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Abstract
Moderate acoustic overexposure in adult rodents is known to cause acute loss of synapses

on sensory inner hair cells (IHCs) and delayed degeneration of the auditory nerve, despite

the completely reversible temporary threshold shift (TTS) and morphologically intact hair

cells. Our objective was to determine whether a cochlear synaptopathy followed by neurop-

athy occurs after noise exposure in pubescence, and to define neuropathic versus non-neu-

ropathic noise levels for pubescent mice. While exposing 6 week old CBA/CaJ mice to 8-16

kHz bandpass noise for 2 hrs, we defined 97 dB sound pressure level (SPL) as the thresh-

old for this particular type of neuropathic exposure associated with TTS, and 94 dB SPL as

the highest non-neuropathic noise level associated with TTS. Exposure to 100 dB SPL

caused permanent threshold shift although exposure of 16 week old mice to the same noise

is reported to cause only TTS. Amplitude of wave I of the auditory brainstem response,

which reflects the summed activity of the cochlear nerve, was complemented by synaptic

ribbon counts in IHCs using confocal microscopy, and by stereological counts of peripheral

axons and cell bodies of the cochlear nerve from 24 hours to 16 months post exposure.

Mice exposed to neuropathic noise demonstrated immediate cochlear synaptopathy by 24

hours post exposure, and delayed neurodegeneration characterized by axonal retraction at

8 months, and spiral ganglion cell loss at 8-16 months post exposure. Although the damage

was initially limited to the cochlear base, it progressed to also involve the cochlear apex by

8 months post exposure. Our data demonstrate a fine line between neuropathic and non-

neuropathic noise levels associated with TTS in the pubescent cochlea.
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Introduction
Noise-induced hearing loss is a growing epidemic worldwide, with over 1.6 million new cases
yearly [1]. Recent research in mice and guinea pigs has shown that even exposure to moderate
noise levels, previously thought to cause only temporary hearing loss, can result in immediate
and irreversible loss of cochlear neurons [2,3].

High noise levels cause permanent threshold shift (PTS), as assessed using behavioral
threshold audiometry or physiologic metrics in both animals and humans. The common physi-
ological metrics are auditory brainstem evoked responses (ABRs) and otoacoustic emissions
(OAEs). ABR is an auditory-evoked, surface potential consisting of several waves, the first of
which reflects the summed activity of the cochlear nerve. OAEs are generated by outer hair
cells and serve as a measure of their integrity. PTS is seen in permanent elevation of both ABR
and OAE thresholds, with multiple structural correlates within the cochlea: loss of hair cells or
their stereocilia, collapse of the organ of Corti, loss of cochlear neurons from the spiral gangli-
on, loss of fibrocytes within the spiral ligament, and atrophy of the stria vascularis [4–6].

Until recently, moderate noise levels that cause temporary threshold shift (TTS)—defined
as a temporary elevation in physiologic or behavioral thresholds that recovers to pre-exposure
levels within 1 to 2 weeks post exposure—were thought to cause only temporary structural
changes, such as reversible collapse of outer hair cells (OHCs), and the supporting cells of the
organ of Corti [4–6]. However, recent work in adult rodents has shown that noise-induced
TTS can lead to permanent auditory neuropathy characterized by irreversible reduction of
ABR wave I amplitude, and immediate loss of afferent synapses on inner hair cells (IHCs), fol-
lowed by a delayed loss of the associated cell bodies of cochlear neurons [2]. This noise-induced
cochlear neuropathy is considered primary because hair cells and other cochlear cells survive
and appear normal. This neuropathy is also known as “hidden” hearing loss [7], as it preferen-
tially affects high-threshold neurons [8] that do not affect cochlear thresholds, yet are likely es-
sential for hearing in noisy backgrounds.

Since primary cochlear neuropathy has thus far been carefully studied only after noise expo-
sure in young adulthood, we explored this phenomenon after noise exposure in pubescence
[9], because the peri-pubescent cochlea is known to have enhanced sensitivity to PTS in various
animal models [10–16], and hearing loss is predicted to rise in juveniles [17]. We defined neu-
ropathic and non-neuropathic noise levels associated with TTS in pubescent CBA/CaJ mice,
and characterized cochlear physiologic and histologic changes from 24 hours to 16 months
post exposure. Neuropathic noise levels were separated by only 3 dB from non-neuropathic
levels. The damaging effects of neuropathic noise targeting the cochlear base were initially lim-
ited to the base, but with time progressed to also affect the cochlear apex. Our findings may
have implications for regulating noise levels to prevent “hidden” hearing loss associated with
TTS, and for future omics-based studies to decipher the underlying molecular mechanisms.

Methods

Animal groups and noise exposures
We used CBA/CaJ mice because they have good cochlear sensitivity through most of their life
[18]. Six week old males (purchased from Jackson Laboratories) were exposed for 2 hours to an
octave-band noise (8–16 kHz) at various sound levels from 94 to 100 dB SPL, to identify the
highest sound pressure level (SPL) that causes TTS without a permanent decrease in ABR wave
I amplitude (i.e. “non-neuropathic” noise) and the lowest SPL that causes TTS and a perma-
nent decrease in ABR wave I amplitude (i.e. “neuropathic” noise). Animals were awake during
exposures and held unrestrained in small cages. Sound exposure was created by a white-noise

Post-Pubescent Cochlear Neuropathy

PLOS ONE | DOI:10.1371/journal.pone.0125160 May 8, 2015 2 / 17

Competing Interests: The authors have declared
that no competing interests exist.



source, filtered, amplified and delivered through a horn attached to the top of the exposure
booth. Exposure levels were measured in each cage with a 0.25 inch Brüel and Kjær
condenser microphone.

A total of 142 animals were used to study short and long-term effects of these noise levels
on cochlear physiology and histology compared to age-, gender- and strain-matched unex-
posed control mice. All procedures were approved by the Institutional Animal Care and Use
Committee at the Massachusetts Eye and Ear Infirmary.

Cochlear physiology: ABR and DPOAE
Auditory function was evaluated in unexposed and noise-exposed animals using ABR and
DPOAEs. Animals were tested at 6 hours, 2 weeks, 4 weeks, 10 months and 16 months post ex-
posure. Five to nine mice were tested at each time point for each noise exposure group. Mice
were anesthetized with ketamine (100 mg/kg) and xylazine (10 mg/kg) intraperitoneally.
DPOAEs were measured as ear canal pressure in response to two tones presented into the ear
canal (f1 and f2, with f2/f1 = 1.2) at half octave steps, from f2 = 5.66–45.25 kHz, and in 5 dB in-
tensity increments from 15 to 80 dB SPL. ABR responses were measured between subdermal
electrodes, after amplification (10,000X) and filtering (0.3–3.0 kHz): positive behind the ipsilat-
eral pinna, negative at the vertex and ground at the tail. For each frequency and sound level,
512 responses were recorded and averaged using custom LabVIEW data-acquisition software
run on a PXI chassis (National Instruments Corp., Austin, Texas). By visual inspection of
stacked waveforms, threshold was defined from lowest to highest SPL, as the first level at which
a repeatable wave I was detected. ABR wave I amplitude (measured peak-to-peak) was deter-
mined for 80 dB SPL exposures to 11.3 kHz and 32.0 kHz frequency using the ABR Peak Anal-
ysis software (Bradley Buran, Eaton-Peabody Laboratories).

Histological processing and analysis
Deeply anesthetized animals were perfused intracardially with either 4% paraformaldehyde
(PFA) for cochlear whole mounts, or with 2.5% glutaraldehyde (GLUT)/1.5% PFA in 0.1M
phosphate buffer (PB) (pH = 7.3) for resin embedding. Both bullae were opened, and the
round and oval window membranes punctured to allow gentle intracochlear perfusion with the
same fixative as used intracardially. Cochleae were extracted and post-fixed for 2 hours in 4%
PFA for whole mounts, or in 2.5% GLUT/1.5% PFA overnight for resin embedding. Cochleae
were decalcified in 0.12M EDTA or in 0.12M EDTA with 0.1 M PB and 1% GLUT (pH = 7), re-
spectively, for 3 days at room temperature.

Cochlear whole mounts and quantitative confocal immunohistochemistry. The spiral-
ing organ of Corti was microdissected into six pieces and immunostained with primary anti-
bodies targeting C-terminal binding protein expressed in presynaptic ribbons and nuclei of
hair cells (mouse IgG1 anti-CtBP2 at 1:200, BD Transduction Labs. #612044) [19], followed by
double labeling with secondary antibodies AlexaFlour 568 rabbit anti-mouse coupled with
AlexaFlour 568 donkey anti-rabbit. Whole mount samples were first imaged using low-power
light microscopy to allow location-to-frequency mapping, using a custom plug-in to ImageJ.
Guided by the cochlear frequency map, confocal microscopy (Leica SP5) was performed in the
11.3 kHz and 32.0 kHz regions while focusing on the presynaptic ribbons in the basolateral
portion of IHCs; a glycerol-immersion 63x objective at 3.17 digital zoom and a 0.25 μm z-step
were used. For each frequency region, in each cochlea, z-stacks were acquired at 3 adjacent
areas, each containing ~10 IHCs in a row. Z-stacks were transferred to the Amira imaging soft-
ware (Visage Imaging, version 5.2.2). The connected components and iso-surface functions
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were used to quantify ribbon numbers, which were expressed as a mean (ribbons/IHC) of the 3
areas per frequency region.

Cochlear osmication, resin embedding and stereology based counts. Decalcified cochle-
ae were post-fixed in 1% osmium tetroxide in distilled water (dH2O) for 1 hour, then washed
in dH2O and sequentially dehydrated with 70%, 95% and 100% ethanol, incubated in propyl-
ene oxide for 30 min, infiltrated with increasing concentrations of araldite, oriented in molds
and embedded in 100% araldite. After hardening in a 60°C oven for at least 2 days, cochleae
were cut in 20 μm-thick serial sections in a plane parallel to the midmodiolar axis using a Leica
RM 2155 microtome. Sections were mounted in permount on glass slides and coverslipped.

The density of peripheral axons and cell bodies of spiral ganglion neurons (SGNs) in the co-
chlear apex (~11 kHz) and base (~32 kHz) was estimated using principles of unbiased stereo-
logical techniques. Axons were quantified based on the 2D fractionator technique [20], and
SGNs were quantified based on the optical fractionator technique [21]. Stereological analyses
were performed on live video images, obtained through a 100x oil immersion objective
(NA = 1.35), projected to a computer monitor. The image was merged with the Computer As-
sisted Stereological Toolbox (C.A.S.T.-GRID software, The International Stereology Center at
Olympus, Denmark), and a motorized stage moved sections in well-defined steps in the x and
y axes. Before every count, the area of interest was delineated at low magnification, by drawing
a line around all cells of interest. The C.A.S.T.-GRID software would randomly assign unbiased
counting frames in a systematic, random raster pattern covering the entire area of interest, i.e.
the first counting frame was placed randomly and the following were subsequently placed sys-
tematically, separated by the step distances, dx and dy, between frames. The area (a) of each
counting frame was 177.3 μm2 and the total number of frames (n) was noted for all sessions.

Quantification of peripheral axons per area (NA) in the cochlear apex and base was per-
formed on tangential sections through the osseous spiral lamina that contained peripheral
axons but not SGN somata. Markers were placed on myelinated, peripheral axons, in the mid-
dle depth of a section (approximately 10 μm in depth), at the best focal plane within the count-
ing frame. Since the counting frames constitute a well-known fraction of the cross-sectional
area of interest, the total number of axons per mm2 (NA) is estimated as the number of axons
counted (Q) divided by the area of the sampling fraction: NA = Q/(a � n).

SGN quantification per volume (NV) was performed on every second slide on an average of
eight slides in the upper apex (~11 kHz region) and twelve slides in the lower base (~32 kHz).
Sampling was performed within the disector height (h), with the first disector focal plane de-
fined as starting 3 μm below the section top and extending 15 μm down into the sample
(h = 15 μm). All counts were performed within the height of the dissector, with markers placed
on the nucleoli of SGNs. Nucleoli that came into focus between the top and bottom optical
planes, or within the bottom plane, were included; nucleoli in focus within the top plane were
excluded. After systematic sampling at all levels, the density of SGNs per mm3 (NV) is estimat-
ed as the total number of counted SGNs (Q) divided by the volume of the dissector: NV =
Q/(a � n � h).

The same experienced observer (J.B.J.) performed quantification of both peripheral axons
and cell bodies of SGNs, and histopathological evaluation of cochlear IHCs and supporting
cells. The observer was blinded to animal age and noise exposure.

Statistical analysis
All histological and physiological data were analyzed for statistical significance using R free
software, ver. 3.1.1. Group means for noise exposed and unexposed groups were compared
using two-way ANOVA, and post hoc two-sample t-test with pooled-variance (or Wilcoxon
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rank-sum test when N< 7) with Benjamini-Hochberg (BH) multiple comparisons correction.
Trends with time, within the same group, were calculated with one-way ANOVA and post hoc
Dunnett’s multiple comparisons test, with all post hoc comparisons being made against the
earliest time point. Results are expressed as mean ± standard deviations (SD). Differences be-
tween means were considered statistically significant when p< 0.05.

Results

Noise-induced Cochlear Dysfunction: inferring synaptopathic exposure
We used a combination of sound-evoked responses from the auditory nerve and outer hair
cells to infer cochlear synaptopathy in 6 week old pubescent mice (Figs 1 and 2). Prior work in
noise-exposed 16 week old adult mice has shown that, despite return of cochlear thresholds to
baseline, suprathreshold neural responses can remain suppressed long after exposure, and that
these decrements in ABR wave 1 amplitude are indicative of permanent noise-induced loss of
cochlear nerve terminals [2,22].

To make our study in pubescent mice comparable to that in 10 week older mice mice [2],
we used the same duration (2 hours) and frequency band (8–16 kHz) of noise while varying
noise levels. Two-way ANOVA of ABR and DPOAE thresholds returned highly significant ex-
posure and time effects (p< 0.001). Importantly, 100 dB SPL noise that caused TTS in young
adults aged 16 weeks [2] resulted in PTS in pubescent mice aged 6 weeks (Fig 1, purple line),
with significant ABR threshold shifts of> 20 dB (p< 0.001 by BH corrected pooled-variance
t-test) at all but the lowest frequency tested. Exposure to 97 dB SPL noise induced mostly a
TTS (Fig 1, blue line): ABR threshold shifts of 20–58 dB were highly significant (p< 0.001)
above 10 kHz at 6 hours post exposure, but returned to normal 2 weeks post exposure at all fre-
quencies except 45.2 kHz. An approximately 10 dB (p< 0.001) threshold shift at 45.2 kHz re-
mained 4 weeks after exposure. Exposure to 94 dB SPL noise resulted in up to 55 dB TTS in
ABR thresholds, with recovery across the frequency spectrum by 2 weeks post exposure (Fig 1,
green line). DPOAE thresholds mirrored the ABR measurements in all 3 groups, though the
shifts were slightly smaller, as reported previously [12]. DPOAE suprathreshold magnitudes
were significantly (p< 0.001) reduced by the 100 dB SPL exposure (Fig 2B, purple line), how-
ever no permanent DPOAE response decrements resulted from the 97 and 94 dB exposures
(Fig 2B, blue and green line), suggesting full recovery of outer hair cell function.

To gain insight into possible synaptic loss, we quantified changes in suprathreshold ABR
wave I amplitude (Fig 2A) in two frequency regions—one (32.0 kHz) at the cochlear region of
maximum neuropathy in adult ears, and the other (11.3 kHz) within the unaffected region in
the apical half of the cochlea [2]. Two-way ANOVA identified highly significant (p< 0.001)
exposure and time effects at both frequencies. For 94 dB SPL noise (Fig 2A, green line) there
were no significant changes in wave I amplitude at any frequency, compared to age-matched
controls (red line). In contrast, exposure to PTS-causing noise of 100 dB SPL (purple line) in-
duced significant (p< 0.001) decreases in both frequency regions, when measured 2 wks post
exposure. Effects of the 97 dB noise were intermediate. Wave I amplitudes at 32.0 kHz de-
creased by over 75% (p< 0.001) 6 hr after exposure, 22.5% + 10.2% (p< 0.001) at 2 weeks after
exposure, and 20.1% + 10.2% (p< 0.001) at 4 weeks after exposure. Beyond 10 months post ex-
posure, ABR wave 1 amplitude was similar in our control and noise exposed groups. This ob-
servation has to be viewed cautiously because our animal facility was under construction for
several weeks during this period, thus “control” animals may have been exposed to neuropathic
noise. Importantly, strong correlation has been described between ABR wave I amplitude and
cochlear neuropathy in young adult mice purposely exposed to noise of the same duration and
frequency [2]. ABR wave I amplitudes in the 11.3 kHz region were largely unaffected by the 97
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dB SPL exposure, except at 6 hours post exposure when threshold elevations were also seen in
the DPOAEs (p< 0.01) (Fig 2B, blue line). Of note, unexposed mice demonstrate progressive
decrease in DPOAE amplitude with age (Fig 2B, red line) in the 32.0 kHz region. A similar age-
related decline in DPOAE amplitude has been described in 22–26 months old CBA/CaJ mice
[23] and 17 months old CBA/JNia mice [24].

Cochlear synaptopathy: immediate and delayed effects
Basolateral regions of the IHC contain presynaptic ribbons that tether synaptic vesicles near
the active zone, where voltage-gated calcium channels are clustered [25–28]. The ribbons regu-
late exocytotic release of glutamate-filled vesicles into the synaptic cleft, and are necessary for
the temporal precision that characterizes sound-evoked SGN responses [19,29,30]. Malfunc-
tion or misplacement of ribbons decreases the sensitivity of the auditory nerve and desynchro-
nizes their responses to stimulus onsets [19,31,32]. The peripheral axons of SGNs are
unbranched, and, although each SGN synapses on only one IHC, each IHC is contacted by 10–
30 SGNs, depending on frequency regions and species [25,33,34].

Fig 1. Cochlear thresholds are either permanently or temporarily shifted following neuropathic noise.
ABR (left column) and DPOAE (right column) thresholds resulting from exposure of 6 week old mice to 8–16
kHz noise for 2 hours at 100 dB SPL (purple), 97 dB SPL (neuropathic exposure, blue) and 94 dB SPL (non-
neuropathic exposure, green) compared to unexposed controls (red). Thresholds are shown as group
means ± SD. The noise band is depicted as a gray vertical bar. Time post exposure (pe) is specified in hours
(h), weeks (w) or months (m) in vertical boxes on the right side of each row. N = 5–9 mice per time point and
noise exposure.

doi:10.1371/journal.pone.0125160.g001

Post-Pubescent Cochlear Neuropathy

PLOS ONE | DOI:10.1371/journal.pone.0125160 May 8, 2015 6 / 17



We evaluated synaptic ribbons in cochlear whole mount samples labeled with anti-CtBP2
antibody (Fig 3). In unexposed ears (Fig 3A and 3D) and in ears exposed to 94 dB SPL noise
(Fig 3B and 3E), ribbons were found along the IHC basolateral membrane, at levels below the

Fig 2. Neural response is reduced following neuropathic noise. ABRwave I peak-to-peak amplitudes (a) and DPOAE amplitudes (b) in response to
11.3 kHz tones (left column) and 32.0 kHz tones (right column) recorded from 6 hours to 16 months post exposure to noise causing PTS (100 dB SPL,
purple), neuropathic noise causing TTS (97 dB SPL, blue), non-neuropathic noise causing TTS (94 dB SPL, green), and unexposed animals (red). ABR
amplitudes are in response to 80 dB SPL tones (the maximum level tested) and DPOAE amplitudes are in response to 80 dB SPL tones. Noise parameters
are as in Fig 1. Statistical significance of the group differences is indicated by asterisks: *: p < 0.05, **: p < 0.01, ***: p < 0.001. Data are group means ± SD.
N = 5–9 mice per time point for noise-exposed and control groups.

doi:10.1371/journal.pone.0125160.g002

Fig 3. Confocal imaging shows a reduction in CtBP2 stained presynaptic ribbons following
neuropathic noise. Short-term (a-c) and long-term (d-f) loss of presynaptic ribbons in inner hair cells (IHCs)
after exposure to neuropathic (97 dB SPL) noise compared to age-matched animals exposed to non-
neuropathic noise (94 dB SPL) and unexposed controls. Presynaptic ribbons are labeled with anti-CtBP2
antibodies (red). Confocal images are maximal projections of z-stacks of ribbons within 4–5 IHCs in the
32 kHz region. Dashed lines depict IHC outlines. Scale bar: 10 μm (a-f).

doi:10.1371/journal.pone.0125160.g003
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IHC nuclei. Exposure to 97 dB SPL noise caused a loss of ribbons at 2 weeks post exposure (Fig
3C), with additional losses at 16 months post exposure (Fig 3F). Ribbons tended to undergo a
change in contour and be more displaced in the apical direction after neuropathic noise expo-
sure than after non-neuropathic noise exposure or in control ears.

Quantification of ribbons in the 11.3 and 32.0 kHz regions revealed significant differences
after exposure to neuropathic (Fig 4, top row) vs. non-neuropathic noise (Fig 4, bottom row).
Two-way ANOVAs suggest highly significant (p< 0.001) time effects at both frequencies, a
significant exposure effect (p< 0.001) at 32.0 kHz, and a significant time-exposure interaction
term (p< 0.05) at 11.3 kHz. Mean ribbons per IHC in controls were 15.5 + 0.5 at 11.3 kHz and
17.0 + 0.6 at 32.0 kHz. Within 24 hours after 97 dB SPL noise, ribbon counts at 32.0 kHz were
reduced by 51.3% + 4.4% compared to unexposed ears (p< 0.01 by BH corrected Wilcoxon
rank sum test). Two weeks later, the reduction (31.6% + 3.6%) was still significant (p< 0.001)
and persisted (38.9% + 6.2%) at 16 months (p< 0.01). In the 11.3 kHz region, there was no im-
mediate ribbon loss after exposure to 97 dB SPL noise. However, the mean counts decreased
15.7% + 5.9% (p> 0.05) by 2 months after exposure, and the difference from control (20.7% +
6.3%) became significant (p< 0.05) by 16 months post exposure. For both frequency regions,
there was no significant difference between ears exposed to 94 dB SPL and unexposed ears
across all post-exposure times.

Irrespective of noise exposure, there was a gradual decline in ribbon numbers with age, as
reported previously [22]. Ribbon counts in unexposed 17.5 month old animals (16 months
“post exposure”) were reduced by 19.8% + 4.5% in the 11.3 kHz (p< 0.01) and by 20.5% +
5.1% in the 32.0 kHz region (p< 0.001) compared to 6 week old mice (24 hours “post
exposure”).

Fig 4. Numbers of presynaptic ribbons are reduced after neuropathic noise. Synaptic counts in inner
hair cells in the 11.3 kHz (left) and 32.0 kHz (right) regions following exposure to neuropathic (97 dB SPL) or
non-neuropathic (94 dB SPL) noise. Statistical significance of the group differences is indicated by asterisks:
*: p < 0.05, **: p < 0.01, ***: p < 0.001. Data are group means ± SD. N = 6–7 animals per time and
noise exposure.

doi:10.1371/journal.pone.0125160.g004

Post-Pubescent Cochlear Neuropathy

PLOS ONE | DOI:10.1371/journal.pone.0125160 May 8, 2015 8 / 17



Despite the loss of synaptic ribbons following 97 dB SPL exposure, there was no visible
structural damage to the sensory epithelia of the organ of Corti, and no loss of hair cells, when
inspected by light microscopy up to 16 months post exposure (Fig 5).

Delayed Degeneration of peripheral axons and cell bodies
To track SGN degeneration following loss of synaptic ribbons, we inspected (Fig 6) and
counted (Fig 7) their myelinated, peripheral axons in cochlear sections. Tangential cuts
through the osseous spiral lamina in the upper basal region (~32 kHz) of unexposed mice (Fig
6A, 6C and 6E) and mice exposed to neuropathic noise (Fig 6B, 6D and 6F) suggest a loss of

Fig 5. Cochlear sensory cells are intact after neuropathic noise. Photomicrographs of the organ of Corti
from the ~32 kHz region of mice exposed to 97 dB SPL noise and evaluated either 1 month (a) or 16 months
(b) after exposure. Scale bar: 20 μm (a-b).

doi:10.1371/journal.pone.0125160.g005

Fig 6. Cochlear-nerve peripheral axons can be counted in tangential sections through the osseous
spiral lamina. Tangential cuts though the osseous spiral lamina in the ~32 kHz region of cochleae 1 month
(b), 8 months (d) or 16 months (f) after exposure to neuropathic noise (97 dB SPL) demonstrate loss of
peripheral axons compared to age-matched unexposed controls (a, c, e). These sections show fascicles of
cochlear-nerve peripheral axons roughly midway between their cell bodies in the spiral ganglion and their
peripheral terminals in the organ of Corti. Scale bar: 10 μm (a-f).

doi:10.1371/journal.pone.0125160.g006
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cochlear-nerve peripheral axons in the neuropathic group, at both 8 months (Fig 6D), and 16
months post exposure (Fig 6F). Quantification of peripheral axons (Fig 7) confirmed the
trends. Two-way ANOVA found highly significant (p< 0.001) time and exposure effects on
peripheral axon counts in both frequency regions. Exposure to neuropathic noise caused signif-
icant loss of peripheral axons relative to controls at 8 months post exposure in both the apex
(40.0% + 8.2%; p< 0.05 by BH corrected Wilcoxon rank sum test) and base (22.1% + 5.2%;
p< 0.05). At 16 months post exposure, axonal counts were reduced by 33.9% + 8.1% in the
apex (p< 0.05) and 23.2% + 5.7% in the base (p< 0.05). Exposure to non-neuropathic noise
did not cause statistically significant changes in axonal counts compared to age-matched con-
trols. The trend toward fewer axons in the 11 kHz region after non-neuropathic noise was not
significant after correction for multiple hypothesis testing.

Irrespective of noise exposure, peripheral axonal counts in the apical region show early
signs of retraction starting at 4 months post exposure, and decrease with age by 32.0% + 6.5%
(p< 0.01), and by 15% + 9.8% in the base in unexposed 17.5 month old animals (16 months
“post exposure”) compared to 10 week old mice (1 month “post exposure”). However, this
trend did not meet our criterion for statistical significance in the base (p> 0.05).

With noise-induced retraction of peripheral axons of SGNs starting at 8 months post expo-
sure, a subsequent loss of SGN somata is expected. Indeed, visual inspection of osmium-stained
sections at 16 months post exposure revealed an obvious loss of SGNs in both the apex (~11
kHz region, Fig 8B) and base (~32 kHz region, Fig 8D) compared to age-matched controls (Fig
8A and 8C). Two-way ANOVA comparison of SGN counts in the base at 4, 8 and 16 months
post noise exposure (Fig 9) revealed highly significant (p< 0.001) time and exposure effects.
Statistically significant decreases were observed in the base at 16 months post exposure to neu-
ropathic noise. By that time 50.0% + 4.3% (p< 0.01 by BH corrected Wilcoxon rank sum test)
of SGNs were missing. Interestingly, in the apex, SGN loss was significant at 8 months post

Fig 7. Peripheral axons of cochlear nerve fibers slowly degenerate after neuropathic noise.Density of
peripheral axons as a function of post exposure time in the ~11 kHz (left) and ~32 kHz (right) region, following
exposure to neuropathic (97 dB SPL) or non-neuropathic (94 dB SPL) noise. Data are group means (± SD),
expressed relative to data from the youngest unexposed ears. Statistical significance of the group differences
is indicated by asterisks: *: p < 0.05, **: p < 0.01. N = 3–7 animals per time and noise exposure.

doi:10.1371/journal.pone.0125160.g007
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Fig 9. Late-onset loss of cochlear neurons following neuropathic noise.Density of spiral ganglion
neuron somata as a function of post exposure time, as seen in the ~11 kHz (left) and ~32 kHz (right) regions
after exposure to neuropathic (97 dB SPL) or non-neuropathic (94 dB SPL) noise. Data are group means (±
SD), expressed relative to data from the youngest unexposed ears. Statistical significance of the group
differences is indicated by asterisks: *, p < 0.05; **, p < 0.01. N = 3–7 animals per time and noise exposure.

doi:10.1371/journal.pone.0125160.g009

Fig 8. Degeneration of spiral ganglion neurons is assessed in cochlear sections after neuropathic
noise.Midmodiolar sections through Rosenthal’s canal show permanent loss of spiral ganglion neurons in
the apex (b) and base (d) 16 months after exposure to neuropathic noise (97 dB SPL) compared to age-
matched unexposed controls (a, c). Scale bar: 50 μm (a-d).

doi:10.1371/journal.pone.0125160.g008
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exposure (14.1% + 5.7%; p< 0.05), and persisted 16 months post exposure (26.3% + 2.8%,
p< 0.01). Exposure to non-neuropathic noise did not cause significant SGN loss compared to
unexposed mice. Irrespective of noise exposure, SGN counts decreased with age. In the unex-
posed group, SGN counts at 17.5 months declined 15.3% + 2.6% (p< 0.01) in the apex and
25.7% + 3.5% (p< 0.01) in the base compared to counts at 5.5 months (4 months “post
exposure”).

Discussion

Noise-induced cochlear synaptopathy in pubescence
The phenomenon of noise-induced primary degeneration of the auditory nerve was initially
described in adult mice exposed at 16 weeks of age [2], and subsequently validated in adult
guinea pigs [3]. Our study demonstrates that a similar phenomenon occurs in mice exposed at
6 weeks, i.e. just at the onset of puberty. In both the pubescent 6 week old cochlea and the
young adult 16 week old cochlea, a noise exposure that produces only reversible elevation of
cochlear thresholds, and no hair cell loss, nevertheless can permanently destroy 40–50% of the
synapses between cochlear nerve fibers and inner hair cells in the basal regions of the cochlea.

Noise-induced threshold elevation, whether temporary or permanent, is primarily due to
dysfunction, and loss of the normal contribution of outer hair cell electromotility to cochlear
amplification, as evidenced by the similarity in the degree of threshold shift measured via
OAEs and ABRs. If the outer hair cells recover, cochlear thresholds can recover. According to a
prior study in 16 week old mice [2], thresholds for ABR recover despite substantial loss of syn-
apses because the neuropathy is selective for fibers with high-thresholds and low spontaneous
rates [35].

Noise-induced synaptopathy is thought to reflect a type of glutamate excitotoxicity [36,37].
Swelling of afferent nerve terminals is seen 48 hrs after a noise-induced TTS [6,38,39], and glu-
tamate agonists can mimic [40,41], while glutamate antagonists can prevent this swelling
[36,42]. Calcium overload is a major contributor to glutamate excitotoxicity in the central ner-
vous system [43–45], and it is likely that the mechanisms are similar at the cochlea’s glutama-
tergic synapses. The enhanced sensitivity of high threshold fibers [8] may be due to the paucity
of mitochondria [33,46,47], and therefore a decreased ability to buffer this calcium overload.

The threshold for noise-induced cochlear synaptopathy
Specifying the noise-level “threshold” for cochlear neuropathy is important for several reasons.
First, it defines a useful “control” group in studies aimed at deciphering molecular mechanisms.
Comparing gene-expression changes at early post exposure survivals between neuropathic and
non-neuropathic groups of exposed mice would likely yield a better focused list of key damage
pathways than a design which compares exposed mice to unexposed controls, as has been the
case for prior TTS studies [48–50].

Secondly, it is important, for possible re-design of damage risk criteria, to understand
whether all TTS-producing exposures are neuropathic. Here, we showed that only a 3 dB in-
crease in exposure level turns a non-neuropathic exposure into one that destroys up to ~50%
of the synapses on cochlear sensory cells in some cochlear regions. Our finding in 6 week old
mice is consistent with a prior study in 16–18 week old mice wherein a 100 dB exposure was
neuropathic, whereas a 94 dB was not, despite the fact that both produced a TTS of roughly 40
dB when measured 24 hrs post exposure [51].
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Immediate vs. delayed cochlear synaptopathy
Prior work in young adult mice aged 16 weeks showed that the loss of cochlear synapses was
demonstrable within 24 hrs post exposure, and neither recovered nor increased during the next
8 weeks post exposure [2]. The synaptic loss should immediately render the affected neurons
non-responsive to sound, since each fiber contacts only a single IHC via a single terminal swell-
ing [33]. Thus, after the hair cells (and thresholds) recover, there should be a good correlation
between the drop in ABR suprathreshold amplitudes and the loss of cochlear synapses. Indeed,
we showed a ~30% drop in ABR wave I amplitude and a ~30% drop in ribbon counts at the
corresponding cochlear location at 2 weeks post exposure. The apparent recovery of synaptic
counts between day one and two weeks post exposure could reflect a degree of regeneration
[52], or a transient down-regulation of synaptic protein expression during and immediately
after the exposure. Such a down-regulation could be part of a protective mechanism, as has
been described for the post-synaptic side: cochlear nerve terminals appear to internalize gluta-
mate receptors during a traumatic exposure to noise [53].

In noise-induced synaptopathy in the 16 week old mice, the degeneration of neuronal cell
bodies in the spiral ganglion occurred at a similar pace: spiral ganglion cell loss was not detect-
able for several months and did not approach the magnitude of immediate synaptic loss until
almost 2 years post exposure [2], but showed a reduction of ~45% at 16 mo post exposure.
Here, we showed a similar delayed onset of the degeneration of cochlear nerve peripheral
axons and cell bodies. At one month post exposure, there was no detectable degeneration of ei-
ther peripheral axons or cell bodies, whereas by 16 months post exposure, which reflects about
half the murine life expectancy, the ganglion cell loss approached the initial synaptopathy 24
hrs post exposure (~50%).

In addition to this delayed disappearance of the cell bodies and peripheral axons of cochlear
neurons that have lost their peripheral synapses, we also observed delayed spatial spread of the
synaptopathy itself. Although loss of synapses in the cochlear base is essentially immediate,
synaptic loss also slowly spreads to the cochlear apex, where losses reach statistical significance
by 16 months post exposure, when compared to age-matched controls. As reported previously
[22] there is significant age-related synaptic loss even in animals maintained in the controlled
acoustic environment of an animal care facility. Present results reinforce prior work suggesting
that early noise exposure accelerates age-related hearing loss [12,54], as it progresses from high
to low frequencies. Neuropathic changes in the apical peripheral axons could be detected earli-
er (4 months post exposure) than synaptic loss, at 16 months post exposure, likely because of
increased sampling density for these structures at later time points.

Hidden hearing loss: public health implications for pubescence and
beyond
In general, animal experiments may not directly extrapolate to humans because human SGNs
have distinctive features, such as lack of somatic myelination, and sharing of myelin sheats by
multiple SGN cell bodies [55–57]. However, suprathreshold ABR may be useful in the non-in-
vasive diagnosis of cochlear synaptopathy because noise-induced and age-related relative dec-
rements in human ABR wave I amplitude are comparable to the relative changes we have
observed in mice. Specifically, when studying human subjects with normal threshold responses,
noise-exposure backgrounds explained approximately 15 to 24% of the variance in wave I am-
plitude [58].When focusing on human subjects with normal threshold responses and tinnitus,
ABR wave I amplitude was reduced on average 22% at 90 dB SPL and 24% at 100 dB SPL com-
pared to the control subjects without tinnitus, suggesting that cochlear neuropathy contributes
to tinnitus [59]. The measured increase in the ratio of ABR wave V to wave I in tinnitus
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subjects could be explained by 53–61% deafferentation in a computational model [59]. Subse-
quent studies of other subjects with tinnitus and normal auditory thresholds [59–61] have vali-
dated decreased amplitude of ABR wave 1, consistent with cochlear neuropathy. In an aging
study of veterans without substantial hearing loss, the amplitude of ABR wave I decreased 38%
over a 40 year span from age 30 to 70 years of age [62], again suggestive of cochlear neuropathy.
Taken together, the published studies of human subjects have strongly suggested noise-induced
and age-related synaptopathy that is similar in magnitude and time course (relative to the spe-
cies lifespan) to the synaptopathy we have found in the current study of pubescent mice, and
Kujawa and Liberman (2009) have found in young adult mice.

However, despite the strong suggestion of cochlear synaptopathy in people with otherwise
normal thresholds, a definitive proof of synaptopathy is lacking because ABR measurements in
people cannot yet be complemented with direct visualization and quantification of cochlear
neurons and their synapses. The ongoing development of a cochlear endoscope for minimally-
invasive intracochlear imaging based on two photon fluorescence may provide the missing link
[63]. Specifically, we have demonstrated feasibility of cellular level imaging of control and
noise-exposed murine cochlear cells—including neuronal cell bodies, nerve fibers and hair
cells—without contrast dyes, through the round window, using two photon microscopy [63].
Because the autofluorescence signal appears to be generated by flavine adenine dinucleotide,
which is an important cofactor in metabolic reactions, the autofluorescence signatures from
the deafferented neurons may be different from those of neurons with intact afferent synapses.

In the meantime, refinements of the non-invasive electrophysiologic techniques promise to
provide deeper insight into human cochlear synaptopathy. Specifically, Envelope Following
Response (EFR) may be more sensitive in detecting cochlear synaptopathy than ABR because,
unlike ABR, EFR reflects activity of high-threshold fibers more than low-threshold fibers (re-
viewed by Plack et al., 2014) [64].

Taken together, our results in an animal model suggest that a re-examination of damage
risk criteria may be required to prevent cochlear synaptopathy, and the “hidden” hearing loss it
produces. The early symptoms of cochlear synaptopathy, and the preferential loss of high-
threshold fibers, are likely to be difficulties understanding speech in noise, when these fibers
are normally activated [51]. To date, national standards for noise exposure (set by the National
Institute for Occupational Safety and Health and Centers for Disease Control) are not based on
age at exposure. Although exposure to high noise levels is estimated to be decreasing in the
workplace [65], sales of portable listening devices are increasing, primarily among adolescents
[35,66]. This has resulted in a shift of “at-risk groups” from adults to adolescents. Our data
from pubescent mice contribute to the mounting evidence of cochlear neuropathy underlying
“hidden” hearing loss.
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