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One of the most important advancements in theoretical epidemiology has been the devel-

opment of methods that account for realistic host population structure. The central finding is

that heterogeneity in contact networks, such as the presence of ‘superspreaders’, accelerates

infectious disease spread in real epidemics. Disease control is also complicated by the

continuous evolution of pathogens in response to changing environments and medical

interventions. It remains unclear, however, how population structure influences these adaptive

processes. Here we examine the evolution of infectious disease in empirical and theoretical

networks. We show that the heterogeneity in contact structure, which facilitates the spread of

a single disease, surprisingly renders a resident strain more resilient to invasion by new

variants. Our results suggest that many host contact structures suppress invasion of new

strains and may slow disease adaptation. These findings are important to the natural history

of disease evolution and the spread of drug-resistant strains.
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O
ur ability to understand and control the spread of
infectious diseases has historically relied on insights
gained through mathematical modelling1. A large body of

literature has examined the effects of both contact structure and
pathogen evolution on disease spread. On the one hand, recent
models that account for realistic host population structure have
shown that heterogeneity in host contact networks strongly
influences the epidemiology of an infectious disease2–5. The
presence of a few individuals with a disproportionately large
number of contacts has been shown to significantly increase
disease spread3–5, and these ‘superspreaders’ have been shown to
be important drivers in many real disease outbreaks6. On the
other hand, the constant and rapid evolution of pathogens in
response to changing environments7,8 and medical interventions9

complicates disease control.
The intersection of these two fields, however, has received

much less attention, although there are several reasons to think
that contact structure can influence disease evolution. First,
population structure can either amplify or suppress selection in
simple population-genetic models10, but it is unclear to what
extent these effects can be generalized to more complex infection
dynamics. Second, models that have looked at the successive
spread of two strains on a heterogeneous contact network have
shown that the spread of the first strain modifies the network in a
manner that may affect the spread of the second strain11–14.
Third, local contact heterogeneity arising from spatial structure
has been shown to affect the evolution of pathogen virulence both
in theoretical15–17 and experimental investigations18. Given these
findings, it is important to scrutinize in greater detail how contact
structure influences the evolution of infectious diseases, and,
moreover, whether there are particular contact networks that
promote or hinder the invasion of new disease strains.

To this end, we use analytical and simulation methods to
explore disease evolution in both empirical and idealized contact
networks. We show that the heterogeneity in the host contact
network that facilitates the spread of a single disease in turn
lowers the fixation probability of an invading strain. Thus, many
host contact structures may suppress the invasion of new disease
strains and may slow disease evolution and adaptation.

Results
Simulation of disease evolution on networks. We gathered a set
of empirically observed contact networks from different popula-
tions. Details of the networks, including sources, statistics and
generative models, are given in Table 1 and the Methods. In brief,
we use (i) a physical proximity network for students in a US
elementary school; (ii) data from patients and health-care workers
in a US hospital; (iii) a survey of the number of sexual contacts
from the United Kingdom National Survey of Sexual Attitudes

and Lifestyles (NATSAL); and (iv) a social network consisting of
friends, family and co-workers from the US Framingham Heart
Study (FHS). We contrasted these networks with a set of well-
characterized theoretical networks including uniform random,
Erdös-Rényı́, scale-free and small-world. We characterize these
networks using standard summary statistics from graph theory.
An individual is said to have degree k if it is connected to k other
individuals in the population, and the distribution of individuals’
degrees is given by the degree distribution, p(k).

We simulated epidemics on these networks using a stochastic
susceptible—infected—susceptible (SIS) model, which is a
simplified representation of an endemic disease without lasting
immunity1,19. We examine a series of steps in an epidemic caused
by an evolving disease. In the first step (Fig. 1a), a single infected
individual appears in the population due to, for example,
migration from another population or infection from an
external reservoir. Susceptible neighbours are infected with rate
b1 and infected individuals recover with rate g. The disease will
either spread and reach an endemic equilibrium or go extinct.
The probability that the disease does not immediately go extinct
is the ‘emergence probability’, which is generally zero below
threshold values of infectivity, b1, infectious period, 1/g, and
contact density. In the second step (Fig. 1b), the disease reaches
an endemic equilibrium, where the prevalence remains
approximately constant for long periods of time. The particular
structure of the contact network is a strong determinant of
prevalence patterns, such as number and degree distribution of
infected individuals. In a third step (Fig. 1c), a second strain
of the disease appears in a random infected individual. We
assume that the mutation rate is sufficiently low such that the
resident disease has time to reach an endemic level before a new
mutant appears. The second strain infects susceptible neighbours
with rate b2 and recovers with rate g. We assume the competing
strains induce perfect cross-immunity, such that there is no
co-infection or super-infection. We are interested in the
likelihood that a new strain takes over the population, causing
the resident strain to go extinct. The second and third steps may
repeat continually over the course of evolution.

Selection exponents for empirical and theoretical networks. We
found that the threshold infectivity required for the spread of a
single strain differed strongly depending on the network structure
(Fig. 2c,e). Heterogeneity in degree distribution facilitated disease
spread, in agreement with previous work. The empirical networks
generally had lower thresholds than the theoretical networks,
apart from the scale-free network. We then analysed the ability of
new strains to invade these networks (Fig. 2d,f). We define the
fixation probability, Pfix, as the proportion of simulations in
which the new strain invades and drives the resident strain to

Table 1 | Summary statistics for networks used in Fig. 2.

Type Network Source N hki rk /

Empirical Social (FHS) 36,37 5,253 6.5 6.8 0.68
School 38 740 6.5* 3.3 0.04
Hospital 39 68 6.5* 5.3 0.29
Sexual (NATSAL) 40,41 7,578w 2.7 4.9 0.002

Theoretical Uniform N/A 104 4 0 E10�4

Random Erdös-Rényı́/Gilbert33,34 104 4 2 E10�4

Scale-free Barabasi-Albert35 104 4 5.3 E10� 3

Small-world Santos et al.22 104 4 0 0.49

Four previously published network data sets were used along with four computationally generated networks. Reported characteristics include network size N, average degree hki, s.d. in degree sk and
clustering coefficient f. Further details on data sets and algorithms are given in the Methods.
*For the school and hospital networks, a static unweighted network was sampled from the data set, which allowed hki to be defined (to match the FHS network) and resulted in N being slightly smaller
than the full study population to ensure a fully connected network.
wFor the sexual network, only the degree distribution was available, which we fit to a power law function and used to construct a scale-free network with random attachment.
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extinction. Again, we observe large differences between networks,
in this case in the dependence of fixation probability on the
selective advantage, r¼b2/b1. Contact structure lowered the
fixation probabilities and thus inhibited the emergence of new
disease strains. This finding is surprising given that all networks
apart from the small-world facilitated the spread of an initial
strain compared with a well-mixed population, by lowering the
invasion threshold. Although this trend can also be observed in
individual comparisons of two networks, it is not universal. For
example, the uniform and small-world have different invasion
thresholds but similar fixation probabilities, while the school and
hospital networks have similar invasion thresholds but very dif-
ferent fixation probabilities. The fixation probability of the second
strain can be written as a function of the selective advantage r,
which is amplified or suppressed by a selection exponent a, such
that Pfix¼ 1� 1/ra (see Methods and Lieberman et al.10). For
uniform random networks, we expect a¼ 1. Networks can thus
be ranked based on their ability to promote selection of new
strains by estimating a best-fit a from the curves in Fig. 2d,f.
Interestingly, all the tested networks have an ao1 and thus
suppress selection of beneficial mutants compared with the well-
mixed or uniform case (Fig. 2g, Supplementary Table 1).

Effect of degree heterogeneity on the fixation probability.
Our goal is to understand the specific network properties that
cause such disparate behaviours in disease evolution, but it is
complicated by the fact that these example networks differ in
many structural properties (Table 1). We thus examined classes of
networks where single properties can be tuned.

Previous studies have identified individual variation in number
of contacts as an important determinant of disease spread1,3,20.
To examine the influence of degree heterogeneity on disease
evolution, we constructed a series of networks with the same
mean degree but tunable variance (Fig. 3a). We then compared
various aspects of the simulation results with analytical
approximations. In line with previous work, the threshold
disease transmissibility required for emergence is lower for
networks with higher variance in connectivity3,20. The emergence
probabilities observed in the simulations (Fig. 3b) are well-
approximated by a continuous-time multi-type branching process
(detailed in Methods), where individuals are divided into types
according to their degree. The probability of being infected at
equilibrium as a function of the degree (Fig. 3c) is well described
by a system of differential equations tracking pairs of individuals
(see Methods and House and Keeling21).

Next, we examined the probability, Pfix, that a novel strain,
which appears at endemic equilibrium, displaces the resident

strain. We find that this fixation probability depends highly on
the network structure, and that it is markedly lower for networks
with high variance in degree (Fig. 3d). Lower fixation probability
results in slower adaptation when mutations are rare. Hence,
heterogeneous contact structure acts to suppress selection for
infectious diseases, despite facilitating initial spread.

We derive a combined analytical technique to approximate the
invasion of a new disease strain into a population with a resident
endemic disease, without the need for large-scale simulations
(Methods). We first obtain the fraction of individuals with degree
k who are susceptible at equilibrium, using a deterministic pair-
wise approximation21. We then calculate the invasion probability
of the second strain using a branching process approach. This
calculation is similar to the single strain case, but incorporates the
probability that an individual of degree k is susceptible at
equilibrium. This combined pair-wise deterministic and multi-
type branching process approximation is in excellent agreement
with simulation results (Fig. 3d).

We also examined the effect of the degree of the focal
individual in which the new strain arises on the fixation
probability. The fixation probability is positively correlated with
the degree of the focal individual and negatively correlated with
the average degree of this individual’s neighbours.

Effect of local clustering on the fixation probability. We next
investigated the effect of local clustering on disease evolution. To
this end, we constructed a series of small-world networks with
fixed degree and tunable global clustering coefficient, f (see
Methods for definition and details). In brief, individuals in the
network are initially connected to a local neighbourhood, after
which a rewiring procedure is applied that introduces shortcuts
in the network22. The emergence probability and endemic
equilibrium for a single strain decrease with increasing
clustering (Fig. 3e,f), in agreement with previous work22,23.
Surprisingly, however, we find that the fixation probability of the
second strain is completely independent of clustering (Fig. 3g).

Our results suggest that degree heterogeneity more strongly
influences disease evolution than local clustering. The intuition
behind these results is illustrated in Fig. 4. For a first strain
spreading in a fully susceptible population, high variance in
degree facilitates spread due to the the presence of easily
accessible hubs with high connectivity. These hubs, once infected,
markedly reduce the extinction probability as they are sur-
rounded by many susceptible individuals. Star-like graphs are an
extreme example of this situation (Fig. 4a). When a novel mutant
arises in endemically infected populations, however, the hub-
individuals are the most likely to already be infected by the

a b c

Figure 1 | Model of disease evolution on networks. Individuals are represented by nodes in a network (shapes) and connections between individuals

through which the disease can spread are represented by edges (grey lines). (a) In a population of initially susceptible individuals (green circles), a single

individual becomes infected (red hexagons). (b) The infection spreads throughout the population, and eventually reaches a dynamic equilibrium (becomes

‘endemic’), where the number of new infections is balanced by the number of recoveries. (c) The pathogen in a single individual gains a beneficial mutation,

creating a new pathogen strain (blue octagon). We are interested in the probability that this new strain fixes in the population, reaching endemic

equilibrium and causing the resident strain to go extinct.
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resident strain, and hence are unlikely to be available for infection
by the mutant. The higher the variance, the stronger this hub-
holding effect, and the lower the average degree of remaining

susceptible individuals. As there are many more peripheral than
centre nodes in the star graph, a randomly introduced new strain
is more likely to appear in a peripheral node (Fig. 4b). To spread,
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Figure 2 | Network structure influences the evolution of diseases on real and theoretical contact networks. (a,b) Graphical representation of the

networks. Large red or blue circles represent nodes with a high degree, small purple or green circles represent nodes with a low degree for the empirical

and theoretical networks, respectively. (c,e) The probability that a single disease causes an epidemic (the emergence probability), Pemerge, versus the

scaled transmissibility t¼ b(hki� 1)/g. b is varied and t represents the expression for the basic reproductive ratio for the uniform network. The thick grey

line indicates the emergence probability for a well-mixed network, Pemerge¼ 1� 1/R0. The transmissibility value at which Pemerge becomes non-zero (that is,

the epidemic threshold) depends on the network. (d,f) Dynamics of new disease variants. The probability of fixation, Pfix, versus the selective advantage,

r¼ b2/b1, of a new disease variant is strongly influenced by the population structure, but is not predicted by Pemerge. The thick grey line indicates the fixation

probability in a well-mixed network, Pfix ¼ 1� R
ð1Þ
0 =R

ð2Þ
0 . (g) The selection exponent, a, is calculated by fitting Pfix versus r to equation (27). Lower values

mean that selection is suppressed compared to the uniform network. For a uniform or well-mixed population we expect a¼ 1. Fits are shown by the solid

lines in panels (d) and (f).
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however, the new strain must first infect a centre node, which is
very likely already infected with the resident strain. If the centre
node recovers before the mutant goes extinct, the mutant has the
possibility to infect it; however, it must do so before the centre is
reinfected by the resident strain from one of the many other
infected peripheral nodes (Fig. 4c).

To understand the lack of influence of local clustering, we
consider a small-world network (Fig. 4d–f). When the first strain
spreads in a fully susceptible population, patient zero has the
possibility to infect all of its neighbours. Strong local clustering
implies strong overlap in neighbours of two connected indivi-
duals. As the epidemic progresses, the neighbours of subsequently
infected nodes are likely to already be infected. Consequently,
small-world networks with large clustering coefficients tend to
decrease the probability that a disease will emerge. In fully
susceptible populations, shortcuts facilitate disease spread by
allowing the strain to jump to new areas of the network where
most individuals are still susceptible. These shortcuts do not help
the spread of a second strain, as jumping to a different part of the
network is not beneficial when the resident disease is endemic
throughout the network. Hence, the fixation probability of new
strains is independent of the rewiring probability.

This intuitive argumentation can also be formulated in terms
of the effect the first strain has on the degree distribution of
susceptible individuals. As individuals with high degree are more
likely to be infected at equilibrium (Fig. 3c), the mean degree in
the residual network of susceptibles5,24 decreases with increasing

variance (Fig. 4g,h). For uniform networks, the variance in
degrees can only increase between initial and residual networks,
while for more heterogeneous networks the residual network
could have lower variance. Note that, in the SIS model, as
recovery and reinfection are constantly occurring, the residual
network is a dynamic concept: the actual nodes in it may change
while the average properties remain constant.

Discussion
Throughout this paper, we have considered one particular
two-step model of competition between different strains of an
infectious disease spreading on a static contact network. A single
pathogen strain obeying SIS dynamics spreads in a host
population until it reaches endemic equilibrium. The probability
of successful spread increases with increasing degree hetero-
geneity of the host population. In the endemic equilibrium,
a new strain with complete cross-immunity, differing only in its
transmission rate, appears in a single infected individual.
Conversely to the initial spread, the probability that this new
strain can successfully invade the host population decreases
with increasing degree heterogeneity. Such a model is a good
description of an endemic disease where the transmission of
de-novo mutants is a rare event. To understand in what way the
results may be generalizable to other models of disease spread, it
is important to discuss some of implications of the model
assumptions.
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Figure 3 | Dynamics of disease evolution in heterogeneous networks and small-world networks. (a–d) Heterogeneous networks; (e–g) small-world

networks. (a) Degree distribution for upper panels is specified by a discrete gamma distribution (see Methods) with constant mean hki¼4 but tunable

variance s2. (b) The probability that a single disease causes an epidemic (the emergence probability), Pemerge, versus the scaled transmissibility

t¼b(hki� 1)/g. b is varied and t represents the expression for the basic reproductive ratio for the uniform network. The multi-type branching process

approximation (equation (9), solid lines) is in excellent agreement with the simulations (dots). (c) The probability of being infected at endemic equilibrium

versus degree k. Predictions using pair-wise approximations (equation (17), lines) are in excellent agreement with simulations (bars). (d) The probability of

fixation versus the selective advantage (r¼b2/b1) of a new disease variant decreases for networks with larger variance in degree. Calculations from a new

combined analytical technique (equation (18), solid lines) match well with simulations (dots). (e) For the lower panels, a set of small-world networks was

created with constant homogeneous degree k¼4 but varying clustering coefficient f. (f) The probability of emergence for the first strain as a function of

scaled transmissibility depends on clustering. (g) The fixation probability of the second strain as a function of the selective advantage, r¼b2/b1, is

independent of local clustering. For small-world networks, lines are simply connections between points to guide the eye.
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The SIS model used in this paper is the simplest mathematical
model of an endemic disease1. Endemic diseases are at an
increased risk of continual evolution when compared with
single-wave epidemics, with the latter being better described
by variations of the susceptible—infected—removed (SIR)
models. The type of analysis presented here is not appropriate
for such single-wave outbreaks, due to the absence of an
endemic state. The effect of spatial structure on two subsequent
epidemic waves of new strains in SIR-type models has been
considered elsewhere11,12,14. For an endemic disease with
temporary immunity that can be described by a susceptible—
infected—removed—susceptible (SIRS) model, we hypothesize
that the same general trends we see for the SIS apply.
Temporarily recovered individuals are not available to
reinfection by either strain. From the point-of-view of the
invading mutant strain, the hub-holding effect of infected
individuals also applies to temporarily recovered individuals,
thus hindering fixation in populations with high variance in
degree.

In this study we considered beneficial mutant strains with
increased transmissibility, b. Alternatively, a longer infectious
period (smaller g) would also convey a benefit in well-mixed
populations16. We repeated our analysis for a second strain with a
smaller recovery rate, and found that the general trends with
regards to degree heterogeneity were identical, as expected from
the analytical results (Supplementary Fig. 1). However,
we also observed that the fixation probability and selection
coefficient were consistently higher when g2 was varied as
opposed to b2, keeping the ratio Rð2Þ0 =Rð1Þ1 constant. This effect is

likely related to our previous results that, in small, well-mixed
populations, when both transmissibility and recovery can vary
independently, the direction of selection is shifted towards
decreasing the recovery rate, as opposed to simply increasing R0

(ref. 25). Network structure may skew selection in a similar way
as small populations. Further complications arise in models for
the evolution of virulence, where b and g are not independent.
Previous work on the evolution of virulence has shown that the
evolutionarily optimal virulence level is different in structure
populations as compared with well-mixed populations15–17,26,27.
This work, however, has not investigated the specific network
properties that modulate these trends. Future work will be needed
to fully understand all the factors influencing disease evolution in
more realistic scenarios.

We chose to model the introduction of a new disease strain by
randomly choosing a single individual who was infected with the
first strain during the endemic phase, and instantaneously
switching their status to infected with the second disease strain.
With this procedure, we aim to simulate the situation where
within-host evolution of a pathogen leads to a novel strain
emerging. Alternatively, new disease strains could be introduced
into a population from an external reservoir or another
disconnected population. In this case, it may be more realistic
to consider introduction into a random susceptible individual, or
any random individual. As susceptible and infected individuals
are spatially clustered within a contact network at endemic
equilibrium23, changing these initial conditions can affect the
emergence probability. We verified that our results are
qualitatively identical with this alternate initial condition, and
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the leaves. Hubs are likely to be already infected, hindering invasion. (c) Susceptible hubs are likely to be quickly reinfected by leaves infected with the

resident strain. Therefore, the fixation probability of new strains on star-like graphs is low. (d) Small-world networks are made up of mainly local

connections with variable rewiring to create shortcuts. (e) The initially infected individual can potentially infect all its neighbours, while those subsequently

infected have more limited options. (f) Shortcuts allow the disease to jump to fully susceptible areas of the network, facilitating spread. They are less

important for the second disease, as all parts of the network are already infected. Therefore, fixation probability of new strains on uniform, locally connected
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can similarly be well-approximated analytically, with the
appropriate updates to equations (18) and (23).

In our simulations we consider perfect cross-immunity or
competitive exclusion within a host. That is, being infected with
one strain protects against infection by the other strain.
Alternatively, hosts can be simultaneously infected with multiple
strains (co-infection) or the strain currently infecting a particular
host can be displaced by infection with another strain (super-
infection). The effect of imperfect cross-immunity will strongly
depend on the way in which the two strains influence each other’s
infection and recovery rates, and will vary depending on the
particular real-world disease considered. Perfect cross-immunity
implies that infection with one strain completely blocks infections
by the other strain. Conversely, complete lack of cross-immunity
implies that the two strains do not influence each other’s infection
rates. In this case, the invasion dynamics of the second strain will
be equivalent to the case where the first strain is absent. The effect
of contact structure on the invasion of the second strain with
partial cross-immunity will thus be in between these two
extremes.

In this paper, we have modelled population structure as a
static, unweighted network. Contacts between individuals in
many real-world situations, however, are dynamic. For example,
infected individuals may stay at home or may be quarantined
when infected, or move from home and the workplace to a
hospital. If contacts between individuals are updated in a manner
that is independent of disease status, we expect to find
qualitatively similar results as in the static case. Such rewiring
may dampen the effect of population structure as it either changes
the instantaneous degree distribution of the network or maintains
the degree distribution but re-assorts neighbours. The effect of
such rewiring will also depend on the timescales at which contacts
are updated in comparison with the timescale of disease spread.
Previous work by Cross et al.28 demonstrated that, for a
metapopulation with intergroup migration, the spread of a
single disease depended critically on the relative timescales of
recovery and migration, and it is likely that disease evolution in
this context may be similarly influenced by these parameters.

By considering competition between at most two strains, and
requiring that the second strain arise only after the first is at a
quasi-steady-state, we have implicitly assumed that there is a
separation of timescales between the epidemic and evolutionary
processes. In our analysis, we focused only on the ultimate
probability of fixation, and not the time required to reach
fixation, which may be very long for certain population structures
(those with more local and less global connections and thus
higher clustering coefficients), and when strains are close in
fitness. If we relaxed the separation of timescales assumption and
instead allowed mutations to occur at a constant rate in each
infected individual, we may observe situations where multiple
strains coexist for very long periods of time. Other work has
focused on the role of population structure in facilitating
pathogen diversity in this regime29,30.

In conclusion, we show that heterogeneity in contact structure
suppresses disease evolution by lowering the fixation probability
of any newly arising disease strains. This finding is surprising in
two ways. First, the suppressive effect on evolution is in contrast
to the well-established finding that contact heterogeneity
otherwise facilitates the initial spread of a disease2–5. However,
the effect makes sense in light of the earlier finding that the initial
strain modifies the residual network of susceptibles11–14. Second,
the suppressive effect is also in contrast to the earlier finding
that certain network structures can amplify selection10. This
discrepancy arises from the differences in the underlying
population dynamic model used to consider competition
between two genotypes. Previous work used the Moran process

model of reproduction and death, which considers only two types
of individuals, while we use an infectious disease model that
requires tracking susceptibles along with two types of infecteds.
Our results highlight the fact that findings from the Moran
model, such as the universality of fixation probabilities in
isothermal graphs10,31, may have little bearing on infectious
disease dynamics. Despite the inherent challenges, understanding
the interaction between disease emergence, evolution and contact
structure is highly relevant to infectious disease epidemiology,
as continual evolution is a major barrier to control, and interven-
tions that target contact structure are increasingly popular.

Methods
Simulation details. All simulations were implemented as a Gillespie next-reaction
method. For single-disease simulations, the infection is introduced into one
random individual, and the simulation is run until the disease is extinct or reaches
a quasi-steady state (QSS), or tmax¼ 1,000, whichever occurs first. QSS is defined
when there is o2% difference between the average prevalence over the last third of
the total simulation time and the middle third, after an initial burn in period of
tburn¼ 100/g. For the small-world network with no rewiring, it was necessary to
increase tmax to 10,000 and tburn to 1,000/g. The emergence probability is calculated
as the fraction of runs out of where the disease does not go extinct. At least
7,000 runs were simulated for each parameter value.

For the two-strain invasion simulations, the resident strain is first introduced at
a high level to avoid early extinction and allowed to reach a QSS (waiting at least
tburn). Then a single-infected individual is randomly chosen to be infected with the
mutant strain. The fixation probability is calculated as the mean fraction of
invasion attempts where the resident strain goes extinct while the invading strain
still remains. Runs where both disease strains remained after tmax were rare and not
included in the reported results. New networks were randomly generated for each
simulation run, resulting in at least 6,000 invasion attempts per parameter.

The value of b1 at which the mutant strain is introduced was chosen so that
the QSS level was approximately equal for all networks. For Fig. 2d,f (empirical
and theoretical networks) and Fig. 3g (small-world networks), we used b1(hki� 1)/
g1¼ 3, and for Figs 3d and 4 h (gamma-distributed networks), we used b1(hki� 1)/
g1¼ 1.5. Changing these values did not change the trends observed unless the
QSS level was very different between networks.

Clustering coefficient. The clustering coefficient, f, is also known as ‘global
clustering coefficient’ or ‘transitivity’2,23. It is defined as the ratio of the number of
triangles in the network (sets of three nodes each connected to each other) to the
number of triplets (set of three nodes with at least two connections between them).
If A is the adjacency matrix of the network, then

f ¼ trace A3ð Þ
A2k k� trace A2ð Þ : ð1Þ

Network generation algorithms. For the uniform network, all individuals have
the same degree. We use the configuration model, expressed with a stub-connec-
tion algorithm, to create random graphs with a specified degree distribution. By
randomly connecting individuals we reduce higher-order structure32. For each
node we first assign it a degree k, and then create a set of k stubs that represent each
of these edges with only a single tail connected to a node. We repeat this for all
nodes and then combine these stubs into a master set. This set is then randomly
divided in half, and a stub from each subset is matched to one from the other
subset, forming a complete edge. If there is an uneven number of stubs, a random
individual is given an extra stub. We do not allow self connections or duplicate
edges between nodes.

For the gamma-distributed-degree network, each individual is assigned a degree
drawn from a discretized version of the gamma distribution with a mean degree hki
and s.d. sk. The gamma distribution was chosen because it allows the mean and
variance to be varied independently, with any variance between zero and infinity
possible. Discretization was performed by first drawing a random number from a
continuous gamma distribution with mean hki� 1 and s.d. sk, rounding to the
nearest integer, and then adding 1. It was confirmed numerically that this created a
distribution with the desired properties over the required range of hki and sk

values. The network is then created using the stub-connect algorithm (see above).
For the random network, we use the Erdös-Rényı́/Gilbert model33,34. An edge is

constructed between each pair of individuals with a probability p, independent of
the existence of other edges. The resulting degree distribution is binomial, with
mean degree hki¼ p(N� 1).

For the small-world network, we use the method described by Santos et al.22

Each individual is first arranged in a ring, and then connected to its m¼hki/2
nearest neighbours on either side. Each edge of every node is then rewired with
probability p. Rewiring involves disconnecting from the distal node and connecting
to another random non-self and non-neighbour node, such that dual edges are
avoided and the uniform degree of the network is preserved.
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For the scale-free network, we use the Barabási-Albert model of preferential
attachment35. The network starts as a fully connected group of m¼hki/2 nodes.
Each new node is added to the network and connected to m other individuals, each
with a probability proportional to the individuals current degree. This creates a
network with a degree distribution following a power law, p(k)pk� v, with the
exponent v¼ 3 and average degree hki.

Empirical networks. For the FHS—social contact network, we used a previously
described network of social contacts that was collected as a part of the Framingham
Heart Study36,37. Individuals participating in the study were connected to family
members, co-workers and self-reported friends who were also enrolled in the study.
This network was available for seven examinations between 1971 and 2000, and we
chose the earliest time point, when the network was the largest. This network
represented 5,253 individuals who were connected to at least one other individual.
The average degree was hki¼ 6.5, the s.d. in degree was sk¼ 6.8, and the clustering
coefficient was f¼ 0.68.

For the school contact network, we worked with a publicly available contact
network observed among students and teachers at an elementary school over a
single school day38. Participants wore electronic sensors that detected close
physical proximity and recorded the times over which these contacts occurred. This
network is therefore either dynamic (if we consider an edge existing between
individuals at time t provided they are in close proximity at that point) or weighted
(if we sum up the total time two individuals spent within close proximity over the
whole day). To simplify analysis and facilitate comparison with other example
networks, we sampled a static, unweighted subnetwork from the full network by
connecting every individual with a probability proportional to the total contact
time. From this sampled network, we chose the giant component to ensure the
population was a single connected graph. With this method the average degree is a
free parameter determined by scaling the probability of each edge, and we chose
it to agree with the FHS social network. The result was a network with 740
individuals, with an average degree hki¼ 6.5, s.d. in degree sk¼ 3.3, and clustering
coefficient f¼ 0.04.

For the hospital contact network, we used data collected in a hospital setting to
create a contact network of health-care workers and patients, which is freely
available online at http://www.sociopatterns.org39. Similarly to the school network,
participants wore electronic sensors and incidences of close physical proximity
were recorded over 5 days, resulting in a dynamic/weighted network. We again
sampled this network to generate a static, unweighted network with a single giant
component. The result was a network with 68 individuals, with an average degree
hki¼ 6.5, s.d. in degree sk¼ 5.3, and clustering coefficient f¼ 0.29.

For the NATSAL—sexual contact network, we used the results from the United
Kingdom National Survey of Sexual Attitudes and Lifestyles (NATSAL) that is
freely available online at http://www.natsal.ac.uk/ and has been published
previously40. This survey collected the number of sexual partners over the last
5 years for a population of around 30,000 individuals (combining the NATSAL-1
and NATSAL-2 studies in 1990 and 2000). This degree distribution fits very well
to a power law function41, pðkÞ � k� n , with exponent n¼ 2.5, kmin¼ 1, and
kmax �

ffiffiffiffi
N
p

. We then generated a degree sequence for N¼ 10,000 nodes and
maximum degree kmax �

ffiffiffiffi
N
p

that follows a power law with exponent n, created a
network from this degree sequence using the stub-connect algorithm described
above for random networks. We extracted the giant component, resulting in a
random network with an average 7,578 individuals, mean degree hki¼ 2.7, mean
s.d. in degree sk¼ 4.9 and clustering coefficient f¼ 0.002.

Branching process calculations for disease emergence in networks. In the
early stages of infection, when the number of infected individuals is very low, the
SIS model in a heterogeneous host population can be approximated by a multi-type
branching process. The particular stochastic process we choose to describe the
epidemic is related to the ‘continuous offspring production’ model discussed in the
viral dynamics literature42 and has been previously used to study disease
emergence43. Each individual of type i has a constant rate, rij, of producing infected
individuals of type j and also a constant rate of recovery, g, akin to death with
immediate replacement in other models. Other stochastic processes used to
describe the initial phase of epidemics include ‘burst models’ where offspring
distributions are specified a priori (such as Kronecker delta42 or Poisson44,45),
percolation models46, or independent infection probabilities47. The continuous
offspring production model considered here mimics what occurs in most
simulation algorithms, including ours, and may more closely represent biological
reality. The offspring distribution is calculated a posteriori to be multinomial.

An important quantity to calculate is the probability generating function (PGF),
Fi(s), for the number of secondary infections of individuals of each type, s¼ (si, s2,
y, sn), caused by a single-infected individual of type i. For this process, we derive

FiðsÞ ¼
X1

j1 ;j2 ; ... ;jn¼0

p s1 ¼ j1; . . . ; sn ¼ jnð Þsj1
1 . . . sjn

n

¼ g
�ri

� � X1
j1 ;j2 ; ... ;jn¼0

ri1

�ri

� �j1

. . .
rin

�ri

� �jn

sj1
1 . . . sjn

n

¼ 1þ
X1
j¼1

rij

g
1� sj
� � !� 1

;

ð2Þ

where j and (j1,j2,y,jn) are indices, n is the total number of different types of
individuals, and �ri ¼ ri1 � � � þ rinþ g is the sum of all rates.

Using the definition of the basic reproductive ratio, R0, as the average number
of secondary infections produced by a single-infected individual, we can define
multi-type reproductive ratios44,45,

Rij
0 ¼ sj

� �
Fi
¼ @Fi

@si

				
s¼ð1; ...; 1Þ

: ð3Þ

This allows us to use Rij
0 ¼ rij=g to write the PGF as

FiðsÞ ¼ 1þ
Xn

j¼1

Rij
0 1� sj
� � !� 1

: ð4Þ

We now consider a network-structured population, where individuals are classified
according to their degree k. Individuals of type i are those who are connected to
exactly ki other individuals. The frequency of individuals of degree i is given by p(i).
Following Yates et al.45, we can break down Rij

0 in terms of the disease factors and
structural factors,

Rij
0 ¼

b
g
pijnj; ð5Þ

where b is the per-contact transmissibility of the disease, pij is the average number
of type j contacts a type i individual has (the mixing matrix), and nj is the
susceptibility of type j individual (1¼ fully susceptible, 0¼ fully resistant to
infection). If we assume the network is constructed by the configuration model,
that is, edges are joined randomly and there is no correlation between the degree of
individuals on either side of an edge, then,

pij ¼ ki
kjpðjÞPn

m¼1 kmpðmÞ ¼ ki
kjpðjÞ

kh i : ð6Þ

As we are interested in a fixed network structure, we immediately encounter a
problem that does not occur when considering heterogeneous yet mixing
populations. For all individuals other than the very first infected, the actual number
of susceptible contacts will be one less than that given by pij, because the contact
from whom the infection originated cannot be reinfected. For these secondary
infections, we must consider the modified mixing matrix,

p0ij ¼ ki � 1ð Þkjp jð Þ= kh i; ð7Þ

based on the concept of ‘excess degree’48, and hence a modified reproductive
ratio ðRij

0Þ
0 .

We want to calculate the probability that a disease introduced into a population
causes an epidemic, as opposed to going extinct. In a random mixing population,
standard branching process theory gives the ultimate extinction probability, for an
infection originating in a type i individual, as the solution to xi¼ Fi(x). Taking into
account the difference between those infected in first and later generation, we must
first find the extinction probability for all those infected in later generation and
then calculate the ultimate extinction probability starting from a single
infection47,49,

x0i ¼F0i x0ð Þ 8i;

xi ¼Fi x0ð Þ 8i:
ð8Þ

The emergence probability is then given by

Pemerge ¼ 1�
Xn

i¼1

pðiÞxi: ð9Þ

For a homogeneous, well-mixed population, this calculation reduces to

FðsÞ ¼ 1
1þR0ð1� sÞ ;

x ¼1=R0;

Pemerge ¼1� 1=R0:

ð10Þ

For a homogeneous population with a fixed network structure with degree k we
only have a single type k, such that pij�p¼ k and p0ij � p0 ¼ k� 1, and the
calculation reduces to

x0 ¼1=R00;

x ¼ 1
1þR0 1� 1=R00ð Þ ;

Pemerge ¼1� 1
R0 � 1=ðk� 1Þ

¼1� 1
R00 � 1ð Þk=ðk� 1Þþ 1

:

ð11Þ

We can see from the first expression for Pemerge above that, for a homogeneous
fixed network structure, Pemergep1� 1/R0 and, that Pemerge¼ 0 when
R00 ¼ ðb=gÞnðk� 1Þ ¼ 1.

There are certain limitations to this technique for estimating the emergence
probability of diseases in networks. First, we assume an infinitely large random
network. Second, host heterogeneity is modelled by dividing individuals into
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groups based on their degree. Hence, higher order structure is ignored,
and so networks that contain high levels of assortativity or clustering may
not be well represented with this method. The presence of clustering will
decrease Pemerge, while assortativity could either increase or decrease it. This
method also ignores the issue that, in the SIS model (as opposed to the often
considered SIR model), a recovered individual could become reinfected during
early emergence, increasing Pemerge. Hence, the branching process might
underestimate the true probability of emergence for the SIS model, even in
a well-mixed population.

Pair-wise equations for equilibrium disease behaviour in networks. Branching
process calculations can tell us about the probability of disease emergence by
capturing stochastic effects that are important when disease levels are low, but do
not accurately capture the dynamics as prevalence levels become significant. For
this task, deterministic models that track both infected and susceptible individuals
are appropriate.

We use the method of pair-wise equations23 to describe disease dynamics in a
network-structured population. We start with the full SIS pair-wise equations50,

_Sk

 �
¼� b

Xn

m¼1

k SkIm½ � þ g Ik½ �;

_SkIl

 �

¼b
Xn

m¼1

SkSlIm½ � � ImSkIl½ �ð Þ� b SkIl½ � þ g IkIl½ � � SkIl½ �ð Þ;
ð12Þ

where [Ak] describes the number of individuals with degree k that are in state A,
[AkBm] describes the number of pairs of individuals where one member of the pair
has degree k and is in state A and the other member is in state B with degree m, and
[AkBmCl] is analogous but for triples, with B being the middle member. As the total
size and structure of the population is constant, we can use [Ik]¼ [k]� [Sk], where
[k] is the total number of individuals with degree k, [k]¼ p(k)N. These equations
are exact, but, to completely describe the system, equations for higher order groups
of individuals are needed, making them intractable. We make the following series
of common approximations (detailed in House and Keeling21) to close the
equations:

(i) triple closure,

AkBlCm½ � ¼ l
l� 1

AkBl½ � BlCm½ �
½Bl �

; ð13Þ

(ii) deconvolution of pairs,

AkBl½ � ¼ AkB½ � BlA½ �EN½kl�
½AB�k½k�k½l� ; ð14Þ

(iii) detailed balance,

Ckl �
EN½kl�
k½l�l½l� ¼ 1; ð15Þ

(iv) deconvolution of individuals,

AkB½ � ¼ ½AB� k Ak½ �Pn
l¼1 l Al½ �

; ð16Þ

where N is the total population size and E is the total number of edges. Whenever a
disease state occurs without a subscript, it implies that it includes the sum over all
degrees. We then arrive at a simplified set of equations,

_Sk

 �
¼�b½SI� k Sk½ �Pn

m¼1 m Sm½ �
þ g ½k� � Sk½ �ð Þ;

_SI

 �
¼b½SI�

Xn

k¼1

k Sk½ � � 2½SI�
 !Pn

m¼1 mðm� 1Þ Sm½ �Pn
m¼1 m Sm½ �

� �2

� bþ gð Þ½SI� þ g
Xn

k¼1

m ½m� � Sm½ �ð Þ� ½SI�
 !

:

ð17Þ

[SI] is the number of edges between susceptible and infected individuals. These
equations can be used to describe the time course of the infection among
individuals of each degree and the equilibrium state.

Deriving a closed and reduced set of pair-wise equations requires making
approximations about the types of higher-order correlations between connected
individuals introduced by the epidemic. Triple closure and deconvolution of pairs
and individuals are examples of such approximations. It is difficult to formulate
exactly when these assumptions hold a priori, but previous studies have shown that
they usually agree very well with simulations21. In contrast, the detailed balance
approximation depends only on the network structure and is assured in a
configuration model. In networks with other methods of edge creation, such as
preferential attachment, this simplification may fail. As stated above, these
approximations assume that the network clustering, f, is zero, although
corrections can be made to account for non-zero values21.

Combining techniques to approximate invasion of a second disease. We derive
a combined analytic technique to approximate the invasion of a second disease
{b2,g2} in a population infected with a resident disease {b1,g1} at endemic

equilibrium. We first solve for the steady state of the pair-wise equations for {b1,g1}
(equation (17)), which can give us both the total fraction infected with the first
disease fI¼ 1�

P
[Sk]/N and the fraction of degree k remaining susceptible

nk¼ [Sk]/(Np(k)). We then used this n along with {b2,g2} to determine the
effective basic reproductive ratios for the second disease, Rij

0 and ðRij
0Þ
0 , which can

then be used in the branching process calculation to determine the emergence
probability (equations (4)–(9)). Using this procedure, the resulting emergence
probability, Pemerge, is equivalent to the fixation probability, Pfix, for the second
disease. However, to account for the fact that, in our simulations, we only allow the
second disease to arise in an individual who was already infected with the first
disease, we modified to equation (9),

Pfix ¼ 1�
Xn

k¼1

pIðkÞxk; ð18Þ

where pI(k)¼ [Ik]/[I]¼ p(k)(1� nk)/fI is the probability that a randomly chosen
infected individual has degree k.

Another method of combining deterministic and stochastic approaches was
recently derived independently to study disease adaptation during emergence in
well-mixed populations51.

We found that this first-order approach consistently underestimated the
fixation probability of the invading disease, which we hypothesized was
due to assuming an individual’s susceptibility, nj, was independent of the
fact that the connected individual who might infect them was also susceptible.
To derive a second-order approximation, we took the number of susceptible
neighbours directly from the pair-wise equations and used equations (14)–(16)
to arrive at

ðpnÞij ¼
SiSj

 �

Si½ �
¼ kikj Sj


 � SS½ �Pn
m¼1 km Sm½ �

� �2 ¼ kikj Sj

 �Pn

m¼1 m Sm½ � � SI½ �Pn
m¼1 m Sm½ ��

� �2 : ð19Þ

The terms [SI] and [Sj] can be determined numerically from the equilibrium of
equation (17), and by definition ½SS� ¼

Pn
m¼1 m Sm½ � � ½SI�.

Recall that in the one disease case, the mixing matrix pij was,

pij ¼ kikj
pðjÞPn

m¼1 kmpðmÞ ¼ kikj
Xj

 �Pn

m¼1 km Xm½ � ; ð20Þ

where Xj signifies an individual of type j in either state S or I. We can then write the
new mixing matrix ðpnÞ0ij in terms of pij,

ðpnÞij ¼ pij
Sj

 �
Xj

 � SS½ �Pn

m¼1 km Sm½ �

Pn
m¼1 km Xm½ �Pn
m¼1 km Sm½ �

¼ pijnj
SS½ �= SX½ �
SX½ �= XX½ � ; ð21Þ

where nj¼ [Sj]/[Xj] is the fraction of susceptible individuals of type j,
½SX� ¼

Pn
m¼1 km Sm½ � is the number of edges from a susceptible individual to any

individual and ½XX� ¼
Pn

m¼1 km Xm½ � is the total number of edges. From the last
line we can see that (pn)ij modifies pijnj by taking into account the fact that, because
of clustering of susceptible individuals, the fraction of a given susceptible
individual’s contacts that are still susceptible (top fraction) may be higher than the
no-clustering expectation, and therefore may more than compensate for the fact
that the individuals who remain susceptible have a lower number of contacts on
average (bottom fraction).

This value of (pn)ij cannot be used directly. For secondary infections,
we must again consider a modified value ðpnÞ0ij , where ki is replaced by
ki� 1 in equation (19) to take into account the fact that the neighbour from
whom the infection originated cannot be reinfected. The resulting
expression is

ðpnÞij ¼ ki� 1ð Þki Sj

 �Pn

m¼1 m Sm½ � � SI½ �Pn
m¼1 m Sm½ ��

� �2 : ð22Þ

We also need to take into account that the individual who is first infected with the
second strain was already infected with the first disease, and so for primary
infections the mixing term becomes

ðpnÞ0ij ¼
IiSj

 �

Ii½ �

¼kikj Sj

 � ½SI�Pn

m¼1 km Im½ �
� � Pn

m¼1 km Sm½ �
� �

¼pijnj
½SI�=½IX�
½SX�=½XX� ;

ð23Þ

where ½IX� ¼
Pn

m¼1 km Im½ � ¼
Pn

m¼1 km Xm½ � � Sm½ �ð Þ is the number of edges from
an infected individual to any individual.

Therefore, to produce the analytical approximations for the fixation probability
of an invading strain displayed in Fig. 3d, we first derived ðpnÞ0ij and ðpnÞ0ij
from equations (19) and (23), using the solutions to the pair-wise equations
for the first disease (equation (17) with {b1,g1}). We can then derive
Rij

0 ¼ b2=g2ð ÞðpnÞ0ij and ðRij
0Þ
0 ¼ b2=g2ð ÞðpnÞ0ij , respectively. These reproductive

ratios were then substituted into equations (4) and (8) to obtain x, which was
then used in equation (18) to determine the fixation probability of the second
disease.
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Analytical solution for the uniform network. The quasi-steady-state distribution
of individuals infected with the first at endemic equilibrium can be estimated using
the pair-wise equation (17). For a homogeneous population with a fixed random
network structure with degree k, [Sk]�[S], and these equations reduce to

½ _S� ¼ � b1½SI� þ g1 N � ½S�ð Þ;

½ _SI� ¼ b1ðk� 1Þ½SI� � 2b1
ðk� 1Þ

k
½SI�2

½S� � ðb1 þ g1Þ½SI� þ g1 k N � ½S�ð Þ� ½SI�ð Þ:

The non-zero equilibrium states for this system, [S]N and [SI]N, are

½S�1 ¼ ðk� 1ÞN
b1=g1kðk� 1Þ� 1

;

½SI�1 ¼ Nk
g1

b1

b1=g1ðk� 1Þ� 1ð Þ
b1=g1kðk� 1Þ� 1ð Þ :

ð24Þ

To calculate the fixation probability of the second disease, we need to derive (pn)0

and (pn)0 for the uniform network. Substituting the equilibrium conditions into
equations (23) and (22), we arrive at

ðpnÞ0 ¼ ½SI�1

½I�1 ¼
½SI�1

N � ½S�1 ¼
g1

b1
;

ðpnÞ0 ¼ ðk� 1Þk½S� k½S� � ½SI�
k½S�ð Þ2

¼ g1

b1

: ð25Þ

Finally, the fixation probability can be found by solving equations (8) and (9)
with R0¼ (b2/g2)(pn)0 and R00 ¼ b2=g2ð ÞðpnÞ0 ,

PðunifÞ
fix ¼ 1� b1=g1

b2=g2
: ð26Þ

Deriving the selection exponent. For non-uniform networks, there is no general
analytic expression that allows us to directly quantify the relationship between
network heterogeneity and fixation probability for an invading strain. While the
method can be implemented numerically, we chose to also use an empirical
function to model the trends observed in Fig. 2. We replace r¼ (b2/g2)/(b1/g1) in
(26) with ra, where we term a the selection exponent, which is predicted to be 1 for
homogeneous networks. This gives,

Pfix ¼ 1� 1
ra
: ð27Þ

This idea is inspired by work on the simpler Moran process, where an analytic
approximation demonstrates that r becomes ra in structured populations10.

We fit data to this function to determine a, using nonlinear least squares from
the nls package in R (ref. 52). The function fit well to most networks and
confidence intervals on a were too narrow to be visible on the graphs.
Supplementary Table 1 reports the a-values, confidence intervals and sum of the
squared error for the fits.
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