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States of matter with a sharp Fermi-surface but no well-defined Landau quasiparticles arise in
a number of physical systems. Examples include: (i) quantum critical points associated with the
onset of order in metals; (i) spinon Fermi-surface (U(1) spin-liquid) state of a Mott insulator; (%)
Halperin-Lee-Read composite fermion charge liquid state of a half-filled Landau level. In this work,
we use renormalization group techniques to investigate possible instabilities of such non-Fermi-liquids
in two spatial dimensions to Cooper pairing. We consider the Ising-nematic quantum critical point as
an example of a phase transition in a metal, and demonstrate that the attractive interaction mediated
by the order parameter fluctuations always leads to a superconducting instability. Moreover, in the
regime where our calculation is controlled, superconductivity preempts the destruction of electronic
quasiparticles. On the other hand, the spinon Fermi-surface and the Halperin-Lee-Read states are
stable against Cooper pairing for a sufficiently weak attractive short-range interaction; however,
once the strength of attraction exceeds a critical value, pairing sets in. We describe the ensuing
quantum phase transition between (i) U(1) and Z> spin-liquid states; (i7) Halperin-Lee-Read and

Moore-Read states.

I. INTRODUCTION

It is well-known that ordinary metals described by
Fermi-liquid (FL) theory are unstable to an arbitrarily
weak attractive interaction in the BCS channel, which
leads to Cooper pairing of electrons and drives the sys-
tem into a superconducting phase. The purpose of the
present paper is to examine the stability of certain non-
Fermi-liquid (nFL) states in two dimensions to Cooper
pairing. We study systems where the non-Fermi-liquid
behavior arises as a result of the interaction of a gapless
bosonic mode with fermions in the vicinity of the Fermi-
surface (FS). Specific examples we analyze are described
in the following subsections.

A. Quantum critical points in metals

Many correlated metals appear to possess quantum
critical points (QCPs) with fascinating properties.’
Frequently, there is a striking breakdown of Fermi liquid
theory in the vicinity of the QCP. Equally strikingly su-
perconductivity is strengthened near the QCP. Indeed, a
fairly common phase diagram (see Fig. 1, top), shared for
instance by cuprate, pnictide and certain heavy-fermion
materials, has a superconducting dome around the puta-
tive ‘metallic’ QCP with ‘optimal’ transition temperature
T, right at the QCP. Despite the ubiquity of this phase
diagram, there is currently limited understanding of the
interplay between the quantum criticality, the non-Fermi
liquid ‘normal’ state, and the superconductivity. One
of the purposes of this paper is to address this inter-
relationship through controlled theoretical calculations
for a class of quantum critical points.

In many of the systems mentioned above, the QCP

coincides with the onset of a symmetry-breaking order.
Strong fluctuations of the order parameter present at the
QCP tend to decohere the electronic quasiparticles: as
the system is tuned to the critical point, the residue
Z and the Fermi-velocity vp of quasiparticles approach
zero. A common feature of such QCPs is that there exists
some pairing channel in which the order parameter fluc-
tuations mediate attraction. The strength of the attrac-
tion increases as one approaches the QCP, yet the same
order parameter fluctuations, which provide the pairing
glue, also destroy the very quasiparticles that are try-
ing to pair. The central question is which of these two
competing effects wins. In particular, is a QCP in a
metal inherently unstable to superconductivity, as em-
perical observations suggest?*

In the present paper we address the above question for
the class of metallic QCPs, where the order parameter
carries a wave-vector Q = 0 (for recent progress on the

@ # 0 case, see Refs. 5,6). The most familiar example
of such a phase transition is the Stoner instability associ-
ated with the development of ferromagnetic order. Mod-
ern developments show that due to fluctuation effects the
Stoner transition is likely modified at low temperature
and becomes first order (or develops an intermediate spi-
ral ordered phase).”'! A different example which does
not suffer from these complications'®'? is the transition
associated with the onset of Ising-nematic order, charac-
terized by spontaneous breaking of a four-fold rotational
symmetry of the lattice to a two-fold subgroup.'?2® The
order parameter in this case is just a real Ising field
¢(x). Such ordering has been observed in a number
of physical systems including cuprate,?* 3 pnictide®6-*!
and ruthenate®? materials. From a theoretical viewpoint,
the Ising-nematic QCP is perhaps one of the simplest
phase transitions in metals. It, thus, provides a conve-
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FIG. 1: Top: Conventional phase diagram of a quantum crit-
ical point (QCP) associated with an order parameter ¢, with
a superconducting dome (SC) partially overlapping the quan-
tum critical region of the ‘bare’ QCP of a metal. Bottom:
the phase diagram obtained in the present paper, with the
SC dome fully overlapping the incipient regime of incoherent
fermionic quasiparticles, while the quantum critical ¢ fluctu-
ations survive into higher temperatures in the normal state.

nient setting for studying the interplay between quantum
criticality, nFL and pairing physics.

We perform a systematic renormalization group (RG)
analysis of the Ising-nematic QCP. Our approach uti-
lizes an idea introduced by D. T. Son in his study of
quark pairing by the color gauge field in dense baryonic
matter.*> We combine the conventional Fermi-liquid RG
treatment of Refs. 44,45 with the so-called “two-patch”
scaling approach of Refs. 12,46-48. Analytical control is
gained through the e-expansion introduced in Ref. 49 and
its subsequent large-N improvement.?* We find that the
Ising-nematic QCP is always unstable to superconduc-
tivity. In particular, attractive pairing interaction medi-
ated by the order parameter fluctuations dominates over
other residual short range interactions (even if they are
repulsive) and drives a pairing instability as the QCP is
approached. However, the residual short range interac-
tions determine the angular momentum/spin channel in
which the pairing instability occurs; as a result, the pair-
ing symmetry is non-universal. The usual weak coupling
BCS formula, T, ~ exp(—1/|V]), relating the supercon-
ducting T, to the strength of the short-range interac-
tion V clearly does not hold in the vicinity of the QCP.

Rather the superconductivity is strongly enhanced, and
T, at the QCP scales in a power-law manner with the
coupling between order-parameter fluctuations and the
electrons. Thus, in this example we clearly demonstrate
the importance of quantum criticality in optimizing the
superconducting T,. Moreover, in the regime where our
calculation is controlled (small €), the energy scale at
which superconductivity sets in is parametrically larger
than the energy scale at which electronic quasiparticles
are destroyed. Thus, the superconducting instability is so
strong that it preempts the nFL physics (see the bottom
figure in Fig. 1). The above results of our RG analysis are
in exact agreement with a direct solution of Eliashberg-
like integral equations, as is shown elsewhere by one of
us. 7051

We also apply the same RG treatment (albeit with
very different conclusions) to two other nFL states, as
described in the following subsections.

B. Spinon Fermi-surface phase

The spinon Fermi-surface phase is an exotic Mott-
insulating spin-liquid with emergent spin-1/2 fermionic
spinon excitations, fo(x), a =1,}. The spinon disper-
sion is such that they form a Fermi-surface. This phase
may be accessed in the slave-particle (parton) treat-
ment, where electron spin operators S, are represented
as S; = %f:a&’agfig, subject to the local constraint,
szafia = 1. While the spinons are neutral under the
physical electromagnetic field, they carry a charge un-
der an emergent U(1) gauge field a,, hence this phase is
also often referred to as a U(1) spin-liquid. An effective
Lagrangian of the spinon FS phase may be written as,

1
L= fl[(‘)T —iar +€(—iV —a)]fo + @(ew,,\aya)\)z + ...

(1.1)
where E(E) is the spinon dispersion and the ellipses de-
note additional perturbations, such as four-spinon inter-
actions.

The presence of gapless spinon excitations in the vicin-
ity of the FS strongly affects the gauge field dynam-
ics. The longitudinal fluctuations of the emergent electric
field are Debye screened by the spinon FS and become
gapped. The fluctuations of the emergent magnetic field
are Landau-damped by the FS, but remain gapless. The
coupling of these Landau-damped magnetic field fluctua-
tions to spinons is expected to lead to “non-Fermi-liquid”
behavior of the spinon FS,%547 e.g. the anomalous scal-
ing of specific heat C' ~ T2/3.

The spinon FS phase is expected to naturally arise
in so-called “weak” Mott insulators - ones proximate
to a metal-insulator transition. There is numerical ev-
idence for the presence of this phase in the triangu-
lar lattice Hubbard model in the intermediate range of
U/t.>?75° Moreover, it has been proposed as a candidate
for the quasi-2d triangular lattice organic insulators x —



(BEDT — TTF)QCUQ(CN)?, and EtMe3Sb[Pd(dmit)2]2
(abbreviated xKET and DMIT below).°*°% These materi-
als have an estimated spin-exchange coupling J ~ 250 K,
yet display no magnetic order down to 20 — 30 mK tem-
perature. Moreover, these electrical insulators, supris-
ingly, show metallic behavior in their low temperature
spin-susceptibility (ys — const)’® % and specific-heat
(C/T — const).”0 DMIT also exhibits metallic thermal
transport at low temperature, /T — const,°! while kET
shows activated thermal transport, albeit with a rather
small gap A ~ 0.46 K.%2 Both materials can be driven
metallic by an application of a moderate pressure of ~ 0.4
GPa, with kET developing superconductivity below ~ 3
K on the high-pressure side.’> At ambient pressure, KET
displays a phase transition (or a very rapid crossover) at
6K5*, resulting in partial loss of low-energy excitations as
evidenced by specific-heat®. It has been suggested that
this low-temperature anomaly may be due to a pairing
instability of the spinon FS.66:67

In this paper we analyze whether the spinon F'S phase
is stable to BCS pairing. We first observe that the gap-
less fluctuations of the magnetic field mediate a long-
range repulsive interaction in the BCS channel and hence
are not expected to cause spinon pairing. Indeed, fluc-
tuations of the magnetic field mediate a current-current
interaction. The spinons in a BCS pair have opposite
momenta and opposite currents and hence, by Ampere’s
law, repel. Therefore, gapless gauge field fluctuations
suppress spinon pairing.’® However, in addition to gauge
field mediated long-range interactions, short-range inter-
actions between the spinons will generally be present.
Depending on the microscopic details of the system, such
short range interactions may be attractive in the BCS
channel with some angular momentum and spin. If the
short range attraction is sufficiently strong, we expect the
spinons to pair, developing a condensate (ff) (we leave
the angular/spin structure of the pair wave-function im-
plicit for now). As in an ordinary superconductor, the
spinon excitations acquire a gap, except possibly at sym-
metry dictated (or accidental) point nodes on the F'S. The
pair condensate spontaneously breaks the emergent U(1)
gauge symmetry down to a Z, subgroup. As a result,
the gauge field becomes gapped through the Higgs mech-
anism. Gauge excitations now take the form of gapped
vortices carrying a magnetic flux 7. Such excitations are
often referred to as visons. Visons and spinons possess
mutual semionic statistics. Thus, the paired phase of
spinons is just a Zs spin-liquid.

We confirm the above intuitive picture with a system-
atic RG calculation. We show that the spinon FS phase,
is, indeed, stable as long as the strength of the short-
range attractive BCS interactions |V;,| is smaller than a
critical value |V.| for all angular momentum channels m
(we employ a sign convention where V' < 0 represents
an attractive interaction). However, once |V,,| > |V.] for
some m, the spinon FS develops an instability to pair-
ing in angular momentum channel m. V,, = V., thus,
marks the quantum phase transition between the U(1)

spin-liquid and the Z5 spin-liquid. We find the phase
transition to be continuous and calculate the critical ex-
ponents using the e-expansion of Refs. 24,49. Our find-
ings are contrary to previous claims® that this phase
transition is driven first order by gauge field fluctuations.
We discuss the properties of the paired phase in the vicin-
ity of the transition. Right at the critical point we find
(at least to the order of the e-expansion that we study)
that most experimentally accessible properties (specific
heat, uniform and finite wave-vector spin-susceptibility,
spin-chirality correlations) are not modified from those
in the spinon Fermi-surface phase itself. Our findings are
in exact agreement with an Eliashberg-like treatment of
the problem.”’

Previously, the pairing quantum phase transition from
the spinon Fermi-surface state was considered in 3 di-
mensions by Chung et al.”’ within an Eliashberg-like ap-
proximation. Our paper presents an RG analysis directly
in 2 dimensions, although there are some qualitative sim-
ilarities with the results of Chung et al.”’ In particular,
Chung et al. have also concluded that a continuous pair-
ing transition is possible. However, we believe that some
of the results of Chung et al. are not generic. In par-
ticular, Chung et al. find that pairing can only occur
in angular momentum channels m > 2. In contrast, we
believe that both in 2d and 3d pairing with arbitrary
angular momentum can be induced by tuning the appro-
priate V,,,. Furthermore, we expect the power-law onset
of the pairing gap found by Chung et al. in 3d to be
modified by the renormalization of spinon quasiparticle
residue and Fermi-velocity. In fact, we anticipate that
the precise critical properties of the pairing transition
in 3d will be very similar to those of the 2d Halperin-
Lee-Read phase in the presence of long-range Coulomb
interactions, discussed in the next subsection.

C. Halperin-Lee-Read phase

The Halperin-Lee-Read (HLR) state is a compressible
phase of the quantum Hall (QH) fluid at a filling fraction
v =1/2.71 Tt is believed to be experimentally realized by
the conventional 2DEG in the first Landau level.”> When
the Landau level is half-filled, there are two magnetic flux
quanta per each electron. If one performs a transforma-
tion to composite fermions (CF) by attaching two flux
quanta to each electron, the composite fermions will, on
average, see no magnetic field and form a Fermi-surface.
Technically, flux attachment is performed with an aid of
a Chern-Simons (CS) U(1) gauge field a,, leading to the



action

S = /dQ.%‘dT(Lf + Lcs) + Sy,

1
) I e > FN P A )2
Ly 0 —ia, Qm(& ia; +14;)°)f (1.2)
7
LCS = meuwauﬁya,\ (1.3)
Sy = % / PEPF dr (77U (F — &) f @ 7)
(1.4)

Here, f(z) is the composite fermion operator, A is the
vector potential for the external magnetic field and U (Z)
is the microscopic electron-electron interaction potential.
Integration over a, produces the constraint,

V xd=202m)ff (1.5)
linking the magnetic flux density of the CS field a, to
the electron density fff. This constraint can be used to
rewrite Sy in terms of V X d.

At v = 1/2, the flux of the CS gauge field a, on aver-
age cancels the external magnetic field, however, fluctua-
tions of a, about the average flux persist. The dynamics
of a, are nearly the same as in the spinon FS phase with
the longitudinal electric field Debye screened and gapped,
and the magnetic field Landau damped and gapless. As
the electric field is gapped, the CS term in Eq. (1.3) is
irrelevant in the RG sense (more precisely, it generates a
charge-current interaction of composite fermions which is
supressed in the small momentum limit compared to the
current-current interaction). Therefore, the low-energy
effective theory of the HLR phase is nearly identical to
that of the spinon FS when the microscopic electron in-
teraction U(Z) in the QH fluid is short ranged. For a
power law interaction,

1
U@ ~ e (1.6)
with € < 1, the electron density fluctuations and hence
the gauge field fluctuations are suppressed.”’ In fact,
for € < 0, the composite fermion quasiparticles remain
sharply defined, while for Coulomb interaction, ¢ = 0,
the HLR phase is believed to be a marginal Fermi-liquid
with a specific heat C ~ —T'logT.*>"" For € > 0, the
HLR phase is a true nFL, with a power law specific heat
C ~ T?/(+971 however, the theory is under analytic
control in the limit e < 1.2447,

In passing, we note that the HLR phase may alter-
nately be described within a slave particle approach that
exposes the conceptual similarity to a spin-liquid Mott
insulator with a spinon Fermi-surface discussed above.
We represent the electron operator ¢ as a product of a
charge-e boson b and a charge neutral fermion f: ¢ = bf.
Then the bosons are at filling factor v = 1/2 and we take
them to be in the bosonic Laughlin state at that filling.
Being neutral the fermions f see no magnetic field, and

form a Fermi-surface. This slave particle description in-
troduces a U (1) gauge redundancy, with b and f carrying
opposite charges under an emergent gauge field a,. The
corresponding gauge constraint fixes the number density
of the bosons to equal that of the f fermions. Being
electrically charged the boson density is of course simply
equal to the physical electron density. Thus, the density
of f fermions also equals the physical electron density.
Consequently the size of the f Fermi-surface is set by
the physical electron density. Since the bosonic v = 1/2
Laughlin state is gapped, we can integrate the boson de-
grees of freedom out, generating a Chern-Simons term
(1.3) for the emergent gauge field a,. Thus, the slave
particle description is completely equivalent to the famil-
iar flux-attachment picture described above.

In this paper, we address the stability of the HLR
phase to BCS pairing of composite fermions. As with
the spinon FS phase, the long-range current-current in-
teraction mediated by gapless gauge field fluctuations
suppresses pairing in the BCS channel. Thus, we find
that the HLR phase is stable as long as the strength of
the short-range attractive BCS interaction |V| is smaller
than a critical value |V.|. However, once |V| > |V.|,
pairing of composite fermions will occur, giving rise to
an incompressible QH phase with a Hall conductivity
0zy = 1/2. A possible “microscopic” source of an at-
tractive BCS interaction is the short-distance part of
the charge-current interaction mediated by the CS gauge
field, which produces attraction in the p+ip channel.”™ In
fact, if pairing occurs in the p 4 ip channel, the resulting
phase is just the familiar Moore-Read (MR) “Pfaffian”
state.” After the pairing transition, composite fermions
become gapped neutral fermion excitations of the MR
phase. Gauge excitations are also gapped through the
Higgs mechanism and appear in the form of vortices car-
rying magnetic flux 7 of a,, which via Eq. (1.5), trans-
lates into physical electric charge ¢ = e/4. Furthermore,
these vortices support Majorana zero modes of compos-
ite fermions in their core and, therefore, can be identi-
fied with ¢ = e/4 non-Abelian quasiparticles of the MR
state. We find the phase transition between the HLR and
the MR phases to be continuous, consistent with numer-
ical simulations”®"7, but contrary to previous theoretical
claims.”® We describe how the neutral fermion gap and
the charge gap vanish as one approaches the QCP from
the MR side, and discuss the phenomenology of the MR
phase in the vicinity of the transition.

II. RENORMALIZATION GROUP ANALYSIS

Although the three nFL states described above arise
in very different physical systems, they admit a unified
theoretical treatment involving a gapless Cj = 0 boson
interacting with the FS. We denote the boson as ¢(x): it
represents the order parameter in the case of the Ising-
nematic QCP and the transverse component of the vector
potential @ in the case of the spinon FS and HLR phases.



We denote the fermions (physical electrons in the Ising-
nematic case, spinons in the spinon FS case and compos-
ite fermions in the HLR case) as f,. We take the flavor
index « to run from 1 to N. Physically, N = 2 (two spin
flavors) for the Ising-nematic QCP and spinon FS, and
N =1 for the spin-polarized HLR phase.

Due to Landau-damping, boson fluctuations with
wave-vector ¢ — 0 interact most strongly with fermions
in the regions of the FS to which ¢is nearly tangent.*¢8
We divide the FS into pairs of antipodal patches, labelled
by an index j, with

width Ay < kp

A2
and thickness A, ~ k—y <Ay <kp,  (2.1)
F
where kg is the Fermi momentum; see Fig. 2. For simplic-
ity, we assume that the Fermi-surface is connected and
convex, and furthermore, that the local Fermi-surface
curvature K and Fermi momentum kg are comparable.

FIG. 2: A pair of antipodal patches, labeled by a fixed j, on
the Fermi surface. The values of A, and A, are constrained
as in Eq. (2.1).

Antipodal points i/% on the FS are chosen in patch
pair j and directions perpendicular (%X;) and tangent (§;)
to the F'S at ];j defined. The fermion operator f, is then
expanded in terms of patch fields fi,a (z) as,

fal@) = 3 (Fla@)e™ T 4 7 (x)e 7).

J

(2.2)

We also define boson patch fields ¢’(x) to include only
momenta nearly tangent to the FS in patch j:

A
lgx| < |Qy|k7; ) |Qy| < Ay. (2.3)

The effective action S describing the fermion-boson in-
teraction then breaks up into decoupled actions for each

patch pair,
S=Y 9, (2.4)
J

with12:24,48

59 = [ Padr(L ) + Ll 7.6 + S4107), - (25)
The Lagrangian densities are
82
Ly = fl, (af+vF<—iax—ﬂy(>> fro
62
T ; y
+ fl, <8T + vp(i0x — 2K)> fea (2.6)
Lint = vpd(flafra+ (1 of-c) (2.7)
N [ d*qd
So = 57 | mplel Tle@@P(28)

Here, we have suppressed the patch index j. The Fermi-
curvature K, the Fermi-velocity vg and, in the case of
the Ising nematic transition, the coupling constant g2,
will generally vary along the Fermi-surface (i.e. will be
patch-dependent). The constant ¢ = 1 for the nematic
QCP and ¢ = —1 for the spinon FS and HLR phases.

For general €, the action Sy is non-local. For the
HLR state, this term encodes the long-range microscopic
electron-electron interation, U(Z) ~ 1/|Z|'T¢. The im-
portant case of a Coulomb interaction corresponds to
€ = 0, while for a short-range interaction, e = 1, and the
term (2.8) is local. In case of the nematic QCP or spinon
FS phase, the physical value of € is ¢ = 1. However,
one may be able to access € = 1 via an expansion around
e = 0.24%9 We, thus, work in the regime 0 < € < 1 below.

As already noted, distinct pairs of patches j # j' are
decoupled in the above description and can be treated
independently. We will shortly discuss the crucial role
played by the inter-patch interactions in the pairing
physics, however, for now, let us ignore such couplings
and review the RG analysis of the two-patch theory (2.6)
- (2.8).24% The two-patch theory is described by a single
dimensionless coupling constant,

gQ'UFA,;E

a= )2

(2.9)

The fermion part of the action (2.6) dictates the scaling
of frequency and momenta:

w— e 2t

w, G e e, g e PP, (2.10)
with the bare dynamical exponent, zy = 1. As we will
see below, zy will generally be renormalized by inter-
actions, however, the “anisotropic” momentum scaling,
Gx ~ qi, is exact due to the non-renormalization of the
FS curvature K.'?> The full interacting fermion Green’s
function G(w, §) depends only on the distance to the FS,
Gz + qz /(2K), so we may identify z; with the fermion
dynamical exponent. On the other hand, the full boson
propagator D(w, §) of the two-patch theory depends only

on the momentum tangent to the F'S, ¢,, so the above



scaling fixes the relationship'? between the boson dynam-
ical exponent z, and the fermion dynamical exponent z¢,
2 = 2zy. (2.11)
Under the above scaling with bare zy = 1, o flows as
da/dl = (e/2)a. Hence, the fermion-boson interaction is
irrelevant for € < 0, relevant for € > 0 and marginal at
tree-level for € = 0. To compute quantum corrections to
the RG flow one can utilize either a perturbative expan-
sion in o (Ref. 49; however, see footnote 79) or a 1/N
expansion (Ref. 24). At leading order both expansions
give the same result. To one loop order (first order in
1/N), @ and vp run as,

da € o?
@ TN (2.12)
dvp «

and the fermion field acquires an anomalous dimension,

7
f(‘*%Qx#]y) — [1 + < — T]f> d€:| f(edéw7ed€qx’ed€/2qy)

4 2
(2.14)
with ny = a/N. For € = 0, o flows logarithmically to
zero, and the system is a marginal Fermi-liquid with the
fermion self-energy,

Ay
Y(w) ~ —i%wlog Tl

(2.15)
with A, ~ vpAy - the energy cut-off. For € > 0, the flow
(2.12) has an infra-red stable fixed point at «a, = Ne/2.
If N is of O(1) then € < 1 ensures that the fixed-point
occurs at weak coupling. On the other hand, if N > 1,
we take € ~ O(1/N) to make o, ~ O(1) and obtain a
well-defined large-IN limit. In either case, at the fixed
point,

dvgp €

€
-F_ - = - 2.1
ar 2UF7 nr 9 (2.16)
implying a fermionic dynamical exponent
€
and a fermion self-energy
Yi(w) ~wl T, (2.18)

The exponent zy directly manifests itself in the nFL spe-
cific heat,

C ~ TV, (2.19)

We note that the expression for z; in Eq. (2.17) holds
to all orders in e: this is tied to the non-analytic nature of
the gy, dependence in Sy, which undergoes no renormal-
ization. On the other hand, for e = 1, Sy is analytic in gy
and, in principle, can undergo renormalization. Our abil-
ity to access the physically important e = 1 point through
an expansion around € = 0 is, thus, tied to such renormal-
izations being absent. No renormalization of Sy in the
e = 1 theory has been found up to three loop order,'?
however, a general proof of this statement is currently
lacking.

We next return to consider the effect of inter-patch in-
teractions, which have been mostly ignored in previous
studies. However, as we demonstrate below, such cou-
plings must be included in the theory, as they are auto-
matically generated in the RG process. This fact was first
noted in Ref. 43 in the context of 3d QCD at finite quark
density, and here we closely follow the RG treatment pro-
posed by Ref. 43. So far, we have left the precise RG pro-
cedure somewhat implicit. Recall that under the scaling
we advocated for the two-patch theory, gx — e ‘g and
qy — e_e/2qy7 so in the RG process we reduce both the
fermion momentum cut-off perpendicular to the FS, A,
and the cut-off tangent to the FS, Ay,. While A can
be, as usual, shrunk by integrating out gapped fermion
excitations away from the FS, reducing A, in the same
manner would require integration over gapless fermions
on the FS, which is illegal. Instead, during each RG step
we re-partition the FS into smaller patches with width
Ag, = e_é/QAy, while the reduction in the patch thickness
A = e ‘A, is still performed by integrating out gapped
fermions away from the FS. Simultaneously, in each RG
step we integrate out boson fluctuations with momenta
e !2A, < |q < Ay; see Fig. 3. Before the RG step,
such boson fluctuations mediate non-local intra -patch
interactions between the fermions. However, after the
RG step, these generate a local four-fermion inter-patch
interaction, as shown in Fig. 3 (bottom).

As is well known from ordinary FL theory, a very re-
stricted set of four-fermion inter-patch couplings on the
FS is kinematically allowed.***> Only forward-scattering
and BCS scattering interactions survive as the shell of
fermion states around the FS is shrunk in the RG pro-
cess. As we are interested in the physics of pairing, in
the present paper we concentrate only on four-fermion
interactions in the BCS channel, which can be described
by the action,
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FIG. 3: Top: Our RG procedure. During each RG step, each patch of the Fermi-surface is divided into two smaller patches.
The relationship between the widths and heights of the patches remains as in Eq. (2.1). Bottom: Single boson exchange
mediates a non-local intra-patch interaction (left). Here and below, solid/dashed lines are fermion/boson propagators. As high
momentum boson modes are integrated out in the RG process, a local inter-patch four-Fermi interaction in the BCS channel

5V (K1, —k1; k2, —k2) is generated (right).
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Here, V*/V are, respectlvely, symmetrlc/ antlsymmetrlc
under exchanging k1 > k‘g, and k3 > k4 Only the
values of the interaction for BCS-matched momenta,
vs’a(/%'l, —k1; Eg, —Eg), play a role; furthermore, 15172 can
be taken to lie on the FS. From now on, we assume that
the system is rotationally invariant,® so we may write
Vs’a(lgl, —El; ];/:2, —];:2) = Vs,a(el — 92), with 61,2 - angles
on the FS. Performing an expansion in angular harmon-
ics,

V(0 — ) =

Z Vsa im(01—02)

m=—0o0o

(2.21)

V? involves only even angular momentum components
and V® - odd. It is convenient to define dimensionless
BCS interaction constants,

kr

Ve =
m 2mup

/A (2.22)

m

(2.20)

(

In the absence of the coupling to the gapless boson (i.e.
in a Fermi-liquid), the RG flow of the BCS interaction
(2.20) can be determined as in Refs. 44,45. The RG in
their work involves only the rescaling of Ay, which is the
same as that in Fig. 3 (top). Our rescaling of Ay plays no
role in the renormalization of the BCS interaction, and
so we can read off the renormalization of V,7>* from their
results: this interaction is marginal at tree level, and
acquires the following flow at one-loop level (see Fig. 4),

avse

_(1rs,a\2
()

(2.23)

Thus, in a Fermi-liquid, if the initial value of the BCS
interaction is repulsive, V,>>* > 0, then V,>* flows loga-
rithmically to zero, while if the inital value of the inter-
action is attractive, V3¢ < 0, V,2* runs away to —oo at
an energy scale, Agcs ~ A, exp(fl/\f/ni’ﬂ), signaling an
instability to fermion pairing.



Next, we study how the flow of the four-fermion BCS
interactions (2.23) is modified by the presence of the gap-
less boson ¢. In the limit, « < 1 (or N > 1), V < 1, the
leading modification comes from the diagram in Fig. 3,
which represents the one-boson exchange contribution to
the four-fermion BCS amplitude. As already noted, in-
tegration over intermediate large-momentum ¢ modes in
Fig. 3 generates an inter-patch four-fermion interaction,

(5Vs’a(]g1, —El; EQ, _EQ) = —g’UIQ;vD> (O, El — EQ) (2.24)

where D(w, q) is the boson propagator and the subscript
“>” indicates that only modes in the momentum shell
e *2A, < |g] < Ay should be kept. We remind the
reader that the constant ¢ distinguishes between the dif-
ferent nFLs: we have ( = 1 for the Ising-nematic case,
and ¢ = —1 for the spinon Fermi-surface and HLR cases.
Note that the frequencies of the external fermions and,
hence, of the boson in Fig. 3 (bottom) can be set to 0.
Eq. (2.24) gives §V for the case of small angle scatter-
ing, ko — Eg; the result for k1 — —Fko is determined
by symmetry. The static boson propagator is given by
D(0,9) = ¢g*/(N|q* ™). Computing the angular harmon-
ics corresponding to (2.24),

~ k do ;
5V7fl’a = =2 (271_5}7) %’U%—‘ %D>(O,k’F9)€_lm0
_ e (M dg _a
- 272N e—t/2p, 4 cos(ma/kr) = CNE

(2.25)

In the last step, we have dropped the factor cos(mg/kr)
as Ay < kp. Thus, the process in Fig. 3 (bottom) con-

tributes a term dV,5%/dl = —Ca/N to the RG flow of V,
which combines with Eq. (2.23) to give,

d‘77fz7a _ a 175,a\2

(2.26)

There are also terms of order a‘?ni’a which arise from ver-
tex corrections and the flow of v in the definition (2.22),
but we have dropped them because they are are higher
order in e. Note that the flow (2.26) is independent of
the angular momentum and spin channel; hence we drop
the angular momentum/spin indices on V below. The
flow equation (2.26) for the inter-patch BCS interaction
in conjunction with the flow of the intra-patch coupling
constant « in Eq. (2.12) determines the physics of the
nFL states considered. We next analyze these RG equa-
tions and discuss their consequences. However, we first
point out that in the regime of analytical control € < 1,
all the conclusions of our RG treatment can be repro-
duced by solving the Eliashberg equation for the pairing
vertex, as has been shown elsewhere.?® This lends further
support to our results.

()

-k

()

FIG. 4: Renormalization of the BCS interaction

V(k1, —k1; ko, —k2) in a FL.

III. RESULTS: ISING-NEMATIC QCP

We first discuss the solution to RG Egs. (2.12), (2.26)
for the nematic QCP. In this case, the constant ( =1 in
Eq. (2.26), so the fluctuations of the order parameter cap-
tured by the first term in Eq. (2.26) drive the short-range
interaction V negative (attractive), as expected. In fact,
as discussed in appendix A, we find that independent of
the initial values of o and V, V flows to —oc at a fi-
nite £ = ¢, indicating an instability of the Ising-nematic
QCP to superconductivity. We identify the energy scale
A = Aye % with the electron pairing gap. Unlike in
the ordinary Fermi-liquid, the run-away flow V — —oo
occurs even if the initial value of V' is repulsive: gapless
order parameter fluctuations eventually drive V' attrac-
tive. However, the magnitude of £, and hence the pairing
gap does depend on the initial value of V: the smaller the
initial V' - the larger the gap. As already noted, the flow
equations for V2% in different angular momentum/spin
channels decouple and are identical. We, thus, expect
pairing to occur in the channel where V,>»* diverges first,
i.e. one which has the smallest initial V,7>*. Hence, the
pairing symmetry is non-universal.

It is interesting to compare the pairing scale A with
the energy scale F,p1, = Ay e 5FL gt which electronic
quasiparticles get destroyed. Here, we identify FE,p, as
the energy at which the Fermi-velocity vp, whose flow is
determined by Eq. (2.13), starts to deviate significantly
from its bare value. We find that as long as our cal-
culation is controlled, (i.e. € < 1), Eypr, < A, so the
superconducting instability preempts the destruction of
quasiparticles and associated nFL behavior. This is quite
distinct from the physics of many materials where nFL
behavior is observed at energies/temperatures well above
the superconducting T.. As we take the artificial control
parameter € to its physical value ¢ = 1, the two scales
E.r1, and A approach each other, however, at this point
we loose analytical control.

We now briefly illustrate the above conclusions for sev-
eral regimes of €, a, V' (see appendix A for more details).
First, consider the case e = 0. Here, we find

A=A, exp [—\/13 <72T + tan~* é)] (3.1)
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FIG. 5: RG flow of the inter-patch BCS interaction Vj;“ in the

spinon FS/HLR phase with 0 < ¢ < 1. The IR stable fixed-
point Vit =~ /€/2 controls the gapless F'S phase, while the

IR unstable fixed point Vi o~ —yJe /2 controls the continuous
transition to the paired phase.

with

«

=0

(3.2)

If the bare short-range interaction V is small compared to
the long-range interaction, |V| < V@, then Eq. (3.1) re-
duces to A = A, exp(— 7r/(2\f) On the other hand, if
the bare short-range interaction Vis large and repulsive,
V> Va, A = A, exp(—7/V@), i.e. the gap is reduced
by a factor of two on the logarithmic scale compared to
the case of small V. Finally, if the bare short-range in-
teraction is large and attractive, V < 0,|V] > V&, the
gap takes the standard BCS form, A = A, exp(—1/[V]).
The scale at which nFL effects become appreciable is
Enrr, ~ A, exp(—1/a). Thus, as long as a < 1, the
pairing gap A is parametrically larger than the nFL scale
E,rr,. We note in passing that the result (3.1) is identi-
cal to one obtained for the problem of quark pairing by
color gauge fields in 3d dense baryonic matter,** and for
electron pairing near a ferromagnetic QCP in 3d.5!
Proceeding to the case ¢ > 0 (which may be conti-
nously connected to the physical case ¢ = 1), we find
that the nFL scale is still given by Enpr, ~ Ay, exp(—1/a)
for & > €, as well as for @ ~ O(e), while for @ < e,
EurL ~ Ay (G/€)?/€. The pairing scale A is still given by
the expression in Eq. (3.1) for & > €2, so the relation
E.p1, < A holds. For & <« €2 and V>0 (or V< 0, but

V| < ¢/ log %), we obtain

~\ 2/€
«

so A depends on the coupling constant & in a power-law
manner and Eypp/A ~ ¢2/¢ < 1. Eq. (3.3) has been
previously obtained within an Eliashberg-like treatment
in Ref. 51. Naive extrapolation of the above result to the
physically relevant value € = 1 gives, A ~ Eypr, ~ &2\,
i.e. the pairing and nFL scales become parametrically
equal. This conclusion is again supported by the direct
solution of Eliashberg-like equations.??:%3

(3.3)

IV. RESULTS: SPINON FS AND HLR PHASES

We now turn to the solution of the RG equations
Egs. (2.12), (2.26) for the spinon FS and HLR phases.

The constant ¢ in Eq. (2.26) now takes the value { = —1,
hence gauge field fluctuations drive 1% repulsive, in accor-
dance with intuition. We first solve Eqgs. (2.12), (2.26)
when ¢ > 0 (with an eye to describing the physical
spinon FS phase and the HLR phase with short-range
interactions, where ¢ = 1). Here, the coupling a flows
to the fixed point a, = Ne/2, and we may substitute
this fixed point value into the RG equation for V, (2.26).
We then find two perturbatively accessible fixed points
for V: VF = 4./¢/2, see Fig. 5. The fixed point V,*
is infra-red stable; as long as the initial value of Vs
greater than V , V flows to V+ Thus, the spinon
FS and HLR phases are controlled by the fixed point
(s, V) and are stable to fermion pairing. However, if
the initial value of Vs @ in some angular momentum/spin
channel is smaller than V VS “ runs away to —oo, and
fermion pairing occurs. V= V , thus, marks the phase
transition between the U(1) and Zs spin-liquid phases
(HLR and incompressible QH phases). Note that un-
like in a Fermi-liquid, a finite strength of the attrac-
tive short-range interaction |V| > |V,7| > 0 is needed
to overcome the long-range repulsion mediated by the
gauge field and cause fermion pairing. Pairing in a given
angular-momentum/spin channel can be driven by tuning
the corresponding Vni’“. The pairing transition is contin-
uous and the spinon-gap onsets in a power law fashion,
A~ (V7 = V), where

1 d dv

1% dV e
This is, again, distinct from an ordinary FL where the
electron gap has the familiar exponential form A ~
exp(—1/|V)).

We note that to the leading order in € discussed above,
the presence of inter-patch interations V' does not af-
fect the flow of the intra-patch coupling constant «,
Eq. (2.12), and the Fermi-velocity vg, Eq. (2.13). As a
result, most physical properties (fermion and boson dy-
namical exponents 2, z; specific heat; 2kp exponents>*
etc.), at the two fixed points V = V= are identical. This
conclusion may be true to all orders in €, since, perturba-
tively, BCS interactions do not influence the single par-
ticle properties (vg, Z) in a FL.

We next discuss the marginal case ¢ = 0, which de-
scribes the QH fluid with Coulomb interactions. Here,
the coupling constant a logarithmically flows to 0. The
combined flow of &, V' is shown in Fig. 6 (see appendix
B for details). The flow is characterized by a single
fixed-point a = 0, V=0 and features an attractor line
V = V@& and a separatrix V = —Va. As long as the
initial values of V a satisfy Vo> —V/a@, the couplings
flow to the attractor line V = /& and then into the fixed
point @ = 0, V = 0. So, the HLR phase with Coulomb
interactions is stable in a finite region of parameter space.
On the other hand, if the initial V< —Va, V runs away

=V2e¢

=V

(4.1)
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FIG. 6: RG flow of the intra-patch coupling constant & and
the inter-patch BCS interaction V, in the HLR phase with
Coulomb interactions (e = 0). Note the attractor line V ~ V&
(dashed red curve) and the separatrix V &~ —va (solid red
curve). The HLR phase is controlled by the logarithmic flow
of the attractor line into the fixed point (V,&) = (0,0). The
phase transition to the paired CF phase is controlled by the
logarithmic flow of the separatrix into the same fixed point
(V,@) = (0,0).

to —oo and fermion pairing occurs. Thus, the separa-
trix V = —v/@ describes the transition between the HLR
phase and the paired QH phase. Note that this separa-
trix also logarithmically flows into the fixed point a = 0,
V =0, so the stable and the unstable fixed points V.,
found for € > 0, merge into a single fixed-point here. The
pairing transition is continuous and the fermion gap turns
on as the separatrix is crossed in an unusual super-power
law fashion,

A ~ exp —% log? (V. — V) (4.2)

with V. ~ —Va.

V. Z:; SPIN-LIQUID AND QH STATES NEAR
THE PAIRING TRANSITION

As we showed above, spinon F'S and HLR phases can
be driven through a continuous pairing transition. We
now comment on some properties of the paired phase in
the vicinity of the transition. In many ways, these paired
states are analogous to ordinary superconductors. As we
already noted, the paired phase supports two kinds of
fundamental excitations: spinons/neutral fermions and
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vortices of the gauge field. The latter are visons of the
Zs spin-liquid/charge e/4 excitations of the paired CF
phase. The vortex excitations are, thus, particularly im-
portant in the QH context as their energy determines
the charge gap. So far, we have only determined the
scaling of the fermion gap A near the pairing transi-
tion. We now crudely estimate the magnitude of the
vortex gap. The fermion pair-condensate is supressed in
the vortex core, whose radius we take to be the fermion
correlation length ¢ ~ A=Y Thus, the vortex gap
E, ~ (en — €)%, where €, — ¢, is the energy density
difference between the “normal” phase and the paired
phase. The scaling of the energy density at the pair-
ing transition is € ~ w'*/*s/ (e.g. recall the specific
heat C' ~ T1/%f both in the gapless FS phase and at
the pairing transition), so setting the characteristic en-
ergy scale w in the paired phase to the fermion gap A,
€n — €p ~ A2 and B, ~ A'=1/27. Therefore, the vi-
son/charge gap vanishes as one approaches the de-pairing
transition, although more slowly than the spinon/neutral
fermion gap. For the physically interesting case of the
spinon FS or the QH system with short-range electron-
electron interactions, e = 1, zy = 3/2 and E, ~ Al/3,
Note that our estimate of the vortex gap strictly only ap-
plies to the case € > 0, for e = 0, zy = 17 and we expect
E, to vanish logarithmically as A — 0.

As is well-known, superconductors can be classified as
type-1 or type-II depending on their response to an ex-
ternal (orbital) magnetic field H. Both types of super-
conductors are characterized by a Meissner effect (full
expulsion of magnetic flux) for small H. As the mag-
netic field is increased, a (3d bulk) type-I superconductor
undergoes a 1lst order transition to a fully normal state
at a critical value H = H.. On the other hand, in a
type-II superconductor, an array of Abrikosov vortices
is induced for magnetic fields H > H.; and the normal
state is recovered only for H > H. > H.;. The type of
a conventional superconductor is determined by the ra-
tio of the electron correlation length £ and the magnetic
penetration depth A\. For A < &, the superconductor is
type-I, while for A > £ - it is type-1I.

Related  “typology”  also paired
spinon/composite fermion phases. However we
first need to understand what plays the role of the exter-
nal magnetic field H in these systems. In the quantum
Hall case, the flux of the emergent magnetic field is sim-
ply the electron density. Thus, the analog of the external
magnetic field is the electron chemical potential u. For
the spinon FS phase on the triangular lattice, based on
symmetry considerations, we expect an external orbital
magnetic field H to couple linearly to the flux of the
emergent gauge field, V x a: L = —fH(V x @), with
B - a coupling constant.’®. Recall that the emergent
gauge flux is physically identified with the spin-chirality
S, - (52 X 53) of the elementary triangles.®® Moreover,
starting with the electron Hubbard model on the trian-
gular lattice, in the insulating limit ¢ < U, one finds
that a coupling of the external orbital magnetic field to

exists in
84,85



the spin-chirality is, indeed, induced at order t3/U?, so
B~ (t3/U?)(a®/®g), where a is the lattice spacing and
®g - the elementary flux quantum.®® Thus, in this case a
physical orbital magnetic field directly plays the analog
of an external magnetic field, coupling to the emergent
magnetic field V x @ and, thereby, to the spinons, albeit
with a reduced strength.

Like ordinary superconductors, the paired spin lig-
uid/paired quantum Hall phases exhibit two length
scales: € and A, characteristic of fermion (spinon/neutral
fermion) excitations and gauge field fluctuations, respec-
tively. In the vicinity of the de-pairing transition, the be-
havior of these length scales is controlled by the RG fixed
point describing the transition. Our scaling theory indi-
cates that fermions disperse as w ~ (|k|—kr)*’ and gauge
fluctuations disperse as w ~ ¢* with 2z, = 225y = 2 + €.
As noted above, this relation holds both in the gap-
less spinon FS/HLR phase and at the pairing transition.
Upon entering the paired phase, a characteristic energy
scale w = A - the fermion gap is generated, which gives
£ ~ X ~ A"Y% . So, as one approaches the transi-
tion, A — 0, and both the correlation length ¢ and the
“penetration depth” A diverge, albeit with different ex-
ponents. In particular, £ > A, so the paired phase in the
vicinity of the transition is in the type-I regime, as was
argued on general grounds in Ref. 84. Further, the rela-
tion E, > A obtained above is again typical of a type-I
superconductor. Note that for e = 1, A ~ A~1/3, which
is the standard expression for the scaling of the physical
(non-local Pippard) penetration depth in a conventional
type-I superconductor.®%

As discussed above, the most dramatic manifestation
of the type-I/type-II distinction in an ordinary supercon-
ductor is the response to an external magnetic field H.
There is also an analog of this phenomenon for paired
spinon/composite fermion phases.®** Let us begin with
the QH case and first consider short-range electron-
electron interactions. In this case the analog of the exter-
nal magnetic field H is the electron chemical potential p.
The paired QH phase is incompressible, so for deviations
of chemical potential |u| smaller than some critical value,
the system does not respond. (This is the analog of the
Meissner effect in the superconductor). However, above
a critical u, the electron density starts to change. This
can occur in two ways: i) once u > p. = 4F,, charge
e/4 quasiparticles (gauge field vortices) start to be nucle-
ated. If the interactions between these quasiparticles are
repulsive, we expect a stable dilute quasiparticle lattice
to form. The Hall plateaux then persists for pu > 1,
as well as when one sweeps the physical magnetic field
away from half-filling (holding the electron density con-
stant). This QH counterpart of type-II superconducting
behavior is thought to be realized in most conventional
QH experiments. ii) It is possible that the charge e/4
quasiparticles attract rather than repel, making the vor-
tex lattice unstable. We then expect a first order phase
transition between the paired QH phase and the HLR
phase to occur at y = p. < 4F,, accompanied by a jump
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in the electron density. This is the QH analogue of type-I
superconducting behavior. We now show that this type-I
scenario is, indeed, realized by paired QH states in the
vicinity of the de-pairing transition. We can estimate
the “thermodynamic” critical chemical potential u., by
equating the energy-densities of the paired state and the
HLR state: €, = €,—2xu2, where £ is the compressibility
of the HLR phase. (We are measuring the chemical po-
tential relative to the chemical potential of the HLR state
at half-filling). Recalling our estimate, €, —¢, ~ A!T1/27,
we conclude ji, ~ AV2H1/(225) = AS/6 « F ~ Al/3,
Thus, the first order transition to the HLR phase oc-
curs before individual e/4 quasiparticles can be excited,
so the system is in the type-I regime. The magnitude
of the density jump across the first-order transition is
6ne = ke ~ AP/ (see footnote 87 for some caveats). For
short-range electron-electron interactions, if one sweeps
the magnetic field (holding the electron density fixed)
away from v = 1/2, the system phase separates into
macroscopic domains of the paired CF phase and the
HLR phase. In practice, however, the first order transi-
tion between paired quantum Hall and the HLR phases
will be rendered second order by the effect of impurities.
Nevertheless, it is conceptually important to understand
the nature of the transition in the clean limit. Long-
range electron-electron interactions U (%) ~ 1/|Z|'*€ with
0 < € < 2 frustrate the macroscopic phase separation, so
one expect the formation of “micro-emulsion”-like bub-
ble/stripe phases in the vicinity of v = 1/2.3*

A similar phenomenon can also occur in the Zs spin-
liquid phase in the vicinity of the de-pairing transition to
the spinon FS phase. Now, repeating the arguments pre-
sented above for the QH case, we expect an application of
an external orbital magnetic field to induce a first order
transition from the Zy spin-liquid phase to the spinon
FS phase at SH, ~ A6 accompanied by a jump of
magntidue ~ A%/6 in the spin-chirality. For spin-singlet
pairing of spinons, the critical orbital field H. should be
compared to the critical Zeeman field Hy = A/(geiip)
needed to break up the Cooper pairs. In the strict A — 0,
H is parametrically smaller than H,., so the orbital ef-
fects may be neglected. This trend is further enhanced
by the suppression of the coupling constant § in the in-
sulating regime ¢t < U.

VI. DISCUSSION

We now briefly discuss a number of experimental phe-
nomena to which our work is pertinent.

A. Superconductivity near quantum critical points

One of the main results of this paper is a controlled the-
ory of the superconducting instability of a quantum criti-
cal metal. As an illustration we studied the Ising-nematic
quantum critical point. Many of our results are expected



to carry over to metals near other Pomeranchuk tran-
sitions. One of our main conclusions is that supercon-
ductivity is strongly enhanced near such quantum criti-
cal points. This gives some firm theoretical basis to the
empirical observation of superconducting domes with T,
optimized near a putative quantum critical point.

In passing, we recall that the problem of superconduc-
tivity near the spin-density-wave quantum critical point
was addressed in Refs. 5,6. It was found there that
non-Fermi liquid effects in the electron spectrum and
pairing corrections arose at similar energy scales, which
preempted identification of a clear-cut non-Fermi liquid
regime in the normal state.

For the specific case of the Ising-nematic transition,
experiments®® on electron-doped iron superconductor
Ba(Fe;_,Co;)2Ass show that a quantum critical point
associated with such order likely lies directly underneath
the superconducting dome. This quantum critical point
appears to be separated from a different one associated
with onset of spin density wave order that occurs at lower
. It is tempting to attribute the optimality of the su-
perconducting 7T, to the enhanced fluctuations of the un-
derlying Ising-nematic quantum critical point. For this
scenario to be legitimate it is necessary that other fluc-
tuations (for instance in the spin density) have much
weaker effects in the normal state at optimal doping.
A contrasting scenario likely applies to a different iron
superconductor BaFes(As;_,P,)2 obtained by isovalent
substitution.® In this case, optimal T, occurs around
x = 0.30, which is roughly where the Neel temperature
associated with spin density wave (SDW) order (present
at low x) extrapolates to zero. The strong enhancement
of the NMR relaxation rate near the optimal doping fur-
ther suggests the presence of an SDW critical point.®?
The low-x material also displays Ising-nematic order but,
according to some reports,*? it disappears at a larger x
that is near the overdoped edge of the superconducting
dome. So the SDW fluctuations seem to dominate over
any nematic fluctuations near optimal doping in this ma-
terial.

A different aspect of our theoretical results is the re-
lationship between non-Fermi liquid physics and super-
conductivity near the Ising-nematic QCP. In the small-
€ regime where our calculations are controlled we found
that the superconductivity is so strong that it sets in at a
temperature scale parametrically larger than the scale at
which non-Fermi liquid effects set in. For e = 1 we expect
that there is no such separation and the two phenomena
happen at parametrically the same scale. In this case, it
is possible that the superconductivity will rear its head
before the non-Fermi liquid physics has fully developed.
It is then interesting to ask what happens when the su-
perconductivity is suppressed with an external magnetic
field. Presumably, this will expose the non-Fermi liquid
physics of the Ising-nematic quantum critical point down
to low temperatures. In particular, the specific heat will
follow the predicted power law C' ~ T3. Some aspects
of the non-Fermi liquid physics predicted for the criti-
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cal point will likely be suppressed by the magnetic field,
along with the superconductivity. A good example is the
low-energy tunneling density of states, which in the ab-
sence of the magnetic field was found to be power-law
suppressed at the QCP'?24, This effect arises primar-
ily from enhanced Cooper pairing fluctuations?*. Since
these will be suppressed in a magnetic field, so will the

singularity in the tunneling density of states.

B. Quantum Hall states at v =1/2.

In this paper, we have developed a systematic theory of
the transition between the compressible HLR phase and
the incompressible Moore-Read phase of the quantum
Hall fluid. We have demonstrated that contrary to pre-
vious theoretical claims™ a direct continuous transition
between these phases is allowed. In a conventional GaAs
system, the HLR phase is believed to be realized at filling
factors v = 1/2, v = 3/2, while the Moore-Read phase is
a candidate for the plateaux at v = 5/2. In a large mag-
netic field, when the mixing between Landau levels can
be neglected, the physics of a partially filled Landau level
is determined by the projection of the electron-electron
interaction onto the states in the Landau level. The pro-
jection is different for different Landau levels, which is
believed to explain the above contrasting behaviors ob-
served in the lowest (n = 0) and first (n = 1) Landau
levels.” "% Since both the electron-electron interactions
and the form of the single-particle states in GaAs is diffi-
cult to tune, the realization of a direct transition between
the Moore-Read phase and the HLR phase in GaAs is
challenging. However, it was recently suggested that this
transition may be realized in bilayer graphene, by tuning
the strength of the perpendicular electric field.”®*! The
introduction of the perpendicular electric field modifies
the form of the single-particle states forming the Lan-
dau level and hence the effective interactions within the
Landau level. We, thus, hope that bilayer graphene will
provide an experimental avenue to test our predictions.
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Appendix A: Solution of RG equations:
Ising-nematic QCP

In this appendix we provide a detailed solution of the
RG equations, (2.12), (2.26) for the Ising-nematic QCP
(¢ =1in Eq. (2.26)). We use the notation & = a/N.



We begin by considering the case ¢ = 0. Then & runs
logarithmically to zero,

a(0)

vr(0)
15 a(0)f (A1)

a(l) = 1+Mmz

vp(l) =
and the non-Fermi liquid corrections become appreciable
below an energy scale of order e tFL with £,pp, ~ 1/a.
Since the flow of a is slow, in order to analyze the flow
of V', let us first assume that « is constant. We see that

the flow is then towards V = —oo signaling a pairing
instability. Solving Eq. (2.26),

V(0) = Vatan (—\/EK + tan™* fi;?) (A2)
We see that V diverges at
1 [z L V(0)

and we expect a pairing gap A ~ A,e . Let us dis-
cuss various limits of Eq. (A3). If the “bare” short range
interaction is small compared to the long-range interac-
tion,

V| < Va

Ly ~

7r
—_— A4
2va (A4)
On the other hand, if the bare short range interaction is
large and repulsive,

V> Va

by~

™
—, A5

Va (89)
i.e. the magnitude of the gap is reduced by a factor of
two on the logarithmic scale compared to the case (A4),
Finally, if the bare short range interaction is large and
attractive,

1

pwi

] V<0, |V|>Va

(A6)

which is just the usual BCS result. In any case, af, <
m/& < 1 hence the running of & can, indeed, be ne-
glected in estimating the size of the gap. Moreover,
¢, < W/\/E & lyrr, ~ 1/@&, hence the non-Fermi-liquid
physics is preempted by pairing. B

If we turn on a finite €, the flow of V' to —oo persists.
Let us estimate the size of the gap. In the present case
a and vp run as,

o a(0)et/?
Oz(f) - 14 2&6(0)( /2 1)
op(t) = vr(0) (A7)
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Note that for & ~ @, = €/2 the scale at which non-
Fermi-liquid effects become manifest is ¢,pr, ~ 1/€. For
a > ¢, one first observes logarithmic running of vg for
¢ 2 lypr, ~ 1/@, and then power law running for £ 2 1/e.
Finally, if & < €, lyp, ~ 2log(e/a). Proceeding to
the flow of XN/, we observe that if & > €2, the flow of
a can be ignored for the purpose of estimating the pair-
ing scale and previous results Eqgs. (A2) and (A3) hold.
Comparing the pairing scale and the non-Fermi-liquid
scale, we find that the former is always parametrically
higher in this regime. Indeed, for @ ~ O(¢) and @ > ¢,
l, < 1/Va < lupr, ~ 1/@, while for € < @ < e,
l, < W/\/E L by, ~ = log <. In the remaining regime
a < €2, the flow of a cannot be ignored. However, this
regime can be effectively analyzed as a part of a wider
range a < €. As is already clear from the arguments
above, if we start with a < ¢, @ will remain in this range
throughout the evolution. Hence, in this regime, we may
approximate,

(A8)

_dV 2~
A— = —E(OZ+V2)

do (49)

We may eliminate the € dependence from Eq. (A9) b
defining & = €?a, V = €V. Then,

dV _
—2(a+V? A10
6" = -2(a+7?) (A10)
The solution to Eq. (A10) is,
V) - VAUA(VE) +CYi(4Va)
Jo(4v/a) + CYo(av/a)
where initial conditions fix the constant C' to be,

- Va(0)J1(4/a(0)) + Jo(4+/a(0))V (0) (A12)
Va(0)Y1(4y/a(0)) + Yy(4/@(0))V(0)

Observe that V has a divergence at & = &, with

Jo (4\ /c_vp) - _C
Yo(dy/ay)
As is clear from Fig. 7, irrespective of the value of C, if «

(@) is of O(€?) (of O(1)) or less, the above equation has
a solution with &, at most of O(1). Hence,

(A11)

(A13)

2

l, = log P < lopr, ~ = log (A14)

Thus, in this regime pairing also always occurs before
non-Fermi-liquid effects become significant. Having es-
tablished this, we will not analyze the full behaviour of
the pairing scale as a function of initial a and V' in this



Yo(x)/Jo(x)
6 L

s

1 2 |%0 3 4 5
-2

FIG. 7: Determination of the pairing scale ¢, and the corre-
sponding value &, in the regimes & ~ O(e?) and & < O(€?)
(see Egs. (A13), (A15)).

regime, but will only discuss the case of smallest coupling,
a < € (a < 1). Then, Eq. (A13) may be rewritten as,

%(4\/@)%%(4\/5)_ 1
Jo(4y@,) — Jo(4Wa)  2nV

The function Yy(x)/Jo(x) is increasing wherever it is
continuous (see Fig. 7). Hence, as we need a solution with
o, > a, for V > 0 we conclude that 4\/5p > xg, with
xo ~ 2.405 - the first zero of Jo(z). Moreover, as Yy(x) ~
% log x for x — 0, the right-hand-side of Eq. (A15) tends
to —oo, hence,

(A15)

2
Gy~ =0~ 0.361,

16 V>0, a<é,

(A16)
and the pairing scale can be obtained from Eq. (A14).
Now, if V' < 0 but |V| < (log )7, the right-hand-side
of Eq. (A15) tends to +oo and Eq. (A16) still holds.
Finally, if V < 0 and [V| > (log 1), &, < 1 and from
Eq. (A15) we obtain

_ B B 1\ !
a, =ae2Vl v <0, V] > <10g > , Q< €
(0%
(A17)

which gives the standard BCS result ¢, = ﬁ

Appendix B: Solution of RG equations: HLR phase
with Coulomb interactions

In this appendix we provide a detailed solution of the
RG equations, (2.12), (2.26), for the HLR phase with

14

Coulomb interactions. We, thus, set ( = —1 in Eq. (2.26)
and € = 0 in Eq. (2.12).

The flow in the (V,@&) plane takes the form shown in
Fig. 6. Note that part of the phase space is controlled by
the fixed point V' = 0, @ = 0, while the rest of the flow
trajectories are towards V = —oco. We will show below
that the two regions are separated by the line vV =-Va.

Let us proceed to solve the flow equations. The flow
of & is the same as for the Ising-nematic case, Eq. (A1).
Defining V= Vag,

dg _ /= 2y Lo
s =Val-g°) + 5ag (B1)

In the limit @ — 0, we can neglect the last term in
Eq. (B1). Then,

dg _ —a32(1 - ¢?)

7 (B2)

which gives,

o) = (9(0) + 1) exp [4(a(0)~"/* — a(0)~*)] + (9(0) — 1)
(9(0) + ) exp [4(a(6) 7 —a(0)172)] — (9(0) 7
B3
As « flows to zero the following cases are possible. If

g(0) > —1, i.e. V(0) > —/@(0), then g flows to 1,

~ 1 ~
V() = Vall)~ —=, V>-Va B4
© (£) Vi (B4)
If one starts exactly on the transition line, g(0) = —1,
then g remains fixed at g = —1,
~ _ 1 - _
V() = a(l) ~ ~ 77 V =—y/a(0) (B5)

Finally, if g(0) < —1, i.e. V(0) < —/&(0), V(¢) flows to
—oo and diverges at £ = £, with

~ 2
1 V-—Va
l,=— |log =——— +4a~2] —a! B6
g 16<Ogv+f+a ¢ (BS)

(07

In particular, as 1% approaches the transition line, 6V =
V ++Va& — 07, the pairing gap A ~ A, e % vanishes as,

A~ A, exp <116 log? |§V|> = |5V|T16 108 157 (B7)
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