
Associations between Long-Term
Exposure to Chemical Constituents
of Fine Particulate Matter (PM2.5)

and Mortality in Medicare Enrollees
in the Eastern United States
The Harvard community has made this

article openly available.  Please share  how
this access benefits you. Your story matters

Citation Chung, Yeonseung, Francesca Dominici, Yun Wang, Brent A. Coull,
and Michelle L. Bell. 2015. “Associations between Long-Term
Exposure to Chemical Constituents of Fine Particulate Matter
(PM2.5) and Mortality in Medicare Enrollees in the Eastern United
States.” Environmental Health Perspectives 123 (5): 467-474.
doi:10.1289/ehp.1307549. http://dx.doi.org/10.1289/ehp.1307549.

Published Version doi:10.1289/ehp.1307549

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:16120912

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/154866533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Associations%20between%20Long-Term%20Exposure%20to%20Chemical%20Constituents%20of%20Fine%20Particulate%20Matter%20(PM2.5)%20and%20Mortality%20in%20Medicare%20Enrollees%20in%20the%20Eastern%20United%20States&community=1/4454687&collection=1/4454688&owningCollection1/4454688&harvardAuthors=2a4c8d52b9281e715af2a9d29959f29d&department
http://nrs.harvard.edu/urn-3:HUL.InstRepos:16120912
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


Environmental Health Perspectives • volume 123 | number 5 | May 2015 467

ResearchA Section 508–conformant HTML version of this article  
is available at http://dx.doi.org/10.1289/ehp.1307549. 

Introduction
Regulatory control of particulate matter 
(PM) could be dramatically improved 
with robust quantification of the evidence 
regarding the toxicity of various constituents 
of the PM mixture and of their sources [U.S. 
Environmental Protection Agency (EPA) 
2004]. Currently, PM is regulated based on 
the total mass concentration without regard 
to its chemical composition, but scientific 
evidence on which types of constituents are 
most harmful could result in more effec-
tive regulations. However, the knowledge 
regarding differential toxicities of PM constit-
uents has been identified as a crucial research 
gap (National Research Council 2004).

Responding to the need for such 
evidence, for the last decade, data have been 
accumulated for the constituents of fine 
particulate matter (≤ 2.5 μm in aerodynamic 
diameter; PM2.5) nationwide in the United 
States and have provided opportunities for 
studying the association between morbidity/
mortality risk and PM2.5 constituents. Using 

these data, numerous epidemiological studies 
have reported evidence of health effects asso-
ciated with PM2.5 constituents, both in short-
term (a few days previous) and long-term 
(a few years previous) exposure time frames. 
Studies focusing on the short-term health 
effects include those by Bell et al. (2014), 
Cao et al. (2012), Ito et al. (2011), Kim 
et al. (2012), Levy et al. (2012), Ostro et al. 
(2009), Peng et al. (2009), and Zhou et al. 
(2011). Fewer studies have investigated the 
long-term health effects of different PM2.5 
constituents, including those by Dockery 
et al. (1993), Ostro et al. (2010), and Pope 
et al. (1995, 2002). However, studies have 
not reported consistent findings regarding 
associations with specific constituents. Such 
discrepancies may derive from different 
aspects of the study design (e.g., population, 
confounding control, time frame, and statis-
tical analysis), and the U.S. EPA (2009) has 
called for further research. 

To fill this research gap, we investi-
gated the differential toxicity of long-term 

PM2.5 exposure according to its chemical 
composit ion,  based on a large-scale 
national database including approximately 
12.5 million Medicare enrollees (≥ 65 years 
of age). Combining several sources of data, 
we constructed a monthly multi-site time-
series data set for 518 PM2.5 monitoring 
locations in the eastern region of the United 
States during 2000–2006. The data include, 
for each monitoring location, monthly 
mortality rates, monthly values of the average 
PM2.5 concentration over the previous 
12 months, 7-year average concentrations 
of PM2.5 constituents, and community-level 
confounding variables on socioeconomic 
status (SES) and racial composition. Using 
a Bayesian hierarchical (BH) regression 
model, we estimated spatially varying (SV) 
mortality rates associated with previous-year 
PM2.5 and identified chemical constituents 
that explained the spatial variability of the 
mortality rates, controlling for PM2.5 and 
community-level characteristics.

Methods
Data description. PM2.5 total mass. We 
obtained daily (24-hr average) concentra-
tions of PM2.5 at 518 monitors in the eastern 
United States (Figure 1) for 2000–2006 from 
the U.S. EPA Air Quality System (AQS) 
database (U.S. EPA 2014). Using the daily 
PM2.5 data, we calculated monthly long-term 
exposure to PM2.5 as described in detail by 
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Background: Several epidemiological studies have reported that long-term exposure to fine 
particulate matter (PM2.5) is associated with higher mortality. Evidence regarding contributions of 
PM2.5 constituents is inconclusive.

oBjectives: We assembled a data set of 12.5 million Medicare enrollees (≥ 65 years of age) to 
determine which PM2.5 constituents are a) associated with mortality controlling for previous-year 
PM2.5 total mass (main effect); and b) elevated in locations exhibiting stronger associations between 
previous-year PM2.5 and mortality (effect modification).

Methods: For 518 PM2.5 monitoring locations (eastern United States, 2000–2006), we calculated 
monthly mortality rates, monthly long-term (previous 1-year average) PM2.5, and 7-year averages 
(2000–2006) of major PM2.5 constituents [elemental carbon (EC), organic carbon matter (OCM), 
sulfate (SO4

2–), silicon (Si), nitrate (NO3
–), and sodium (Na)] and community-level variables. We 

applied a Bayesian hierarchical model to estimate location-specific mortality rates associated with 
previous-year PM2.5 (model level 1) and identify constituents that contributed to the spatial vari-
ability of mortality, and constituents that modified associations between previous-year PM2.5 and 
mortality (model level 2), controlling for community-level confounders.

results: One–standard deviation (SD) increases in 7-year average EC, Si, and NO3
– concentrations 

were associated with 1.3% [95% posterior interval (PI): 0.3, 2.2], 1.4% (95% PI: 0.6, 2.4), and 
1.2% (95% PI: 0.4, 2.1) increases in monthly mortality, controlling for previous-year PM2.5. 
Associations between previous-year PM2.5 and mortality were stronger in combination with 1-SD 
increases in SO4

2– and Na.

conclusions: Long-term exposures to PM2.5 and several constituents were associated with 
mortality in the elderly population of the eastern United States. Moreover, some constituents 
increased the association between long-term exposure to PM2.5 and mortality. These results provide 
new evidence that chemical composition can partly explain the differential toxicity of PM2.5.

citation: Chung Y, Dominici F, Wang Y, Coull BA, Bell ML. 2015. Associations between long-
term exposure to chemical constituents of fine particulate matter (PM2.5) and mortality in Medicare 
enrollees in the eastern United States. Environ Health Perspect 123:467–474; http://dx.doi.
org/10.1289/ehp.1307549
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Greven et al. (2011). In brief, for the first day 
of every month and at each of the 518 monitor 
locations, we calculated the previous 1-year 
average of daily PM2.5 concentrations (xij) for 
ith monitor at jth month, with i = 1,…, n and 
j = 1,…, ni. Because not all monitors had valid 
measurements for the entire study period, the 
number of monthly PM2.5 values at a given 
monitoring location (ni) varied from 33 to 70.

PM2.5 chemical constituents. Although 
the U.S. EPA measures > 50 PM2.5 chemical 
constituents, we focused on 6 identified in 
previous research as contributing substan-
tially to PM2.5 total mass (Bell et al. 2007): 
elemental carbon (EC), organic carbon matter 
(OCM), sulfate (SO4

2–), silicon (Si), nitrate 
(NO3

–), and sodium (Na). We obtained 7-year 
averages of the 6 chemical constituents at 174 
monitors in the eastern region for 2000–2006 
from the U.S. EPA AQS database, as described 
in detail elsewhere (Bell et al. 2007).

One challenge in our study is that the 
PM2.5 constituents are measured at monitors 
(174 monitors) that are not collocated with 
the PM2.5 monitors (518 monitors) (Figure 1). 
We assumed that the levels of constituents 
are spatially homogenous within a 6-mile 
radius, and therefore linked PM2.5 monitors 
to PM2.5 constituent monitors within 6 miles. 
Of the 518 PM2.5 monitors, 241 had PM2.5 

constituent monitors within 6 miles, and we 
assigned 7-year averages of each PM2.5 constit-
uent of the closest constituent monitor to each 
of 241 PM2.5 monitors. For the remaining 
277 monitoring locations, we treated the levels 
of PM2.5 chemical constituents as missing 
and applied a statistical approach to impute 
the missing data, as described in “Statistical 
methods.” For either measured or imputed 
values, we let zi = (zi1,…zi6)´ denote the 7-year 
average concentrations of the six chemical 
constituents for ith PM2.5 monitor location.

Mortality count and total number of 
people at risk. Mortality counts and the 
total number of people at risk were obtained 
at ZIP-code level from billing claims of 
Medicare enrollees who are fee-for-service 
Medicare beneficiaries (≥ 65 years of age) 
(Greven et al. 2011). For each of the 518 
PM2.5 monitor locations, we calculated 
monthly numbers of deaths and people at 
risk among the Medicare enrollees residing 
in each ZIP code with a centroid < 6 miles 
from a PM2.5 monitor location. Depending 
on the location, 6-mile buffers around the 
monitors included the centroids of at least 
3 and up to 20 different ZIP codes, and the 
data were aggregated over 3–20 ZIP codes. 
We let Yij and Nij denote the number of 
deaths and the people at risk for ith monitor 

location at jth month. For the whole study 
period across all 518 locations, the total size 
of the study population was 12.5 million 
enrollees, with the total number of deaths 
equal to 2.2 million approximately residing in 
4,974 ZIP codes. For the 241 locations with 
PM2.5 constituent data available, 1.2 million 
deaths occurred among 7.5 million enrollees 
approximately living in 3,425 ZIP codes.

Community-level confounders. We 
obtained ZIP code–level data on community-
level confounding variables including SES and 
racial composition from the U.S. Census 2000 
(U.S. Census Bureau 2000). We averaged 
values over all ZIP codes with centroids within 
6 miles of each PM2.5 monitor and assigned 
the averaged value to each monitor. We let 
wi = (wi1,…wi5)´ denote the five community-
level confounders: median family income, 
proportion of people with high-school 
diploma or equivalent, proportion of residents 
in urban environment, proportion of white 
residents, and proportion of black residents.

Statistical methods. We analyzed the 
linked data using a BH Poisson regression 
model. The first level, a Poisson regression 
model with SV random effects, was used to 
estimate the association between month-to-
month variation in mortality rate and month-
to-month variation in long-term (previous 
1-year average) PM2.5:

Yij ~ Poisson(λij), i = 1,…, n and j = 1,…, ni, 
Log(λij) = log(Nij) + αi0 + αi1xij* , [1]

where Yij and Nij are the number of deaths 
and the size of the population at risk for the 
ith monitoring location and jth month, xij* 
is the previous-year average PM2.5 centered 
around the location-specific average (i.e., 
xij* = xij – –xi), and αi0 and αi1 are the location-
specific (SV) random intercepts and slopes. 
The parameter αi0 represents the SV baseline 
mortality rate when the previous-year average 
PM2.5 is equal to its location-specific average 
(i.e., xij* = 0). The parameter αi1 represents 
the SV association between month-to-month 
variation in mortality rate and month-to-
month variation in previous-year PM2.5.

The second level of the BH model 
regresses the location-specific 7-year averages 
of PM2.5 constituents and community-level 
confounders on the SV intercept and slope, 
αi0 and αi1:

αi0 = β0 + Σ6
k = 1βkzik* + Σ5

l = 1β6+l wil*  
 + β12

–xi + εi0 [2]

αi1 = γ0 + Σ6
k = 1γkzik* + Σ5

l = 1γ6+l wil*  
 + εi1, [3]

where zik* is the level of the kth chemical 
constituent and wil* is lth community-level 
confounder at ith location, and εi0 and εi1 are 

Figure 1. Map of 518 PM2.5 monitor locations and 174 PM2.5 chemical constituent monitor locations in the 
eastern region of the United States.

PM2.5 monitors
PM2.5 chemical constituent monitor
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random errors. We centered and scaled all 
explanatory variables to simplify interpretation 
and reduce multicollinearity. Note that –xi is 
included in the SV intercept in Equation 2 to 
control for total PM2.5 concentration when 
estimating the effects of constituents on the SV 
mortality rate (Mostofsky et al. 2012).

To account for potential residual spatial 
correlation in the second level, we assumed the 
error terms could be spatially correlated using 
a standard approach (Gelfand et al. 2003) 
(see Supplemental Material, “Accounting for 
residual spatial correlation”). We fit our BH 
model using a Monte Carlo Markov chain 
(MCMC) method [see Supplemental Material, 
“Two-stage estimation and the Markov 
Chain Monte Carlo (MCMC) algorithm”]. 
All computations were conducted using 
R statistical software (R Core Team 2013).

There are four sets of parameters of 
interest. From Equation 1, we obtained a) the 
SV (i.e., monitor-specific) baseline mortality 
rates when the previous-year PM2.5 was equal 
to its monitor-specific overall average (SV 
intercepts αi0 for each location i, expressed as 
deaths/month/1,000 persons); and b) the SV 
association between month-to-month varia-
tion in mortality rate and month-to-month 
variation in previous-year PM2.5 (SV slopes αi1 
for each location i, expressed as the percentage 
increase in the mortality rate associated with 
a 1-μg/m3 increase in previous-year PM2.5). 
From Equations 2 and 3, we obtained c) the 
association between the SV intercepts and 
the monitor-specific 7-year averages of PM2.5 
constituents, adjusted by community-level 
confounders and previous-year PM2.5 (the 
βk coefficients from Equation 2, expressed as 
the percentage increase in the mortality rate 
associated with a 1-SD increase in the 7-year 
average concentration of each constituent), 
and d) the association between the SV slopes 
and the monitor-specific 7-year averages of 
PM2.5 constituents, adjusted by community-
level confounders (the γk coefficients from 
Equation 3, expressed as the percentage 
increase in the mortality rate ratio for previous 
year PM2.5 associated with a 1-SD increase 
in the 7-year average concentration of each 
constituent).

To find the best fit for Equation 2, we 
conducted an extensive sensitivity analysis. 
We considered the following eight models: 
no explanatory variable, constituents only, 
community-level confounders only, or both 
constituents and community-level confounders 
as explanatory variables, all with and without 
spatially correlated errors. Among the eight 
options, we chose the best fit based on 
the Deviance Information Criteria (DIC) 
(Spiegelhalter et al. 2002).

There were 277 PM2.5 monitoring loca-
tions with missing values for the constituents. 
Separately for each constituent, we fit a 

Bayesian spatial Gaussian process (GP) model 
based on the observed data (i.e., 241 loca-
tions) and estimated a spatial correlation 
using the spBayes R package (Finley et al. 
2007) and imputed the missing values based 
on the posterior predictive sample means for 
the 277 PM2.5 monitors (see Supplemental 
Material, “Bayesian spatial Gaussian process 
(GP) for missing imputation”). Before using 
the imputed constituent levels in the analysis, 
we confirmed that the Bayesian spatial GP 
modeling was appropriate for imputation via a 
cross-validation (CV) study (see Supplemental 
Material, “Cross  validation study”).

We conducted the analysis for the 
complete-case data (n = 241 monitoring loca-
tions with the data available for both PM2.5 
total mass and the chemical constituents) 
and for the all-sites data (n = 518 monitoring 
locations using imputed values for the 277 
locations without measurements for PM2.5 
chemical constituents). Also, we analyzed 
the data for the entire elderly population 
(≥ 65 years) and stratified by two age groups 
(65–74 vs. ≥ 75 years).

Results
Table 1 reports summary statistics for 
each variable for the complete-case data 
(n = 241) and for the all-sites data (n = 518). 
Figure 2A displays maps of 7-year averages 
of PM2.5 exposure levels (micrograms per 
cubic meter) and Figure 2B presents maps 
of 7-year averages of mortality rates (deaths/
month/1,000 persons) for 518 monitoring 
locations. Figure 3 shows maps of 7-year 
averages of each chemical constituent (micro-
grams per cubic meter) for the 241 locations 
with available data. SO4

2– and NO3
– levels 

seem to exhibit strong spatial correlations; 
OCM, Si, and Na levels moderate spatial 
correlations; and EC levels weak spatial 

correlations, with high values only in a few 
locations. Estimated spatial correlations 
obtained from the spatial GP model between 
pairs of monitors with a distance of about 
40 miles are 0.05, 0.20, 0.21, 0.19, 0.21, and 
0.20 for EC, OCM, SO4

2–, Si, NO3
–, and 

Na, respectively. All five community-level 
confounders are also spatially mapped (see 
Supplemental Material, Figure S1) over the 
518 locations.

The correlations among the 7-year 
averages of PM2.5 total mass, the PM2.5 
chemical constituents, and community-level 
confounders are summarized in Supplemental 
Material, Table S1, for the complete-case 
data (n = 241). We observed that PM2.5 
is correlated positively with OCM (0.43), 
SO4

2– (0.61), and the proportion of black resi-
dents (0.32) and inversely with Na (–0.41). 
The highest positive correlations among the 
constituents were observed between EC and 
OCM (0.44), SO4

2– and OCM (0.41), and 
Si and OCM (0.43). Among the community-
level confounders, strong positive correlations 
were observed as 0.62 between median family 
income and the proportion of people with 
high school diploma or equivalent, and 0.50 
between the proportions of white residents 
and high school graduates, whereas the stron-
gest negative correlation was –0.84 between 
the proportions of white and black residents. 
Between the constituents and the community-
level confounders, the highest correlations were 
observed for OCM at 0.39 and for Si at 0.34 
with the proportion of black residents.

Before the BH regression modeling, we 
conducted CV studies for our imputation 
method for the missing constituent levels. The 
sample correlation coefficients between the 
observed and predicted values for the test data 
are 0.64–0.94 for all constituents averaged 
over 5 CV data sets (see Supplemental 

Table 1. Summary statistics for each variable (mean ± SD). 

Variable Complete-case data (n = 241) All-sites data (n = 518)
Population size at risk (n/month) 16901.00 ± 17307.31 14538.92 ± 15453.71
Mortality count (n/month) 76.01 ± 74.04 64.93 ± 66.7
Long-term PM2.5 exposure level (μg/m3) 14.56 ± 1.88 13.7 ± 2.13
PM2.5 chemical constituents (μg/m3)

Elemental carbon (EC) 0.71 ± 0.33 0.68 ± 0.24a
Organic carbon matter (OCM) 4.1 ± 1.06 4.05 ± 0.90a
Sulfate (SO4

2–) 4.22 ± 0.81 4.14 ± 0.80a
Silicon (Si) 0.09 ± 0.03 0.09 ± 0.03a
Nitrate (NO3

–) 1.86 ± 0.86 1.68 ± 0.85a
Sodium (Na) 0.16 ± 0.08 0.17 ± 0.07a

Community-level confounders
Family income ($) 38247.39 ± 11149.87 40305.00 ± 12461.21
Percent high school graduate 0.78 ± 0.06 0.79 ± 0.08
Percent urban 0.93 ± 0.16 0.86 ± 0.23
Percent white 0.64 ± 0.20 0.70 ± 0.20
Percent black 0.25 ± 0.18 0.19 ± 0.17

For population size at risk, mortality count and long-term (previous 1-year average) PM2.5, location-specific monthly 
values are averaged across locations for the whole study period (2000–2006). For chemical constituents, location-specific 
7-year averages are averaged across locations. For community-level confounders, location-specific values are averaged 
across locations.
aNumbers were calculated including the imputed PM2.5 constituent levels for the 277 PM2.5 monitoring locations with missing 
constituent levels.
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Material, Table S2). The root mean square 
error (RMSE) for prediction for each constit-
uent and the average RMSE over five CV data 
sets is about half of the sample standard devia-
tion for all constituents (see Supplemental 
Material, Table S3). Scatter plots for the 
observed versus predicted data show that 
the points generally follow the reference line 
(meaning observed values = predicted values) 
(see Supplemental Material, Figure S2). Based 
on the CV study results, we concluded that 
the Bayesian spatial GP method was appro-
priate for imputing the missing constituents 
in our study.

We analyzed the complete-case data 
(n = 241) and the all-sites data (n = 518), 
separately. We fit Equations 1, 2, and 3 and 
Supplemental Material, Equation S1 with 
eight different options and chose the best fit 
based on the smallest DIC (see Supplemental 
Material, Table S4). We obtained the 
smallest DIC for the model including both 
chemical constituents and community-level 
confounders as explanatory variables and with 
spatially independent errors both for the SV 
intercept and slope model in complete-case 
data as well as in the all-sites data.

Figure 4 displays results from the first 
level of the BH model for complete-case 
data (left panels) and all-sites data (right 
panels), respectively. Both sets of data 
showed similar results. Figure 4A shows the 
estimated monthly mortality rate when the 
previous-year PM2.5 is equal to its monitor-
specific overall average ranges from 3.37 to 
6.15 (deaths/month/1,000 persons) over the 
study region from all-sites data analysis. Also, 
Figure 4B shows that the estimated associa-
tion of mortality rate with a 1-μg/m3 increase 
in the previous-year PM2.5 is from –1.0 to 4.6 
(percent increase in mortality rate).

Figure 5 reports the results  from 
the second level of the BH model for 

complete-case data (left-solid bars) and all-sites 
data (right-dashed bars), respectively. Results 
were similar between complete-case data 
and all-sites data, but the all-sites estimates 
were somewhat smaller and their confidence 
intervals are narrower. In both analyses, we 
observed that adjusting for the community-
level confounders and PM2.5 total mass, EC, 
Si, and NO3

– were positively associated with 
mortality rate (the SV intercept, βk), whereas 
SO4

2– was inversely related to mortality 
(Figure 5A). Meanwhile, SV slope estimates 
(γk) indicated that the percentage increase in 
mortality rate with a 1-unit increase in average 
previous-year PM2.5 was greater than expected 
when combined with a 1-SD increase in 
SO4

2– and Na (Figure 5B).
Finally, we analyzed the data stratified by 

two age groups (65–74 vs. ≥ 75 years). For 
the SV intercept model (see Supplemental 
Material, Figure S3), results for the younger 
age group were similar to those for the all-age 
analysis (i.e., main effect estimates for EC, Si, 
and NO3

– were significant), whereas for the 
SV slope model (see Supplemental Material, 
Figure S4), both age groups (65–74 and 
≥ 75 years) had results similar to those for the 
all-age analysis (≥ 65 years).

Discussion
We investigated a) whether month-to-month 
changes in mortality rates were associated with 
month-to-month changes in the previous-year 
average exposure to PM2.5, and b) whether 
7-year average levels of PM2.5 chemical 
constituents modified this association.

For the SV intercept, EC, Si, and NO3
– 

were positively associated with mortality rates 
after adjusting for PM2.5 total mass and the 
community-level confounders. For EC, our 
results are consistent with those of a previous 
cohort study of female public school profes-
sionals in California (Ostro et al. 2010). 

Evidence for the toxicity of Si was also found 
in other studies. Ostro et al. (2010) reported 
that long-term exposure to Si was positively 
associated with pulmonary mortality. Si 
may serve as a surrogate for toxic constitu-
ents found in mineral dust associated with 
traffic (Reff et al. 2009). A previous study 
reported that long-term exposure to traffic 
or traffic-related pollutants is associated 
with cardiopulmonary mortality (Jerrett 
et al. 2005). Few studies examined associa-
tions for NO3

– with mortality in a long-term 
framework. Ostro et al. (2010) reported that 
long-term exposure to NO3

– was significant 
for mortality in a single-pollutant model but 
not in a multipollutant model. Additionally, 
SO4

2– was found to be inversely associated 
with mortality rates, which is inconsistent 
with previous studies where positive asso-
ciations were found (Dockery et al. 1993; 
Ostro et al. 2010; Pope et al. 1995, 2002). 
Although the observed positive associations 
were from single-pollutant approaches, our 
study used a multipollutant analysis that also 
included adjustment for the PM2.5 total mass 
and community-level confounders. Therefore, 
the inverse associations that we observed 
should be interpreted with caution, because 
they may be an artifact of multicollinearity 
resulting from correlations between SO4

2– 
and other constituents, PM2.5 total mass, and 
 community-level confounders.

SO4
2– and Na were significant modifiers 

of monitor-specific associations between 
previous-year average PM2.5 and mortality 
rates. Previous long-term exposure studies 
for PM2.5 constituents have reported signifi-
cant positive associations of SO4

2– with 
all-cause mortality (Dockery et al. 1993; 
Pope et al. 2002) or with cardiopulmonary 
mortality (Ostro et al. 2010; Pope et al. 
2002). Na was also a significant modifier 
that strengthened the association between 

Figure 2. (A) Map of 7-year (2000–2006) averages of monthly long-term (previous 1-year average) PM2.5 exposure (μg/m3) for all PM2.5 monitor locations (n = 518). 
(B) Map of 7-year (2000–2006) averages of monthly mortality rate (deaths/month/1,000 persons) for all PM2.5 monitor locations (n = 518).
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long-term PM2.5 and mortality. Few studies 
have estimated associations between Na 
and health outcomes, with some showing 
evidence of associations with mortality (Krall 

et al. 2013) or hospital admission (Zanobetti 
et al. 2009).

Several possible mechanisms have been 
proposed in human subject studies linking 

constituents to biomarkers: systemic inflam-
mation and oxidative stress associated with 
EC (Neophytou et al. 2013), altered DNA 
methylation related to Si (Hou et al. 2014), 
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Figure 3. Maps of 7-year (2000–2006) averages of each of the six PM2.5 chemical constituents (μg/m3) for 241 monitor locations with available data.
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and inflammation related to NO3
– and 

SO4
2– (Wu et al. 2012). However, because 

of limited evidences from experimental/
toxicological studies, the biological pathway 
through which short-term exposure to 
PM2.5 and its components affects health is 
still an area of active investigation, and the 
mechanisms for long-term exposure are 
less understood.

The U.S. EPA measures > 50 different 
chemical constituents. Analyzing all avail-
able constituents would present problems of 
multiple comparisons. We selected the six 
constituents that were previously shown to 
be the largest contributors to PM2.5 total 
mass and/or co-vary with PM2.5 total mass 
(Bell et al. 2007). Also, the reliability of a 
 community-level average of PM2.5 constit-
uent exposure varies by constituent. For the 
six constituents investigated in the present 
study, the average correlation of monitors in 

close proximity (< 5 km) ranges from 0.60 
to 0.93 and for larger distances (20–50 km) 
ranges from 0.46 to 0.88 (Bell et al. 2011). 
The spatial heterogeneity of many other 
constituents may be larger, limiting the 
interpretation of community-level exposures. 
However, we recognize that other constitu-
ents have also been found to be associated 
with human health. In particular, associations 
of health outcomes with PM2.5 metal constit-
uents that were not included in our analysis, 
such as aluminum, calcium, chromium, lead, 
manganese, nickel, titanium, vanadium, and 
zinc, have been reported in previous studies 
(Bell et al. 2014; Cavallari et al. 2008; Hsu 
et al. 2011; Lippmann et al. 2006; Wu 
et al. 2012).

One limitation of the available air pollu-
tion data is that monitors that measure PM2.5 
total mass and monitors that measure the 
PM2.5 chemical constituents are misaligned 

(Figure 1). We addressed this limitation by 
assuming that ambient levels of PM2.5 constit-
uents were homogeneous within a 6-mile 
radius. This spatial homogeneity assumption 
for air pollutants builds on previous research 
(Bell et al. 2011) where 6 miles (about 
10 km) in radius is a reasonable buffer size 
for the homogeneity assumption. In Bell et al. 
(2011), the estimated spatial correlations 
between pairs of monitors with distances of 
5–10 km are 0.67, 0.85, 0.95, 0.62, 0.95, 
and 0.59 for EC, OCM, SO4

2–, Si, NO3
–, 

and Na, respectively. However, spatial vari-
ability varies by constituent—for example, 
with more heterogeneity for Si or Na than for 
SO4

2– or NO3
–—and different buffer sizes 

may be applied for different constituents when 
aligning various sources of data.

Another limitation for air pollution 
data is that monitors that measure PM2.5 
total mass are much denser than monitors 

Figure 4. (A) Maps of the estimates (posterior means) of the SV intercept from the complete-case data analysis (n = 241, left) and the all-sites data analysis 
(n = 518, right). The values represent the monthly mortality rate (deaths/month/1,000 persons) when previous-year PM2.5 is at location-specific average. (B) Maps 
of the estimates (posterior means) of the SV slope from the complete-case data analysis (n = 241, left) and the all-sites data analysis (n = 518, right). The values 
represent the percent increase in the monthly mortality rate associated with a 1-μg/m3 increase in previous-year PM2.5.
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that measure PM2.5 chemical constitu-
ents (Figure 1). When we aligned the two 
kinds of monitors, missing data occurred 
for almost half of the PM2.5 monitors. To 
avoid simply removing the observations 
with missing values and reducing the sample 
size to half, we adopted a Bayesian spatial 
GP modeling and conducted a single value 
imputation for the missing data separately for 
each constituent. We compared the results 
between the complete-case data analysis and 
the all-sites data analysis with the imputed 
values. Although imputation did not change 
our primary conclusions, results based on 
the imputed data should be interpreted with 
caution. Specifically, using a single-value 
imputation does not incorporate uncer-
tainty for prediction, and measurement error 
can occur for the explanatory variables in 
 regression modeling (Gryparis et al. 2009).

In our study, the PM data are the ambient 
levels, which we use to approximate the actual 
human exposure. The ambient level of a given 
pollutant is not a perfect surrogate of personal 
exposure to that pollutant, which can induce 
exposure measurement error into the analysis 
with variations in error by constituent. In a 
multipollutant analysis such as the present 
study, this type of error may induce upward 
bias in regression coefficient estimates, 
resulting in anticonservative inference on 
health effects. However, several authors have 
shown that this type of bias barely occurs in 
situations in which the amount of error or 
the correlations among pollutants in analysis 
are extremely large (Schwartz and Coull 
2003). Therefore, it is unlikely that differ-
ences between ambient levels and personal 
exposures explain the observed associations 
in our study.

Our analysis is based on multi-site time-
series data where long-term exposure was esti-
mated by calculating previous 1-year average 
of daily exposure values at each temporal 
point (i.e., first day of each month). However, 
results may be sensitive to different choices 
of time frames. Kim et al. (2012) reported 
that different lag values should be selected 
for the short-term effects of PM2.5 constitu-
ents depending on health outcomes. Shorter 
or longer time frames than a year could be 
considered for examining long-term health 
effects of PM2.5.

Our study focused on the eastern region 
of the United States, and our findings may 
not be generalizable to other areas because the 
characteristics of PM mixtures and popula-
tions are quite different across the United 
States (Bell et al. 2007), and effect modifica-
tion by the chemical composition of PM2.5 
may vary among regions. Also, we focused on 
the elderly population, which may be more 
susceptible to effects of exposure than other 
age groups. In our study, slight differences in 
results were found between two age groups 
(65–74 and ≥ 75 years).

To our knowledge, this is the first large-
scale study (covering the eastern United 
States) to investigate the association between 
long-term exposure to PM2.5 and mortality 
rate and effect modification by the chemical 
constituents of PM2.5. Unlike previous studies 
of PM2.5 constituents, we used a BH regres-
sion approach, where PM2.5 constituents were 
modeled as potential modifiers of the main 
effect of PM2.5 on health outcomes. Despite 
limitations, our findings add new evidence 
regarding the differential toxicity of PM2.5 
constituents and their potential influence on 
the long-term health effects of PM2.5.
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