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Abstract
Just as modern nation-states struggle to manage the cultural and economic impacts of mi-

gration, ancient civilizations dealt with similar external pressures and set policies to regulate

people’s movements. In one of the earliest urban societies, the Indus Civilization, mecha-

nisms linking city populations to hinterland groups remain enigmatic in the absence of writ-

ten documents. However, isotopic data from human tooth enamel associated with Harappa

Phase (2600-1900 BC) cemetery burials at Harappa (Pakistan) and Farmana (India) pro-

vide individual biogeochemical life histories of migration. Strontium and lead isotope ratios

allow us to reinterpret the Indus tradition of cemetery inhumation as part of a specific and

highly regulated institution of migration. Intra-individual isotopic shifts are consistent with im-

migration from resource-rich hinterlands during childhood. Furthermore, mortuary popula-

tions formed over hundreds of years and composed almost entirely of first-generation

immigrants suggest that inhumation was the final step in a process linking certain urban

Indus communities to diverse hinterland groups. Additional multi disciplinary analyses are

warranted to confirm inferred patterns of Indus mobility, but the available isotopic data sug-

gest that efforts to classify and regulate human movement in the ancient Indus region likely

helped structure socioeconomic integration across an ethnically diverse landscape.

Introduction
Protohistoric South Asia holds unique insights into the evolution andmaintenance of early urban-
ism, as the relatively decentralized Indus Civilization suggests an alternative to the strongly cen-
tralized states of contemporaneous Egypt andMesopotamia [1]. Yet the institutional mechanisms
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that structured Indus expansion in the late 3rd millennium BC remain unclear, in part because the
Indus script is undeciphered. Fortunately, human tooth enamel provides a biogeochemical archive
of past behavior and residence change that offers an alternative means of reconstructing ancient
institutions [2]. The nature of the Indus skeletal record suggests that Indus cemetery inhumations
are closely associated with the socio-political structures of the Harappa Phase (2600–1900 BC)
and therefore provide a key source of isotopic data for understanding early urban mechanisms of
interaction. Like standardized weights, measures, script, and stamp seals, a relatively homogenous
tradition of cemetery inhumation endured for centuries, contemporaneous with the Indus urban
florescence and cultural integration spanning ~680,000 km2 of northwest South Asia [3]. Though
burials are geographically widespread, more than a century of excavation has yielded skeletal re-
mains for only ca. 600 individuals [4]. Inhumations in formalized cemetery contexts are very rare,
suggesting that cemetery populations represent a specific group distinct from the population-at-
large. In this work, we conducted lead (Pb) and strontium (Sr) isotopic analysis of human tooth
enamel recovered from Harappa Phase cemeteries at Harappa, Pakistan [5] and Farmana, India
[6] in order to assess the dynamics of migration and social identity for the buried individuals. We
demonstrate how the isotopic data can be used to elucidate their distinctive social identity and
propose that a specific, culturally regulated institution of migration helped to shape ancient
urban-hinterland relationships.

Indus Mortuary Practice in Context
Though peoples of the Indus Tradition were connected by trade routes since at least 5500 BC,
it was not until ca. 2600 BC that diverse regional cultures developed a common repertoire of ce-
ramic forms, settlement organization, urban infrastructure, and administrative practices [1, 7].
Emerging elites sought to consolidate their advantages through the control of exotic resources
and sophisticated craft technologies [8]. At the major urban center of Harappa, for example,
mercantile groups acquired a wide range of resources from adjacent mineral-rich regions in-
cluding the Potwar Plateau to the northwest [9] (Fig 1). Farmana was a much smaller settle-
ment near the eastern limit of the Indus culture area and relatively close to the Khetri copper
belt of the northern Aravalli mountain range, a region known for ancient copper production
[10]. Indus peoples likely acquired raw materials from these and other regions through trade,
as there is little archaeological evidence for large-scale militarization [9]. Furthermore, Indus
artifacts and stylistic influences at hinterland sites suggest relationships of reciprocity [9, 11].

Mortuary analysis of Harappa Phase cemetery populations complements approaches to un-
derstanding interregional interaction that focus primarily on the movement of artifacts. As buri-
als are rare, the vast majority of Indus deceased were presumably disposed of in ways that are
not apparent in the archaeological record. However, important insights have been gleaned from
available mortuary populations. Previous morphological and strontium isotope studies of skele-
tal material at the sites of Harappa [12, 13] and Lothal [14] suggest residence change may have
been common for certain individuals and that increased mobility facilitated gene flow with hin-
terland groups. At Harappa, males show greater isotopic and morphological variation—a pat-
tern previously interpreted as evidence for matrilocality [13]. Likewise, morphological similarity
between individuals from Lothal and nearby hunter-gatherers suggests some degree of urban-
hinterland mobility [14].

Despite the potential influx of immigrants, Harappa Phase burials are relatively homoge-
nous in terms of material culture and contain artifacts known from domestic Indus contexts
[7]. Most Indus cemetery burials consist of a rectangular or oval pit aligned north to south with
modest numbers of associated ceramics at the head of the grave. Skeletal remains typically lie
supine and extended and are sometimes adorned with small quantities of jewelry or other
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personal effects. Skeletons may be incomplete or absent with grave goods present in various
quantities, but nearly all cemetery inhumations conform to a similar layout that is not readily
differentiated into distinct social classes.

The skeletal series from Harappa (Cemetery R-37) and Farmana are consistent with the
above trends, and we suggest the inhumed participated in a shared set of mortuary practices.
These practices remained relatively stable over a period of several centuries as indicated by ra-
diocarbon dates from charcoal associated with early and late burials at Harappa (2550–2030
cal BC) (J. M. Kenoyer, personal communication). Relative dating from ceramics associated
with the Farmana burials indicates a similar period of use (ca. 2600–2000 BC) [6, 15]. Few
clues exist as to the social identity of the deceased, but the low incidence of skeletal pathologies
and non-specific stress indicators at Cemetery R-37 suggests improved access to resources
[13]. Likewise, personal ornaments are few in number but many are of high quality [5]. Al-
though Harappa Phase burials lack the kinds of ostentatious display associated with royal
Mesopotamian and Egyptian tombs, their relatively privileged disposition in life and death
could indicate ties with elite Indus groups. Lastly, demographic profiles of the Harappa Phase
mortuary populations at Harappa [5] and Farmana [6] further emphasize the selective nature
of the mortuary program. A near total absence of infants implies certain social strictures on
burial. Given the frequency with which children receive alternative mortuary treatments

Fig 1. Map of the Indus Civilization culture area with locationsmentioned in the text. Dashed line
indicates approximate boundary between geochemical catchments. Catchment A, including the Potwar
Plateau and adjacent drainages of the Hindu Kush and Karakoram, is relatively less radiogenic than
Catchment B, including the Punjab tributaries that drain the Greater and Lesser Himalayas.

doi:10.1371/journal.pone.0123103.g001

Selective Urban Migration in the Ancient Indus

PLOS ONE | DOI:10.1371/journal.pone.0123103 April 29, 2015 3 / 20



cross-culturally [16, 17], the Indus demographic profiles cannot be interpreted as direct evi-
dence for a distinct social class associated only with older individuals. Nevertheless, they are
consistent with the notion that Harappa Phase mortuary populations are not wholly represen-
tative cross-sections of particular breeding populations or ethnic groups.

The question of who was incorporated into cemeteries has major implications for any mor-
tuary analysis. For decades, archaeologists have looked to the ordering principles of mortuary
populations for insights into broader social systems. In certain instances, patterns of intra-cem-
etery variability may provide relatively direct reflections of social hierarchies [18, 19, 20, 21].
However, this view has been critiqued by scholars emphasizing the ways in which mortuary
programs are the subject of active manipulation and capable of influencing societies in their
own right [22, 23, 24, 25]. Conceived in this way, archaeological cemeteries must be interpreted
in terms of dynamic social processes embedded within particular historical contexts. A similar
conceptual approach has guided the study of frontiers or borderlands [26, 27, 28], and indeed,
it is not uncommon for novel mortuary programs to emerge in situations of culture contact
[29, 30, 31, 32]. Therefore, isotopic methods for assessing the origins of individuals provide in-
valuable tools for inferring the presence and character of cultural interaction.

Isotopic approaches coupled with bioarchaeological methods permit a more robust mortu-
ary analysis because they yield data at the level of the individual. This analytical resolution can
be crucial for determining the structure of intra-population variation. However, the individual
may not always be the most relevant unit of analysis when modeling social systems. In the con-
text of a mortuary program, individual bodies should not be conflated with individual social
identities because burial assemblages are not autobiographical. They are produced by the living,
and each burial gives the living an opportunity to assert their own perceptions [23]. Burials
offer a medium in which the living can emphasize diverse relationships with the deceased [33],
or in some cases, with the deceased’s corporate group [34]. Therefore, models of social systems
derived from mortuary data must consider the role of multi-bodied, multi-generational social
identities in structuring mortuary practices. Given the relative homogeneity and extreme scar-
city of Harappan Phase cemetery burials, it is possible that a common group identity was prior-
itized over various individual identities. Thus, the traits that burials share may yield more
insights into the mortuary program than traits that differentiate one burial from another.

Principles of Analysis
Combined analyses of radiogenic Sr and Pb isotope ratios (i.e., 87Sr/86Sr, 208Pb/204Pb, 207Pb/204

Pb, 206Pb/204Pb) and Sr abundances in dental enamel samples enable more detailed inferences
about Indus mobility and cultural integration. Each bulk enamel sample yields weighted average
isotopic ratios of the bioavailable or soluble fraction of Sr and Pb ingested in food, water, and dust
during the period of enamel mineralization [35, 36, 37]. Because ratios of these heavy isotopes re-
main unchanged as they pass from bedrock into the biosphere, isotopic differences between tooth
enamel samples can be attributed to different environmental sources of Sr and Pb originating
from distinct geographic regions. In other words, heavy isotope ratios in tooth enamel can be
matched to those of the place (or places) where an individual was living. The same is potentially
true for other mineralized tissues like bone and dentine, but the crystalline structure of enamel ap-
atite is much more resistant to diagenetic alteration in the burial environment and provides a
high-fidelity record of in vivo isotopic ratios [35, 36, 37].

Once fully mineralized, enamel undergoes no additional remodeling [38] and therefore ar-
chives the isotopic input acquired during a specific developmental period in an individual’s life
history. Variations in the timing of enamel mineralization mean that early-life residential his-
tory can be inferred through analyses of multiple tooth types—grouped here into three cohorts.
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The first molar cohort consists of teeth that mineralized within the first three years of life,
whereas second and third molar cohorts represent ~3–7 years of age and ~8–16 years of age,
respectively [39, 40]. Though we present maximum age ranges for completeness, the minerali-
zation of premolars and molars has been noted to take between 3.0 and 3.4 years [39]. Compar-
ison of enamel isotope ratios from different molar cohorts with estimates of interregional
isotopic variation permits inferences about the location and timing of individual residence
changes [35, 36, 37]. Although variability in diet and residence over a multi-year period may
prevent precise correlations between a given enamel sample and estimated isotopic catchments,
patterning within an isotopic dataset relative to geologic end-members can support more de-
tailed interpretations. In addition, mixing lines between distinct geological sources may be in-
ferred using elemental concentration data, making it possible to distinguish between groups of
individuals that have similar isotopic ratios but different elemental concentrations (i.e.,
Sr ppm) [41].

Individuals are identified as non-local when their isotope ratios fall outside the estimated
range of isotopic variation for the local dietary catchment. Local water, sediment leachates,
plants, and faunal remains can all be used as proxies for the bioavailable isotopic input in
human dietary catchments, but none are likely to give a precise weighted average of the most
frequently ingested sources of food, water, and dust in the human diet [42]. Tooth enamel
from archaeological fauna for species with small home ranges provides the best estimate of
local isotopic variation because foraging behavior averages out small-scale geochemical varia-
tions within a relatively constrained area. Sampling archaeological material also minimizes the
potential influence of modern environmental contamination. Nevertheless, factors including
seasonal migration or the importation of faunal resources can introduce non-local ratios into
datasets which can result in overestimates of local isotopic variability.

To deal with the challenges of defining local isotopic ranges, Burton and Price [43] sug-
gested using faunal 87Sr/86Sr to confirm the local modal trends in human 87Sr/86Sr as identified
through kernel density estimation. We follow a similar logic in emphasizing the internal struc-
ture of the data sets, but apply a different statistical method for this multi-isotopic study. Here
we use cluster analysis algorithms DBSCAN [44] and K-means [45]. Given some knowledge of
underlying isotopic variability in the geological setting, such methods can discriminate between
archaeological individuals within well-represented clusters (presumably frequently accessed di-
etary catchments) and those that are peripheral to the identified clusters.

Materials and Methods
Whenever possible, teeth from the first, second, and third molar cohorts were sampled to max-
imize life history information for each individual. First molars were preferred for assaying early
life isotopic exposure, but a single first incisor from Harappa burial H87/ 72 49h was included
in the first molar cohort to maximize the dataset. Based on similar logic, three premolars were
included in the second molar cohort. Even though initial cusp formation begins at about 1 year
of age for canines, a single canine was also grouped with the second molar cohort for two rea-
sons. First, canine crowns have a long formation time, lasting until ~5–6 years of age. Second,
the sampled canine was clearly associated with the first incisor from burial H87/ 72 49h, a
tooth that mineralized earlier in development. Together with teeth from burials H87/ 71 49c
and H94/ 253 18, these samples provide the only developmental sequences that could be con-
firmed from the Harappa analyses. Unfortunately, many Harappa burials were either poorly
preserved or had been disturbed in antiquity by Harappa Phase residents re-using cemetery
land for subsequent burials [5]. All available fully mineralized teeth were sampled from collec-
tions at the Harappa Museum in Harappa, Pakistan yielding 44 teeth from a minimum number
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of individuals (MNI) of 38. The Farmana sample, curated at Deccan College Post-Graduate
and Research Institute in Pune, India, includes 33 teeth from 17 individuals.

Additional faunal and sedimentary samples were collected to establish a baseline for local
isotopic variation. Sampled archaeological fauna include pigs (Sus) and dogs (Canis), all of
which were collected from secure chronological contexts at Harappa (n = 13) and Rakhigarhi
(n = 8). Farmana fauna were unavailable for sampling, but the major urban center of Rakhi-
garhi lies ~30 km to the northwest of Farmana and is assumed to be broadly representative of
the bioavailable dietary catchment in the region. Sediment samples (~200 mg) collected at
Farmana (n = 3) augment the Rakhigarhi faunal data. Harappa and Rakhigarhi fauna are curat-
ed at the Peabody Museum in Cambridge, USA and Deccan College respectively. Permission to
export samples for isotopic analysis was granted by the Archaeological Survey of India. All nec-
essary permits were obtained for the described study, which complied with all relevant
regulations.

Tooth enamel samples (~50 mg) were cleaned of surficial deposits and dentine under 10x
magnification using a Brassler dental drill with a diamond bit. Samples were powdered in agate
mortars and pestles and pretreated according to light stable isotope protocols [46] using solu-
tions of 50% reagent grade sodium hypochlorite and 0.2 N acetic acid. Approximately 10 mg of
each pretreated enamel sample was set aside for light stable isotope analyses not reported here,
and the remainder was reserved for heavy isotope analyses in the clean lab and mass spectrom-
etry facilities of the Department of Geological Sciences, University of Florida. Sediments were
leached for 2 hour periods using 0.1 N acetic acid and 2 N hydrochloric acid successively, with
each acid leachate pipetted off to capture the bioavailable fraction of Sr and Pb. All enamels
and sediment leachates were dissolved in pre-cleaned Teflon vials using 8 N nitric acid, after
which Sr and Pb were separated from single aliquots using ion chromatography [47].

All samples were analyzed for 87Sr/86Sr using a “Micromass Sector 54” thermal ionization mass
spectrometer (TIMS). After being loaded onto degassed tungsten filaments, the samples were run
at 1.5V for 100 ratios whenever possible, and the resulting data normalized to 86Sr/88Sr = 0.1194.
The long-term reproducible 87Sr/86Sr of NBS-987 is 0.710240 ± 0.000023 (2σ). Lead isotopic ratios
were measured using a ‘‘Nu-Plasma”multiple-collector inductively-coupled-plasma mass spec-
trometer (MC-ICP-MS) with Tl-normalization [48]. The data are reported relative to the follow-
ing values of NBS 981: 206Pb/204Pb = 16.937 ± 0.004 (2σ), 207Pb/204Pb = 15.490 ± 0.003 (2σ),
and 208Pb/204Pb = 36.695 ± 0.009 (2σ). Additionally, sample preparation, Sr and Pb separation,
and TIMS andMC-ICP-MS analyses were conducted in multiple sessions over a period of several
months with each session incorporating samples frommultiple tooth types. As a consequence,
systematic patterns within the dataset are not attributable to errors in the analytical process.

Statistical analyses were used to identify optimal clusters in the faunal isotopic distributions
(206Pb/204Pb vs. 87Sr/86Sr) from Harappa and Rakhigarhi, following the assumption that the
modality of the results (i.e., the most frequently returned number of clusters) reflects the un-
derlying structure of the data set and the most plausible cluster size. We used the DBSCAN al-
gorithm to assign data points to clusters according to density reachability. DBSCAN requires
the operator-defined parametersminpts (minimum number of points needed to form a cluster)
and � (maximum radius to consider when determining whether two points are directly densi-
ty-reachable) [44]. DBSCAN analysis was conducted on the normalized data from each site
(minpts = 1) with � defined at 1000 regular sequential intervals for the maximum range of val-
ues that returned non-trivial results. Upper and lower bounds were defined as the highest and
lowest values of � that neither assigned each data point to its own unique cluster nor grouped
all data within a single cluster (Harappa: 0.214� �� 2.069, Farmana: 0.235� �� 1.706). We
then identified the optimal clustering solution for each site using maximum-likelihood estima-
tion under the Poisson model [49]. Clustering solutions with the highest likelihood were
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selected as representative of the local isotopic range. Local isotopic ranges were defined as the
minimum and maximum ratios for all data points within the largest cluster of the most likely
clustering solution.

DBSCAN analysis was compared against results from the K-means clustering algorithm
[45]. K-means analysis was conducted for sequential values of k (the number of possible clus-
ters) with the optimal solutions for k (those which explain most of the variance with the fewest
clusters) identified at the “elbow” in scree plots of the sum square of errors (SSE). Replication
of the dense central clusters identified in DBSCAN lends supports to the distinction between
clustered “local” data points and peripheral clusters or data points. All analyses were conducted
using R, version 3.1.1 [50] and the fpc package [51].

Results
Results of the individual analyses are reported in S1 Table with means (M), standard deviations
(SD) and ranges provided below. At Harappa, human 87Sr/86Sr (M = 0.71623, SD = 0.00378) has a
wider range (0.71113–0.72802) than that of fauna (M = 0.71865, SD = 0.00135, range = 0.71569–
0.72112). The same is true for Harappa human Pb isotope ratios [208Pb/204Pb (M = 38.814,
SD = 0.257, range = 38.013–39.377), 207Pb/204Pb (M = 15.713, SD = 0.026, range = 15.650–
15.770), 206Pb/204Pb (M = 18.677, SD = 0.171, range = 18.054–19.099)] relative to those of
Harappa fauna [208Pb/204Pb (M = 38.970, SD = 0.159, range = 38.580–39.189), 207Pb/204Pb
(M = 15.735, SD = 0.008, range = 15.720–15.749), 206Pb/204Pb (M = 18.744, SD = 0.106,
range = 18.468–18.874)]. A similar relationship holds for Farmana humans [87Sr/86Sr
(M = 0.71611, SD = 0.00111, range = 0.71529–0.72038), 208Pb/204Pb (M = 38.921, SD = 0.606,
range = 36.279–39.413, 207Pb/204Pb (M = 15.755, SD = 0.050, range = 15.572–15.814), 206Pb/204Pb
(M = 18.897, SD = 0.567, range = 16.506–19.896)] compared to Farmana sediment leachates
[87Sr/86Sr (M = 0.71565, SD = 0.00015, range = 0.71553–0.71594), 208Pb/204Pb (M = 39.424,
SD = 0.024, range = 39.393–39.452), 207Pb/204Pb (M = 15.819, SD = 0.004, range = 15.813–
15.823), 206Pb/204Pb (M = 19.328, SD = 0.020, range = 19.297–19.343)] and Rakhigarhi fauna
[87Sr/86Sr (M = 0.71618, SD = 0.00131, range = 0.71471–0.71903), 208Pb/204Pb (M = 38.949,
SD = 0.256, range = 38.371–39.188), 207Pb/204Pb (M = 15.752, SD = 0.046, range = 15.655–
15.799), 206Pb/204Pb (M = 18.882, SD = 0.169, range = 18.584–19.053)]. Furthermore, the
Harappa human isotope data have broadly distinct distributions from the Farmana human
data set. This observed difference is also apparent in measured Sr concentrations (Harappa
Sr ppm—M = 332, SD = 88, range = 137–557; Farmana Sr ppm—M = 826, SD = 246,
range = 246–1388).

Cluster analysis of the faunal data reveals the structure of their distributions in Pb-Sr space
and suggests plausible ranges for defining local isotopic variability (Figs 2 and 3). Site-specific
analyses in DBSCAN yield clusters of varying size for different values of �. For Harappa fauna,
the clustering solutions with highest likelihood consist of four (0.178) and five (0.175) clusters
(Fig 2B). In both solutions, the large central cluster is composed of the same nine data points
(Fig 2A). The nine-point cluster is further validated by K-means analysis. Fig 2D shows that
SSE is minimized as the number of clusters is increased, but the rate of minimization levels
off rapidly (forming the “elbow”) beyond the four and five cluster solutions. The largest
cluster in the four cluster solution mirrors that produced by DBSCAN (Fig 2C), whereas the
five cluster solution subdivides the central cluster into two smaller subclusters based on varia-
tion in 206Pb/204Pb. Thus, both DBSCAN and K-means analyses support the partitioning of the
data set into a central cluster and peripheral clusters or data points. Furthermore, the balance
of evidence identifies a nine-point cluster having a 87Sr/86Sr SD of 0.0005. This value is broadly
consistent with the typical SD of 0.0003 proposed by Burton and Price [43], and the relatively
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larger SD inferred here for the major urban center of Harappa might be attributable to the
proportionately larger provisioning area exploited by Harappan residents. We therefore define
the local range at Harappa as the minimum and maximum of 87Sr/86Sr (0.71795–0.71913)
and 206Pb/204Pb (18.687–18.874) for the nine-point faunal cluster (S2 Table).

Similar partitioning is apparent within the Rakhigarhi fauna. Using DBSCAN, the most
likely clustering solutions consist of three (0.199) and four (0.195) clusters (Fig 3B) resulting in
primary clusters of five and four points respectively (Fig 3A). K-means analysis identifies the
same clusters (Fig 3C) as outcomes of the three and four cluster solutions inferred from the
elbow of the scree plot (Fig 3D). The four-point cluster has a slightly smaller 206Pb/204Pb SD
(0.056) compared to that of the five-point cluster (0.066), but a striking difference is apparent
in 87Sr/86Sr. In the four-point cluster, all the data points fall between 0.7157 and 0.7158
(SD = 0.0001), whereas the five-point cluster (SD = 0.0006) includes a far more radiogenic data
point (0.7170). Although 87Sr/86Sr variability for the five-point cluster is more comparable
with that of Harappa, it is not consistent with either the known 87Sr/86Sr homogeneity in the
region [52] or the distribution of the Farmana data set. All but four of the Farmana human
samples have 87Sr/86Sr at or below 0.7160. These values contrast markedly with the relatively
radiogenic data point from the five-point faunal cluster. Likewise, the sediment leachates from

Fig 2. Local dietary catchment at Harappa inferred through cluster analysis of faunal isotope ratios. The structures of the optimal clustering solutions
are depicted in Pb-Sr space (206Pb/204Pb vs. 87Sr/86Sr) with each cluster assigned a different color. Solid circles identify the local faunal cluster determined
by the four-cluster solutions, dashed circles identity the local faunal cluster determined by the five-cluster solutions. The (A) optimal DBSCAN clustering
solution in Pb-Sr space is inferred from (B) a likelihood estimation of all non-trivial DBSCAN clustering solutions. The (C) optimal K-means clustering solution
is inferred from (D) the “elbow” in the K-means SSE plot.

doi:10.1371/journal.pone.0123103.g002
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Farmana have 87Sr/86Sr more similar to that of the four-point faunal cluster (0.7155–0.7159).
Lastly, radiogenic isotope data should be distributed normally for a given population exploiting
a single dietary catchment [43]. A Shapiro-Wilk normality test was significant (p = 0.004) only
for the five-point cluster, supporting an inference of non-normality, which is inconsistent
with a single dietary catchment. Therefore, we suggest that the four-point cluster best repre-
sents the local isotopic range at Rakhigarhi. For purposes of inferring migration in the Farmana
mortuary population, we define the local range at Farmana as the minimum and maximum
of 87Sr/86Sr (0.71553–0.71594) and 206Pb/204Pb (18.920–19.343) for the pooled sample of
Farmana sediment leachates and the four-point Rakhigarhi faunal cluster (S2 Table).

Discussion

Defining Local
Isotopic analyses of humans and fauna show considerable variability consistent with changes
in residence. Although human isotopic ranges exceed those of the fauna, wide variability in the
faunal isotopic ratios nevertheless suggests that they overestimate local isotopic catchments.
For example, the standard deviation of 87Sr/86Sr for all fauna at Harappa (0.0014) far exceeds

Fig 3. Local dietary catchment at Rakhigarhi inferred through cluster analysis of faunal isotope ratios. The structures of the optimal clustering
solutions are depicted in Pb-Sr space (206Pb/204Pb vs. 87Sr/86Sr) with each cluster assigned a different color. Solid circles identify the local faunal cluster
determined by the four-cluster solutions, dashed circles identity the local faunal cluster determined by the three-cluster solutions. Arrows indicate optimal
clustering solutions. The (A) optimal DBSCAN clustering solution in Pb-Sr space is inferred from (B) a likelihood estimation of all non-trivial clustering
solutions. The (C) optimal K-means clustering solution is inferred from (D) the “elbow” in the K-means SSE plot.

doi:10.1371/journal.pone.0123103.g003
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the “typical” SD of approximately 0.0003 for archaeological sites [43]. Likewise, the relatively
large SD at Rakhigarhi (0.0013) is inconsistent with the 87Sr/86Sr homogeneity known for re-
gional sediments in general [52] and Farmana sediments (SD = 0.0002) in particular. Given
that biological samples tend to show less variation than geological samples due to averaging ef-
fects [42], the relatively narrow isotopic distribution of Farmana sediment leachates suggests
that Rakhigarhi faunal variation exceeds that of the local dietary catchment. The best explana-
tion for faunal isotopic variability at Harappa and Rakhigarhi is that some of the sampled
fauna had non-local origins. Although imported foodstuffs could theoretically produce non-
local Sr isotope ratios in local populations, food is an unlikely source of Pb isotope variability
given the importance of particulate in controlling biological Pb burdens [37]. Indeed the occa-
sional long-distance transport of faunal resources such as pigs is hardly surprising given the ex-
tensive overland and riverine trade routes of the Indus Civilization [53].

The local isotopic ranges coincide with patterns observed in the human isotope data, further
suggesting that our isotopic estimates of local dietary catchments reflect actual provisioning
practices. When plotted in multi-isotopic space, some second and third molars overlap with
local fauna and sediments whereas first molar cohorts plot separately from the local distribu-
tions (Fig 4A–4D). Overlap between the Harappa first molar cohort and a single faunal data
point in Pb-Pb space (Fig 4D) likely represents the outermost limits of the Harappan dietary
catchment and suggests our definition of local isotopic ranges may slightly overestimate the
lower limit of local isotopic variation. Similarly, the Farmana third molar cohort plots between
Rakhigarhi fauna and Farmana sediment leachates suggesting that our baseline data provide a
conservative estimate of local ranges.

Explaining Human Variation
Farmana first molars fall outside the inferred local ranges of isotopic variation and are entirely
separate from second and third molar distributions (Fig 4A and 4B). Likewise, most Harappa
first molars are clearly distinguished from the local isotopic range (Fig 4C and 4D). Two indi-
viduals have first molars adjacent to the local range, although they are peripheral to the rela-
tively radiogenic distribution of second and third molars that most closely match the local
isotopic environment. In fact, the majority of second and third molars at Farmana and Ha-
rappa plot on a spectrum between the first molar distributions and inferred local ranges, sug-
gesting that later developing tooth enamel in our sample recorded one or more shifts between
isotopic environments during childhood. Intra-individual developmental sequences at Farm-
ana and Harappa confirm this trend, revealing a broad convergence on local isotopic ranges
during childhood. The Farmana data indicate relative stability in 87Sr/86Sr with a shift away
from a non-local Pb source (or multiple Pb sources) towards local Pb ratios at approximately
three to five years of age (Fig 5A). Linear trends in the developmental series consisting of three
isotopically distinct teeth do not necessarily imply three different environmental sources. Rath-
er, second molars with intermediate values most likely represent a time-averaged record of a
single shift between two endpoint sources during the multi-year mineralization process. Of the
three developmental series available from Harappa, two individuals display inter-tooth varia-
tion consistent with an early-life shift in the source of environmental Pb and Sr (Fig 5B). Heavy
isotope ratios remain relatively static for a third individual (H94 /253 18), but a 3.8‰ decrease
in stable oxygen isotope values (δ18O) [12] for this individual between the first and second
molars suggests a marked environmental change during childhood. Several second and third
molars from Harappa plot within the range of the first molars indicating they did not reach
Harappa until late childhood or adulthood (Fig 4C and 4D). However, all available develop-
mental sequences are consistent with an initial early-life shift in isotopic exposure.
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Residence change between distinct geochemical environments best explains the observed
isotopic differences for each individual sampled. Patterning by tooth type suggests these data
reflect in vivo isotope ratios rather than homogenizing effects due to diagenetic alteration. Sim-
ilarly, sex-based isotopic differences suggest that first molar data cannot be explained by mater-
nal residential history. Poor preservation precludes a consideration of biological sex at
Farmana, but at Harappa, male first molars have significantly lower 87Sr/86Sr compared to fe-
male first molars (t(14) = 1.976, p = 0.034), and overlapping yet distinct distributions in Pb-Pb
space (S1 Fig). Furthermore, after discarding the clear radiogenic outlier in the female data set
(H88/ 216 219a has higher Pb ratios than the local range), female first molars have significantly
lower 206Pb/204Pb (t(13) = 1.986, p = 0.034) than male first molars. In principle, first molars

Fig 4. Heavy isotope ratio scatter plots of Indus Civilization human tooth enamel. Data are sorted by tooth type and plotted against inferred local ranges
(indicated by black boxes). Arrows emphasize the broad progression from non-local first molars to local third molars. Relative to local sediment leachates and
Rakhigarhi fauna, Farmana first molars have non-local distributions in (A) Pb-Sr space (206Pb/204Pb vs. 87Sr/86Sr) and (B) Pb-Pb space (206Pb/204Pb
vs.208Pb/204Pb and 207Pb/204Pb). Relative to local fauna, Harappa first molars have non-local distributions in (C) Pb-Sr space (206Pb/204Pb vs. 87Sr/86Sr) and
(D) Pb-Pb space (206Pb/204Pb vs.208Pb/204Pb and 207Pb/204Pb).

doi:10.1371/journal.pone.0123103.g004
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identified as non-local might reflect the Pb and Sr content of breast milk consumed in the first
three years of life and ultimately derived from the diet and skeleton of immigrant women
[54, 55]. However, sex-structured migration more logically accounts for the observed pattern
than elaborate rules of mortuary inclusion in which locally born males and females were nursed
by immigrants from different regions. Furthermore, the isotopic influence of nursing on bulk
enamel samples should decrease sharply in conjunction with the weaning process, the intro-
duction of solid foods (generally having far higher Sr:Ca ratios than breast milk) [43], and the
ingestion of particulate (the primary pathway for human Pb exposure) [37]. In short, age- and
sex-related dietary changes are unlikely causes of the multi-isotopic shifts observed between
tooth types.

One alternative to the ‘all-immigrant’ interpretation of the Harappa and Farmana mortuary
samples is culturally mediated, age-specific exposure to imported sources of Pb such as that
found in certain kinds of cosmetics [56]. Non-local individuals from Harappa are clearly differ-
entiated by Pb and Sr and are therefore consistent with exposure to broadly differentiated

Fig 5. Convergence on local isotopic environments over developmental time.Heavy isotope ratio
(206Pb/204Pb vs. 87Sr/86Sr) developmental series progress through early, middle, and late childhood at (A)
Farmana (n = 11) and (B) Harappa (n = 3). One highly radiogenic Farmana individual is not visible at this
scale, and one Harappa individual is excluded because the early-life residence change is recorded only by
oxygen isotope values.

doi:10.1371/journal.pone.0123103.g005
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geochemical environments. At Farmana, however, the first molar cohort is distinguished pri-
marily by Pb isotope ratios. Low variation in 87Sr/86Sr ratios suggests regional homogenization,
consistent with a shared source of aeolian sediments throughout much of the Thar Desert and
adjacent semi-arid terrain [52, 57]. The lowest Pb isotope ratios, in contrast, suggest exposure
to certain technological sources rather than relatively radiogenic Pb derived from the local con-
tinental crust [58]. The least radiogenic samples reflect exposure to Pb derived fromminerals
with low time-integrated U/Pb and Th/Pb ratios, such as the copper-rich sulfides of the histori-
cally mined Khetri region< 150 km to the south [59]. Present isotopic evidence cannot deter-
mine whether individuals lived locally and were exposed to an imported source of Pb exclusively
in early childhood or whether they lived in proximity to mining and smelting activities in the
hinterlands prior to their migration. However, the fact that two non-local pigs in the Rakhigarhi
sample exhibit similar Pb isotope ratios to some Farmana first molars suggests that Pb exposure
pathways were at the level of the local environment rather than the direct application of Pb-bear-
ing substances such as cosmetics. Furthermore, broad isotopic and archaeological similarity with
the Harappa sample suggests that a common set of practices (i.e., migration) best explains the
observed isotopic pattern.

Tracking Migration
Regional geochemical assays constrain the provenience of non-local individuals. A plot of the
reciprocal of Sr concentration against soluble 87Sr/86Sr reveals two mixing systems, suggesting
that individuals lived in different biogeochemical catchments (Fig 6). The more radiogenic val-
ues from Harappa fall along the same mixing line as the Farmana dataset, whereas less radio-
genic values (< 0.716) reflect contributions from distinct environmental sources including
lower and upper end members with 87Sr/86Sr< 0.711 and> 0.716, respectively. Three end
members control the Indus River Basin Sr budget [60], resulting in two convergent mixing sys-
tems that underlie the linear distributions of human data apparent in Fig 6. Carbonate weather-
ing of the Western Fold Belt dominates the lower Indus and results in relatively low 87Sr/86Sr
ratios (~0.711–0.712), but tributaries of the Punjab plains and the upper Indus channel drain
distinct lithological units. Moderately radiogenic contributions (~0.712–0.716) from the Hindu
Kush and Karakoram characterize upper Indus tributaries as far south as the Potwar Plateau.
With the exception of the Jhelum River (~0.712–0.713), which flows adjacent to the Potwar

Fig 6. Two hypothesized Sr mixing systems based on Harappa and Farmana human data. The less
radiogenic mixing system (87Sr/86Sr< ~0.716) is likely associated with Catchment A in Fig 1. The more
radiogenic mixing system (87Sr/86Sr> ~0.716) is likely associated with Catchment B.

doi:10.1371/journal.pone.0123103.g006
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Plateau, the Punjab tributaries drain highly radiogenic terrain (> 0.716) in the Greater and
Lesser Himalayas. Therefore, Harappan individuals plotting on the less radiogenic mixing line
(87Sr/86Sr< 0.716) (Fig 6) most likely originated to the northwest in the highlands and foothills
stretching from the Potwar Plateau to the tributaries of the upper Indus (Catchment A). In-
deed, most Harappan first molars plot along the low 87Sr/86Sr mixing line, although early-life
residence was not restricted to the northwestern areas. Harappa and Farmana individuals
with 87Sr/86Sr> 0.716 probably resided in the plains and foothills to the north and east where rel-
atively radiogenic sediments of the Greater and Lesser Himalayas predominate (Catchment B).

It is difficult to define similar thresholds for Pb isotope ratios based on the geological litera-
ture because the published isotopic characterizations of ore bodies, bedrock, and sediments are
not wholly representative of human exposure to biologically available Pb in a given region.
Given the potential for anthropogenic Pb sources to contribute to the biologically available Pb
in sediment leachates [61], isotopic ratios from base metal deposits mined in antiquity can sug-
gest potential end members for the distributions of human isotopic ratios in Pb-Pb space. Yet
the published data on ores and slags are equivocal, with potential end members located in up-
land terrain along the southwest coast [9, 62], near the Hindu Kush range and other parts of
modern day Afghanistan [63], the Himalayan ranges to the northeast [9, 64], and different
sites within the Aravallis [9, 65, 66]. Only additional samples from archaeological fauna and
sediments in the surrounding regions can fully resolve the matter. Despite such limitations, the
Pb isotope data from human migrants strongly implicate the Indus hinterlands known to have
been the source for many of the imported minerals discovered at Harappa. One of the closest
and most significant sources was the Potwar Plateau and adjacent northwestern highlands of
Catchment A [9], thus suggesting a potential link between trade and migration. Indeed, Pb
isotope ratios corroborate the distinction between catchments with low 87Sr/86Sr residents
of Catchment A having significantly lower 206Pb/204Pb (t(42) = 2.713, p = 0.005), 207Pb/204Pb
(t(42) = 4.544, p< 0.0001) and 208Pb/204Pb (t(42) = 2.665, p = 0.005) relative to the high 87Sr/86Sr
residents of Catchment B. Trade and migration may have been similarly linked for residents of
Farmana and the Khetri region. The Pb isotope ratios of copper slags from the sites of Singhana
and Ganeshwar are the geographically closest potential end member for Farmana first molars [9],
and people from the Khetri region are thought to have traded extensively with their Indus Civili-
zation counterparts [11, 67].

Migration as an Institution
Migrants and trade goods may have followed the same routes, but the structure of the data sets
from Harappa and Farmana defies intuitive models of mortuary populations as cross sections
of a breeding population or ethnic group. Over several generations, even cemeteries used by
migrant communities are likely to contain a relatively large number of locally born individuals,
but the isotopic data presented here suggest that an enduring minority practice of cemetery
burial was limited almost entirely to first generation immigrants. The hypothetical systems of
marital residence change needed to explain the isotopic data from Harappa and Farmana re-
quire multiple preconditions that appear untenable when considered collectively. Women
would need to marry and reside extra-locally but return to their paternal residence for child-
rearing and for their own burial. Men would also have to marry, reside, and be buried extra-lo-
cally but at different communities than their sisters. Even unwed men and boys would need to
receive extra-local burial. Lastly, in order for the system to be reciprocal and sustainable, multi-
ple communities would have to participate—communities with roughly comparable cemeteries
from isotopically plausible regions that have yet to be discovered despite decades of excavation
in South Asia. Indeed, well documented contemporaneous cemeteries exist at only seven Indus
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sites: Mehrgarh [68], Harappa [69, 70, 71, 72], Kalibangan [73], Lothal [74, 75, 76], Rakhigarhi
[77, 78], Tarkhanewala-Dera [79], and Farmana [6]. None of these fall in the primary hypothe-
sized source areas of Catchment A or the Khetri region.

Rather than trying to apply a conventional kin-based model, Harappa Phase mortuary prac-
tices may be better understood through the lens of archaeological and contemporary cemetery
studies in which cemeteries are considered diverse and dynamic loci for complex cultural and
political processes [23, 25, 80, 81]. Relationships between groups can be influenced by the deci-
sions to inter different kinds of people in different ways, emphasizing various group and indi-
vidual identities [82]. Importantly, group identities acquired in life can take precedence over
kinship or shared local residence as with many modern military and wartime cemeteries [83].
Likewise, archaeological individuals with diverse geographic origins have been grouped in
death with non-kin based on their participation in particular cultural institutions. For instance,
the New York African Burial Ground [84] and Inca child sacrifice or Capacocha [85] are two
well-known examples in which inclusion in a mortuary context was determined by the social
identity of the deceased in addition to their place of residence. Therefore, the persistence over
hundreds of years of all-immigrant cemeteries in the Indus context may best be interpreted as
evidence for a regularized institution of immigration culminating in a distinct mode of disposal
at death.

Conclusion
Intra-individual isotopic analyses of human tooth enamel from Harappa Phase cemetery buri-
als at Harappa and Farmana provide strong evidence that the mortuary populations were near-
ly entirely composed of first generation immigrants. This inference rests primarily on the use
of multiple isotope systems and standard statistical methods for assessing the most plausible
isotopic ranges of local dietary catchments at the study sites. Neither Sr nor Pb isotope data
alone are sufficient to support the inferences presented in this paper, but their combined use re-
veals patterns not readily apparent when analyzing Sr alone. Beyond the increase in discrimina-
tory power, the use of Sr and Pb isotope ratios for detecting migration benefits from the
elements’ distinct pathways of incorporation into biological tissues. Whereas non-local Sr iso-
tope ratios might be explained by imported food resources or non-local Pb isotope ratios by
imported minerals, the combination of non-local Sr and Pb isotope ratios at Harappa is best
explained by residence change between distinct geochemical environments. This interpretation
is strengthened further by the separate origins of males and females.

In addition to patterns in the human data, statistical assessment of solutions derived from
DBSCAN and K-means clustering algorithms makes it possible to identify plausible local isoto-
pic ranges. Variation in the faunal isotope ratios is far greater than that of typical human die-
tary catchments in antiquity [43], suggesting that some of the sampled fauna were transported
from outlying regions. By contrast, our statistically inferred local ranges exclude non-clustering
data points and are consistent with typical dietary catchments as well as the specific geochemi-
cal characteristics of the study area [52, 57]. Comparison with human data also suggests that
the inferred local ranges reflect actual provisioning behaviors. Local ranges overlap in Pb-Sr
space with the majority of the second and third molar cohorts at Farmana and some of the
third molar cohort at Harappa. All other teeth, including the first molar cohort, fall outside of
the local ranges and clearly demonstrate exposure to non-local isotopic environments in early
childhood. Imported goods containing Pb could potentially explain non-local isotopic ratios in
the Farmana first molar cohort if exposure was specific to very young children or pregnant
women, but similar Pb isotope ratios for Farmana first molars and two non-local fauna
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implicate a generalized environmental source. In short, residence change best explains the dif-
ferences between human values and the local isotopic ranges.

Given the limitations in the sample, however, it is conceivable that non-local first molar co-
horts are not representative of the entire mortuary populations. Further analyses are necessary
to confirm the initial results, but the consistency with which first molars exhibit non-local iso-
topic ratios provides strong evidence for a class of first generation immigrants. Less certain are
inferences about the timing of migration in early childhood which, at Harappa, are based only
on three developmental sequences of two teeth each. Eleven developmental sequences from
Farmana show a similar pattern, but it remains unclear whether or not the timing of migration
can be extrapolated to the larger mortuary populations. Despite such shortcomings, the excep-
tionally high frequency of first generation migrations and apparent lack of locally born off-
spring demands a consideration of new interpretive models.

New models of the Harappa Phase cemetery mortuary program must acknowledge the en-
during, institutional character of migration in the life histories of the deceased. A consideration
of the isotopic data and their bioarchaeological context allows certain inferences to be made
about the proposed Indus institution. Isotopic [12] and osteological [13] distinctions between
males and females at Harappa and the timing of migration at Farmana suggest certain hinter-
land individuals from distinct genetic populations took up residence with new corporate
groups at a very young age. The inclusion of modest burial wealth may indicate they were treat-
ed with respect by local groups, whereas sex-based distinctions in provenience suggest migrants
were selected according to the preferences of their natal groups rather than the whims of Indus
urbanites. Thus the Indus institution of immigration was integrative, accommodating various
ethnic or cultural groups within a standardized set of practices reserved exclusively for a class
of first generation immigrant. Furthermore, the scarcity of cemetery inhumations and their po-
tential association with resource-rich regions suggests the institution may have been limited in
scope to the economic interests of specific mercantile groups rather than all segments of socie-
ty. Ethnography from the nearby Hindu Kush Range suggests one possible analogy for the
Indus institution. Asymmetric systems of fosterage employed by fractious historical kingdoms
to build hierarchical political alliances [86] may be broadly comparable to Indus practices,
such that fostered individuals literally embodied the relationships between urban and hinter-
land groups. Whether or not this particular model is borne out by additional multi-disciplinary
analyses, however, our isotopic inferences of migration define key parameters in any future in-
vestigation of Indus Civilization interregional interaction.
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