)

◆3

5 . (27)

Here L
⌧

takes the place of the dimensionless inverse temperature �U and varying K is analogous

to varying
p

t/U in the quantum rotor model. We stress that, the
P0 denotes the fact that the

summation over J is constrained to divergence-less configurations making the summation over

the integer valued currents highly non-trivial to perform. In deriving the Villain model a fixed

�⌧ = 1/(KU) is used. Despite the fixed, rather large, value of �⌧ , the Villain model has several

significant advantages. Most notably, it is explicitly isotropic in space and time. Secondly, very

e�cient Monte Carlo algorithms have been developed for the Villain model [27, 28] as well as for

the quantum rotor model. Here we use directed Monte Carlo techniques as described in Ref. 28.

The location of the QCP is also known, K
c

= 0.3330671(5). [2, 7]

In the condensed matter literature the quantum of conductance is usually defined as (e⇤)2/h
(for carriers of charge e⇤), however, here we use a slightly di↵erent definition of �

Q

= (e⇤)2/~ that

is also widely used. In terms of �
Q

, the frequency dependent conductivity of the Villain model can

then be calculated by evaluating (!
n

are the Matsubara Euclidean frequencies)

�(i!
n

)

�
Q

=
1

Ld�22⇡n

*������
1

L

X

(⌧,~r)

ei!n⌧Jx

(⌧,~r)

������

2+
, (28)

which is dimensionless in d = 2. Here n is an integer labeling the Matsubara frequency !
n

=

2⇡n/L
⌧

. We note that this expression is explicitly independent of the imaginary time discretization

�⌧ and any residual dependence of �(i!
n

) on �⌧ is therefore usually ignored.

The conductivity at the QCP has previously been studied [20, 25, 26]. The first attempts at

calculating the universal T ! 0 limit of the conductivity [6] appeared significantly later and the

first large scale numerical calculations of this quantity have only very recently been performed [2, 7]

due to their extremely demanding nature. Here we re-analyze the numerical results of Ref. 2 in

order to test the analytical result, Eqs. (4) and (24). The T ! 0 extrapolated QMC results for

the conductivity are shown in Fig. 1 along with our fit. For a discussion of the numerical details of

the T ! 0 extrapolation we refer to the supplementary material of Ref. 2. Performing the T ! 0

extrapolation for large values of n is significantly more di�cult than at small values of n. We have

therefore limited the values of n that we use in the fit to n = 1, . . . , 6 where we have the highest

confidence in the T ! 0 extrapolated QMC results. For these values of n we obtain remarkably

good agreement between the fit and the QMC results. Furthermore, as can be seen, the fit works

very well also for n > 6. We note that, even though values of n = 1 . . . 6 used in the fit in Fig. 1

may appear rather small, they correspond to values of !
n

/T � 2⇡ where Eqs. (4) and (24) should

11



0 2 4 6 8 10 12 14 16 18 20
0.36

0.37

0.38

0.39

0.40 Fit: 0.36038+0.053/n1.516-0.01/n3
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2⇡
�
(i

!
n
)/

�
Q

n = !n/(2⇡T )

Fit : 0.36038 + 0.053/n1.516 � 0.01/n3

QMC Villain Model

FIG. 1. QMC results (open circles) at K
c

= 0.3330671 with µ = 0 for the frequency dependent
conductivity �(i!

n

). All results have first been extrapolated to L ! 1 and subsequently to T ! 0
(L

⌧

! 1). The solid blue line shows a fit to the QMC data for n = 1, . . . , 6 of the form 2⇡�/�
Q

=
0.36038 + 0.053/n1.516 � 0.01/n3 with n = !

n

/(2⇡T ) the Matsubara index.

be applicable. Inserting appropriate powers of 2⇡, the fit in Fig. 1 can be converted to a fit to

Eq. (4) and we find fitted values of �1, ⌫, b1, and b2 as follows

2⇡�1 = 0.3603(3)

⌫ = 0.67(3)

b1 = 0.137(6)

b2 = �0.4(1) , (29)

where we only quote statistical errors arising from the fit. We comment on these values in turn:

• The value of 2⇡�1 is in excellent agreement with existing results [2, 7, 9]. Comparing with

the large N result in Eq. (8), the N = 1 value is 0.39, while the 1/N corrected expression

evaluated at N = 2 yields 0.25.

• Our fits reliably determine that ⌫ is slightly larger than 2/3, and is in good agreement with

previous numerical studies [29–31].

• For b1, we can only compare with the N = 1 result obtained in Section II. From Eqs. (24),

(15) and (17), or equivalently from Eq. (C12), we obtain b1 = ⇥2/4 = 0.23.
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FIG. 2. QMC results (open circles) at K
c

= 0.3330671 for hO
g

i in the limit L ! 1 as a function of the
imaginary time extent, L

⌧

. The solid red line indicates a fit to the QMC data of the indicated form.

• Our fits to b2, the coe�cient of the (T/!
n

)3 term, are not accurate. But the presence of a

negative b2 can be reliably confirmed. Comparing with the N = 1 results of Section II, from

Eqs. (24), (9), (10) and (23), or equivalently from Eq. (C12), we obtain b2 = �1.2.

Next we turn to correlations of the “thermal” operator O
g

. For the Villain model, it is convenient

to define this operator by

O
g

(⌧,~r) =
1

2
J

2
(⌧,~r) � µ

U
J⌧

(⌧,~r) . (30)

By suppressing winding number fluctuations in the spatial directions and using system sizes with

spatial dimensions L > L
⌧

[7] it is possible to e↵ectively calculate hO
g

i in the limit L ! 1 with

finite L
⌧

. Our results are shown in Fig. 2. An extraordinary good agreement with the analytical

expression Eq. (16) is evident. The fit shown in Fig. 2 immediately yields

⌫ = 0.6714(10) , (31)

in excellent agreement with other recent estimates [29–31]. In fact, the precision at which ⌫ can

be determined from hO
g

i makes this a promising venue for a future high precision determination

of ⌫. Furthermore, from Fig. 2 we find that the coe�cient B in Eq. (16) is

B = 0.0940(6). (32)
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FIG. 3. QMC results (open circles) at K
c

= 0.3330671 for hO
g

(0)O
g

(⌧)i
L⌧ � hO

g

i2
L⌧

in the limit L ! 1
as a function of the imaginary time, ⌧ . Results are shown for di↵erent values of L

⌧

. The dashed red line
indicates the L

⌧

! 1 limit of hO
g

(0)O
g

(⌧)i
L⌧ � hO

g

i2
L⌧

! 0.0122⌧�(6�2/⌫) with ⌫ = 0.6714.

Recall that the value of B by itself is non-universal, and depends upon the microscopic choices

we made in the definition in Eq. (30); however we will combine it below with another observable

to obtain a normalization-independent number. For further analysis, it is also useful to note the

non-universal value:

hO
g

i
L⌧!1 = 0.0770595(5). (33)

Next, we turn to the two-point correlation function of O
g

. Due to the space-time isotropy of the

Villain model, it has the same behavior along the spatial and temporal directions. However, for

convenience we focus on the temporal correlations. As before we perform calculations e↵ectively

in the L ! 1 limit with a finite L
⌧

. Our results are shown in Fig. 3. The data for individual

values of L
⌧

are first fit to the form A
⇥
⌧�(6�2/⌫) + (L

⌧

� ⌧)�(6�2/⌫)
⇤
+hO

g

i2
L⌧

for ⌧ > 6. This yields

values of A that are close to independent of L
⌧

and we estimate:

A = 0.0122(15) . (34)

The variations in ⌫ in the fits are small, ⌫ = 0.671 � 0.675, and consistent with the value of ⌫

obtained above, Eq. (31). Furthermore, the fitted values for hO
g

i2
L⌧

are consistent with the actual

calculated values of hO
g

i
L⌧ and clearly approach hO

g

i2
L⌧!1 as determined from Eq. (33).

Finally, we can combine our computations of the one-point and two-point correlators of O
g

to
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obtain a universal number which is independent of the precise definition of O
g

and the microscopic

details of the action. This is the ratio ⌥ defined in Eq. (21), and the present Monte Carlo studies

yield:

⌥ =

p
A

B
= 1.18(13). (35)

Almost all of the uncertainty in this result arises from the uncertainty in the determination of A

which is di�cult to calculate with high precision. This result for ⌥ is in reasonable agreement

with the 1/N expansion results in Eq. (21), where we have the N = 1 value ⌥ = 0.97, and the

1/N corrected value at N = 2 of ⌥ = 1.41.

We have also performed simulations directly of Eq. (26) which does not involve the Villain

approximation. In this case it is considerably harder to obtain high precision numerical data,

however, our preliminary results indicate a value of ⌥ in very good agreement with the above

results for the Villain model.

IV. HOLOGRAPHY

We have so far obtained systematic results for the conductivity in the high frequency regime

|!| � T . We also obtained quantum Monte Carlo results at the discrete Matsubara frequencies

!
n

= 2n⇡T , where n is a non-zero integer. As we noted in Section I, we will now turn to holography

to perform the analytic continuation to all Minkowski frequencies.

For the contributions of the energy-momentum tensor terms in Eq. (3), such an analysis has

already been carried out in Ref. [2]. So we turn to the extension needed to include the contribution

of a scalar operator O.

For the present purposes, the operator O is any operator in the OPE which obeys the analogs

of the Eqs. (16) and (19)

hO(x)O(0)i = A

x2�
, T = 0;

hOi
T

� hOi
T=0 = BT�, (36)

which define the normalization independent universal ratio ⌥ ⌘ p
A/B.

Now take the holographic dual of the same CFT in AdS
D+1 and the corresponding boundary

operator O(x) is represented by a bulk scalar field '(x, ũ); here ũ represents the emergent direction,

and the AdS
D+1 metric is L2(dx2+dũ2)/ũ2 (L is the AdS radius). In the conventional normalization

for the bulk scalar, the two-point correlator of O is [14]

hO(k)O(�k)i = �(2� � D)
�(1 � �+D/2)

�(1 +� � D/2)

✓
k

2

◆2��D

(37)
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This translates in real space to

hO(x)O(0)i = ⇡�D/2(D � 2�)�(�)�(1 � �+D/2)

�(D/2 � �)�(1 +� � D/2)

1

x2�
(38)

For holography to reproduce the T > 0 expectation values of the CFT with the same universal

constant ⌥, we conclude from Eq. (36) that

hOi
T

� hOi
T=0 =

1

⌥


⇡�D/2(D � 2�)�(�)�(1 � �+D/2)

�(D/2 � �)�(1 +� � D/2)

�1/2
T�. (39)

Again using the standard AdS/CFT dictionary, we conclude that the bulk scalar must behave as

(note that the metric is not modified at T > 0 near the boundary ũ ! 0):

'(x, ũ ! 0) =
ũ�

(2� � D)
(hOi

T

� hOi
T=0)

=
1

⌥(2� � D)


⇡�D/2(D � 2�)�(�)�(1 � �+D/2)

�(D/2 � �)�(1 +� � D/2)

�1/2
(ũ T )�. (40)

The N = 2 Wilson-Fisher theory has � = �
g

given by Eq. (5) with ⌫ = 0.67155(27) [29]; so

2� � D = 3 � 2/⌫ ⇡ 0.02 is nearly zero. Fortunately, the coe�cient in Eq. (40) has a finite limit

(⇡ 0.28/⌥) as � ! D/2.

We now turn to deducing the consequences of the condensate of ' in Eq. (40) at T > 0.

Following the notation of Ref. 18, it is convenient to introduce the dimensionless co-ordinate u,

and the length scale r0 by

u =
ũ r0
L2

, r0 =
4⇡TL2

3
. (41)

Then the T > 0 AdS4-Schwarzschild metric is

ds2Sch =
r20

L2u2

⇥�f(u)dt2 + dx2 + dy2
⇤
+

L2du2

u2f(u)
, (42)

where

f(u) = 1 � u3 . (43)

This spacetime is asymptotically (u ! 0) AdS4, with negative cosmological constant / �1/L2, and

contains a planar black hole with horizon at u = 1. We simplify notation for the near-boundary

behavior of the field ' in Eq. (40) by defining

'(u ! 0) = au� + · · · , (44)

where the dots represent terms that decay faster as u ! 0, and a is determined by the definitions

above. The field ' will couple to the bulk gauge boson, A
µ

, dual to the current of the CFT like a
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dilaton, leading to the gauge action

S =

Z
d4x

p�gSch

⇢
� 1

4g24
[1 + ↵'(u)]F

ab

F ab

�
, (45)

where F
ab

= @
a

A
b

� @
b

A
a

, g4 is the bulk gauge charge, and the coupling ↵ is proportional to the

OPE coe�cient C in Eq. (3). As we shall see, the !
n

� T asymptotic behavior of the conductivity

of the corresponding boundary CFT is

�(i!
n

)

�
Q

= �1 + b1

✓
T

!
n

◆�

+ · · · , (46)

where the dots denote subleading terms. The coe�cient b1 is as defined in Eq. (4), and it is

proportional to the coupling ↵ in Eq. (45). As inputs to the holographic computation we will not

use the values of ↵ and C, but directly fit the value of b1 to the Monte Carlo results in Eq. (29).

Let us now determine the relation between b1 and a,↵. In the A
u

= 0 gauge, the equation of

motion which follows from Eq. (45) for the transverse component of the gauge field, A
y

, (choosing
~k along the x-direction) is

�
(1 + ↵')fA0

y

�0 � w2
n

(1 + ↵')

f
A

y

= 0 ; w
n

⌘ 3!
n

4⇡T
, (47)

where we have defined ( )0 = @
u

( ), and the rescaled frequency w
n

. The function f appears in the

metric, and was defined in Eq. (43) (the results in this section hold for all f(u) = 1 � up + · · · ,
with p � 1, so that the boundary metric is AdS4). To determine the power law 1/!�

n

in Eq. (46),

we can easily make use of the analysis of Ref. [23], which relies on the contraction map method

employed in Ref. [32]. Here, we wish in addition to determine the coe�cient b1. This can be done

perturbatively in ↵, as we now show. It will be advantageous to change the holographic coordinate

from u to z: dz/du = 1/f(u), i.e. z(u) =
R

u

0 dū/(1 � ū3). Note that for u ⇡ 0, z reduces to

u. Given the standard AdS/CFT prescription, the solution to Eq. (47) can be parameterized as

A
y

= e�wnz + ↵Ã, with Ã satisfying a Dirichlet condition at z = 0(= u). To leading order in ↵, Ã

obeys

@2
z

Ã � w2
n

Ã = w
n

e�wnz@
z

' . (48)

This equation can be solved by using a Green’s function,

G(z, z̄) = � 1

w
n

�
sinh(w

n

z)e�wnz̄ ✓(z̄ � z) + z̄ $ z
�
, (49)

where @2
z

G � w2
n

G = �(z � z̄). The current-current correlation function is then given by

hJ
x

(w
n

)J
x

(�w
n

)i
T

=
1

g24
@
u

A
y

(u = 0) = �w
n

g24

✓
1 + ↵

Z 1

0

dz e�2wnz@
z

'+ · · ·
◆
. (50)
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Using the asymptotic behavior for the scalar profile, Eq. (44), we obtain:

�(iw
n

)

�
Q

�1
= � 1

w
n

@
u

A(u = 0) (51)

= 1 + ↵a
�(�+ 1)

2�
1

w�
n

+ · · · , for w
n

� T . (52)

Comparing to Eq. (46) we find that we can indeed match the finite temperature CFT results, as

long as

b1 = �1 ↵ a
�(�+ 1)

2�

✓
4⇡

3

◆�

. (53)

As a check, we can compare this result with the WKB analysis [23] done for the asymptotic behavior

of � with a holographic model containing the term �L2C
abcd

F abF cd. For the AdS4-Schwarzschild

metric, this term is also of the form given by Eqs. (44) and (45), with ↵ a = 4� and � = 3, which

is the scaling dimension of the energy-momentum tensor. Then the result above agrees with the

WKB analysis [23]: b1/�1 = 3� ⇥ (4⇡/3)3.

We are now ready to use this relation in conjunction with simplest finite-temperature holo-

graphic model to determine the charge di↵usion constant and the conductivity at zero frequency.

Here, it must be kept in mind that we are not including the long-time tails which were discussed

in earlier work [2]. The full frequency dependence of the conductivity is discussed in Section IVB.

A. Holographic model for charge di↵usion and conductivity

We shall proceed by examining the simplest holographic ansatz which models a CFT at finite

temperature while reproducing its UV behavior. For this we simply assume that the u ! 0

behavior of the scalar profile in Eq. (44) holds all the way up to the horizon at u = 1. Such

an ansatz connects naturally to the previous holographic analyses [13, 15, 18] that considered a

four-derivative term coupling the Weyl tensor to two field strengths, �L2C
abcd

F abF cd: for the AdS4-

Schwarzschild metric, this term has a u3 dependence for all u, both near the boundary u ! 0, and

near the horizon u ! 1.

The charge di↵usion constant for the background in Eq. (45) is well known and is given, for

example in [13, 33]:

D =
3

4⇡T
[1 + ↵'(1)]

Z 1

0

du
1

1 + ↵'(u)
. (54)

Working perturbatively in ↵ the above equation for the di↵usion constant becomes

D ⇡ 3

4⇡T


1 + ↵ a

�

�+ 1

�
=

3

4⇡T

"
1 +

b1
�1

�

�(�+ 2)

✓
3

2⇡

◆�
#
. (55)

From the last equality, we note that the growth of b1 with � must be very rapid in order for an
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operator with large scaling dimension to make an important contribution to the charge di↵usion

constant, otherwise that operator will decouple. A similar statement can be made about the d.c.

conductivity:

�(0)

�
Q

=
1

g24
[1 + ↵�(1)] =

1

g24
(1 + ↵a) , (56)

= �1 +
b1

�(�+ 1)

✓
3

2⇡

◆�

. (57)

We note that for generic CFTs we expect the d.c. conductivity to diverge logarithmically as

!/T ! 0 due to long-time tails (see discussion in Refs. [2, 18]). This is not the case in the tree-

level (or classical) holographic models that we consider due to an implicit limit of infinite number

of CFT fields. To circumvent the need to refer to long-time tails, one could make statements at

small but finite frequencies, say on the order of the temperature. The analysis above becomes

more involved but we expect similar conclusions for the holographic model under consideration.

In a typical CFT once temperature is turned on there will be an infinite number of operators

which will obtain expectation values proportional to the temperature to the appropriate power. In

other words, we expect generically that the true holographic background should contain additional

fields with profiles that are needed to reproduce higher order terms in the OPE at large Euclidean

frequencies. Naively, one would expect that for real frequencies far below the temperature, all

such operators should become important in determining low energy quantities such as charge

di↵usion (where the OPE badly diverges). However, the holographic model suggests that high

scaling dimension operators decouple rapidly if their OPE coe�cient does not grow factorially. In

that case, the di↵usion constant and d.c. conductivity can be well described with only the lowest

dimension operators. If, on the other hand, the OPE coe�cients grow rapidly, compensating for

the suppression factors found above, the holographic background can deviate considerably from

the naive AdS4-Schwarzschild form. In fact, higher spin fields in the bulk can become important,

spoiling the simple background-metric description. In such a situation, one would question not

only the photon equation of motion Eq. (45) but also the boundary conditions used for the bulk

modes at u = 1. Thus, a natural conjecture is that it is precisely for theories where the OPE

coe�cients do not grow considerably that finite temperature can be modeled with a horizon. In

those theories, the leading correction to the low frequency conductivity should come from the

lowest dimension operator, as we have considered.

B. Comparing holography with quantum Monte Carlo

We now solve the equation of motion for A
y

, Eq. (47), in order to study the full frequency

dependence of the conductivity, especially for real frequencies. We solve the di↵erential equation

numerically with in-falling boundary conditions at the horizon [13]. The solution can be obtained
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FIG. 4. a) Holographic fit (line) to Quantum Monte Carlo data for the conductivity of a model in
its O(2) quantum critical regime (dots). The holographic parameters are: � = 3/2, a↵ = 0.6. b)
The corresponding conductivity on the real (Minkowski) frequency axis (solid line). The dashed line
corresponds to the holographic fit obtained in Ref. [2], where an ad hoc rescaling of temperature was
needed.

in the full complex plane of frequency. In particular, we can compare the holographic result with

QMC data [2] for the O(2) quantum critical theory, which is obtained for imaginary frequencies

!
n

� 2⇡T , as shown in Fig. 4(a). Most notably, we observe in Fig. 4(a) that the holographic result

fits the QMC data without the need of a temperature rescaling. A rescaling was needed previously

[2, 7] because the holographic theory used then had the scaling dimension fixed to � = 3, i.e. the

dimension of the energy-momentum tensor. In contrast, when the dimension is chosen to be that

of the thermal operator � = �
g

= 3�1/⌫ ⇡ 1.5, as expected from the OPE analysis above, a good

fit results without the need for an ad hoc rescaling. This fitting e↵ectively determines the values

of b1 and a↵. We can now use these values to determine the conductivity along the Minkowski

20



¥¥

üü

¥¥ D-QNM

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-2.0

-1.5

-1.0

-0.5

0.0

Re wê2pT

Im
w
ê2pT

FIG. 5. The location of the small-frequency poles (crosses) and zeros (circles) of the holographic
conductivity �(!) in the complex frequency plane. The parameters used are the same as those use to fit
the O(2) QCP, see Fig. 4. The dominant, purely damped pole is denoted by D-QNM, where QNM stands
for quasinormal mode.

frequency axis, and this leads to our main result in Fig. 4(b).

We emphasize that certain qualitative features obtained using the previous holographic approach

(which required rescaling) remain unchanged with our new result, namely:

• particle-like conductivity,

• similar pole structure, i.e. quasinormal spectrum (shown in Fig. 5),

• validity of sum rules [18, 32]; see Section VI.

The first two statements are related because a particle-like conductivity follows from the presence

of a pole on the negative imaginary-frequency axis, as shown in Fig. 5. Instead, a vortex-like

response would have a zero; see Fig. 7 for two explicit examples. This purely damped pole dictates

the “topology” of the full pole/zero spectrum as the poles and zeros appear in an alternating

fashion. Mathematically, it follows because the sign of the scalar coupling ↵ dictates the presence

of a particle-like (↵ > 0) or vortex-like (↵ < 0) conductivity for any allowed �.

V. FERMIONIC CFTS

We briefly discuss extension to CFTs with Dirac fermions. A large class of such CFTs di↵er

crucially from the O(N) CFT by the absence of any scalar operator O in the JJ OPE with scaling

dimension � < 3. Consequently, the leading term in the large ! dependence of the conductivity

in Eqs. 3 and (4) is just given by that from the OPE with the energy-momentum tensor. And such

terms were implicitly accounted for in the previous holographic studies [2, 13].
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The basic point is already evident from the CFT of free (two-component) Dirac fermions. The

Lagrangian is

L =  ̄i�
µ

@
µ

 , (58)

where �
⌫

are the Euclidean gamma matrices �†
⌫

= �
⌫

satisfying the Cli↵ord algebra {�
µ

, �
⌫

} = 2�
µ⌫

.

The conserved U(1) current is J
µ

=  ̄�
µ

 . The integral expression for the finite-T conductivity

can be simply obtained:

�(i!
n

)

�
Q

=
1

!
n

T
X

⌫n

Z
d2~k

(2⇡)2
1

✏2
k

+ ⌫2
n


4k2

x

+ !2
n

✏2
k

+ (⌫
n

+ !
n

)2
� 4k2

x

✏2
k

+ ⌫2
n

�
, (59)

where ⌫
n

= ⇡T (2n+ 1) and ✏
k

= k. This leads to the following high frequency behavior !
n

� T :

�(i!
n

)

�
Q

=
1

16
� T

2⇡!
n

X

m=1

✓�T 2

!2
n

◆
m

s
m

(60)

=
1

16
+

3⇣(3)T 3

⇡!3
n

� 180⇣(5)T 5

⇡!5
n

+ O((T/!
n

)7) , (61)

where s
m

= (22m � 1)(2m)! ⇣(2m+ 1), and ⇣ is the Riemann zeta function. We refer the reader to

Appendix D for further details on the calculation.

The most notable feature of Eq. (61) is the absence of the (T/!
n

)2 term (found in Eq. (C12) for

the N = 1 O(N) model), and the presence of a leading (T/!
n

)3 term. The latter corresponds

to the term associated with the energy-momentum tensor in Eq. (3), and we show in Appendix D

that value of coe�cient in Eq. (61) is consistent with the value of the OPE coe�cient C
T

. Such a

(T/!
n

)3 term is clearly generic to all CFTs.

The absence of a scalar operator with � < 3 is also easily understood. A likely candidate

for a scalar is  ̄ , but such a mass term for Dirac fermions breaks both time-reversal and parity

symmetries in 2+1 dimensions; this is the case even if such a mass term acquires an expectation

value only at finite temperature. It is now also clear that such a scalar is also absent in interacting

CFTs in which the Dirac fermions are coupled to gauge fields (such as QED3), at least in the

context of the 1/N
f

expansion [34–36], where N
f

is the number of flavors of Dirac fermions. If the

CFT has both Dirac fermions and elementary scalar fields �
↵

(as in the Gross-Neveu model), then

in general an operator O ⇠ �2
↵

with � < 3 will be generated at T > 0 unless this is protected by

additional symmetries, such as supersymmetry.
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VI. SUM RULES

The asymptotic behavior of the conductivity derived from the current-current OPE can be used

to establish the finite-T conductivity sum rules recently put forward [18, 23, 32]:

Z 1

0

d![Re�(!/T ) � �(1)] = 0 , (62)
Z 1

0

d!


Re

⇢
1

�(!/T )

�
� 1

�(1)

�
= 0 . (63)

The second sum rule [18] is the S-dual or particle-vortex dual of the first one. An essential

ingredient for the sum rules to be valid is that the integrand must be integrable. Assuming this

holds, one can extend the integration to be from �1 to +1, since in both cases the argument

is even. Eq. (62) can then be proven by performing a contour integration in the upper complex

half-plane, where �(z) is analytic by virtue of the retardedness of the current two-point function.

A similar argument holds for Eq. (63), as we explain in Section VIC.

Our main objective is thus to show that the integrand decays su�ciently fast as !/T ! 1. This

is precisely the regime where our OPE analysis applies. As we discussed above, see Eq. (3), the

operator with the smallest scaling dimension and finite thermal expectation value appearing in the

current-current OPE dictates how fast Re�(!/T )��(1) vanishes. Along the imaginary axis, the

decay is (T/!
n

)�, where � is the dimension of the operator in question. Non-scalar operators, i.e.

with a finite spin ` > 0, such as the energy-momentum tensor (` = 2) cannot cause any problems

at large frequencies because their scaling dimension is guaranteed to be su�ciently large, being

bounded from below by unitarity: �
`>0 � ` + 1, for CFTs in 2+1D. For instance, the energy-

momentum tensor saturates the ` = 2 bound yielding a (T/!
n

)3 contribution to the conductivity

on the imaginary axis. Thus it does not even contribute to Re� at real frequencies, which is of

interest for the sum rule. In contrast, scalar operators (` = 0) have the potential of making the

integrand of Eq. (62) non-integrable because of the weaker lower bound �
`=0 � (D � 2)/2 = 1/2.

However, in all the CFTs we know, the scalars appearing the JJ OPE have su�ciently high scaling

dimension to ensure that the sum rule Eq. (62) is well-defined. As it is di�cult to make rigorous

statements in general, we focus on the two families of CFTs discussed above.

A. O(N) model

For the O(N) vector model, the leading operator in the JJ OPE is the thermal operator O
g

discussed above. It has scaling dimension �
g

= 3 � 1/⌫. We thus need �
g

> 1, i.e. ⌫ > 1/2, for

the sum rule to be well-defined. Now, for N = 2, it is known from Monte Carlo that ⌫ is slightly

greater than 2/3. Also, there is strong numerical and analytical evidence that ⌫ increases with N ,

until it reaches the exact value ⌫ = 1 at N = 1. We thus conclude that the conductivity of the

O(N) CFT decays su�ciently fast for the sum rule to hold for all N > 1. When N = 1, the decay
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is (T/!)2 on the real axis, since �
g

��
N=1 = 2. In that case, the sum rule, Eq. (62), was previously

shown to hold by two of us [18].

B. Fermionic CFTs

For the free Dirac CFT, we have shown that the leading operator that appears in the JJ OPE

is the energy-momentum tensor, which has dimension � = 3, ruling out potentially dangerous

scalars. An explicit analysis [18] has indeed shown that the sum rule holds. This is also the case

for interacting CFTs in which N
f

Dirac fermions are coupled to gauge fields (at least in the context

of the 1/N
f

expansion). These theories are thus expected to satisfy the sum rule Eq. (62).

C. Dual sum rule

The dual sum rule, Eq. (63), follows from the sum rule for � Eq. (62) for two reasons: 1) the large-

frequency asymptotics of 1/� are the same as those of � on the imaginary axis; 2) �(z) has no zeros

in the upper half-plane. The first point can be easily seen by inverting �(i!
n

) = �1+b1(T/!n

)�+

· · · , and keeping the leading high-frequency term. It thus shows that if Re�(!/T ) � �(1) is

integrable as !/T ! 1, then Re[1/�(!/T )]� [1/�(1)] also is. The second point follows from the

analyticity of �(z) in the upper half-plane. It can be seen using the spectral representation of the

current-current correlator.

In Appendix E, we explicitly verify that the dual sum rule Eq. (63) is respected by both the

O(N) model in the N = 1 limit, and by the Dirac CFT. These constitute the first non-holographic

checks.

VII. CONCLUSIONS

Our paper has used the operator product expansion to obtain insight into the frequency de-

pendence of the quantum-critical conductivity near the superfluid-insulator transition in 2 spatial

dimensions at non-zero temperatures; more generally, our results apply to conformal field theories

in 2+1 dimensions.

At frequencies ! � T , we found that the conductivity had contributions ⇠ (T/!)�, where �

is the scaling dimension of any operator appearing in the OPE of two currents that acquires a

non-zero expectation value at T > 0. For the CFT describing the superfluid-insulator transition,

the smallest such � is that associated with the “thermal” operator �2
↵

(where �1 + i�2 is the

complex superfluid order parameter), and this has scaling dimension �
g

= 3� 1/⌫, where ⌫ is the

correlation length exponent. The next allowed operator is the energy-momentum tensor, which

has � = 3. The contribution of the energy-momentum tensor is the leading term for CFTs which

don’t have allowed “thermal” operators, which includes wide classes of CFTs with Dirac fermions.
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We computed the OPEs (and associated frequency dependence of the conductivity) of the �2
↵

operator, and of the energy-momentum tensor, for the O(N) CFT using the vector 1/N expansion.

These results, and prior computations for the O(N) CFT, were found to be in excellent agreement

with quantum Monte Carlo simulations.

We then addressed the question of extending these ! � T results to smaller !. For all non-zero,

Euclidean Matsubara frequencies, the low frequency conductivity can be obtained in a controlled

manner using the vector 1/N expansion. However, this expansion fails for small real Minkowski

frequencies [1], and physically motivated resummations are required. For quantum systems with

quasiparticle excitations, the low frequency behavior is conventionally obtained by the Boltzmann

equation. For strongly interacting CFTs without quasiparticles, we have advocated [2] holographic

methods. Here, we used the large ! behavior obtained from the OPE to determine the structure

of the holographic theory, and then solved the classical holographic theory to obtain the desired

small ! dependence of the conductivity. In this holographic mapping, we truncated the the OPE to

the leading “thermal” operator, and presented evidence that the contributions of high dimension

operators can be suppressed even at low frequencies.

Finally, we noted how conductivity the sum rules in Eqs. (62,63) can be established from infor-

mation on the operator product expansion.
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Appendix A: Correlators of the energy-momentum tensor

Ref. [14] obtained a number of results for the 3-point correlator between the energy-momentum

tensor and the conserved O(N) current. This appendix will translate those results into the form

required for the OPE in Eq. (3).
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1. O(N) model

First, we consider the correlators of the O(N) theory in Eq. (6) at its critical point for N = 1.

The 2-point correlator of the energy-momentum tensor is

1

N
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. (A1)

For the 3-point TJJ correlator, from the results of Ref. [14] we obtain

lim
|!|�p

hJ
x

(!)J
x

(�! + p)T
µ⌫

(�p)i = contact terms +
O

µ⌫

(p)

!2
+ · · · , (A2)

where ! = (!, 0, 0). Some non-zero values of O
µ⌫

are

O
⌧⌧

= 0 , O
xx

= |!1|3/64 , O
yy

= �|!1|3/64 , for p = (!1, 0, 0);

O
⌧⌧

= 0 , O
xx

= 0 , O
yy

= 0 , for p = (0, p
x

, 0);

O
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= �|p
y

|3/64 , O
xx

= |p
y

|3/64 , O
yy

= 0 , for p = (0, 0, p
y

);

O
⌧x

= �|p|3/(64
p
2) , for p = (p, p, 0); (A3)

To convert this information into an OPE, we need the two-point correlation matrix of the diagonal

components of T
µ⌫

which we define as C{µ⌫}(p) = hT
µµ

(p)T
⌫⌫

(�p)i. From Eq. (A1) we obtain

C{µ⌫}(p) =
N |p|3
512

0

B@
0 0 0

0 1 �1

0 �1 1

1

CA , for p = (p, 0, 0), (A4)

and similarly for other orientations.

Now we assume the OPE

lim
|!|�p

J
x

(!)J
x
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T
µµ

(p)
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+ · · · (A5)

Then from Eqs. (A3,A4,A5) we have the constraints
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From the last constraint in Eq. (A3) we have

N

512
p
2
(�B
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) = � 1

64
p
2
. (A7)

So a consistent solution (up to the vanishing trace) is

B
⌧

= 0 , B
x

=
8

N
, B

y

= 0 . (A8)

So we have our main result for the OPE of the O(N) model
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From Eq. (3), and using � = �1/12 [14], this leads to the value of C
T

in Eq. (10).

2. Fermions

Next, we consider a theory of 2-component Dirac fermions with N
f

flavors, each with the

Lagrangian in Eq. (58). The 2-point correlator of the energy-momentum tensor has the same form

as Eq. (A1)
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For the 3-point TJJ correlator, the results of Ref. [14] take the form in Eq. (A2) with the

following values of O
µ⌫

O
⌧⌧

= 0 , O
xx

= |!1|3/64 , O
yy

= �|!1|3/64 , for p = (!1, 0, 0);

O
⌧⌧

= |p
x

|3/64 , O
xx

= 0 , O
yy

= �|p
x

|3/64 , for p = (0, p
x

, 0);

O
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= 0 , O
xx

= 0 , O
yy

= 0 , for p = (0, 0, p
y
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O
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= �|p|3/(32
p
2) , for p = (p, p, 0) . (A11)

Now the constraints are
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From the last constraint in Eq. (A11) we have
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So a consistent solution (up to the trace) is

B
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N
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(A14)

Then we have the main result for the OPE of the fermion theory
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From Eq. (3), and using � = 1/12 [14], this leads to

C
T

=
2

N
f

. (A16)

3. Holography

Using a holographic theory with Einstein-Maxwell terms along with a coupling � to the Weyl

tensor, the results of Ref. [14] translate to the following correlators (up to an overall normalization

dependent upon Newton’s constant)
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We note that the above results are entirely consistent with the O(N) model (N ! 1) results for

� = �1/12, and with the free fermion results for � = 1/12, just as expected. For a general CFT,

proceeding as in the previous subsections, we obtain Eq. (3).

Appendix B: Correlators of the O(N) model at T = 0

The T = 0 correlators of Z in Eq. (11) have been evaluated at some length in Ref. [19], including

the two-point correlator of O
g

. We recall here the needed results.

The computation proceeds by expanding about the large N saddle point of Eq. (11) after setting

v = 1. We denote the saddle point value of ie� as
p
Nr, and the fluctuation about the saddle
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point as i�:
e� = �i

p
Nr + �. (B1)

The equation determining the value of r is

1

g
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. (B2)

The quantum critical point has r = 0 at T = 0, and so it is g = g
c

where

1

g
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p2
. (B3)

A standard 1/N expansion then yields the 2-point correlator of � as [19]
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the last line above corrects a typographical error in the last line of Eq. (B14) of Ref. [19]. Here

⇤ is a relativistic hard-momentum cuto↵. The scaling dimension of � is the same as that of �2
↵

,

which is 3 � 1/⌫, and so using Eqs. (14,13) we verify that we have at order 1/N

G
��
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16

C2
�

p3�2/⌫ , (B5)

with the exponent ⌫ given by
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and
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◆
. (B7)

To determine the OPE coe�cient C
g

in Eq. (3) we compute the associated 3-point correlator, as

in Eq. (A2). At leading order in 1/N , this is given by the Feynman graph in Fig. 6, and leads to

hJ
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4pp
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Using Eq. (14), we then obtain Eq. (15).
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Jx Jx

�

FIG. 6. Feynman graph for the computation of C
g

. The full line is the �
↵

propagator, and the dashed
line is the � propagator.

Appendix C: Correlators of the O(N) model at T > 0

An extensive study of the T > 0 correlators of the O(N) CFT was provided in Ref. [37] using

the 1/N expansion. Here we present the extensions needed for our purposes.

The first step in the 1/N expansion is the determination of the saddle-point value of ie�. Solving
the extension of Eq. (B2) at T > 0 and g = g

c

now yields [37]

r = ⇥2T 2 , (C1)

where ⇥ is given in Eq. (18).

For the computation of hO
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at T > 0, we need the following polarization functions, defined

in Ref. [37], which determine the propagator of �:
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where

⌅ =
1
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Z 1
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From these ingredients, a perturbative expansion from the T > 0 version of the action in Eq. (11)
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yields [19, 37]
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From Eq. (C2) we can extract out the portion of integral which has a quadratic ultraviolet diver-

gence
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Examination of the subleading terms from Eq. (C2) now shows that the first integral in Eq. (C5)

only has a logarithmic dependence upon the upper cuto↵, and there is fortunately no ⇤T term —

such a term would violate scaling. The second integral in Eq. (C5) is evaluated as

Z
d2~q

4⇡2
T
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The 4T 2/3 term can also be obtained by zeta-function regularization in which we replace
p

q2 + ✏2
n

by (q2 + ✏2
n

)s and analytically continue to s = 1/2. We numerically evaluated the first integral in

Eq. (C5) by the methods of Ref. [37], using a cuto↵ ✏2
n

+ q2 < ⇤2, and obtained

Z
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T
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(C7)

From Eqs. (C4), (C6), and (C7) we obtain the needed expectation value

hO
g

i
T

� hO
g

i
T=0 = T 3�1/⌫⇤1/⌫�1C

�

p
N⇥2


1 � 1.3961

N
+ O(1/N2)

�
. (C8)

Using the value of C
�

in Eq. (B7) we see that Eq. (C8) is independent of ⇤ and universal; it leads

to Eq. (16).

Next, we turn to the determination of the expectation value of the energy-momentum tensor,
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where r is specified in Eq. (C1), n
B

(") is the Bose function, and we have used zeta function

regularization in the last step.

Finally, we determine the large frequency behavior of the conductivity by direct evaluation at

N = 1. The conductivity at a Matsubara frequency !
n

is
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where "
k

=
p
k2 + r. After a change of variables of integration we obtain our key result for the

large !
n

expansion of the conductivity.
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Note that for the value of r in Eq. (C1), the coe�cient of 1/!
n

vanishes, as it must for agreement

with Eq. (3). The remaining terms in Eq. (C12) also agree precisely with Eq. (24) after insertions

of the values of the OPE coe�cients and T > 0 expectation values summarized in Section II.
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Appendix D: Dirac fermions

1. Conductivity

We focus on the two-point function of the conserved U(1) current of the Dirac fermion CFT

described by Eq. (58). To simplify the expression for the conductivity, Eq. (59), we perform the

sum using the usual contour integration method to obtain:
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where we have changed variables from |~k| to ✏
k

= ✏. n
F

(✏) = 1/[1 + exp(✏/T )] is the Fermi-Dirac

distribution. Some of terms can be integrated to yield the exact result:
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To obtain the asymptotic expansion for �(i!
n

) valid at large frequencies !
n

� T , we can now

Taylor expand the integrand in powers of 1/!
n

. This gives our main result for the asymptotic

behavior of the Dirac fermion conductivity, valid for !
n

� T :
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where ⇣(z) is the Riemann zeta function: ⇣(3) ⇡ 1.202, etc. We have used the following result

Z 1

0

d✏ ✏pn
F

(✏) = T p+1(1 � 2�p)�(p+ 1)⇣(p+ 1) , (D5)

where �(z) is the Gamma function. The coe�cient of the (T/!
n

)3 term agrees with that in Eq. (24)

upon using the value of C
T

in Eq. (A16), the value � = 1/12 [14], and the value of H
xx

in Eq. (D12).

2. Thermal average of T
µ⌫

The energy-momentum tensor for the free Dirac fermion CFT reads:

T
µ⌫

(x) =
1

4
( ̄i�

⌫

@
µ

 � @
µ

 ̄i�
⌫

 ) + (µ $ ⌫) , (D6)

where �
⌫

are the Euclidean gamma matrices �†
⌫

= �
⌫

satisfying the Cli↵ord algebra {�
µ
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.

We Fourier transform to energy-momentum space, using  (x) =
R
k

 
k

eik·x and  ̄(x) =
R
k
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k

e�ik·x,
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where
R
k

=
R
d3k/(2⇡)3, which becomes T
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d2~k/(2⇡)2 at finite temperature. We get:
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We now take the expectation value, for which we will need the fermion two-point function:
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where the factor of 2 comes from the trace tr 1
2{�µ, �⌫} = 2�

µ⌫

. This expression is consistent with

the real space correlator given in Ref. 38,
⌦
 ̄(x)�

µ

 (0)
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/(2⇡x3). We thus get
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The integral is ultraviolet divergent. However, we are interested in the thermal expectation value

from which Eq. (D9) has been subtracted: hT
µ⌫

(p)i
T

� hT
µ⌫

(p)i
T=0. This is finite and can be

readily evaluated:
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= �(3)(p)
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which yields

H
xx

=
3N

f

⇣(3)

4⇡
, (D12)

with N
f

flavors.

Appendix E: Dual sum rule

We show that the dual sum rule Eq. (63) is respected by the conductivities of both the O(N)

model in the N = 1 limit and the free Dirac CFT. These constitute the first explicit CFT checks

beyond holography [18]. In both cases we must resort to numerical integration to explicitly verify

the sum rules.

The conductivity of the O(N) model in the N = 1 limit is given by Eq. (C11) for imaginary

frequencies. In order to study the sum rule, we must analytically continue the expression to real

frequencies i!
n

! !+ i0+. The resulting real part of the inverse conductivity is shown in Fig. 7a.

Since � is particle-like [18], 1/� is vortex-like. In fact, we find that a zero appears directly at the

origin, 1/�(0) = 0. This is as expected since the direct conductivity � has a pole at ! = 0 (leading

to a delta-function in Re �). At finite and small frequencies, a spectral gap naturally appears for

Re[1/�] just as for Re�. It is generated by the thermal mass r1/2 = ⇥T , Eq. (C1). The numerical
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FIG. 7. Real part of the dual conductivity, Re[1/�(!/T )], for a) the O(N) CFT in the N = 1 limit,
b) the free Dirac CFT. Both constitute examples of vortex-like responses; they respect the dual sum rule
Eq. (63).

integration needed to establish Eq. (63) is complicated by the strong divergence of Re[1/�] seen at

! = 2r1/2:

⇠ ⇥(! � 2r1/2)

(! � 2r1/2) {ln[r1/2/(! � 2r1/2)]}2 , (E1)

which is integrable, as it must be for the sum rule to hold. This divergence stems from the zero

of the conductivity, i.e. a vanishing of both the real and imaginary parts, at ! = 2r1/2. This fact

was uncovered in Ref. 18, where it was however erroneously concluded that the dual sum rule is

not respected at N = 1. Here, we have carefully evaluated the integral, after having analytically

computed the contribution near ! = 2r1/2, and found that Eq. (63) holds. This is not surprising

in light of the general arguments given in Section VI.

The Dirac conductivity is given by Eq. (D1). The behavior of the inverse conductivity 1/� is

shown or real frequencies in Fig. 7b. Just as for the O(N) model discussed above, we find that

it is vortex-like, and vanishes at zero frequency: 1/�(0) = 0. The numerical integration can be

performed without di�culties to confirm the validity of the sum rule Eq. (63).
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