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Abstract

Bipolar disorder and schizophrenia are two often severe disorders with high heritabilities. Recent

studies have demonstrated a large overlap of genetic risk loci between these disorders but

diagnostic and molecular distinctions still remain. Here, we perform a combined GWAS of 19,779

BP and SCZ cases versus 19,423 controls, in addition to a direct comparison GWAS of 7,129 SCZ

cases versus 9,252 BP cases. In our case-control analysis, we identify five previously identified

regions reaching genome-wide significance (CACNA1C, IFI44L, MHC, TRANK1, MAD1L1) and a

novel locus near PIK3C2A. We create a polygenic risk score that is significantly different between

BP and SCZ and show a significant correlation between a BP polygenic risk score and the clinical

dimension of mania in SCZ patients. Our results indicate that first, combining diseases with

similar genetic risk profiles improves power to detect shared risk loci and second, that future

direct comparisons of BP and SCZ are likely to identify loci with significant differential effects.

Identifying these loci should aid in the fundamental understanding of how these diseases differ

biologically. These findings also indicate that combining clinical symptom dimensions and

polygenic signatures could provide additional information that may someday be used clinically.

Introduction

Bipolar disorder (BP) and schizophrenia (SCZ) are both highly heritable (h2 ~ 0.8), often

debilitating psychiatric illnesses that together affect ~2-3% of the adult population

worldwide (1, 2). The distinction between BP and SCZ on the basis of clinical features,

etiology, family history, and treatment response has been one of the most fundamental and

controversial issues in modern psychiatric nosology. While contemporary diagnostic

systems distinguish them on the basis of clinical symptomatology, duration, and associated

disability, the distinction between Manic-Depressive Illness and Dementia Praecox was

originally made largely on the basis of the course of illness in the late 19th century by Emil

Kraepelin, who recognized that mood and psychotic symptoms could occur in both disorders

(3). But clinical symptoms may not map directly onto underlying molecular mechanisms of

disease. For many years, the etiological independence of these two disorders was widely

accepted although transitional forms – first labeled schizoaffective disorder by Kasanin in

1933 (4) – were widely recognized. Important support for the Kraepelinian dichotomy was

provided from family studies over the last 40 years that suggested at most modest familial

co-aggregation of the two disorders (5-7).
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However, more recent studies have suggested that the genetic relationship between BP and

SCZ might be greater than previously realized. Researchers have found increased risks of

affective disorder in the families of schizophrenia patients (8) as well as the reverse (9). The

largest of these studies, including data on more than 75,000 affected Swedish families,

found that the risk of SCZ was substantially increased in the relatives of BP and vice-versa

(10). Because of the availability of information on twin and half-sibling relationships and

adopted-away relatives the authors were able to show a substantial genetic correlation

between SCZ and BP. However, this study assigned diagnoses on the basis of chart

diagnoses, which may be less reliable than direct interviews using standardized instruments.

The only twin studies that have examined the genetic correlation between SCZ and BP

diagnosed using direct patient interviews have been conducted in the Maudsley twin series

(11). However, these studies used non-hierarchical diagnoses, which confound manic

syndromes in the course of SCZ with BPD, which might have different genetic influences.

Molecular genetic studies have the potential to more clearly and more powerfully

distinguish genetic from environmental factors. Recent molecular genetic studies have

identified a substantial polygenic component to SCZ risk involving hundreds to thousands of

common alleles of small effect, and this component was shown to also contribute to risk of

BP (12). This analysis pointed to risk shared across many genetic markers, but results from

individual genome-wide association studies (GWAS) have also implicated specific common

shared loci (13). Taking this further, in a meta-analysis of most of the world’s available

GWAS data, the Psychiatric Genomic Consortium Bipolar and Schizophrenia Working

Groups identified SNPs for both BP and SCZ in CACNA1C, ANK3 and ITIH3-ITIH4 as

genome wide significant but not in MHC, ODZ4, TCF4 and other loci that were genome-

wide significant for either disorder separately. Additionally, the Cross-Disorder Group of the

Psychiatric Genomics Consortium explicitly tested SNPs across five disorders for the best

fitting disease model and identified CACNA1C as more significantly associated to a model

combining only BP and SCZ than one including other disorders (14).

In addition, diagnoses intermediate between SCZ and BP, such as schizoaffective disorder

and BP with psychotic features, comprise individuals who present with admixtures of

clinical features common to both disorders. It is not clear whether these disorders are caused

by the presence of genetic risk factors for both SCZ and BP, or have separate underlying

etiologies (15).

It remains an open question whether the most recent molecular results are capable of

dissecting the different symptom dimensions within and across these disorders. One study

looked to assess the discriminating ability of SCZ polygenic risk on psychotic subtypes of

BP. They identified a SCZ polygenic signature that successfully differentiated between BP

and schizoaffective BP type but were unable to identify a significant difference in risk score

between BP with and without psychotic features (16).

Our goals here were twofold, to elucidate the shared and differentiating genetic components

between BP and SCZ and to assess the relationship between this genetic component and the

symptomatic dimensions of these disorders.
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Methods

Sample description

This study combines individual genotype data published in 2011 by the PGC Bipolar

Disorder and the Schizophrenia Working Groups. Description of the sample ascertainment

can be found in the respective publications (17, 18). In addition, four bipolar datasets not

included in the primary meta-analysis (although used for the replication phase) are now

included: three previously not published bipolar datasets including additional samples from

Thematically Organized Psychoses (401 cases, 171 controls), French (451 cases, 1,631

controls), FaST STEP2/TGEN (1,860 cases) and one published dataset Sweden (824 cases,

2,084 controls) (19). The unpublished samples are further described as supplementary

information in the original PGC BP study (14). FaST STEP2/TGEN BP cases were

combined with GAIN/BIGS BP cases and controls from MIGen (20) to form a single sample

(Supplementary Table 2). In the PGC analyses, genotype data from control samples were

used in both SCZ and BP GWAS studies.

Independent BP and SCZ datasets with no overlapping genotype data from controls were

created by calculating relatedness across all pairs of individuals using an LD pruned set of

SNPs directly genotyped in all studies. Controls found in more than one dataset were

randomly allocated to balance the number of cases and controls accounting for population

and genotyping platform effects. We grouped case-control samples by ancestry and

genotyping array into 14 BP samples and 17 SCZ samples (Supplementary Table 1). We

further grouped individuals by ancestry to perform a direct comparison of BP and SCZ

(Supplementary Table 2).

Genotype data quality control

Raw individual genotype data from all samples were uploaded to the Genetic Cluster

Computer hosted by the Dutch National Computing and Networking Services. Quality

control was performed on each of the 31 sample collections separately. SNPs shared

between platforms and pruned for LD were used to identify relatedness. SNPs were removed

if they had: 1) minor allele frequency < 1%, 2) call rate < 98%, 3) Hardy-Weinberg

equilibrium (p < 1 × 10−6), 4) differential levels of missing data between cases and controls

(> 2%), and 5) differential frequency when compared to Hapmap CEU (> 15%). Individuals

were removed who had genotyping rates < 98%, high relatedness to any other individual (

> 0.9), or low relatedness to many other individuals (  > 0.2), or substantially increased or

decreased autosomal heterozygosity (|F| > 0.15). We tested 20 MDS components against

phenotype status using logistic regression with sample as a covariate. We selected the first

four components and any others with a nominally significant correlation (p-value < 0.05)

between the component and phenotype. We included these components in our GWAS. This

process was done independently for all phenotype comparisons. Imputation was performed

using the HapMap Phase3 CEU + TSI data and BEAGLE (21, 22) by sample on random

subsets of 300 subjects. All analyses were performed using Plink (23).
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Association analysis

The primary association analysis was logistic regression on the imputed dosages from

BEAGLE on case-control status with 13 MDS components and sample grouping as

covariates. We performed four association tests: 1) a combined meta-analysis of BP and

SCZ (19,779 BP and SCZ cases, 19,423 controls) to identify variants shared across both

disorders, 2) SCZ only (SCZ n=9,369, vs controls n=8,723), and 3) BP only (BP n=10,410,

controls n=10,700) for comparison to dimensional phenotypes and 4) case only BP vs SCZ

(SCZ n=7,129, BP n=9,252) to identify loci with differential effects between these two

disorders (Table 1). We retained SNPs after imputation with INFO > 0.6. We calculated

genomic inflation factors both without normalization for these analyses (λ): 1.26 (BP+SCZ

vs controls), 1.19 (SCZ vs controls), 1.15 (BP vs controls) and 1.11 (BP vs SCZ) and

normalized to 1,000 cases and 1,000 controls for direct comparison (λ1000 SCZ).

Additionally, for the BP+SCZ meta-analysis, we tested heterogeneity between BP vs

controls and SCZ vs controls odds ratios using the Cochrane’s Q test. Association regions

were defined by an LD clumping procedure for all independent index SNPs with p-value <

5×10−8. We defined the region to include any SNP within 500kb of the index SNP, in LD

with the index SNP (r2 > 0.2) and having a p-value < 0.005.

Polygenic analysis

We employed a method used by the International Schizophrenia Consortium (12) and

developed by Visscher, Wray and Purcell to calculate both BP polygenic scores in SCZ

cases and SCZ polygenic scores in BP cases. Briefly, we defined the SCZ case-control

GWAS as our discovery sample and the BP case-control GWAS as our target sample. Based

on the discovery sample association statistics, large sets of nominally-associated alleles were

selected as “score alleles”, for different significance thresholds. In the target sample, we

calculated the total score for each individual as the number of score alleles weighted by the

log of the odds ratio from the discovery sample. We repeated this exercise with the BP case-

control GWAS as discovery and the SCZ case-control GWAS as the target. We created

scores using ten different p-value thresholds (P < 0.0001, P < 0.001, P < 0.01, P < 0.05, P <

0.1, P < 0.2, P < 0.3, P < 0.4, P < 0.5, P < 1). For each threshold, we performed a logistic

regression of disease status on the polygenic score covarying for MDS components and

sample.

Factor analysis of clinical dimensions of SCZ across multiple datasets

SCZ is clinically heterogeneous, with variation in levels of positive, negative, and affective

symptoms, as well as age of onset, course, and outcome (24). Samples included in this study

used a variety of structured interviews, symptom checklists, or rating scales to determine the

presence of individual clinical features. These instruments are listed in Supplementary Table

6.

Because the individual symptoms assessed differed substantially across sites, we sought to

achieve across-site commonality at the level of symptom factors. We therefore constructed

quantitative traits common to all instruments and sites, and which could be used as

phenotypes of interest in genetic studies. Our approach was stepwise, involving initial

exploratory factor analysis of the each instrument in each individual site, followed by
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harmonization of the different sites by selecting prominent items and factors, and finally,

calculation of factor scores using confirmatory factor analysis in each site separately, as

follows.

This was done in several steps. First, exploratory factor analysis (EFA) was performed

separately in all of the sites that utilized the OPCRIT (Operational Criteria for Psychotic

Illness) (25), PANSS (Positive and Negative Syndrome Scale)(26) as follows. For each

dataset (i.e. one instrument from each individual site) individual items were excluded if they

had > 50% missing data. Remaining missing data was inferred using the method of multiple

imputation, as operationalized in Proc Mi in SAS, resulting in five separately imputed

datasets for each input dataset. For each item, we used the mean of the corresponding

imputed items from these five datasets. These final input variables were entered into EFA

using principal component analysis, implemented in SAS using Proc Factor, using

VARIMAX rotation (SAS Institute, Cary, N.C.).

The remaining sites had already been factor analyzed, and for these, we used the published

factor structures. Prior factor analysis of Lifetime Dimensions of Psychosis Scale (LDPS)

(27) in the MGS sample, resulted in three factors: positive, negative, and mood (28). The

UCLA sample utilized the Comprehensive Assessment of Symptoms and History (CASH)

(29), and had been previously factor-analyzed using a larger sample than that included in the

present GWAS (30), which resulted in a clinically meaningful five-factor model of positive,

negative, disorganization, manic, and depressive symptoms.

Second, we examined the overall pattern of results across all samples and instruments since

the best-fitting models across samples differed in number and composition of factors. This

allowed us to identify the most commonly extracted as well as most theoretically justifiable

factors. Four such factors were selected in this way – Positive, Negative, Manic, and

Depressive.

Third, we attempted to harmonize results across those sites that utilized the same instrument,

i.e. the three sites using PANSS and six sites using OPCRIT. For the four selected factors,

we compared the EFA loadings in all of these sites on an item-by-item basis. Following

convention, we considered an item to load on a given factor if its highest loading was on that

factor and was at least 0.4, and if it’s next highest loading was at least 0.2 less than its

highest loading. Items which were outliers, i.e. which loaded on a given factor in only one

sample without clinical-theoretical justification, and which clearly did not load on that factor

in the others, were dropped in all other samples, were included in that factor in all samples.

This procedure was followed for the OPCRIT and PANSS sites separately. Factor

compositions are described in further detail (28).

Fourth, we attempted to harmonize the disparate instruments. The MGS sample had a single

mood factor while the PANSS, OPCRIT, and CASH sites had separate depressive and manic

factors. It was therefore split into these two factors. The PANSS sites had separate negative

and disorganization factors, which were combined, as these symptoms loaded on a single

negative factor in all the other instruments.
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When all of the individual items for the final four factors were selected in all sites, we used

Confirmatory Factor Analysis in MPLUS to calculate four factor scores in each site

separately. The different instruments used have differences in content, objectives, and

granularity. For example, the OPCRIT is used to make diagnoses of both psychotic and

mood disorders. It contains, therefore, a number of classic manic and depressive symptoms.

The PANSS on the other hand, was designed for assessing schizophrenic symptoms and is

frequently used in treatment efficacy studies. Its content is therefore geared more towards

psychotic agitation and excitement rather than classic manic symptoms. Furthermore, the

LDPS comprises 14 more global items, while the OPCRIT has dozens of more fine-grained

items and the other instruments are intermediate between these two in granularity.

In order to test the comparability of symptom factors across PANSS and OPCRIT, we

performed EFA in the Dublin sample, which used both instruments. Pearson product-

moment correlations were calculated for each of the resulting factors across these two

instruments. These were the only two instruments that were used in the same sample. All

factors except Positive were significantly correlated (r=.48 for depressive, .70 for manic,

and .85 for negative symptoms, indicating that the two instruments index the same broad

underlying constructs for these dimensions.

Finally, we observed that the distributions of a number of traits in some of the sites were

highly skewed and differed across samples (results available on request). This is not

surprising, as there was likely to be considerable heterogeneity across sites in item

definition, rater training, patterns of help-seeking (affecting age of onset), treatment setting

(e.g. ambulatory, institutionalized, etc.) as well as other unobserved patient- or rater-

dependent factors. Because this could considerably inflate genetic analyses, we standardized

all traits within site, to have mean=0 and SD=1 (treating the individual MGS sites

separately).

Deriving clinical dimensions of BP

The BP cases were interviewed using established diagnostic instruments and diagnosed with

bipolar disorder according to the RDC (Research Diagnostic Criteria) (31), DSMIII-R

(Diagnostic and Statistical Manual of Mental Disorders) DSM-IV or ICD-10. Diagnostic

instruments used were the SCID (Structured Clinical Interview for DSM disorders) (32), the

SADS-L (Schedule of Affective Disorders and Schizophrenia-Lifetime version) (33), the

DIGS (Diagnostic Instrument for Genetic Studies) (34), the MINI (Miniinternational

Neuropsychiatric Interview) (35), the ADE (Affective Disorders Evaluation) (36) and the

SCAN (Schedules for Clinical Assessment in Neuropsychiatry) (37). Data from these

interviews was combined with information from case notes and in some cases supplemented

with data from the OPCRIT (operational criteria checklist for psychotic illness) (25). A full

description of the instruments used in each of the collaborating centers is given in the

supplementary data that accompanied the PGC bipolar disorder meta-analysis (38). We

considered subjects experiencing hallucinations or delusions during a manic or depressive

episode to have Bipolar Disorder with Psychotic Features.

Ruderfer et al. Page 7

Mol Psychiatry. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Results

Analyzing BP and SCZ cases as a single phenotype in GWAS

We analyzed genome-wide data in 19,779 cases (9,369 SCZ plus 10,410 BP) and 19,423

controls consisting of 1.1 million SNP dosages imputed using HapMap Phase 3 (21).

Logistic regressions were performed controlling for sample and 13 quantitative indices of

ancestry. We identified 219 SNPs in six genomic regions with p-values below the genome-

wide significance threshold of 5 × 10−8 (Figure 1a, Table 2, Supplementary Table 3). The

most significant SNP (rs1006737, p=5.5 × 10−13, OR=1.12) falls within the gene CACNA1C

that was first found to be significant in BP (18, 39), subsequently in SCZ (17, 40) and

recently for a best fit model in a 5 disease cross-disorder analysis (14). In our independent

disease samples, we find similar odds ratios for both disorders (BP OR=1.127; SCZ

OR=1.120). Of the other five genome-wide significant regions, the second most significant

SNP is in the major histocompatibility complex (MHC) while the others are in or near the

following genes TRANK1, MAD1L1, PIK3C2A, IFI44L. Four have been previously

implicated in either SCZ (MHC, MAD1L1) (12, 19) or BP (TRANK1, IFI44L) (41) but the

association near PIK3C2A (chr11:17023194-17381287) is novel (Supplementary Figures 1a-

f). The region of LD around this SNP includes RPS13, PIK3C2A, NUCB2, KCNJ11, and

ABCC8. This locus has not been previously identified through GWAS but has recently been

implicated using an alternative approach (42). None of the six genome-wide significant

SNPs identified here demonstrated significant heterogeneity in odds ratios between BP and

SCZ although MHC had the largest difference in effect size and approached significance

(BP OR=0.88, SCZ OR=0.80, p=0.059). However, this test is probably underpowered in

meta-analyses of only a few studies (43).

Examination of variants distinguishing BP and SCZ

To identify loci with differential effects on BP and SCZ, we compared 9,252 BP cases

against 7,129 SCZ cases. No SNPs reached genome-wide significance with the smallest p-

value at rs7219021 at chr17:44195540 (p=1.31 × 10−7) (Figure 1b). A lack of genome-wide

significant findings does not preclude the existence of many small effect loci that in

aggregate can significantly discriminate BP from SCZ. We applied a previously used risk

profiling approach (12, 44) to our BP vs SCZ data. For each of the nine samples defined by

ancestry and array technology (Supplementary Table 2), we computed a risk score using the

association data from eight samples as our discovery set and then assessed the ability of

those risk scores to predict BP vs SCZ status in the remaining sample. This allowed us to

maximize our sample size and ensure no particular sample was disproportionately

contributing to the result. Risk scores were calculated for p-value thresholds from 0.001 to 1

as defined in (12). All samples had at least one threshold reaching nominal significance with

all but one sample explaining at least 2% of the variance (Figure 2, Supplementary Table 4a-

b). These results suggest that we have successfully identified a polygenic signal capable of

detecting risk differences between BP and SCZ.

To investigate further, we took all 22 genome-wide significant loci from a recently

submitted SCZ analysis (Ripke et al.) and compared the odds ratios between our

independent BP and SCZ datasets. The data are ordered left to right by significance for BP
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(Figure 3). There is a spectrum of BP effects for statistically significant SCZ loci with loci

on the left displaying odds ratios similar in magnitude between the two diseases, while loci

on the right, having divergent odds ratios.

Polygenic scores from BP applied to clinical dimensions in SCZ

Having identified a polygenic signature capable of differentiating BP and SCZ, we sought to

identify whether disease specific polygenic scores of one disorder were correlated with

symptom dimensions in the other disorder. We had manic, depressive, positive and negative

symptom factors from the factor analyses of our SCZ samples described previously (see

methods).

We calculated BP polygenic risk scores in our SCZ sample using our full, independent BP

dataset. All factor scores were split at the median into two equally sized sets. For all factor

scores, now dichotomized, we asked whether polygenic score of BP risk predicted whether

SCZ subjects were above or below the median on the symptom factor using logistic

regression with sample and MDS as covariates. Risk scores were calculated for 10 p-value

thresholds from 0.001 to 1 for each symptom dimension. Polygenic score of BP was

associated only with the manic factor in SCZ subjects, with a p-value threshold of 0.3

having significance p=0.003 and pseudo variance explained of ~2% (Figure 4,

Supplementary Table 5). Applying the same test to the quantitative mania score yields, a

more significant result (p=2.51×10−5). We tested each individual schizophrenia sample

independently to ensure no single sample was solely driving the finding. Mania score

distributions differed by sample; however, significance was seen across multiple samples

and removal of any single sample did not appreciably change the overall result

(Supplementary Table 6). The correlation between BP polygenic risk score and mania score

was strongest at the high end of the mania distribution, implicating a possible subset of

individuals with both high mania scores and high BP polygenic risk scores. To investigate

further, we identified a subset of the SCZ cases that included 183 individuals with, and 886

without a schizoaffective disorder diagnosis. Within this subset, schizoaffective individuals

had significantly higher mania scores than non-schizoaffective individuals but did not carry

significantly higher BP polygenic risk scores. However, this subsample had no significant

correlation between BP polygenic risk score and mania score overall leaving us

underpowered to assess the affect schizoaffective status has on the overall correlation

between BP polygenic risk score and mania score. We additionally sought to understand the

effect that individuals with both high BP polygenic score and high manic factor score had on

our results. We removed 186 individuals with BP polygenic score and manic factor score

one standard deviation from the mean and repeated our analyses. We identify the same six

genome-wide significant hits, nearly identical SCZ odds ratios and equal if not slightly more

significant discrimination ability in our between disorder BP vs SCZ polygenic analysis

(Supplementary Table 7, Supplementary Figures 3-4)

Polygenic scores from SCZ applied to clinical dimensions in BP

In the BP samples, we were limited to only a dichotomous rating about the presence or

absence of psychosis. We calculated SCZ polygenic risk scores using our full independent

SCZ dataset in all BP cases and tested for a correlation between presence of psychosis and
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SCZ polygenic score as described above. No such correlation was observed. (data not

shown)

Discussion

Our results present the most detailed comparison to date of the genetic risk underlying BP

and SCZ. We identify six genome-wide significant loci associated with a combined BP

+SCZ phenotype compared to controls, including a novel locus near PIK3C2A. At the same

time, we demonstrate the ability to create a polygenic risk score from a GWAS of BP vs

SCZ that significantly discriminates between the two disorders at the level of molecular

genetic variants. Additionally, we found a strong correlation between BP polygenic score

and the manic symptom dimension in SCZ cases.

Of the six genome-wide significant loci in our BP+SCZ vs controls analysis only two

(CACNA1C, MHC) are present at that level in the individual disease analyses

(Supplementary Figure 2a-b), highlighting the benefits of combining genetically related

disease samples. In all but one region, these loci have near equivalent effect sizes and

frequencies between BP and SCZ. The exception is the most significantly associated region

found in SCZ (MHC) that has a considerably weaker association in BP. This distinction

could point to a biologically relevant difference in disease etiology possibly related to

immune function. The most significant result in this study implicates calcium channels as

particularly important to risk of both of these disorders. In fact, CACNA1C appears to be

more strongly associated to BP and SCZ than other psychiatric disorders including autism

spectrum disorder, attention deficit-hyperactivity disorder and major depressive disorder

(14). In a joint analysis of these disorders, it was the only genome-wide significant finding

where the inclusion of all five disorders was not the most significant model.

We identify no loci that show genome-wide significance for allele frequency differences

between BP and SCZ. However, this analysis remains underpowered from smaller sample

size and fewer available well matched BP cases and SCZ cases as it is still uncommon for a

single site to collect matching disease samples for this type of analysis. We anticipate that

larger studies of this type will discover significant loci. We present a comparison of odds

ratios in our independent BP and SCZ samples for a set of 22 previously identified genome-

wide significant loci (Figure 3). This result implies that there are additional SCZ loci that

will also be independently associated BP loci as sample sizes increase, but that there are also

loci that are likely to remain SCZ specific and perhaps also BP specific. CACNA1C(39) has

already been independently associated in BP and ITIH3-ITIH4 and MAD1L1 have been near

the top of the list in the largest BP GWAS performed to date (18). We note two caveats to

interpreting these results: 1) there is significant overlap of both the SCZ samples and the

control samples with those used to identify these loci in Ripke et al. which will create a

small inflation of effect for SCZ and 2) there will be a general deflation of effect in our BP

sample and to a smaller extent in our SCZ sample due to winner’s curse.

While BP and SCZ share much of their genetic risk loci, we now report a polygenic

component that significantly distinguishes these disorders. As in previous analyses of this

type (12) this polygenic component implicates a true underlying genetic architecture

Ruderfer et al. Page 10

Mol Psychiatry. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



difference between BP and SCZ and with larger samples identification of specific loci or

biologically relevant gene sets could be uncovered. In addition to the difference in

contribution of disease risk from large, rare CNVs we are starting to build a knowledge base

to begin to identify disease specific genetic architecture and these analyses should be

expanded to include more related diseases. This kind of work could eventually provide clues

in the development of molecular diagnostic tools to improve on current methods, which are

purely clinical. This is especially important in the case of these SCZ and BP, which are often

difficult to distinguish, especially early in the course of illness (45, 46), and in which early

diagnosis and treatment could improve outcome (47).

Finally, we present an overlap of a molecular genetic signature and a clinical symptom

between BP and SCZ. For the first time, we correlate a BP polygenic signal with a manic

symptom dimension in SCZ individuals. This suggests that clinical dimensions of SCZ

might be modified by risk variants for other disorders (i.e., “modifier” genes), which might

thereby provide treatment targets for these dimensions. It provides further evidence that

clinical heterogeneity in schizophrenia is in part due to genetic factors (24). More

specifically, it suggests the existence of a mood spectrum that has distinct genetic substrates,

and exists to a variable degree in multiple disorders. Evidence such as this could one day

help identify individuals who might benefit from a specific course of treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure1.
a) Manhattan plot for combined BP + SCZ GWAS identifying 6 genome-wide significant

hits including novel associations at PIK3C2A b) Manhattan plot of comparison GWAS
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Figure 2.
Average pseudo R2 values for polygenic prediction of BP vs SCZ phenotype into the target

sample where all other samples were used for discovery.
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Figure 3.
Comparison of odds ratios from independent samples of BP (blue) and SCZ (red) for

genome-wide significant loci previously identified in SCZ.
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Figure 4.
Average pseudo R2 values for predicting SCZ vs controls utilizing odds ratios estimated

from BP vs controls GWAS. There are 10 R2 values for each factor score representing 10

different p-value cutoffs for SNPs included in making the risk score (P < 0.0001, P < 0.001,

P < 0.01, P < 0.05, P < 0.1, P < 0.2, P < 0.3, P < 0.4, P < 0.5, P < 1).
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