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Parallel genome-scale loss of
function screens in 216 cancer cell
lines for the identification of context-
specific genetic dependencies
Glenn S. Cowley1,*, Barbara A. Weir1,2,*, Francisca Vazquez1,2,*, Pablo Tamayo1, Justine A. Scott1, Scott Rusin1,
Alexandra East-Seletsky1, Levi D. Ali1, William F.J. Gerath1, Sarah E. Pantel1, Patrick H. Lizotte1, Guozhi Jiang1,
Jessica Hsiao1, Aviad Tsherniak1, Elizabeth Dwinell1, Simon Aoyama1, Michael Okamoto1, William Harrington1,
Ellen Gelfand1, Thomas M. Green1, Mark J. Tomko1, Shuba Gopal1, Terence C. Wong1, Hubo Li3, Sara Howell1,
Nicolas Stransky6, Ted Liefeld1, Dongkeun Jang1, Jonathan Bistline1, Barbara Hill Meyers1, Scott A. Armstrong7,
Ken C. Anderson2, Kimberly Stegmaier1,3, Michael Reich1, David Pellman3, Jesse S. Boehm1, Jill P. Mesirov1,
Todd R. Golub1, David E. Root1 & William C. Hahn1,2,4,5

Using a genome-scale, lentivirally delivered shRNA library, we performed massively parallel pooled shRNA screens in
216 cancer cell lines to identify genes that are required for cell proliferation and/or viability. Cell line dependencies on
11,000 genes were interrogated by 5 shRNAs per gene. The proliferation effect of each shRNA in each cell line was
assessed by transducing a population of 11M cells with one shRNA-virus per cell and determining the relative enrich-
ment or depletion of each of the 54,000 shRNAs after 16 population doublings using Next Generation Sequencing. All
the cell lines were screened using standardized conditions to best assess differential genetic dependencies across cell
lines. When combined with genomic characterization of these cell lines, this dataset facilitates the linkage of genetic
dependencies with specific cellular contexts (e.g., gene mutations or cell lineage). To enable such comparisons, we
developed and provided a bioinformatics tool to identify linear and nonlinear correlations between these features.

Design Type(s)
genotyping design • cell type comparison design • RNAi
screening • loss-of-function screening by pooled shRNA

Measurement Type(s) SNP interrogation genotyping • cell viability assay

Technology Type(s) microfluidics platform • next generation sequencing

Factor Type(s) tumor subtype • growth medium • doubling time • study personnel

Sample Characteristic(s)

Homo sapiens • A2780 cell • BJHTERT • C2BBe1
cell • COLO-783 • EFO-21 cell • GP2D cell • IGROV-1
cell • JHESOAD1 • KM12 • LN215 • LN319 • LN382 • NCI-H1792
cell • OAW42 cell • … • ZR-75-30 cell
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Background & Summary
Genome characterization efforts describe an increasingly comprehensive list of genetic alterations that
occur in human cancers, but their contributions to the proliferation or survival of cancers often remains
obscure. Furthermore, we lack a systematic understanding of the genetic vulnerabilities of human cancer
cells as a function of these genetic alterations and the context in which they occur. A complementary
effort to systematically assess the genetic requirements of cancer cells in many cellular contexts will help
to decipher the roles of specific mutations and the vulnerabilities that these genetic alterations induce.
The identification of these context-specific cancer-cell vulnerabilities is the motivation for the generation
of the data set described here.

To identify genes that have a context-specific effect on cell viability, we performed short hairpin RNA
(shRNA) screens in a large number of cell lines in a highly parallel manner, in an effort named Project
Achilles. Although screens to identify proliferation/survival genes have been performed in individual
cells, Project Achilles data sets are unique in the number of genes and cell lines screened. Genome-wide
parallel pooled screens has been performed with 12 (ref. 1), 70 (ref. 2) and 102 (ref. 3) cell lines of a
variety of lineages. The data set described here, Achilles 2.4, extends and advances these previously
released data sets by increasing the number of cell lines that have been screened and employing a
different deconvolution method using next generation sequencing that yields a wider dynamic range and
more quantitative assessment than earlier-generation deconvolution methods.

The screening pipeline used to create this data set has been previously described3. Briefly, a pool of
54,020 shRNA plasmids targeting ~11,000 genes was used to infect the cell lines with a minimum
representation of 200 cells per shRNA in each of 4 replicates. Cells were then propagated for 16
population doublings or 40 days in culture, whichever came first. The relative levels of the shRNA
plasmids represented in the cell-pool gDNA were measured using Illumina-based sequencing and
compared to the initial plasmid pool (Figure 1).

The Project Achilles data set facilitates the discovery of context-specific dependencies, genes that when
suppressed only have an effect on the viability of the particular cell lines, combined with the discovery of
biomarkers associated with these differential sensitivities. Using Project Achilles 2.0 (ref. 3) and Project
Achilles 2.4, the ‘oncogene addictions’ of many known oncogenes such as PIK3CA, KRAS, and BRAF are
identified by showing that cell lines harboring mutations of these genes exhibit higher sensitivity to their
suppression. Furthermore, presence of these oncogenes in cells predicts dependency on other genes, for
example PIK3CAmut cell lines have preferential dependency on MTOR. In addition to these known
dependencies, we recently identified SMARCA2 and ARID1B as essential genes in cell lines with
SMARCA4 and ARID1A mutations, respectively4,5.

In addition to these single-gene based relationships, the Achilles data set can be exploited to discover
pathways to which specific tumor subtypes are preferentially dependent. One example of using such
approach is the discovery of the dependency of WNT active tumors on members of the YAP pathway6.
By making the data and analytical tools available to the scientific community, we expect that a number of
new vulnerabilities will be revealed.

We made Achilles 2.4 available to the scientific community in the Project Achilles portal (www.
broadinstitute.org/achilles). In addition to the shRNA level data, a gene-level dataset generated using the
ATARiS algorithm7 is also available for download. ATARiS combines data from the multiple distinct
shRNAs per target gene across many cell lines to reduce the contribution of off-target effects while
reinforcing the on-target effects. Moreover, specific genes can be queried and the dependency profile for
such genes across cell lines can be individually downloaded from the portal. To facilitate the discovery of
molecular and cellular correlates of the dependencies profiles, we created an analytical tool that we named
PARIS (Probability Analysis by Ranked Information Score) and made it available to the scientific
community in GenePattern (www.genepattern.org).

Methods
Cell line information
The majority of cell lines (179) were obtained from the Cancer Cell Line Encyclopedia (www.
broadinstitute.org/ccle). Cell line information, including source is listed in ’Table1_screening_informa-
tion.xls’ (Data Citation 1). Tumor type and growth media conditions, also used for screening, were
obtained from the CCLE project. For cell lines not obtained from CCLE, media conditions used by the
source laboratory were employed. Cell doubling time is calculated from the lentivirally infected cells
during the course of the experiment. Days in culture, calculated from the date of infection until the date
of the harvest, and passage number, based on the number of splits that occurred during the time in
culture, refer to the time point of the sample that was used for data collection specific to each cell line.

SNP fingerprinting
To ensure the identity of the cell lines and rule out the possibility of cross-contamination during the
screening process, a SNP fingerprinting quality control step was implemented. SNP fingerprinting
matches a panel of reference SNP genotypes for a cell line, with genotypes assayed after the screening
process. The reference set of SNP genotypes used for most samples was derived from the Affymetrix
SNP6.0 array birdseed genotypes from the Cancer Cell Line Encyclopedia project8,9. Cell lines not present
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in CCLE were genotyped for the same panel of SNPs with either the Sequenom or Fluidigm platform
and/or also profiled with SNP6.0 arrays before screening.

Two genotyping platforms, Sequenom and Fluidigm, were used to assay different panels of SNPs,
which overlapped those present on the Affymetrix SNP6.0 array. DNA was isolated as described in the
screening methods (below).

Briefly the Sequenom protocol is as follows: SNPs are amplified in PCR reactions that contain a
maximum of 24 loci. The Single Base Extension reaction is then performed on the Shrimp Alkaline
Phosphatase treated PCR product using iPLEX-GOLD enzyme and mass-modified terminators
(Sequenom, SanDiego). A small volume of reaction is then loaded onto each position of a 384-well
SpectroCHIP preloaded with matrix (3-hydroxypicolinic acid). SpectroCHIPs are analyzed in automated
mode by a MassArray MALDI-TOF Compact system with a solid phase laser mass spectrometer (Bruker
Daltonics Inc., 2005). The resulting spectra are called by real-time SpectroCaller algorithm and analyzed
by MassArray Typer v.4.0 software which combines base caller with the clustering algorithm.

For Fluidigm Fingerprinting, we utilize 4 HX Fluidigm IFC chip loaders and 4 FC1 cyclers for the
96.96 dynamic array. To support this process, we use an Agilent Bravo and the BioMark HD system for
the liquid handling steps of the process.

Screening
We previously performed a genome-wide pooled shRNA screening of 102 cancer cell lines in
quadruplicate (Achilles v2.0) to identify essential genes3. Using a library of 54,020 shRNAs targeting
11,194 genes individual shRNAs were lentivirally delivered to the cells. The abundance of the shRNAs
was measured after the cells were propagated for 16 populations doublings or 40 days in culture,
whichever came first, and compared to the initial DNA plasmid pool. To generate Achilles v2.4 we used
the genomic DNA from these 102 cell lines and re-measured their abundance using a next generation

Evaluate relative
enrichment or
depletion of shRNAs
by next generation
sequencing    

Pooled shRNA plasmid library 

Infect cells,
4 replicates each line

Package Virus

Harvest genomic DNA

Amplify hairpin
regions by PCR

Figure 1. Schematic representation of the schema used for pooled shRNA screening.
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sequencing approach. Four lines (A2780, F5, NCI-H82 and OVMANA) that were screened previously
failed our new QC guidelines implemented with the new sequencing deconvolution pipeline (see below).
An additional 143 cell lines were screened using a similar protocol. In total, high quality data from 216
cell lines make up the final Achilles v2.4 dataset. The media conditions used for all cell lines are listed in
‘Table1_screening_information.xls’ (Data Citation 1).

Deconvolution of pooled screening by NGS
Deconvolution was performed similar to that described in Ashton et al.10. Briefly, the shRNA region was
PCR amplified from the purified gDNA using the following conditions: 5 μl primary PCR primer mix,
4 μl dNTP mix, 1x Ex Taq buffer, 0.75 μl of Ex TaqDNA polymerase (Takara), and up to 10 μg genomic
DNA in a total reaction volume of 100 μl. A total of 140 μg gDNA was used as template from each
replicate. Thermal cycler PCR conditions consisted of heating samples to 95 °C for 5 min; 15 cycles of
94 °C for 30 s, 65 °C for 30 s, and 72 °C for 20 s; and 72 °C for 5 min. PCR reactions were then pooled per
sample. A secondary PCR step was performed containing 5 μM of common barcoded 3′ primer, 8 μl
dNTP mix, 1x Ex Taq buffer, 1.5 μLEx TaqDNA polymerase, and 30 μl of the primary PCR mix for a total
volume of 90 μl. 10 μl of independent 5′ barcoded primers are then added into each reaction, after which
the 100 μl total volume is divided into two 50 μl final reactions. Thermal cycler conditions for secondary
PCR are as follows: 95 °C for 5 min; 15 cycles of 94 °C for 30 s, 58 °C for 30 s, and 72 °C for 20 s; and 72 °C
for 5 min. Individual 50 μl reactions are then re-pooled. Reactions are then run on a 2% agarose gel and
intensity-normalized. Equal amounts of samples, based on gel intensity are then mixed and gel-purified
using a 2% agarose gel. Samples were sequence using a custom sequencing primer using standard
Illumina conditions.

Primary PCR Primers:
5′: AATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCG
3′: CTTTAGTTTGTATGTCTGTTGCTATTATGTCTACTATTCTTTCCC

Secondary PCR Primers:
5′(BC):AATGATACGGCGACCACCGAGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTG
GANNNNACGA
3′: CAAGCAGAAGACGGCATACGAGCTCTTCCGATCTTGTGGATGAATACTGCCATTTGTCTC

Custom Sequencing primer:
GAGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGA
For current methods please visit: http://www.broadinstitute.org/rnai/public/resources/protocols
20 replicates were multiplexed into a single Ilumina sample, and run on multiple lanes to achieve a

minimum of 17reads per replicate.

Data processing pipeline
Read count normalization. Raw 45-mer reads were extracted from fastq files and binned into reads
containing each unique 4-mer PCR primer barcode used for each screening replicate. Within each
replicate, instances of the 21-mer shRNA sequence was counted, using the TRC reference list of all
21-mer hairpin sequences expected. This generated a matrix of the counts of raw Illumina reads for each
shRNA in each screening replicate. These counts were normalized to the total number of reads collected
for each replicate to account for the (modestly) variable read depth of each replicate. This was performed
using the following equation:

Normalized shRNA value= log2 [(Raw read value for shRNA)/(Total raw read value for Replicate)
×1e6] +1

A GenePattern module to perform both the extraction of raw reads counts and to convert into a
normalized data file named PoolQ will be available soon in GenePattern (http://genepattern.org).

Sample quality control. Quality control for replicate cell line samples consisted of two measures:
replicate reproducibility and a measure of the overall distribution of shRNA normalized and logged read
counts. The Pearson correlation between all replicate samples was calculated and the 75th percentile of
the correlation of all non-replicate pairs (0.6795) was chosen as the threshold used to fail individual
replicate samples. A measure of the overall distribution of each replicate sample was scored by calculating
its 75th percentile. Those individual replicate samples that had a score less than the mean—1 standard
deviation of all scores were removed from further analysis. In addition, any cell line that lacked 3
replicates passing both of these QC metrics was also removed. The GenePattern module ‘ReplicatesQC’
was used to run these metrics and identified replicate samples to be removed. Four additional cell lines
were removed from the final dataset because they were engineered cell lines.

Achilles data processing GenePattern pipeline. Normalized and log2 transformed read counts per
replicate sample (Data Citation 1) were processed in a GenePattern pipeline. The pipeline consisted of
individual GenePattern modules (Supplementary Figure 1 and available here: http://genepattern.org and
in the GParc repository: http://www.broadinstitute.org/software/gparc/), each responsible for a specific
processing step. During the period of Illumina data collection, changes in both the cluster kit used (cBot
v7 for early samples to cBot v8 for later samples), and the SBS kit (SBS v2 for earlier samples and v3 for
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later samples) were implemented. To minimize any technical error due to the variation in Illumina
chemistry, we kept the data for each subset of samples independent for those collected using the cBotV7/
sbsv2 kits and those collected using the cBOTv8/sbsv3 kits. Separate files corresponding to samples
processed under different sequencing chemistry and software conditions were maintained in the pipeline
until the correct reference DNA pool sample was mapped to each sample. Briefly, the pipeline starts with
modules that remove undesirable shRNAs and failing QC replicate samples. These modules are
‘FilterLowshRNAs’, which removes shRNAs that start at low abundance in the plasmid DNA pool
(median of r1 logged normalized read counts), ‘shRNAremoveOverlap’, which removes one of a pair of
shRNAs that have an offset of o3 basepairs and ‘removeSamples’, which removes a list of failing
replicates. The pipeline then calculates fold change values per shRNA per replicate using the
‘shRNAfoldChange’ module and normalizes the shRNA depletion values per replicate cell line to
the same scale, using quantile normalization with the ‘NormLines’ module. Remaining replicates of
each cell line were then collapsed to a single value per cell line, per shRNA using the ‘shRNAcollapseReps’
module. The last step in the data processing pipeline maps shRNAs to gene symbols, using a mapping
file ‘CP0004_20131120_19mer_trans_v1.chip’ (Data Citation 1) and the ‘shRNAmapGenes’ module.
Multiple shRNAs can be mapped to the same genes in the final shRNA-level data file (Data Citation 1),
depending on this transcriptome mapping.

Data Records
Data files have been deposited in the FigShare data repository as one text-based README file, four.gct
formatted files, 3 tables as either.xls or tab delimited text and one.chip mapping file (Data Citation 1).

File 1. ‘Achilles_Analysis_README_v2.4.3.txt’
This is a README file outlining the data processing steps that occur between the initial logged and

normalized read count files and the final shRNA- and gene-levels files.
File 2. ‘cBOTv7_sbsv2_allreps_log.gct’
The logged and normalized read counts from the pooled screening of the first group of cancer cell

lines, performed in quadruplicate, and the appropriate DNA reference. This is a.gct formatted file, with
replicate cell lines in columns and shRNAs in rows. Sequences of shRNA barcodes are in the 1st column
(labeled ‘Name’), with a blank 2nd column (labeled ‘Description’).

File 3. ‘cBOTv8_sbsv3_allreps_log.gct’
The logged and normalized read counts from the pooled screening of the second group of cancer cell

lines, performed in quadruplicate, and the appropriate DNA reference. This is a.gct formatted file, with
replicate cell lines in columns and shRNAs in rows. Sequences of shRNA barcodes are in the 1st column
(labeled ‘Name’), with a blank 2nd column (labeled ‘Description’).

File 4. ‘Achilles_QC_v2.4.3.rnai.gct’
The final shRNA-level file obtained after processing formatted as a.gct file, with cell lines in columns

and shRNAs in rows. Sequences of shRNA barcodes are in the 1st column (labeled ‘Name’) and gene
names mapped to those shRNAs are in the 2nd column (labeled ‘Description’).

File 5. ‘Achilles_QC_v2.4.3.rnai.Gs.gct’
The final gene-level file obtained after analysis of the shRNA level file with the ATARiS algorithm.

This is a.gct formatted file, with cell lines in columns and ATARiS gene solutions in rows. ATARiS gene
solutions are in the 1st column (labeled ‘Name’) and gene names are in the 2nd column (labeled
‘Description’).

File 6. ‘Achilles_QC_v2.4.3.shRNA.table.txt
The shRNA quality file produced after analysis of the shRNA level file with the ATARiS algorithm.

This is a tab-delimited text file, with shRNAs in rows. The columns contain annotation information for
each shRNA, including consistency scores and whether each shRNA was used in the resulting gene
solution.

File 7. ‘Table1_screening information.xls’
The file of cell line information, including annotations about screening conditions, are present in this.

xls formatted file. Described in more detail in the Methods section.
File 8. ‘Table2_SNP_genotyping.xls’
The file of SNP genotypes, per cell line, are present in this.xls formatted file. Described in more detail

in the Methods section.
File 9. ‘CP0004_20131120_19mer_trans_v1.chip’
The shRNA to gene mapping file. This is a tab delimited text file with shRNA barcode sequences in

rows, along with the mapping of each to gene transcript identifier, gene identifier and gene symbol.

Technical Validation
Sequencing deconvolves pooled shRNA data accurately, as assayed by an artificial dilution
series
The performance of sequencing deconvolution was evaluated using engineered plasmid pools containing
known relative proportions of DNA. Two 45,000-shRNA pools were created by combining 4 subsets of
the shRNA library plasmids (labeled in black, red, green, blue, each consisting of ≈11,000 different
plasmids) in a 1:1:1:1 ratio of concentration for the Reference pool and in a 1:4:16:64 ratio for the
Dilution series pool. We show that 4-fold changes in relative shRNA abundance can be accurately
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shown by NGS (Illumina) sequencing, similar to that seen previously by custom Affymetrix arrays1

(Figure 2a,b).

Accuracy of pooled screen measurements from sequencing deconvolution
We used a previously generated dataset of 350 shRNAs tested in competition assays in OVCAR-8 cells3 to
compare with the values obtained using sequencing to deconvolve our pooled screening data. The
percentage depletion of these shRNAs in the competition assay was correlated to their fold change in the
pooled screening (Figure 3). The four replicates of OVCAR-8 had Spearman correlations to the
competition assay that ranged between 0.75 and 0.77, indicating that sequencing deconvolution of our
pooled screening provides an accurate measure of the effect of the shRNAs on cell viability.

Dataset quality is enhanced by tracking and confirming cell line sample identity after
screening
SNP fingerprinting was performed to validate the cell line identity after pooled screening. Birdseed
genotypes from Affymetrix SNP6.0 arrays for 79 SNPs were primarily used as references for cell line
identity and are listed by their dbSNP identifier in ‘Table 2_SNP_genotyping.xls’ (Data Citation 1),
along with a designation of which fingerprinting platform was used for comparison. In some cases, a
reference panel was genotyped before screening commenced. Fluidigm or Sequenom fingerprints after
screening were extracted and compared to the reference, using the GenePattern module ‘FPmatching’
(http://genepattern.org). This table also contains information about the number of SNPs used
for matching and the fraction matching between the reference and post-screen fingerprints. The ability
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Figure 2. Assessment of data accuracy using DNA pools containing known relative proportions of DNA.

Two 45,000-shRNA pools were created by combining 4 subsets of the shRNA library plasmids (labeled in

black, red, green, and blue) in a 1:1:1:1 ratio of concentrations for the ‘Reference pool’ and in a 1:4:16:64

ratio for the ‘Dilution pool.’ The observed separation of the 4 subsets of shRNAs according to their known

relative proportions in the 2 pools illustrates the ability of (a) NGS and (b) Affymetrix arrays to deconvolve

the pooled shRNA library.
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to match post-screening results back to reference cell line genotypes confirms cell line identity in
the screening results and ensures the correct use of previously collected genomic information from the
CCLE project.

Screening conditions do not lead to batch effects in the data
Principal component analysis (PCA) was performed on the quantile-normalized shRNA level data to
identify systematic variation among groups of cell lines. Scatterplots of the first two principal components
(variables that account for the most variation in the data) show biological diversity between lineages, as
seen in Figure 4a. This particularly differentiates the hematopoietic lineages like multiple myelomas and
leukemias from solid malignancies. However, PCA also shows that screening conditions like infection
rate, observed cell representation, date of PCR and the identity of the screener do not lead to batch effects
(Figure 4b–e).

Replicate cell line screens are reproducible
As outlined in the sample quality control methods, the Pearson correlation within cell line replicates
(intra-replicate) was calculated and compared with non-replicate pairs of samples (inter-replicate). The
majority of cell lines have replicate correlations above the calculated quality control threshold (0.6795),
highlighting the reproducibility of these screens (Figure 5a). In addition, when the shRNAs are divided
into deciles based on the initial DNA reference pool signal, the intra-replicate correlations (Fig. 5b) of
these shRNA groups are higher than their corresponding inter-replicate correlations (Fig. 5c). In general,
the higher the initial DNA reference signal is, the higher both intra- and inter-replicate correlations are.
One exception is the group of shRNAs within the lowest initial reference signal, as shRNAs that start out
with a low signal can more easily drop out (have no signal) and look correlated in a loss of function
screen.

Usage Notes
Project achilles portal
The Project Achilles Portal was developed at the Broad Institute to make the Achilles data sets more
visible and easily available to the scientific community. In addition to the data set described here, our
previously published data set3 is also hosted in this Portal. Project Achilles is an ongoing project and as
additional data is generated, these data sets will be made available in the Portal when they become ready
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Figure 3. Comparison of pooled screen measurements from sequencing deconvolution against individual

shRNA proliferation tests. The relative abundance (fold change values) of 350 shRNAs measured from

sequencing deconvolution of four OVCAR-8 replicates (y-axis) are plotted against the relative abundance of

OVCAR-8 cells (x-axis) infected with each shRNA encoded in a GFP+ plasmid, measured at 7 days post

infection in the competition assay 3. The circled dot indicates the median value, boxes represent the 25th to

75th percentile and whiskers extend to the full range of the data for those 4 replicates.
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for public release. Moreover, we are continuously evaluating our data processing steps and re-iterations of
the same data sets might be released in the Portal if they present a significant improvement.

The datasets are organized by version and with each version, data is available for download at the
shRNA level and summarized at the gene-level using the ATARiS algorithm (http://www.broadinstitute.
org/ataris/)7. We preferentially use the gene level scores in our downstream analysis since this takes into
account the consistency of the different shRNA values for one gene across cell lines, and thus helps to
maximize the on-target effects of shRNAs. In addition to the data at the shRNA and gene level, a sample
information file, an shRNA to gene mapping file and a detailed description of the processing steps are
provided which each version of the data. The data can be downloaded or launched using GENE-E (http://
www.broadinstitute.org/cancer/software/GENE-E/).

The Portal also provides the users with the ability to search the data for specific genes. The gene page
contains information on the shRNAs targeting such a gene present in the library, whether they contribute
to the gene-summary score (ATARiS solution) and a consistency score (provides a score for each shRNA
that represents the confidence that its observed phenotypic effects are the result of on-target gene
suppression). A sortable heatmap with the shRNA and ATARiS scores per cell line is also shown.

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150
Cancer type

Pancreas
Esophageal
Ovarian
Colon
Multiple Myeloma
GBM
Melanoma
Lung NSCLC
Bone sarcoma
Breast
Meningioma
Renal Cell Carcinoma
Prostate
Liver
Bladder
Gastric
Soft Tissue Sarcoma
Leukemia
Endometrial
Lung SCLC
Lung Mesothelioma

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150 Screener
Screener C
Screener A
Screener D
Screener B
Other
Screener E

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150 Observed Infection rate
10−20

20−30

30−40

40−50

50−60

60−70

70−80

80−90

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150
PCR date Jan − June 2011

June − Dec 2011
Jan − Dec 2012

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150
Observed cell representation

0−5e6
5e6−10e6
10e6−15e6
15e6−20e6
20e6−25e6
25e6−30e6
30e6−35e6
35e6−50e6

Figure 4. Evaluation of batch effect from differences in screening conditions. The first principal component
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screen. Ellipses are drawn around colored groups with greater than 5 examples, to aid in visualization.
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Data mining using PARIS (GenePattern module)
PARIS is a sensitive and general information-based feature selection method. A target profile of interest is
identified, such as mutation status of an oncogene, and then the method selects the top RNAi essentiality
profiles (shRNA- or gene-based) that best match the target profile in a collection of samples according to
a rescaled normalized mutual information score (RNMI). As new metrics are evaluated, PARIS may be
modified to support them.
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Figure 5. Assessment of reproducibility by measuring intra- and inter-replicate correlation. (a) A boxplot of

correlation between replicates (y-axis) plotted for each cell line (x-axis) shows the range of replicate-

replicate correlations. The circled dot indicates the median value, boxes represent the 25th to 75th

percentile and whiskers extend to the full range of the data not considered outliers for each cell line. A line

indicating the threshold for passing quality control is in red. Histograms of (b) all intra-replicate correlations

and (c) all inter-replicate (non-replicate) correlations show overall that replicate correlations are higher than

non-replicate correlations. Colors indicate the percentile of signal in the initial DNA reference pool.
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The joint entropy H(t, x) and the Mutual Information, MI(t, x) between the target profile t and a given
essentiality profile x are function of empirical probability distributions11

Hðt; xÞ ¼ -∬ Pðt; xÞ logPðt; xÞdtdx ð1Þ

MIðt; xÞ ¼ ∬ Pðt; xÞ log Pðt; xÞ
PðtÞPðxÞdtdx ð2Þ

These probability distributions are determined from the data profiles using kernel density and
cross-validation bandwidth estimation12–14. The mutual information is normalized (NMI) using the joint
entropy,

NMIðt; xÞ ¼ MIðt; xÞ
Hðt; xÞ : ð3Þ

This provides a universal metric15 that takes into account differences in entropy across essentiality
profiles. We also rescale the NMI with the score of the target against itself,

RNMIðt; xÞ ¼ signðρ t; xð ÞÞNMIðt; xÞ
NMIðt; tÞ; ð4Þ

and add a ‘directionality’ factor according to the sign of the correlation coefficient ρ t; xð Þ. In this way a
perfect match (anti-match) corresponds to a score of +1 (−1) and a random match to 0. The significance
of a given RNMI matching score is estimated by an empirical permutation test where the target values are
randomly permuted and compared with all the essentiality profiles in order to make a global null
distribution and compute nominal p-values and False Discovery Rates16. The RNMI matching score has
important advantages when compared to other association metrics such as increased sensitivity to non-
linear correlations and wider dynamic range at the top of the matching scale which is especially useful
when comparing against multiple genomic features. The use of information-based measures of
association is not new17,18 but it has only been applied systematically to practical inferential problems,
and genomics in particular, over the last decade19–23. Recently there has been a renewed appreciation of
the potential of information-based approaches17,24,25.

We made the PARIS publically available as a GenePattern module (http://genepattern.org) and a
tutorial is available in the Project Achilles Portal. The Cancer Cell Line Encyclopedia portal (http://www.
broadinstitute.org/ccle) is an excellent resource for obtaining genomic information on most of the Project
Achilles-screened cell lines, to use in PARIS and other data mining tools.
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Corrigendum: Parallel genome-scale
loss of function screens in
216 cancer cell lines for the
identification of context-specific
genetic dependencies
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Mark J. Tomko, Shuba Gopal, Terence C. Wong, Hubo Li, Sara Howell, Nicolas Stransky,
Ted Liefeld, Dongkeun Jang, Jonathan Bistline, Barbara Hill Meyers, Scott A. Armstrong,
Ken C. Anderson, Kimberly Stegmaier, Michael Reich, David Pellman, Jesse S. Boehm,
Jill P. Mesirov, Todd R. Golub, David E. Root & William C. Hahn

Scientific Data 1:140035 doi: 10.1038/sdata.2014.35 (2014); Published 30 September 2014;
Updated 11 November 2014

The original version of this Data Descriptor contained a typographical error in the spelling of the
author Terence C. Wong, which was incorrectly given as Terrence C. Wong. This has now been
corrected in the PDF and HTML versions of the Data Descriptor.
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