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Abstract

This thesis explores the evolution of different types of black holes, and the ways in which

black hole dynamics can be used to answer questions about other physical systems.

We first investigate the differences in observable gravitational effects between a

four-dimensional Randall-Sundrum (RS) braneworld universe compared to a universe with-

out the extra dimension, by considering a black hole solution to the braneworld model that

is localized on the brane. When the brane has a negative cosmological constant, then for

a certain range of parameters for the black hole, the intersection of the black hole with

the brane approximates a Banados-Teitelboim-Zanelli (BTZ) black hole on the brane with

corrections that fall off exponentially outside the horizon. We compute the quasinormal

modes of the braneworld black hole, and compare them to the known quasinormal modes

of the three-dimensional BTZ black hole. We find that there are two distinct regions for

the braneworld black hole solutions that are reflected in the dependence of the quasinor-

mal modes on the black hole mass. The imaginary parts ωI of the quasinormal modes

display phenomenological similarities to the quasinormal modes of the three-dimensional

BTZ black hole, indicating that nonlinear gravitational effects may not be enough to distin-

guish between a lower-dimensional theory and a theory derived from a higher-dimensional

braneworld.

Secondly, we consider the evolution of non-extremal black holes in N = 2, d = 4
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supergravity, and investigate how such black holes might evolve over time if perturbed

away from extremality. We study this problem in the probe limit by finding tunneling

amplitudes for a Dirac field in a single-centered background, which gives the decay rates

for the emission of charged probe black holes from the central black hole. We find that

there is no minimum to the potential for the probe particles at a finite distance from the

central black hole, so any probes that are emitted escape to infinity. If the central black

hole is BPS in the extremal limit, then the potential is flat and so there is no barrier to the

emission of probes. If the central black hole is non-BPS in the extremal limit, then there

is a barrier to emission and we compute the decay rate, which depends both on the charge

of the central black hole and the charges of the emitted black holes.

Finally, we consider the possibility that an extremal black hole, the end-point

of the evolution of a non-extremal black hole through evaporation, may itself split into

a multi-centered black hole solution through quantum tunneling, via a gravitational in-

stanton analogous to the instanton for the symmetric double well in elementary quantum

mechanics. We find a gravitational instanton that connects two vacuum states: one state

corresponding to a single-centered extremal Reissner-Nordstrom (ERN) black hole config-

uration, and another state corresponding to a multi-centered ERN configuration. We eval-

uate the Euclidean action for this instanton and find that the amplitude for the tunneling

process is equal to half the difference in entropy between the initial and final configurations.
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Chapter 1

Introduction

Ever since black holes were first discovered as solutions to Einstein’s equations of

motion, they have been the subject of intense study [1–6]. They are of immense interest in

their own right, as the evolution and dynamics of black holes provides a way to investigate

strong, nonlinear gravitational effects, and constitutes an environment in which both quan-

tum mechanical and gravitational effects play a significant role, allowing us to probe the

ways in which the two theories intersect. Well-posed questions about phenomena in black

hole physics have led to fundamental new discoveries by uncovering scenarios that could

not be adequately described or explained using existing theories, and pointing us towards

newer, sharper descriptions of the physical universe. Probably the most famous example

of such a case is the Black Hole Information Paradox [7, 8]. More recently, the Firewall

Problem has stimulated a great deal of activity and research in the field by provoking

controversy in a similar manner [9–11].

Moreover, black holes have also proven to be of great use as tools for shedding
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light on the properties and peculiarities of other physical systems that at first sight appear

completely unrelated. The most common such application is through the use of holography

and the AdS/CFT correspondence [12–15], which allows a classical black hole solution in

AdS space to be interpreted as the dual of a strongly coupled conformal field theory (CFT)

at finite temperature, that lives on the boundary of AdS space. The quasinormal modes of

a black hole [16–18], which are its characteristic modes of vibration, provide information

about the dual CFT, as the mode frequencies have been shown to be dual to the poles of the

CFT Green’s functions [19–21]. This notion of holography has been extended far beyond

the original AdS-Schwarzschild black hole, to encompass conjectured dualities for a wide

class of black holes and corresponding quantum systems–in particular, those systems that

have thus far stubbornly resisted analytical attack [22, 23]. These dualities give us hope

that questions to which we already know the answers in the realm of black hole physics

(or questions whose answers are easily computable when framed in relation to black holes)

may lead to answers to far more difficult questions in other theories.

1.1 Braneworld Black Holes

The Randall-Sundrum (RS) braneworld models were originally introduced as a

potential solution to the hierarchy problem [70, 71]. They consist of a five-dimensional

AdS spacetime with either one or two Minkowski branes embedded within it (the former

is the RSII model, and the latter is RSI) [24, 25]. These models differ from the Kaluza-

Klein models of theories with extra dimensions [26, 27], as the single extra dimension is

warped, and in the RSII case, is not compact. The standard model matter fields live
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on the four-dimensional brane, and gravity propagates along the extra fifth dimension,

though it is localized near the brane due to the curvature of AdS space. Since its original

discovery, the applicability of the RS model to theoretical physics has expanded far beyond

its original phenomenological roots: in addition to providing a testing ground for any

fundamental theory with extra dimensions in which gravity can propagate in the extra

dimensions [28, 29], the RS model provides an extension of the AdS/CFT conjecture,

referred to as the bulk-brane correspondence [30, 31], where the AdS space is cut off at

a small finite distance from spatial infinity in AdS. In this slightly modified scenario,

classical gravity in the bulk is conjectured to be dual to a strongly coupled CFT on the

brane that is coupled to gravity.

The linear effects of gravity in RS models have been well studied, and it is known

that they reproduce four-dimensional Einstein gravity on the brane up to the AdS scale [32–

34]. However, the effects of nonlinear gravity in these models are still not well understood.

Investigating such effects is crucial in order to find potential phenomenological differences

that could tell us whether or not we are living in a braneworld universe; or, at the very

least, distinguish between a braneworld scenario and a case in which there is no extra

dimension other than the four dimensions on the brane.

Black hole solutions to the RS models provide an ideal setup for exploring such

questions, as they necessitate the involvement of nonlinear gravitational effects. Several

years ago it was hypothesized that classical black hole solutions that are localized on

the brane (rather than existing in the bulk) cannot exist in RSII models [35, 36]. This

conjecture was supported by evoking the bulk-brane correspondence: the authors pointed

out that a large, localized braneworld black hole would be dual to a four-dimensional
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black hole in the presence of a strongly coupled CFT. Their calculations indicated that the

black hole would Hawking radiate at a high enough rate that the corresponding classical

solution in the bulk could not be static. This result, if true, would provide an immediately

observable difference between a four-dimensional theory and a five-dimensional one, namely

the fact that large, static Schwarzschild black holes could not exist for an observer on

the brane in the five-dimensional theory. However, it was later demonstrated that the

existence of a static, localized braneworld black hole solution is not ruled out by this

argument, as the conjecture relied on extrapolating weak coupling calculations for the

CFT to the strong coupling case, an assumption that is not necessarily justified [38].

Recently, two groups found numerical solutions for braneworld black hole solutions to RSII

using independent methods, providing strong evidence for the existence of such solutions,

although it is not yet known whether these solutions are dynamically stable [39,40]. If the

solutions are unstable, then it is still possible that the classical dynamical instability in

the bulk could correspond to phenomenological effects on the brane that would distinguish

the five-dimensional braneworld black hole from its four-dimensional counterpart in a four-

dimensional universe with no extra dimension.

Although the discovery of these black hole solutions is, in and of itself, an enor-

mously significant result, the fact that the solutions are only known numerically means

that options for phenomenological investigation are somewhat limited. There are more

possibilities in the case of four-dimensional braneworld scenarios, where analytical solu-

tions have been found for localized braneworld black holes, both with zero and non-zero

cosmological constant on the brane [41, 42]. It is well known that in three-dimensional

gravity with zero cosmological constant, black holes do not exist [43]; ergo, we cannot
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compare the braneworld black hole in this case to a corresponding three-dimensional solu-

tion. There is, however, a well-known black hole solution in the case of three-dimensional

gravity with negative cosmological constant–the Bernado-Teitelboim-Zanelli (BTZ) black

hole [44], which is parametrized by the three-dimensional AdS scale L, and the mass of

the black hole, M . The localized braneworld black hole solution in the four-dimensional

braneworld with a negative cosmological constant on the brane, is parametrized by the

four-dimensional AdS scale A, a parameter µ related to the mass of the black hole, and the

brane cosmological constant λ; for a certain range of these parameters, the corresponding

black hole solution on the brane is a BTZ black hole solution with exponentially decreasing

corrections outside the black hole horizon (in this work we will refer to these solutions as

BTZ braneworld black holes.) Thus, we can compare the phenomenological characteris-

tics of the braneworld black hole solution to the three-dimensional BTZ solution and ask

ourselves if there is any way of distinguishing between the two cases.

One route by which we can institute a comparison between the black holes is to

consider the quasinormal modes of both solutions [16–18]. Black hole quasinormal modes

are characteristic modes of vibration for the black hole. As the black hole has an event

horizon, the boundary value problem for fields on this background is non-Hermitian and

thus asymmetric in time. As a result, the system is dissipative, so the characteristic

frequencies (the quasinormal mode frequencies) have an imaginary part.
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1.2 Evolution of Near-Extremal Black Holes in N = 2, d = 4

Supergravity

Multi-centered black hole solutions have been the subject of intense study in their

own right for many years [56–60]. More recently, with the discovery of stationary and stable

multi-centered solutions in four dimensions, which were free of the string-like singularities

and time-dependence of previously known solutions [61,62], this field of black hole physics

has exploded in activity due to the recognition of the importance of these black holes in

answering fundamental questions about physics [77, 82]. The well-known supersymmetric

multi-centered solutions to supergravity are stablized by balanced electrostatic, gravita-

tional, and scalar forces between the black holes, which allows the black holes to form

bound states that are reminiscent of molecules [23,79,85].

In addition to having value in providing us with non-trivial solutions to super-

gravity, these multi-centered configurations have turned out to exhibit many interesting

properties that have applications in pure mathematics, as well as the Black Hole Infor-

mation Paradox [63–66, 77]. The next natural step is to try and identify non-extremal

multi-centered solutions, which are expected to share many of the fascinating properties

of the extremal solutions, while hopefully allowing us to extend the applicability of those

properties [78, 80]. Intuitively, such solutions should exist, as perturbing an existing su-

persymmetric solution slightly away from extremality by throwing neutral particles into

the black holes, should still give a valid solution to the theory. A natural starting point

for investigating the possible existence and properties of such solutions is to study the

probe limit, in which a multi-centered solution is approximated by point-like probes in the
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presence of a central non-extremal black hole. When the supersymmetric multi-centered

solution was first discovered, the probe limit was of great value in determining that the

potential for a 0-brane probe outside a central extremal black hole, had a stable minimum

where the probe could form a stable bound state with the central black hole [66, 82, 85].

A two-centered extremal solution is then formed by fully backreacting this probe solution.

Moreover, the distance between the two black holes in this configuration is accurately given

by the probe limit. Thus, we expect that the probe limit could also lead us in the right

direction in identifying possible bound states that, when fully backreacted, would give a

non-extremal multi-centered solution.

In particular, we would like to consider the possibility that an existing, single-

centered non-extremal solution could evolve by the emission of smaller, “satellite” black

holes to form a multi-centered solution. If the emission of such black holes can occur with a

finite probability, then either they will escape to infinity, or to the minimum of a potential

at some finite distance from the parent black hole, forming a stable bound state, and thus

admitting the possibility that a single-centered non-extremal black hole solution might

evolve to a multi-centered solution over time. Numerical work has been done on the probe

potentials for BPS probes around a central BPS black hole in N = 2, d = 4 supergravity

that shows that for certain parameters of the black hole charges, stable minima do indeed

exist that could allow for the formation of non-extremal multi-centered configurations [79].

For other regions of the phase space, stable minima do not exist and the central non-

extremal black hole merely evolves by emitting BPS probe particles to infinity. As the

numerical investigations consisted of computing the minima of the probe potential and

identifying whether or not the formation of a bound state was possible, decay rates have
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not yet been computed for these processes.

In addition to being a problem of great inherent interest in either leading us to

possibly identify a new class of non-extremal black hole solutions, or giving us new infor-

mation about the semiclassical evolution of non-extremal black holes, this question has the

potential to shed light on the evolution of complex condensed matter systems that have

been conjectured to be dual to the multi-centered black hole solutions of supergravity.

These conjectured duals essentially consist of “glassy” systems, such as spin glasses [67]

and electron glasses [68], which are characterized by vacuum landscapes with exponentially

many minima. Although this conjecture is still in its early stages, the immense difficulty of

directly analyzing glass-like systems prompts us to pursue the hypothetical duality in the

hopes that existing knowledge about black holes may shed light on other phenomena that

remain stubbornly mysterious. There are striking similarities that support the interpre-

tation of multi-centered black hole solutions as holographic duals of glasses. When these

black hole solutions exist, there are exponentially many stable configurations (as the only

parameters that need to remain constant are the total mass and charge, which may be dis-

tributed in many different ways among multiple black holes.) Heating the multi-centered

black hole configuration is equivalent to moving the black holes away from extremality,

which can be accomplished by adding more and more neutral particles to the black holes.

Eventually this will cause the multiple black holes to collapse into a single black hole under

the attractive force of gravity, which is analogous to the behavior of glasses in melting into

a liquid upon being heated. However, like a glass that slowly cools and may become stuck

in local vacua (rather than the single vacuum that globally minimizes the free energy) while

doing so, a non-extremal single-centered black hole, or a non-extremal configuration, will
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only slowly evolve to extremality or to form a multi-centered extremal configuration, due

to the suppression of the emission of particles from a black hole that is necessary to move

charges from one center to another, in order to evolve to a state with lower free energy.

1.3 Tunneling between single and multi-centered black hole

configurations

The evolution of a non-extremal black hole, as described in Section 1.2, will

eventually cause it to become extremal. There are many unanswered questions about

the precise nature of the endpoint of this evolution [94]. In particular, we know of the

existence of multiple multi-centered extremal black hole configurations with the same total

mass and charge. All of these configurations are stable, and thus correspond to different

vacuum states. Is it possible for quantum tunneling to take place between these different

vacua, so that the final state after the evaporation of a non-extremal black hole is in fact

a superposition over all possible multi-centered extremal black holes? Is it possible for a

single-centered extremal black hole to split into a multi-centered solution?

The geometry of AdS2×S2 is crucial for investigating this problem, as it forms the

near-horizon geometry of all known supersymmetric black holes with non-zero entropy. The

simplest case is the Reissner-Nordstrom black hole [69], but there are far more complicated

examples in string theory that have multiple charges and additional fields [85]. If we

allow for topological changes in spacetime through quantum tunneling, then a tunneling

process between different geometries can be described by a gravitational instanton [73,

98]. Instantons are solutions to the Euclidean equations of motion, and can be classified
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into two categories: instantons representing decay processes through quantum tunneling,

and instantons representing mixing between degenerate vacua. In the case of elementary

quantum mechanics, the first category is typified by tunneling through a potential barrier,

and the second category is typified by the mixing of degenerate localized states in a one-

dimensional symmetric double well, so that the ground state is a superposition of these

two states. In the first case, the instanton can be connected to a Lorentzian solution to

the equations of motion by splitting the instanton solution in half across a time-symmetric

surface. In the second case, the instanton should be able to connect to Lorentzian solutions

across both an initial constant-time hypersurface and a final constant-time hypersurface.

Gravitational instantons have been identified for processes such as the pair pro-

duction of charged black holes in a vacuum, in an analogy to Schwinger pair production

in the presence of an electric field [91]. They have also been used to describe the frag-

mentation of AdS space: an instanton in the probe limit describes the fragmentation of

an AdS2 × S2 space with charge Q1 + Q2 into an AdS2 × S2 space with charge Q1 and

a probe 0-brane of charge Q2 being emitted to the spatial infinity of the first AdS2 × S2

space [93]. Moving away from the probe limit, the Brill Instanton is a gravitational instan-

ton that describes the fragmentation of a single AdS2 × S2 universe into several separate,

disconnected AdS2 × S2 universes, with the same total charge [92].

In order to consider the possibility of quantum mixing between charged black

hole configurations with different numbers of charged centers, we would like to consider a

tunneling process that connects a single-centered AdS2 × S2 geometry to a multi-centered

AdS2×S2 geometry of the same total charge, but where the multiple throats remain joined

at the “top” in a single AdS2×S2 universe, rather than disconnecting completely from each
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other as in the case of the Brill instanton. Such an instanton represents mixing between

a single-centered black hole configuration and a configuration where the single center has

split into multiple centers at the bottom of the black hole throat. It is then possible that

these multiple centers could tunnel out of the black hole throat and escape the horizon of

the original black hole center, in order to form a multi-centered solution where the throats

are entirely separated from each other in space.

1.4 Outline of the Thesis

In this thesis we study three problems that investigate the evolution of black

holes, whose dynamics are closely tied to the properties of other physical systems. The

first problem, described in Chapter 2, investigates the phenomenology of black holes in

different cosmological models. The second problem, described in Chapter 3, studies the

evolution of non-extremal black holes in N = 2 SUGRA. The third and final problem,

described in Chapter 4, is to calculate quantum tunneling rates between single and multi-

centered black hole configurations. Here we briefly outline the results covered in each

chapter.

In Chapter 2, we address the question of finding the quasinormal modes for a

conformal scalar field in the background of a localized braneworld black hole in a four-

dimensional braneworld. The class of braneworld black hole solutions that we consider have

the property that the intersection of the black hole with the brane is the three-dimensional

BTZ black hole, up to exponentially suppressed corrections. We compute the conformal

scalar field quasinormal modes of the braneworld black hole, and find that there are two

11



distinct regions for the system, reflected in the dependence of the quasinormal modes on

the black hole mass. We also compare the quasinormal modes to the quasinormal modes

of a conformal scalar field in the background of an ordinary three-dimensional BTZ black

hole, and find that there are phenomenological similarities between the two theories, thus

indicating that the non-linear gravitational dynamics of a lower-dimensional theory may

be reproduced on the brane by the braneworld setup.

In Chapter 3, we consider the evolution of non-extremal black holes in N = 2, d =

4 supergravity, and investigate how such black holes might evolve over time if perturbed

away from extremality. We study this problem in the probe limit by finding tunneling

amplitudes for a Dirac field in a single-centered background, which gives the decay rates

for the emission of charged probe black holes from the central black hole. We find that

there is no minimum to the potential for the probe particles at a finite distance from the

central black hole, so any probes that are emitted escape to infinity. If the central black

hole is BPS in the extremal limit, then the potential is flat and so there is no barrier to the

emission of probes. If the central black hole is non-BPS in the extremal limit, then there

is a barrier to emission and we compute the decay rate, which depends both on the charge

of the central black hole and the charges of the emitted black holes.

In Chapter 4, we consider the possibility that an extremal black hole, the end-

point of the evolution of a non-extremal black hole through evaporation, may itself split

into a multi-centered black hole solution through quantum tunneling, via a gravitational

instanton analogous to the instanton for the symmetric double well in elementary quan-

tum mechanics. We find a gravitational instanton that connects two vacuum states: one

state corresponding to a single-centered extremal Reissner-Nordstrom (ERN) black hole
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configuration, and another state corresponding to a multi-centered ERN configuration.

We evaluate the Euclidean action for this instanton and find that the amplitude for the

tunneling process is equal to half the difference in entropy between the initial and final

configurations. This result suggests that after a charged non-extremal black hole becomes

extremal through the emission of charged particles, the final result is not a single extremal

black hole but rather a quantum superposition of all multi-centered extremal black hole

states with the same total mass and charge.
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Chapter 2

Quasinormal Modes of BTZ

Braneworld Black Holes

In this chapter we study the phenomenology of Banados-Teitelboim-Zanelli (BTZ)

black holes in a four-dimensional braneworld model and in the ordinary three-dimensional

case. We consider a class of four-dimensional braneworld black hole solutions that give

a BTZ black hole on the three-dimensional brane up to corrections that decrease expo-

nentially outside the horizon. We compute the quasinormal mode (QNM) frequencies of

a conformal scalar field in this black hole background, and in addition to studying these

QNM in their own right, we compare them to the quasinormal mode frequencies of a con-

formal scalar field on the background of a three-dimensional BTZ black hole. We find that

the variation of the quasinormal mode frequencies of the braneworld black holes, with the

black hole mass, differs qualitatively for large black holes compared to small black holes,

indicating two distinct regions in the bulk theory (and the corresponding dual theory on
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the brane.) Furthermore, we find qualitative and quantitative similarities between these

quasinormal mode frequencies and the QNM frequencies of the strictly three-dimensional

theory.

In Section 2.1.1 we describe the braneworld black hole solutions under investiga-

tion. In Section 2.2 we briefly cover the concept of black hole quasinormal modes, and in

Section 2.2.1 we outline our strategy for computing the eigenvalues of the radial and an-

gular equations of motion for a conformal scalar field in the background of the braneworld

black hole. In Section 2.3 we describe the quasinormal modes of a conformally coupled

scalar field in the background of the braneworld black hole. In Section 2.4 we compare

these quasinormal modes to the QNM of the three-dimensional BTZ black hole, and we

conclude in Section 2.5.

2.1 Introduction

2.1.1 Randall-Sundrum Braneworld Black Holes

The search for black hole solutions in Randall-Sundrum (RS) braneworlds that are

localized on the brane rather than existing in the bulk, has proved to be an unexpectedly

difficult problem. It is only recently that numerical analysis has yielded what appear to

be genuine static localized black hole solutions in the five-dimensional RSII model, though

it is not yet known whether these solutions are dynamically stable [39, 40]. In fact, it was

conjectured several years ago that such solutions could not exist. The conjecture rested

on using the bulk-brane correspondence to predict that the four dimensional black hole

would evaporate too rapidly via Hawking radiation to allow the dual classical solution
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in the braneworld to be static. Ultimately, all of these investigations address the larger

problem of nonlinear gravitational effects in the braneworld picture. It is known that the

RS model reproduces four-dimensional gravity on the brane at the linear level: however, we

do not know if there are significant nonlinear effects that could easily differentiate between

a lower-dimensional universe that ultimately derives from a higher-dimensional braneworld,

or a lower-dimensional universe that is not embedded as a brane in a higher-dimensional

universe. Black holes provide an ideal framework for asking these questions, as we expect

nonlinear gravitational effects to be most easily accessible through studying black holes.

Unfortunately, the lack of analytical solutions for localized braneworld black holes in the

five-dimensional RSII model makes it difficult to pinpoint illuminating calculations.

There are, however, known analytical braneworld black hole solutions in AdS4

that correspond to black holes localized on the 2-brane [41, 42]. When the brane is

an asymptotically flat space, there is no corresponding classical solution for a three-

dimensional black hole in asymptotically flat space without a braneworld. The correspond-

ing three-dimensional black hole is conjectured to be the quantum backreacted solution for

a point mass (of a strongly coupled conformal field theory) [36]. When the brane has a

negative cosmological constant, however, the corresponding classical solution is the BTZ

black hole. That is, there is a braneworld black hole or black string solution in AdS4 such

that the solution on the brane is either the BTZ black hole, or the BTZ black hole plus

corrections that fall of exponentially outside the black hole horizon. The existence of these

solutions allows for the comparison of quasinormal modes of the braneworld black holes,

with quasinormal modes of the BTZ black hole. Any phenomenological differences could

provide intersesting insights into the bulk-brane correspondence, as well as a possible route
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to distinguishing braneworld physics from lower-dimensional physics in a non-braneworld

scenario.

2.1.2 Exact braneworld black hole solutions

The known analytical black hole solutions in a four-dimensional AdS4 braneworld

are constructed by starting with the following solution to Einstein’s equations with negative

cosmological constant describing accelerating black holes in AdS4:

ds2 =
1

A2(x− y)2

(
H(y)dt2 − dy2

H(y)
+

dx2

G(x)
+G(x)dφ2

)
(2.1)

where

H(y) = −λ+ ky2 − 2µAy3 (2.2)

G(x) = 1 + kx2 − 2µAx3 (2.3)

and k = 1, 0,−1. The case of λ = 0 and k = −1 gives braneworld black holes with

asymptotically flat branes. In this work, however, we consider λ > 0 and k = +1, which

gives a spacetime that can be used to construct braneworld black holes with negative

cosmological constant on the brane. In order to see how the above geometry is related to

AdS4, we define the coordinates

r̂ =

√
y2 + λx2

A(x− y)
(2.4)

ρ̂ =

√
1 + x2

y + λx2
(2.5)

Under this change of coordinates, the metric (2.1) becomes

ds2 =
dr̂2

r̂2

A2(λ+1)
− λ

+ r̂2

(
−(λρ̂2 − 1)dt2 +

dρ̂2

λρ̂2 − 1
+ ρ̂2dφ2

)
, (2.6)
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which can be shown to be a parametrization of AdS4 [45].

We construct the braneworld solutions from the above spacetime as in the case of

asymptotically flat branes, by cutting the spacetime along two hypersurfaces, and gluing

it to a copy of itself along both hypersurfaces. It is necessary to cut the spacetime along

two surfaces rather than one, in order to avoid singularities. Thus we end up with a

spacetime with two branes. It turns out that both branes have positive tension. The

two hypersurfaces chosen for cutting and gluing are those defined by x = 0, y = 0, and

correspond to slices of constant r̂ where the coordinate r̂ is defined by

r̂ =

√
y2 + λx2

A(x− y)
(2.7)

and corresponds to a coordinate foliating the AdS4 space. When the parameter µ > 0, the

function G(x) has a single positive root at x = x2. Then the periodicity of the coordinate

φ is chosen to be

∆φ ≡ 2πβ ≡ 4π

|G′(x2)|
(2.8)

in order to avoid a conical singularity at x = x2. In the case of µ = 0, the periodicity of φ

may be chosen arbitrarily to be any ∆φ, as there is no conical singularity at x = x2.

Large black holes on the brane, which corresponds to the above solution with

µ = 0, agree exactly with the BTZ black hole, which has the metric

ds2 = (r2/L2 −M)dt̂2 − (r2/L2 −M)−1dr2 − r2dφ̂
2

(2.9)

where M is the mass of the BTZ black hole and the horizon radius is given by

rh =
M1/2

L
. (2.10)
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However, in the bulk the four-dimensional solution forms a BTZ black string rather than

a localized black hole. For smaller mass black holes on the brane, there are two different

classes of black hole solutions; in both cases, the black hole on the brane is the BTZ black

hole with corrections that are negligible outside the horizon for the solution with smaller

area. The geometry on the 2-brane is (introducing new coordinates ρ):

ds2 =
1

A2

[
−
(
λρ2 − k − 2µA

ρ

)
dt2 +

(
λρ2 − k − 2µA

ρ

)−1

dρ2 + ρ2dφ2

]
(2.11)

where we have defined

ρ =
1

y
(2.12)

When k = +1, the above metric is similar to the BTZ metric, but with extra µA/ρ

corrections. These extra terms are negligible outside the horizon if 2µA << λ−1/2. We

can write the above metric in the form of the BTZ metric as given in (2.9) by defining the

following coordinates in the case µ > 0:

r ≡ β

A
ρ (2.13)

t̂ ≡ 1

Aβ
t (2.14)

φ̂ ≡ 1

β
φ (2.15)

This gives the BTZ metric (plus the previously mentioned corrections) with

1

L2
≡ λA2 (2.16)

M ≡ β2 (2.17)

It can be shown that this value M is both the three-dimensional mass M3 of the black

hole on the brane (obtained by comparing the asymptotic geometry as ρ → ∞ with the
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geometry of the BTZ black hole, and the four-dimensional thermodynamic mass M4 of the

braneworld black hole, obtained by integrating δM = TδS [42]. Thus from now on we will

refer to this quantity simply as M without a subscript.

2.2 Black Hole Quasinormal Modes

The quasinormal modes of a black hole form its characteristic modes of vibration,

and thus provide an excellent “fingerprint” for the spacetime. Quasinormal modes can be

defined for any type of perturbation, whether scalar, Dirac, electromagnetic, or gravita-

tional, and are found by solving for the form of the fields and then imposing boundary

conditions at the black horizon and at spatial infinity, which restricts the allowed frequen-

cies to the mode frequencies. A distinctive feature of these modes is that the frequencies

have an imaginary part, indicating that they decay exponentially over time–they are thus

not normal modes in the usual sense.

The main question that we would like to investigate is comparing the character-

istics of the black holes described in Section 2.1.1, which are ultimately derived from a

braneworld picture, as opposed to the characteristic of BTZ black holes in a 3-dimensional

universe with no braneworld. We do this by comparing the quasinormal modes of the

two classes of black holes. Any significant difference in these results could point to a way

of distinguishing a 3-dimensional visible universe that derives from a higher-dimensional

braneworld picture, as opposed to a lower-dimensional universe that is not derived from a

braneworld.
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2.2.1 A Conformal Scalar Field in the Braneworld Background

We consider a conformally coupled scalar field Φ, whose equation of motion in

four dimensions is

∇2Φ− 1

6
RΦ = 0 (2.18)

As the equation of motion is conformally invariant, we can use the metric multiplied by

the conformal factor A2(x − y)2, in order to simplify the equations. We also rescale the

coordinates (t, φ) as indicated in (2.13), for ease of comparison with the three-dimensional

BTZ black hole. Substituting the ansatz:

Φ = ei(mφ−ωt)Y (y)S(x) = ei(m̂φ̂−ω̂t̂)Y (y)S(x) (2.19)

for the conformal scalar field, we find that the equations of motion do separate, and we

end up with:

2x(1− 3Aµx)S′(x) +G(x)S′′(x)− m̂2

β2G(x)
S(x) +KS(x) + 2AµxS(x) = 0 (2.20)

2y(1− 3Aµy)Y ′(y) +H(y)Y ′′(y)− ω̂2

A2β2H(y)
Y (y) +KY (y)− 2AµyY (y) = 0, (2.21)

where K is the separation constant.

The Angular Equation

We are only interested in the angular equation for S(x) in order to find its eigen-

values, so that we can insert the appropriate separation constant K into the radial equation.

Recall that the coordinate x has range x ∈ [0, x2], where x2 is the single positive root of

G(x). Usually in the numerical determination of QNM, the angular equation can be solved
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exactly and only the radial part requires numerical methods. However, in this case we need

numerical methods for both equations since the angular equation cannot be solved exactly.

Studying the differential equation (2.20) for S(x) shows that it has four regular

singular points, three at the three distinct roots of G(x) (one of them being x = x2), and

one at x = ∞. As all the singular points are regular, we can use Frobenius’ method to

expand the solution in a power series about each singular point, where each power series has

a radius of convergence that reaches at least to the closest regular singular point. Closer

investigation shows that x2 is the only root of G(x) with a positive real part. Thus, by

expanding the solution in a power series about x = x2, the radius of convergence of this

power series certainly encompasses the point x = 0, and the brane boundary condition can

be imposed on the series at x = 0. This allows us to solve for the separation constant

K. The computation is outlined in Section A.1. Note that direct calculation shows that

the quasinormal mode frequencies are not particularly sensitive to small changes in the

eigenvalue K, so we do not have to obtain the K values to extremely high levels of accuracy

in order to find the quasinormal modes–computing to two significant figures is enough. The

details of the computation are outlined in Section A.1.

As the polynomial G(x) is fully determined by the parameter µA, fixing µ and A

alone is enough to determine K. Using this method to find K for various µ and A gives a

list of possible K values for each set of parameters. In order to narrow the field of study,

the smallest value of K was taken for each (µ,A), and we let the quantum number m̂

take the values {0, 1, 2}. The mass of the black-hole (the three-dimensional mass M3 and

the four-dimensional mass M4 are the same for these braneworld black holes) can also be
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determined with only (µ,A), as the mass is given by [42]:

M3 =
β2

8G3
(2.22)

The Radial Equation

Studying the differential equation (2.21) for Y (y) shows that it too has four regular

singular points, three at the three distinct roots of the polynomial H(y) (one of them being

y = yh), and one at y = −∞. As all the singular points are regular, we can use Frobenius’

method again in order to expand Y (y) in a power series about each singular point. The

absolute magnitude of the two complex roots of H(y) is always greater than the magnitude

of yh, and thus if we expand the solution Y (y) in a power series about the regular singular

point y = yh, the radius of convergence of this power series will always encompass y = 0,

and we can impose the necessary boundary conditions at y = yh and y = 0 on a single

power series. We can therefore use the series method outlined above for S(x) to compute

the quasinormal modes ω̂. However, rather than straightforwardly solving the equation

(2.21) for ω̂, we make two changes. Firstly, we change the variable Y (y) to make it easier

to identify ingoing and outgoing modes at the black hole horizon, and impose ingoing-only

boundary conditions there. Defining a new variable Ψ(y) by:

Φ(t, y) = e−iω̂(t̂+r∗)Ψ(y), (2.23)

where r∗ is the tortoise coordinate (defined with a minus sign as y is negative on the entire

range from the black hole horizon to spatial infinity, where y = 0, so that ρ decreases from

the horizon to ρ→ −∞ at spatial infinity):

r∗ ≡ −
∫

dρ

ρ2H(ρ)
= −

∫
dy

H(y)
(2.24)
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we see that ingoing modes have Ψ(y) = O(1), and outgoing modes, which have the form

Φ(t, y) ∼ e−iω̂(t̂−r∗), have Ψ(y) ∼ e2iω̂r∗ . Substituting this form for the field into the

equation of motion for Y (y) gives:

H(y)∂2
yΨ +

(
H ′(y) +

2iω̂

Aβ

)
∂yΨ + (K − 2µAy)Ψ = 0 (2.25)

We know that ingoing modes have the form Ψ(y) = O(1). And using the fact that:

r∗ = −
∫

dy

H(y)
≈ − 1

H ′(yh)
ln(y − yh), (2.26)

we find that outgoing modes have the form Ψ(y) ∼ (y − yh)−2iω̂/H′(yh). This information

allows us to identify the correct independent solution when expanding Ψ(y) around the

point y = yh. We can now proceed to solve numerically for ω̂ in the same way that

we solved numerically for K in the previous section. The details of the computation are

outlined in Appendix A.2.

Boundary Conditions

It is worth taking a closer look at the boundary conditions we impose both for

finding the quasinormal modes of the braneworld black hole and black string. Typically, for

scalar fields we impose ingoing boundary conditions at the horizon to compute quasinormal

modes, and either outgoing boundary conditions at infinity in asymptotically flat space, or

Dirichlet boundary conditions at infinity in AdS space [16, 17]. There is greater freedom

in choosing boundary conditions for gravitational and electromagnetic perturbations, and

several viable possibilities have been proposed [51,52].

In our setup, we impose ingoing boundary conditions as the black hole horizon

as usual. At spatial infinity (corresponding to y = 0), the particular geometry of this
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braneworld setup requires us to impose different boundary conditions from the standard

ones in this case. Our braneworld scenario has two branes, one at x = 0, and another

at y = 0, with Z2 symmetry about both branes. The Z2 symmetry can be relaxed in

cases where the brane is thick [54, 55], so that the cosmological constant is different on

either sides of the brane, but otherwise, reflection symmetry about the brane should be

preserved. It would be nonsensical for the scalar field solution (or any aspects of the

solution) to be different after reflection about the brane. Imposing Z2 symmetry about

the brane at y = 0 amounts to imposing Neumann boundary conditions at spatial infinity.

Another possibility is to eliminate the second brane at y = 0. This brane is necessary

in order to keep all the bulk modes normalizable. This condition may be satisfied by

imposing Dirichlet boundary conditions at y = 0 instead. These boundary conditions are

also imposed on the quasinormal modes, in which case we get the usual setup of ingoing

boundary conditions at the black hole horizon and Dirichlet boundary conditions at spatial

infinity.

When comparing these quasinormal modes to the quasinormal modes of the three-

dimensional theory with a BTZ black hole background, we should make sure that the

boundary conditions are consistent. This is easily imposed at the horizon, as we have

ingoing boundary conditions in all cases. When considering the boundary conditions as

spatial infinity, it makes a difference whether we are considering a conformally coupled or

a minimally coupled scalar field on the BTZ background. We can write the radial equation

of motion for this field in the standard form (where ρ is a radial coordinate and r∗ is a

tortoise coordinate defined in terms of ρ that goes to −∞ at the black hole horizon and ∞
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at spatial infinity):

∂2
r∗R(ρ) + V (ρ)R(ρ) = 0, (2.27)

where V (ρ) is a potential that depends on the type of field we are considering. In the

case of a conformally coupled scalar field, V (ρ) is finite at spatial infinity, so we can

impose either Neumann or Dirichlet boundary conditions so as to be consistent with the

boundary conditions imposed in the full four-dimensional braneworld setup. In the case of

a minimally coupled scalar field, V (ρ) contains a ρ2 term that blows up as r∗ →∞, which

forces us to impose Dirichlet boundary conditions at spatial infinity. Thus in that case

we can only compare the quasinormal mode frequencies to those of the braneworld setup

where we have also imposed Dirichlet boundary conditions at y = 0.

2.2.2 Numerical Computation of the Angular and Radial Eigenvalues

In order to study the quasinormal modes for black holes that lie outside the limit

µA <<< 1, we carry out a numerical analysis of the eigenvalues of the equations of motion.

This can be done by expanding the solutions in power series about the regular singular

points on the real line, and then using the equations of motion to define recurrence relations

between the coefficients in the power series. In the case of our equations of motion, we

must carry out this procedure in order to find the eigenvalues K of the angular equation,

as well as the quasinormal frequencies ω given by the radial equation. The computations

are outlined in Appendix A.1–A.2.
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Table 2.1 Numerically computed values of the eigenvalue K of the radial equation

of motion and the black hole mass M , for various values of the parameters µ,A

and angular momentum quantum number m̂ = 0. The smallest value of K found

is given in each case, to three significant figures.

(µ,A) K M3

(0.2, 0.2) 0.512 0.0243

(0.25, 0.25) 0.408 0.055

(0.4, 0.4) 0.517 0.218

(0.5, 0.5) 0.550 0.303

(0.6, 0.6) 0.609 0.333

(1, 1) 0.968 0.25

(1.5, 1.5) 1.51 0.157

(2, 2) 2.13 0.109

(3, 3) 3.52 0.064

(3.5, 3.5) 4.29 0.064

(5, 5) 6.80 0.0327
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Table 2.2 The imaginary and real parts ωI and ωR of the dominant quasinormal

mode, and the black hole mass M , for various values of the parameters (µ,A),

when Λ = 0.001. These values were obtained using the Dirichlet boundary

condition at y = 0, and the smallest value of the eigenvalue K obtained from the

angular equation, and angular momentum quantum number m̂ = 1.

(µ,A) M3 −ωI ωR

(0.2, 0.2) 0.0243 0.0074 0.0091

(0.25, 0.25) 0.055 0.011 0.014

(0.4, 0.4) 0.218 0.022 0.027

(0.5, 0.5) 0.303 0.026 0.031

(0.6, 0.6) 0.333 0.028 0.034

(1, 1) 0.25 0.024 0.039

(2, 2) 0.109 0.013 0.041

(3, 3) 0.064 0.011 0.042

(5, 5) 0.0327 0.009 0.042
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2.3 The Quasinormal Modes of the Braneworld Black Hole

In this section we present our results for the computation of the angular eigenval-

uesK and the quasinormal modes ω for a conformally coupled scalar field in the background

of a braneworld black hole. We have found that our results were qualitatively similar for

both Dirichlet and Neumann boundary conditions, so in the rest of this work we will only

specifically mention results obtained for Dirichlet boundary conditions. As stated above,

in computing ω we took the lowest value of K for each set of parameters (λ, µ,A), and

carried out our calculations for m̂ ∈ {0, 1, 2} (further calculations showed that our results

are actually independent of K, which is another respect in which there are phenomenolog-

ical similarities between the three and four-dimensional theories–the spheroidal eigenvalue

K does not affect the quasinormal modes.) As our ultimate aim was to compare the full

four-dimensional theory to a three-dimensional theory, we kept the value of the three-

dimensional cosmological constant on the brane, Λ ≡ 1/L2 = λA2, constant when varying

µ and A. Note that µA parameterizes the size of the four-dimensional braneworld black

hole.

Figure 2.1 shows the dependence of the first three values of K ≡ ν(ν + 1) on the

parameter µA (only the product µA matters in determining K), for values of the quantum

number m̂ = {0, 1, 2}. When it comes to the quasinormal modes ω, we find that there are

two distinct regions of parameter space depending on the value of µA. The dependence of

the real and imaginary parts ωR and ωI on µA when µA is less than a particular critical

value (approximately 0.36, corresponding to M ≈ 0.33), is radically different from the

dependence of ωR and ωI on µA when µA is greater than the critical value. In order to aid
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Figure 2.1 The eigenvalues of the spheroidal equa-

tion for various values of the parameter µA =

(0.04, 0.0625, 0.16, 0.25, 0.36, 0.49, 0.64, 0.81, 1, 2.25, 4, 9, 12.25, 25, 64, 100).

The red dots have m̂ = 0, the blue dots have m̂ = 1, and the black dots have

m̂ = 2.

with our aim of comparing the dynamics of the four-dimensional theory to the dynamics of

a three-dimensional theory, we plotted ωR and ωI against the mass M of the black hole (or

quantities depending only on M), as the three-dimensional mass of the black hole on the

brane, M3, is equal to the full thermodynamic four-dimensional mass of the braneworld

black hole, M4, so that we have M = M3 = M4 as stated in Section 2.1.2.

For the region of small µA, we find that ωI depends linearly on
√
M , as shown

in Figure 2.4. The real part ωR of the quasinormal modes do not depend linearly on
√
M ,

but do increase with this quantity, as shown in Figure 2.5. Both ωR and ωI approach zero

as M → 0. These trends disappear when Λ becomes too large (of order O(10)), without

a corresponding increase in A so that λ remains small (since λA2 = Λ.) This is because
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Figure 2.2 The imaginary and real parts of the quasinor-

mal modes for various values of the parameter µA =

(0.04, 0.0625, 0.16, 0.25, 0.36, 0.49, 0.64, 0.81, 1, 2.25, 4, 9, 12.25, 25), when

Λ = 0.001 and m̂ = 1. The blue dots are the first overtone n = 0, the

black dots are the second overtone n = 1, and the red dots are the third

overtone n = 2.
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Figure 2.3 The imaginary and real parts of the quasinor-

mal modes for various values of the parameter µA =

(0.04, 0.0625, 0.16, 0.25, 0.36, 0.49, 0.64, 0.81, 1, 2.25, 4, 9, 12.25, 25), when Λ = 1

and m̂ = 1. The blue dots are the first overtone n = 0, the black dots are the

second overtone n = 1, and the red dots are the third overtone n = 2.
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the parameter λ corresponds to the separation between the UV and IR cutoff scales of the

conjectured dual theory–if λ becomes too large, this separation becomes too small and the

braneworld black hole is no longer well represented by a quantum field theory on a BTZ

black hole background.

For the region of large µA, we find that ωI depends linearly on
√
M , as shown in

Figure 2.6. The real part ωR of the quasinormal modes seem to be almost independent of

√
M , with a small dependence appearing as µA approaches the critical turnaround point

between large µA and small µA so that ωR decreases with
√
M , as shown in Figure 2.7.

Moreover, if we look at the spacing between the overtones of ωI , we can numerically fit

a straight line to the dependence of ωI on
√
M and find the following for the first three

overtones (specific results are given for the case Λ = 0.001 and m̂ = 1):

n = 0 − ωI = 0.00 + 0.047
√
M (2.28)

n = 1 − ωI = 0.00 + 0.11
√
M (2.29)

n = 2 − ωI = 0.00 + 0.19
√
M. (2.30)

2.4 Comparisons to a three-dimensional theory

We would now like to compare our results to the quasinormal modes of a three-

dimensional theory. This is different from the usual approach in using quasinormal modes

to investigate dualities between higher and lower-dimensional theories, wherein the quasi-

normal modes of the higher-dimensional theory are dual to the poles of the retarded Green’s

functions of a strongly-coupled CFT on the boundary in the lower-dimensional dual. Here,

instead of trying to find a duality, we are comparing the phenomenology of two theories
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Figure 2.4 The overtones of the imaginary part ωI of the quasinormal modes for

the 4-dimensional braneworld black holes, and their dependence on
√
M where

M is the mass of the black hole, in the region of small µA less than 0.33. These

results are for angular momentum quantum number m̂ = 1, the lowest value of

the angular quantum number K, and Λ = 0.001. The overtones correspond thus:

blue (n = 0), black (n = 1), red (n = 2). Linear best fit lines have been drawn.
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Figure 2.5 The overtones of the real part ωR of the quasinormal modes for the

4-dimensional braneworld black holes, and their dependence on
√
M where M

is the mass of the black hole, in the region of small µA less than 0.33. These

results are for angular momentum quantum number m̂ = 1, the lowest value of

the angular quantum number K, and Λ = 0.001. The overtones correspond thus:

blue (n = 0), black (n = 1), red (n = 2).
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Figure 2.6 The overtones of the imaginary part ωI of the quasinormal modes for the

4-dimensional braneworld black holes, and their dependence on
√
M where M

is the mass of the black hole, in the region of large µA greater than 0.33. These

results are for angular momentum quantum number m̂ = 1, the lowest value of

the angular quantum number K, and Λ = 0.001. The overtones correspond thus:

blue (n = 0), black (n = 1), red (n = 2). Linear best fit lines have been drawn.
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Figure 2.7 The overtones of the real part ωR of the quasinormal modes for the 4-

dimensional braneworld black holes, and their dependence on
√
M where M is

the mass of the black hole, in the region of large µA greater than 0.33. These

results are for angular momentum quantum number m̂ = 1, the lowest value of

the angular quantum number K, and Λ = 0.001. The overtones correspond thus:

blue (n = 0), black (n = 1), red (n = 2).
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Figure 2.8 The overtones of the real part ωR of the quasinormal modes for the 4-

dimensional braneworld black holes, and their dependence on
√
M where M is

the mass of the black hole, in the region of large µA greater than 0.33. These

results are for angular momentum quantum number m̂ = 1, the lowest value of

the angular quantum number K, and Λ = 1. The overtones correspond thus:

blue (n = 0), black (n = 1), red (n = 2). Linear best fit lines have been drawn.
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that we know from the outset to be different: the higher-dimensional braneworld theory,

and a purely lower-dimensional theory. We want to know if non-linear gravitational ef-

fects allow us to distinguish between the two theories, and to what extent. We do so by

comparing the quasinormal modes of the three-dimensional black hole solution, and the

quasinormal modes of the full four-dimensional braneworld solution.

It is a known result that the quasinormal mode frequencies of a massless, min-

imally (not conformally) coupled scalar field in a BTZ black hole background take the

form [16]

ωL = ±m̂− 2i(n+ 1)

√
M

L
, (2.31)

where m̂ is the angular momentum quantum number for the φ̂ coordinate and n is the

overtone number. Note that the real part of ω does not depend on the size of the black

hole, only the imaginary part does.

The QNM of a massless, conformally coupled scalar field on a BTZ background

have been previously computed in [48]. For Dirichlet boundary conditions, they are given

by the values of ν for which the modified Bessel function of the first kind, Iν(Z0) = 0,

where ν is related to the QNM frequencies ω by the cosmological constant Λ and the black

hole mass M , and Z0 is given in terms of Λ,M , and also the angular momentum quantum

number m̂ of the massless, conformally coupled scalar field φ. The relations are as follows:

ν =
−iω√
ΛM

(2.32)

Z0 =

√
V0

ΛM
(2.33)

V0 = |Λ|(4m̂2 +M) (2.34)
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The roots of Iν(Z0) may be found by numerical search. There are infinitely many such

roots in the complex plane, giving rise to the overtones of ω. We found the roots by

making contour plots of |Iν(Z0)| in the complex plane, searching by eye for local minima,

and then doing a numerical search for the locations of the local minima. We thus obtained

tables of the first six overtones of ω for m̂ ∈ {0, 1, 2} and the values of M and Λ for which

we have computed the quasinormal mode frequencies for the four-dimensional braneworld

black holes. For both the minimally and conformally coupled scalar field, we find that ωI

varies linearly with
√
M . However, for the minimally coupled scalar field, ωR depends only

on m̂, whereas for the conformally coupled scalar field, ωR decreases linearly with
√
M .

Comparing these known results to the quasinormal mode frequencies for a confor-

mally coupled scalar field propagating on the background of a four-dimensional braneworld

black hole, as obtained in Section 2.3, we find that there is no obvious correspondence be-

tween the ωR in the region of small µA, to the quasinormal mode frequencies for the

three-dimensional theory. There is, however, a similarity between ωR in the region of large

µA, and the quasinormal mode frequencies of the conformally coupled scalar field on a

BTZ black hole background. In both cases, ωR decreases with
√
M , though the linear

dependence is far more obvious in the case of the scalar field in the three-dimensional BTZ

black hole background. The difference between the trends in ωR is most likely due to the

strongly coupled nature of the theory dual to the four-dimensional braneworld solution.

When it comes to the imaginary parts of the quasinormal mode frequencies, in

the case of both large and small values of µA, ωI not only depends linearly on
√
M , the

overtones of the conformally coupled scalar field on the braneworld black hole background,

can be rescaled by a constant factor to match the overtones of the conformally coupled
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scalar field on the BTZ black hole background. The correspondence is not one-to-one:

namely, the n = 0, 1, 2 overtones of the four-dimensional quasinormal modes map to the

n = 0, 2, 4 overtones of the BTZ quasinormal modes. Note that the existence of such a

phenomenological similarity is by no means a given. It indicates that the overtones of the

quasinormal modes, or at least their imaginary parts, for the two theories have the same

functional dependence on the overtone number n and the quantity
√
M , so that the two

theories are phenomenologically similar. This property has been confirmed for the first

three overtones when m̂ = 0, and the first two overtones when m̂ = 1. It remains to be

seen if the quasinormal mode frequencies can be computed to sufficient accuracy to see if

the correspondence persists for higher overtones (which will nevertheless be muted in effect

compared to the first few dominant overtones.)

2.5 Discussion

We find evidence for an interesting possible phenomenological similarity between

the full four-dimensional braneworld theory and a purely three-dimensional theory. The

quasinormal modes of a massless, conformally coupled scalar field on the full four-dimensional

braneworld black hole background have a similar dependence on the quantity
√
M where

M is the mass of the black hole–which is equal in both the three and four-dimensional

sense–as do the quasinormal modes of a massless, conformally coupled scalar field on the

three-dimensional BTZ black hole background. As these calculations take into account the

full non-linear dynamics of the fields when coupled to gravity, this correspondence indi-

cates that the theories may be indistinguishable even at the nonlinear level. However, this
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Figure 2.9 The imaginary and real parts ωI and ωR of the quasinormal modes of a

BTZ black hole perturbed by a massless conformal scalar field. These results are

for angular momentum quantum number m̂ = 1, Λ = 0.001, and the mass M of

the BTZ black hole ranging between M = 0.024 and M = 0.33. The overtones

correspond thus: blue (n = 0), black (n = 1), red (n = 2). Linear best fit lines

have been drawn.
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Figure 2.10 The overtones of the imaginary part ωI of the quasinormal modes

for a BTZ black hole perturbed by a massless conformal scalar field, and their

dependence on
√
M where M is the mass of the black hole. These results are

for angular momentum quantum number m̂ = 0, and Λ = 0.001. The first six

overtones have been plotted, and |ωI | increases with increasing overtone number

n. Linear best fit lines have been drawn.
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Figure 2.11 The overtones of the imaginary part ωI of the quasinormal modes

for a BTZ black hole perturbed by a massless conformal scalar field, and their

dependence on
√
M where M is the mass of the black hole. These results are

for angular momentum quantum number m̂ = 1, and Λ = 0.001. The first eight

overtones have been plotted, and |ωI | increases with increasing overtone number

n. We can see that there is an interesting bifurcation structure in ωI .
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Figure 2.12 The overtones of the imaginary part ωI of the quasinormal modes

for a BTZ black hole perturbed by a massless conformal scalar field, and their

dependence on
√
M where M is the mass of the black hole. These results are

for angular momentum quantum number m̂ = 1, and Λ = 0.001. The first eight

overtones have been plotted, and |ωI | increases with increasing overtone number

n. The bifurcated structure of ωI has been taken into account in order to draw

linear best fit lines for the first three overtones.
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Figure 2.13 The overtones of the real part ωR of the quasinormal modes for a BTZ

black hole perturbed by a massless conformal scalar field, and their dependence

on
√
M where M is the mass of the black hole. These results are for angular

momentum quantum number m̂ = 1, and Λ = 0.001. The first three overtones

have been plotted, and correspond thus: blue (n = 0), black (n = 1), red (n = 2).

Linear best fit lines have been drawn.
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Figure 2.14 The scaling of the first two overtones (n = 0 and n = 1) of ωI of the

4-dimensional braneworld black hole to fit the first (n = 0) and third (n = 2)

overtones of the BTZ black hole perturbed by a massless conformal scalar field,

when the angular momentum quantum number m̂ = 0. The blue dots are the

quasi normalmodes of the BTZ black hole, and the red lines are lines of best

fit to the scaled quasinormal modes of the 4-dimensional black hole. Scaling

ωI → 0.87ωI maps the first set of quasinormal modes to the second set.
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Figure 2.15 The scaling of the first three overtones (n = 0, 1, 2) of ωI of the 4-

dimensional braneworld black hole to fit the first (n = 0), third (n = 2), and

fifth (n = 4) overtones of the BTZ black hole perturbed by a massless conformal

scalar field, when the angular momentum quantum number m̂ = 0. The blue

dots are the quasi normalmodes of the BTZ black hole, and the red lines are

lines of best fit to the scaled quasinormal modes of the 4-dimensional black hole.

Scaling ωI → 0.9ωI maps the first set of quasinormal modes to the second set,

though the mapping is less exact than when only the first two overtones of the

braneworld black hole are considered.
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Figure 2.16 The scaling of the first two overtones (n = 0 and n = 1) of ωI of the

4-dimensional braneworld black hole to fit the first (n = 0) and third (n = 2)

overtones of the BTZ black hole perturbed by a massless conformal scalar field,

when the angular momentum quantum number m̂ = 1. The blue dots are the

quasi normalmodes of the BTZ black hole, and the red lines are lines of best

fit to the scaled quasinormal modes of the 4-dimensional black hole. Scaling

ωI → 1.258ωI maps the first set of quasinormal modes to the second set.
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similarity only holds for ωI–the real parts ωR of the quasinormal modes have a different

dependence on M in the higher-dimensional theory, than in the lower-dimensional case.

Moreover, although ωI depends linearly on
√
M , similarly to the case of the scalar fields

propagating on the BTZ black hole backgorund, the overtones of ωI cannot be mapped

by a simple one-to-one scaling onto the overtones of ωI in the three-dimensional theory.

Thus, although there are similarities between the observables in the two theories, these

results indicate that sufficient sensitivity in measuring observables will at some point allow

non-linear gravitational effects to tell the two apart.
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Chapter 3

Evolution of Near-Extremal Black

Holes in N = 2, d = 4 Supergravity

In this chapter we investigate the stability of a near-extremal D0-D4 black hole in

the probe limit, when the parameters of the black hole solution lie within a certain regime,

as a precursor to studying the bound states of multiple non-extremal black holes in N = 2,

d = 4 supergravity. We determine whether it is possible to form bound states of this “core”

non-extremal black hole with BPS probe particles, and whether it is possible for the “core”

black hole to decay by the emission of such BPS probes either to a local minimum of the

probe potential, or spatial infinity. We first carry out a qualitative analysis of the probe

potential to determine when quantum tunneling of probes from the black hole is possible.

We then find the wavefunction of the scattered probe by using the WKB approximation

to solve the Dirac equation in the black hole background, and use this solution to compute

the tunneling amplitude.
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In Section 3.1 we define the problem we are trying to solve and introduce some

motivation for working on the problem. In Section 3.2 we introduce the background infor-

mation necessary to understand the work in this Chapter. In Section 3.3 we present our

results. In Section 3.2.2 we give the action for a charged probe particle in this black hole

background, and carry out a qualitative analysis of the static probe potential. In Section

3.3.3 we set out the Dirac equation in the black hole background, and in Section 3.3.5 we

carry out the full tunneling analysis by solving the Dirac equation. We conclude in Section

4.4.

3.1 Introduction

A class of black holes that has not been extensively studied so far consists of

the non-extremal black hole solutions to N = 2, d = 4 supergravity [76, 78, 79], that

are a generalization of the well-known extremal (both BPS and non-BPS) “attractor”

solutions [81]. These solutions consist of the background metric, together with a set of

complex scalars and electromagnetic gauge fields, and can be completely characterized

by the black hole’s electric and magnetic charges, the parameter c giving the deviation

from extremality, and the value of the scalars at spatial infinity. In this work we study a

particular class of these black hole solutions that have one electric charge Q0, one magnetic

charge P1, and one complex scalar field. Thus these solutions can be specified by four

independent quantities: Q0, P1, the extremality parameter c, and the value of the scalar

field at spatial infinity. We package these quantities into two parameters, 1
c̃2

and 1
c̃4

, that

we use to classify the various regimes in which these solutions lie.
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The BPS attractor solutions are known to exist in multi-centered configurations

that are stable bound states [84, 86]. These multicentered configurations should remain

valid, stable solutions even when deformed away from extremality [79], but fully backre-

acted, non-extremal, multicentered solutions have not yet been found. As the probe limit

of BPS particles in a single-centered BPS background gives interesting insights into the

fully backreacted supersymmetric multicentered solutions (such as the equilibrium distance

between the centers) [84–86], it is reasonable to assume that studying the behavior of BPS

probes in the background of a single-centered non-extremal black hole should provide clues

to the existence and stability of multi-centered non-extremal black hole solutions.

We thus consider a central “core” non-extremal black hole, that can be surrounded

by BPS probes (in a multi-centered configuration with a large black hole at the center and

the remaining black holes being small enough relative to the “core” black hole that they

can be treated as BPS probes), and study the static potential of the probes in the black

hole background. We assume that the probes are small enough that mutual interactions

between them can be ignored. If the probe potential has a local minimum whose free energy

is lower than that of the free energy at the black hole horizon, then the probe can form a

stable bound state with the background black hole [79, 80] (and when fully back-reacted,

this could give a bound state of two black holes.) A single black hole whose charge is equal

to the sum of the “core” charge and the probe charge is unstable to the emission of such

a probe to form this bound state, as the probe can tunnel through the potential barrier to

the local minimum of the potential. If the probe has a lower free energy at spatial infinity

than it does at the black hole horizon, then the “core” black hole is unstable, as it can

emit probes that can tunnel through the potential barrier to escape to infinity. We cannot
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predict the endpoint of this evolution, as at some point the probe approximation (where

the interaction between the probes is negligible) will become inapplicable: however, it is

possible that the “core” black hole will continue to emit probes to infinity until we are left

with a hot dilute gas.

In this chapter we consider the emission of such charged probes from a certain

class of non-extremal black holes in the near-extremal case, where the parameters describing

the black hole solutions satisfy c ≪ 1
c̃2
∼ 1

c̃4
. We would like to know if these black holes

are unstable to the emission of charged BPS probes, and if so, to determine whether

these probes can form bound states with the background black hole, and to compute the

tunneling amplitudes for this emission process. We first study the qualitative features of

the potential for a static charged probe in the black hole background, finding the maximum

of the potential and the classical turning points. We also compute the rate for a charged

particle to tunnel through the static potential between the classical turning points. This

naive result for the tunneling rate through the potential barrier may also be applied to the

case where the parameters of the black hole solution satisfy c≪ 1
c̃2

≪ 1
c̃4

.

We then find the wavefunction for a charged probe particle in the black hole

background, by solving the curved space Dirac equation for this background. We use the

WKB approximation to solve for the radial part of the wavefunction. We then compute

the amplitude for a charged probe particle to be emitted from the black hole via quantum

tunneling through the potential barrier, by calculating the ratio of the conserved current

density at spatial infinity and at the black hole horizon.
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3.2 Background Information

3.2.1 Non-extremal black holes in N = 2, d = 4 supergravity

The action for the bosonic part of four-dimensional N = 2 supergravity coupled

to massless vector multiplets takes the form:

S4D =
1

16π

∫
M4

d4x
√
−g
(
R− 2GAB̄dz

A ∧ ?dz̄B̄ − F I ∧GI
)
, (3.1)

where the zA (A = 1, . . . , n) are the vector multiplet scalars, the F I (I = 0, 1, . . . , n) are

the vector field strengths, the GI are the dual magnetic field strengths, and GAB̄ = ∂A∂B̄K

is derived from the Kahler potential

K = − ln(i

∫
X

Ω0 ∧ Ω̄0) (3.2)

where Ω0 is the holomophic 3-form on the Calabi-Yau manifold X. The normalized 3-form

Ω = eK/2Ω0.

The lattice of electric and magnetic charges Γ is identified with H3(X,Z), the

lattice of integral harmonic 3-forms on X. In the standard symplectic basis, a charge Γ

can be written as Γ = (P I , QI), with magnetic charges P I and electric charges QI . We

can define a canonical, duality invariant, symplectic product 〈, 〉 on the space of charges,

which is given by:

〈Γ, Γ̃〉 = P IQ̃I −QI P̃ I (3.3)

in the standard symplectic basis. The moduli-dependent central charge Z(Γ, z) of Γ is

given by:

Z(Γ, z) = −eK/2〈Γ,Ω〉 (3.4)
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All the coefficients of the Lagrangian can be derived from a single prepotential F (X),

where the XA are projective coordinates such that XA = X0zA and X0 is a gauge degree

of freedom. In this work we will consider prepotentials of the form:

F (X) = D
(X1)3

6X0
, (3.5)

with D = 1, so that we have one scalar field, z, and two electromagnetic vector potentials,

A0 and A1 (together with their duals, B0 and B1.) In this case the moduli-dependent

central charge for a charge γ = (P 0, P 1, Q1, Q0) is given explicitly by:

Z(γ, z) =

√
3

2
√
D(Imz)3

(
D

6
P 0z3 − D

2
P 1z2 +Q1z +Q0

)
(3.6)

This restriction still allows us to consider a large class of black hole solutions, as it has

been shown that the general case with an arbitrary number of n vector multiplets may

be reduced to an effective theory with a single vector multiplet given by the prepotential

(3.5), by applying a suitable truncation [77].

The Black Hole Solution

Non-extremal black hole solutions to this theory were first found in [76] and [78],

and further studied in [79] and [80]. We consider the D0-D4 solutions of D0-charge Q0 and

D4-charge P1, which may be described by a charge vector Γ = (P 1, Q0). In analogy with

the well-known extremal black hole solutions [81], a non-extremal solution can be given in

terms of two functions H0, H1:

H0 ≡
|Q0|
c

sinh(cτ + c2), H1 ≡
|P1|
c

sinh(cτ + c4) (3.7)

where c2 and c4 are constants, c denotes the deviation from extremality, and τ is an inverse

radial coordinate such that τ →∞ at the black hole horizon and τ → 0 at spatial infinity
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(in the extremal limit, the functions H0, H1 are harmonic.) If Q0 and P1 are both positive,

then the solution is BPS in the extremal limit c → 0. If Q0 and P1 have differing sign

(where without loss of generality we can take Q0 < 0), then the solution is non-BPS in the

extremal limit. In this work we will restrict ourselves to the near-extremal regime where

c≪ 1
c̃2

and c≪ 1
c̃4

.

The black hole metric is given by [78,79]:

ds2 = −e2U(τ)dt2 + e−2U(τ)

(
c4

sinh4 cτ
dτ2 +

c2

sinh2 cτ
dΩ2

2

)
(3.8)

where

e−2U =

√
2

3
H0H3

1 . (3.9)

The scalar field z = iy is given by:

y =

√
6H0

H1
, (3.10)

and the electromagnetic vector potentials are given by:

A0 =
1

2Q0

(√
c2 +

Q2
0

H2
0

− c

)
dt, A1 = P1(1− cos θ)dφ

B0 = Q0(1− cos θ)dφ, B1 = − 3

2P1

(√
c2 +

P 2
1

H2
1

− c

)
dt. (3.11)

The integration constants c2 and c4 are given by:

sinh c2 =
cy

3/2
0

2
√

3|Q0|
, sinh c4 =

√
3c

|P1|y1/2
0

, (3.12)

where y0 is the value of the scalar field at spatial infinity. Note that the solution is

completely determined by the charges (P 1, Q0), the extremality parameter c, and the value
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y0 of the scalar field at spatial infinity. Thus four independent parameters are needed to

specify the solution. In the rest of this work we will refer to the parameters (P 1, Q0), c, c2,

and c4, but it should be kept in mind that one of these is redundant.

We will find it convenient to define the parameters:

c̃2 ≡
sinh c2

c
, c̃4 ≡

sinh c4

c
(3.13)

The ADM mass M of the black hole can be read off from the metric:

M =
1

4

√
c2 +

12Q2
0

y3
0

+
3

4

√
c2 +

P 2
1 y0

3
(3.14)

where y0 is the value of y at spatial infinity. The entropy of the black hole is:

S = π

(
c+

√
c2 +

12Q2
0

y3
0

)1/2(
c+

√
c2 +

P 2
1 y0

3

)3/2

(3.15)

and the Hawking temperature is:

TH =
c

2S
(3.16)

In this work we will use the radial coordinate r defined by:

r ≡ c

sinh cτ
(3.17)

In these coordinates the metric becomes:

ds2 = −e2U(r)dt2 + e−2U(r)

 1(
1 + c2

r2

)dr2 + r2dΩ2
2

 (3.18)

And the functions determining the solutions are:

H0 = |Q0|

(
cosh c2

r
+ c̃2

√
1 +

c2

r2

)
, H1 = |P1|

(
cosh c4

r
+ c̃4

√
1 +

c2

r2

)
(3.19)
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3.2.2 The Probe Action

Before solving for the wavefunction of a BPS particle of charge γ in the black

hole background, it will be helpful to study the probe action for such a particle in this

background, which is given by [83]:

Sγ = −
∫
µ ds− 1

2

∫
〈γ,Aµ〉dxµ (3.20)

where µ is the moduli-dependent mass of the particle, given by:

µ = |Z(γ, z)| (3.21)

The static probe action is:

Sp = −
∫
µ
√
−gtt dt− 1

2

∫
〈γ,At〉dt (3.22)

=

∫
Vp dt

where Vp is the static probe potential. This can be written in the form Vp = Vg + Vem,

where Vg = eU |Z(γ, z)| is the mass term, given by [79]:

Vg =
1

4

√(
q0

H0
+

3p1

H1

)2

+
6H0

H1

(
q1

H0
− p0

H1

)2

, (3.23)

and Vem is the electromagnetic coupling term, given by:

Vem = −1

4

q0

Q0

(√
c2 +

Q2
0

H2
0

− c

)
− 3

4

p1

P1

(√
c2 +

P 2
1

H2
1

− c

)
. (3.24)

We can read off the electromagnetic vector potential for this configuration from the full

(i.e. non-static) probe action (3.20):

At = −1

4

q0

Q0

(√
c2 +

Q2
0

H2
0

− c

)
− 3

4

p1

P1

(√
c2 +

P 2
1

H2
1

− c

)

Aφ =
〈γ,Γ〉

2
(1− cos θ) (3.25)
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3.3 Results

3.3.1 Qualitative Analysis of the Probe Potential

In this section we carry out a qualitative analysis of the static probe potential

in the near-extremal regime c ≪ 1
c̃2
, 1
c̃4

. We will find it useful to define the following

quantities:

A1 ≡
1

4

q0

Q0
+

3

4

p1

P1
(3.26)

E0 ≡
√

2

3
|Q0||P1|3 (3.27)

µ2
0 ≡ |Z(γ, z)|2

r≪ 1
c̃2

=
E0

16

[(
q0

|Q0|
+

3p1

|P1|

)2

+
6|Q0|
|P1|

(
q1

|Q0|
− p0

|P1|

)2
]

(3.28)

µ2
∞ ≡ |Z(γ, z)|2r→∞ =

1

16

[(
q0

c̃2|Q0|
+

3p1

c̃4|P1|

)2

+
6|Q0|c̃2

|P1|c̃4

(
q1

c̃2|Q0|
− p0

c̃4|P1|

)2
]

(3.29)

We will carry out a full scattering analysis only in the case where 1
c̃2
∼ 1

c̃4
, which allows

the calculations to be simplified. Note that in this case we have µ2
0 ∼ µ2

∞, and E0 ∼ 1
c̃22

.

The probe has zero potential energy at the horizon r = 0, while its potential

energy at spatial infinity is

Vp|r=∞ = µ∞ −
1

4

q0

Q0c̃2
− 3

4

p1

P1c̃4
+ cA1 (3.30)

= µ∞ −A1(E
1
2
0 − c) (3.31)

Tunneling of a probe particle to spatial infinity is only possible if this potential energy is

non-positive, so that µ∞ ≤ A1(E
1
2
0 − c) (note that E

1
2
0 ∼ 1/c̃2 >>> c, so that in order

for tunneling to spatial infinity to be allowed, we must have A1 > 0.) We can see from

(3.25) that the intersection product 〈γ,Γ〉 between the probe and the black hole determines
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the magnetic part of the vector potential, not the electrostatic part: so the sign of the

intersection product is independent of the sign of the static potential at spatial infinity.

From (3.26)-(3.27) and (3.29) we see that if the black hole is BPS in the extremal

limit, then Vp|r=∞ > 0 unless the extremality parameter c = 0 and the intersection product

〈γ,Γ〉 between the probe charge γ and the black hole charge Γ is zero, in which case

Vp|r=∞ = 0. In all other cases, the emission and absorption of probes is infinitely suppressed

from black holes that are BPS in the extremal limit. Thus, apart from the special case of the

emission of probe particles with 〈γ,Γ〉 = 0 from BPS black holes, we are only considering

the scattering of probes from black holes that are non-BPS in the extremal limit. This

result is very natural, as the fully backreacted, two-centered BPS black hole solution has

an angular momentum proportional to 〈Γ1,Γ2〉 where Γ1 and Γ2 are the charges of the two

black holes, whereas a single-centered BPS black hole has zero angular momentum [84–86].

Thus, if 〈γ,Γ〉 6= 0, then emission of the probe γ from the background black hole is forbidden

by conservation of angular momentum in the extremal limit, when the background black

hole is BPS.

We can study the shape of Vp in the two regions r ≪ 1
c̃2

and r ≫ c. For r ≪ 1
c̃2

we have:

Vp|r≪ 1
c̃2

=
r

E
1
2
0

µ0 − cA1

(√
1 +

r2

c2
− 1

)
(3.32)

Solving
∂Vp
∂r |r=r0 = 0 gives:

r0 = c

√
1

α2
0

− 1 (3.33)
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where

α2
0 ≡ 1− µ2

0

A2
1E0

. (3.34)

Since V ′′(r0) < 0, this is a maximum of the potential. And since µ∞ ≤ A1(E
1
2
0 − c) when

emission to infinity is allowed, and µ2
∞ = µ2

0, we have the following lower bound on α2
0

(remembering that we are in the near-extremal regime cc̃2 ≪ 1):

α2
0 ≥

A2
1E0 − (A1E

1
2
0 − cA1)2

A2
1E0

(3.35)

∼ cc̃2 (3.36)

This also puts the following upper bound on r0:

r0 ≤
c
1
2

c̃
1
2
2

≪
1

c̃2
, (3.37)

so we see that the maximum of the potential is indeed in the region r ≪ 1
c̃2

in all the cases

where emission to infinity is allowed.

In the region r ≫ c we have:

Vp|r≫c =
r(c̃2µ∞ −A1)

1 + rc̃2
+ cA1 (3.38)

so that

∂Vp
∂r

=
µ∞E

− 1
2

0 −A1

(1 + c̃2r)2
, (3.39)

which is ≤ 0 in all the cases where emission to spatial infinity is allowed. Thus we see

that with 1
c̃2
∼ 1

c̃4
, the potential has one maximum at r = r0 in the region r ∼ c, then

decreases continuously, tending towards the constant value Vp(∞) = µ∞ − A1(E
1
2
0 − c) at

spatial infinity. The potential does not have a local minimum, and thus the “core” black

62



hole cannot form a bound state with a BPS probe. A probe that is emitted will tunnel

through the potential barrier and escape to spatial infinity.

The maximum value of the potential at r0 is given by

εmax ≡ Vp(r0) = cA1(1− α0) (3.40)

Thus we can write the energy for a general scattered/emitted low energy particle as:

ε = cA1(1− βα0) (3.41)

where 1 ≤ β ≤ 1
α0

. The classical turning points for this particle are:

r± =
c

α0

[
β
√

1− α2
0 ±

√
β2 − 1

]
(3.42)

A low energy probe particle that has Poincare energy less than or equal to the maximum

value εmax of the potential can be emitted from the horizon, tunnel through the barrier

between the classical turning points r− and r+, and escape to spatial infinity. Alternatively,

a particle may come in from infinity and scatter off the potential, either being reflected

back from the barrier, or tunneling through from the turning point r+ to r− before falling

into the horizon. If the background black hole is BPS, then the static probe potential Vp for

a probe particle with 〈γ,Γ〉 = 0 is actually flat for all r, so there is no barrier to emission

or absorption.

Note that Vp takes the same form as (3.32) in the region r ≪ 1
c̃2

when 1
c̃2

≪ 1
c̃4

.

Thus, if α0 ≤ 1, then the probe potential in this case also has a maximum at r0 with

the same value εmax. Although a complete scattering analysis for regions r ≫ c is more

complicated in this case, the tunneling rate between the turning points r± of this potential

is the same as in the case 1
c̃2
∼ 1

c̃4
and may be calculated in the same manner, as we will

see in Section 3.3.2.
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3.3.2 The Tunneling Rate Through The Probe Potential Barrier

Even without completing the full scattering calculation, we can obtain an estimate

of the tunneling rate Γt through the potential barrier, which is defined as:

Γt ≡ e
−

∫ r+
r−
|p′r|dr′ , (3.43)

where r± are the classical turning points for the probe in the static potential, and pr is the

radial canonical momentum, given by:

pr ≡
∂L
∂ṙ
. (3.44)

The Lagrangian density L can be found from the probe action (3.20):

L = −µ

√√√√e2U −

(
e−2U

1 + c2

r2

)
ṙ2 −At, (3.45)

where At is given by (3.25). This gives

pr =
µe−2U ṙ√

e2U
(

1 + c2

r2

)2
− e−2U

(
1 + c2

r2

)
ṙ2

(3.46)

The conserved canonical energy ε satisfies:

ε = ṙ
∂L
∂ṙ
− L (3.47)

= At +

√(
1 +

c2

r2

)
e4Up2

r + e2Uµ2 (3.48)

Thus we find that

p2
r =

e−4U(
1 + c2

r2

) ((ε−At)2 − e2Uµ2
)
. (3.49)
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For the range of parameters that we are considering for the background black

hole, the classical turning points r± for the scattered probe particle always lie in the region

r ≪ c. Thus, defining the coordinate z ≡ r2/c2, the classical turning points lie in the

region z ≪ 1 and are given by (3.42):

z± =
β2

α2
0

(
±1 +

√
(1− α2

0)(1− 1

β2 )

)2

− 1 (3.50)

z+ − z− =
4β

α2
0

√
(1− α2

0)(β2 − 1) (3.51)

We find that

lim
ζ→0
|Re (i [pr(z+ − ζ)− pr(z− − ζ)]) | = −a1α0π(β − 1), (3.52)

and so

Γt = e−a1α0π(β−1) (3.53)

As mentioned at the end of Section 3.3.1, Γt also gives the tunneling rate through the

potential barrier in the regime 1
c̃2

≪ 1
c̃4

, as the probe potential Vp has the same form in

the region r ≪ 1
c̃2

as when 1
c̃2
∼ 1

c̃4
.

3.3.3 The Dirac Equation

In this section we carry out a full analysis of the scattering and emission of a

charged probe of charge γ from the black hole. We would like to solve for the wavefunction

of a probe of Poincare energy ε scattering off the background black hole. In [82], it was

found that the ground state wavefunction describing a light BPS probe particle of charge

γ in the background of another, heavy BPS particle of charge Γ, is given by a monopole
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spherical harmonic [87] corresponding to a configuration with total angular momentum

(〈γ,Γ〉 − 1)/2. This can be thought of as the light BPS probe going into a spin-1/2 state

aligned with the radial magnetic field of the background BPS particle, thus minimizing the

energy of the configuration, and contributing one spin quantum opposite to the intrinsic

field angular momentum, which is 〈γ,Γ〉/2. This is analogous to the problem of scattering a

Dirac particle of charge Ze in the background of a magnetic monopole of strength g [87,88],

where the intersection product 〈γ,Γ〉 corresponds to the quantity Zeg. Since we are trying

to solve the curved space version of this problem (though for higher energy states as well

as the ground state), it is reasonable to assume that the wavefunction describing a probe

particle emitted from the background black hole will obey the curved-space Dirac equation

in the black hole background, and correspond to the probe going into a spin-1/2 state

aligned with the radial magnetic field of the background black hole.

Using the vierbein formalism, the Dirac equation in curved space is:

iγaV µ
a ∂µΨ +

i

2
γaV µ

a V
ν
b Vcν;µΣbcΨ− γaV µ

a AµΨ = µΨ, (3.54)

where µ is the mass of the particle given by µ = |Z(γ, z)|, Aµ is the electromagnetic gauge

potential, and Ψ is a 4-component spinor. In our case Aµ is given by (3.25). Note that

any choice of the vector potential Aφ around a magnetic monopole must have singularities.

Thus, the specific form of Aφ given in (3.25) represents a gauge choice that is non-singular

in some region Ra (in this case, the region r > 0, 0 ≤ φ < 2π, and 0 ≤ θ < π.) In order to

cover the entire space outside the magnetic monopole, we must divide the space into two

regions and use a different gauge in each region. We can define the second region Rb as
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r > 0, 0 ≤ φ < 2π, and 0 < θ ≤ π, and use the gauge choice

Aφ = −〈γ,Γ〉
2

(1 + cos θ) (3.55)

in this region.

Because of this fact, the components of the Dirac spinor

Ψ =



ψ0

ψ1

ψ2

ψ3


, (3.56)

in a magnetic monopole background are given by sections on a line bundle, not a function

[87]. The angular part of the section can be expanded in monopole spherical harmonics

Yj,l,m(θ, φ) characterized by the quantum numbers (j, l,m), where

j = 0,
1

2
, 1, . . . (3.57)

l = |j|, |j|+ 1, |j|+ 2, (3.58)

m = −l,−l + 1, . . . , l, (3.59)

and

Yj,l,m(θ, φ) = ei((m+j)φΘj,l,m(θ) in region Ra (3.60)

Yj,l,m(θ, φ) = ei((m−j)φΘj,l,m(θ) in region Rb (3.61)

for the same function Θj,l,m(θ).

For a suitable choice of vierbeins (for details, see Appendix B.1), we substitute
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the ansatz

ψ0 = R0(r)Yq+1/2,l,m(θ, φ)eiqφe−iεt (3.62)

ψ1 = R1(r)Yq−1/2,l,m(θ, φ)eiqφe−iεt (3.63)

ψ2 = R2(r)Yq+1/2,l,m(θ, φ)eiqφe−iεt (3.64)

ψ3 = R3(r)Yq−1/2,l,m(θ, φ)eiqφe−iεt (3.65)

into (3.54), where we have defined

q ≡ 〈γ,Γ〉
2

. (3.66)

In the case when q > 0, there is a possible solution with ψ0 = ψ2 = 0, and l = q− 1
2 . When

q < 0, there is a possible solution with ψ1 = ψ3 = 0, and l = −q − 1
2 . As expected, these

solutions correspond to the probe particle being aligned with the radial magnetic field of

the background black hole. The two cases are exactly analogous so from now on we will

assume that q < 0. We obtain coupled radial equations for R0(r) and R2(r) of the form:

e−U (∂t + iAt + iµ)R0 +
e

3U
2

r
∂r(re

−U
2 R2) = 0 (3.67)

e−U (∂t + iAt − iµ)R2 +
e

3U
2

r
∂r(re

−U
2 R0) = 0. (3.68)

3.3.4 The WKB Approximation

We cannot solve the radial part of the Dirac equation exactly in this background.

So in order to compute the tunneling amplitude, we will solve for the radial components

of the wavefunction using the WKB approximation.

In order to apply the WKB approximation, we first substitute q → q/~ and

ε → ε/~. Using the ansatz (3.62) and defining T0,2(r) ≡ re−U/2R0,2(r) gives the following
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equation for T0(r) (with an analogous equation for T2(r):

T ′′0 = − e−4U

~2
(

1 + c2

r2

) ((ε−At)2 − e2Uµ2
)
T0 (3.69)

+ T ′0
eU
√

1 + c2/r2

(εe−U −Ate−U + µ)

d

dr

[
e−U (εe−U −Ate−U + µ)√

1 + c2/r2

]
(3.70)

where a prime denotes differentiation with respect to r. Substituting the ansatz T0,2 =

B0,2e
iS0,2/~ and taking terms to leading order in 1/~, we find:

S′20,2 =
e−4U(

1 + c2

r2

) ((ε−At)2 − e2Uµ2
)
. (3.71)

Note that this is the same expression that gives the canonical momentum pr in (3.49). We

need to go to the next order in 1/~ to find the equation for B0(r) (an exactly analogous

equation gives B2(r)):

B0S
′′
0 + 2B′0S

′
0 = (3.72)[

d
dr (εe−U −Ate−U + µ)

(εe−U −Ate−U + µ)
+ eU

√
1 + c2/r2

d

dr

(
e−U√

1 + c2/r2

)]
B0S

′
0 (3.73)

This next order in the WKB approximation is necessary in order to derive the connection

formulae needed to extend the solution past the classical turning points, where the WKB

approximation becomes invalid. The connection formulae are derived in Appendix B.3. We

can solve equations (3.71)-(3.72) in the region r ≪ 1
c̃2

(recall that both turning points lie

in this region for the class of background black holes we are considering), and then patch

this solution to the WKB solution in the region c≪ r. The details of the calculation are

given in Appendix B.2.
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3.3.5 The Tunneling Amplitude

In the regime c≪ 1
c̃2
∼ 1

c̃4
we find that

cosh c2, cosh c4 ≈ 1 (3.74)

sinh c2 ≈ cc̃2 ≪ 1 (3.75)

In order to calculate the tunneling amplitude for a probe particle, we want to find the

equivalent of the probability density of the particle wavefunction at different values of r.

In the case of a Dirac spinor, this is given by the time component of the conserved current

density Jµ, which is given by:

Jµ = Ψ̄γµΨ, (3.76)

∇µJµ = 0, (3.77)

where

γµ := V µ
a γ

a, (3.78)

Ψ̄ := Ψ†γ0, (3.79)

and γ0 indicates the flat-space gamma matrix.

For the background metric (3.18), J0 is given by:

J0 = e−U (|R0|2 + |R2|2). (3.80)

We now want to compute the ratio of charge densities at spatial infinity r → ∞, and at

the black hole horizon r → 0. Given a conserved current Jµ satisfying ∇µJµ = 0, we can

define the one-form Jµ = gµνJ
ν and write the conservation condition as:

d(?J) = 0 (3.81)
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We then define the charge passing through a hypersurface H via:

QH = −
∫
H
?J. (3.82)

We take H to be a hypersurface of constant time, t. We can then write:

QH = −
∫
H
d3x
√
|h|nµJµ (3.83)

where hij is the spatial metric and nµ = gµνn
ν where nν is the normal vector to the

hypersurface. We therefore have

nν = (1, 0, 0, 0) (3.84)

nµ =
(
−e2U , 0, 0, 0

)
(3.85)

√
|h| =

√
e−6U

(1 + c2/r2)
r4 sin2 θ. (3.86)

We can then write:

QH =

∫
H
d3x
√
|h| e2U J0 (3.87)

=

∫
H
dr dθ dφ eU

√
e−6U

(1 + c2/r2)
r4 sin2 θ (|R0|2 + |R2|2) (3.88)

=

∫
H
dr dθ dφ

e−2Ur2 sin θ√
1 + c2/r2

(|R0|2 + |R2|2). (3.89)

It follows that to get the charge density q(r) at r, we should integrate just over θ, φ:

q(r) =

∫
H
dθ dφ

e−2Ur2 sin θ√
1 + c2/r2

(|R0|2 + |R2|2) (3.90)

∼ e−2Ur2√
1 + c2/r2

(|R0|2 + |R2|2) (3.91)

We can now calculate the charge densities at the black hole horizon, and at spatial

infinity, using the form of the Dirac spinor found in Appendix B.2. We impose boundary
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conditions so that the wavefunction is entirely outgoing at r → ∞. In order to obtain

the emission amplitude, we should compute the charge density at r → 0 using only the

outgoing component at the black hole horizon. We find that:

q(r)r→∞ = r2(|R0|2 + |R2|2) = |B̃0|2 (3.92)

q(r)r→0 =
E0r

c
(|R0|2 + |R2|2) =

α0

c2(1− βα0)
|B̃0|2

(
Γt −

1

2Γt

)2

(3.93)

for some constant B̃0, where the tunneling rate Γt is given by (3.53). We can obtain the

tunneling amplitude by taking the ratio of the charge densities:

q(r)r→∞
q(r)r→0

=
c2(1− βα0)

α0

1(
Γt − 1

2Γt

)2 (3.94)

=
c2(1− βα0)

α0

1(
e−a1α0π(β−1) − 1

2e
a1α0π(β−1)

)2 (3.95)

We can see that the tunneling amplitude depends on the parameter α0, which is related to

the difference between the gravitational and electrostatic parts of the static probe potential,

as well as the energy of the probe (which is related to (1− βα0)). It also appears that the

tunneling amplitude decreases to zero as the background black hole becomes extremal.

3.4 Discussion

We have initiated a study of the stability of a class of non-extremal black holes

in N = 2, d = 4 supergravity. Our results provide some clues as to how such a black hole

perturbed away from extremality might evolve over time. If the black hole is BPS in the

extremal limit, then for the range of parameters we have considered, then it can only emit

probe particles γ such that the intersection product 〈γ,Γ〉 between the probe charge and
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the black hole charge is zero. The static potential felt by such a probe is flat, so that there

is no barrier to emission or absorption. Thus, we would expect that such a black hole

would decay by the emission of these probes to spatial infinity until it became extremal.

If the black hole is non-BPS in the extremal limit, then it can emit probes of

different charges. We found that the decay rate increases as the parameter α2
0 decreases,

where α2
0 is related to the difference between the gravitational and electrostatic parts of the

static probe potential. Thus, we expect probes with small α2
0 to be emitted preferentially

by the black hole. For the class of black holes we studied, we found that the probe potential

has a single maximum at r = r0, and decreases steadily as r → ∞. Thus, as there is no

local minimum in the probe potential, we expect that any particles emitted from the black

hole will simply be ejected out to spatial infinity.

There are many possible routes for further investigation: it would be useful to

extend these results to arbitrary values of the parameters c, 1
c̃2

, and 1
c̃4

, so that we are

no longer restricted to the near-extremal limit. Another natural extension of our results

would be to study the scattering of fermionic particles in the black hole background, and

to compare the relative emission rates of different types of particles from the black hole.
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Chapter 4

Tunneling between single and

multi-centered black hole

configurations

In this chapter we study the problem of finding a gravitational instanton that con-

nects two vacuum states: one state corresponding to a single-centered extremal Reissner-

Nordstrom (ERN) black hole configuration, and another state corresponding to a multi-

centered ERN configuration. This instanton is interpreted as describing quantum tunneling

between two different black hole solutions, analogous to the instanton for the symmetric

double well. We evaluate the Euclidean action for this instanton and find that the ampli-

tude for the tunneling process is equal to half the difference in entropy between the initial

and final configurations.

In Section 4.1 we introduce the problem we are trying to solve and introduce
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some motivation for working on the problem. In Section 4.2, we outline the background

information necessary to understand the work in this Chapter. In Section 4.3 we present

our results. In Section 4.3.1 we present the instanton solution corresponding to tunneling

between single and multi-centered configurations, and describe its key features. In Section

4.3.2 we evaluate the Euclidean action for the instanton to find the tunneling amplitude.

We conclude in Section 4.4.

4.1 Introduction

Instantons are solutions of the Euclidean equations of motion. As tunneling pro-

cesses can be considered as propagation in Euclidean time, an instanton can describe

tunneling transitions that are classically forbidden: for example, gravitational instantons,

which are Riemannian solutions of the Einstein field equations, can describe changes in the

topology of space [90]. In the semiclassical WKB approximation, the tunneling amplitude

is given by the value of the Euclidean action for the instanton.

Gravitational instantons have been found that describe the pair production of

Wheeler wormholes [91], and the fragmentation of a single charged AdS2 × S2 universe

into multiple, completely disconnected AdS2 × S2 universes [92,93]. But so far, an instan-

ton has not been found that describes a transition between a single-centered black hole

configuration to a connected multi-centered black hole configuration.

In this chapter we describe such an instanton, where the single-centered config-

uration is a charged Bertotti-Robinson (BR) universe (corresponding to the AdS2 × S2

near-horizon region of an extremal Reissner-Nordstrom black hole) [95–97], as shown in
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Figure 4.1, and the multi-centered configuration consists of a set of extremal Reissner-

Nordstrom (ERN) black holes placed at arbitrary locations in an encapsulating BR uni-

verse, as shown in Figure 4.2 (the multi-centered configuration can also be interpreted as

a single encapsulating AdS2 × S2 throat that divides into multiple branches as we move

deeper into the throat.) The total charge of the multi-centered solution is equal to the

charge of the single-centered solution. Our instanton differs from the instanton describing

the pair production of black holes [91], as it describes the splitting of an existing black hole

throat. It also differs from the well-known Brill instanton [92] describing the fragmentation

of a single AdS2×S2 throat into several completely disconnected AdS2×S2 throats. Brill’s

instanton describes vacuum tunneling between a single AdS2 × S2 universe, and a set of

multiple, disconnected, disjoint AdS2 × S2 universes. Our instanton, on the other hand,

describes vacuum tunneling between a single AdS2×S2 throat (corresponding to the black

hole throat of a magnetically charged ERN black hole), and a branching AdS2×S2 throat

(corresponding to the black hole throat of a magnetically charged ERN black hole that has

split into several throats, the total charge of which is equal to the single throat configura-

tion.) So the Brill instanton can be interpreted as describing the fragmentation of a single

AdS2×S2 universe. Our instanton can be interpreted as describing the splitting of a single

AdS2 × S2 throat, which nevertheless remains in a single piece at spatial infinity. Thus,

our instanton describes the splitting of an ERN black hole into multiple black holes, within

the same universe: in contrast to the Brill instanton, which describes the fragmentation of

one universe into several.

This instanton is analogous to the well-known instanton solution for the sym-

metric double well in one-dimensional quantum mechanics, as it connects two degenerate
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vacua. Thus, rather than describing a decay process, this instanton describes quantum

mixing between two vacuum states. The true ground state will therefore be a quantum

superposition of all such configurations, where each configuration satisfies the condition

that the sum of the charges of all the black holes is equal to the total charge of the single-

centered configuration. Calculating the tunneling amplitude between the vacua, we find

that it is equal to half the difference in entropy between the two configurations. This result

agrees with the expectations of [94], where it was suggested that the splitting of ERN

black holes could be exponentially suppressed by a tunneling amplitude proportional to

the change in entropy before and after the splitting.

4.2 Background Information

In this section we introduce the background information on ERN black holes

necessary to understand the material in this chapter.

4.2.1 The Black Hole Solutions

We begin by describing the black hole solutions corresponding to the two states

connected by our instanton. These are solutions to the Einstein-Maxwell equations that

describe magnetically charged black holes. In a spacetime with coordinates (t, ~x), the

metric and the electromagnetic field strengths are given by:

ds2 = −H−2dt2 +H2d~x2 (4.1)

?F = dt ∧ dH−1, (4.2)
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where H is a harmonic function that satisfies

∇2H = 0, (4.3)

where∇2 is the Laplacian on flat R3. This solution describes a Bertotti-Robinson (BR) type

universe [95–97] containing a number of ERN black holes. The black holes may be located

at arbitrary coordinate locations ~xa. If there are N black holes of charges Q1, . . . , QN ,

then the function H has the form:

H =

N∑
a=1

Qa
|~x− ~xa|

. (4.4)

We denote the total charge by Q∞ ≡ Q1 + · · ·+QN . This solution has a tree-like geometry

that is asymptotically AdS2×S2 at large radius, but then branches into smaller AdS2×S2

regions at the ERN black holes. The special case when N = 1 corresponds to a single-

centered black hole solution, which is simply an AdS2 × S2 space of charge Q∞ = Q1.

These solutions can also be derived by taking the limit Lp → 0 (where Lp is

the Planck length) of asymptotically flat multi-centered ERN black hole solutions with

separations of order L2
p between the black holes [93]. As Lp → 0, the asymptotically flat

region decouples and we are left with an encapsulating throat of charge Q∞ which splits

into N throats of charge Q1, . . . , QN .

4.3 Results

4.3.1 The Gravitational Instanton

We want to consider a tunneling process in which a single-centered black hole

configuration of charge Q∞ splits into a multi-centered black hole configuration of charges
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Figure 4.1 The single-centered configuration, which is simply an AdS2×S2 Bertotti-

Robinson universe with charge Q∞.

Figure 4.2 A two-centered configuration, which consists of an encapsulating BR

universe (i.e. an AdS2×S2 throat) containing two extremal Reissner-Nordstrom

black holes of charge Q1 and Q2.
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Q1, . . . , QN such that Q∞ = Q1 + · · · + QN . This process should be described by a

gravitational instanton, which is a solution to the Euclidean equations of motion. In order

to describe a valid tunneling process [98], the Euclidean action of the instanton should

be finite and real. Moreover, we should be able to define a Euclidean time coordinate τ

such that slicing up the spacetime into hypersurfaces of constant τ takes us from an initial

hypersurface Σi at τ = −∞ to a final hypersurface Σf at τ = ∞. The induced metrics

on Σi and Σf should be real, and correspond to spatial slices of the Lorentzian spacetimes

that we want to connect via a tunneling trajectory (in this case, the single-centered and

multi-centered solutions.) In order to allow the Euclidean solution to be joined smoothly

to the Lorentzian solutions across Σi and Σf , the extrinsic curvature Kij should vanish on

both surfaces.

Our instanton satisfies all of these conditions. As mentioned in Section 4.1, our

instanton differs from previously discovered instantons connecting single-centered to multi-

centered black hole configurations as our instanton connects a single-centered configuration

to a connected multi-centered configuration, rather than several completely disconnected

spaces. In addition to this fundamental difference, there are also differences between in the

explicit technical construction of the instanton. Brill’s instanton has a limitation, in that

Brill does not define initial and final surfaces that can be connected to Lorentzian space-

times. Instead he merely defines “asymptotic regions” at past infinity and future infinity

for Euclidean time, that approach the single AdS2 × S2 throat and multiple disconnected

AdS2×S2 throats respectively. However, it is not then clear how these asymptotic regions

can join smoothly onto spacelike hypersurfaces of a Lorentzian spacetime. Maldacena,

Michelson, and Strominger (MMS) [93] attempted to remedy this situation by defining
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an instanton using different coordinates, with initial and final surfaces of zero extrinsic

curvature that corresponded to spacelike slices of a single AdS space, and multiple discon-

nected AdS spaces respectively. However, this result still had several differences from our

work. Firstly, of course, the final surface of the MMS instanton corresponds to completely

disconnected AdS2 × S2 universes, unlike our work where the multiple AdS2 × S2 throats

remain connected at the “top” of the throat. Secondly, the initial and final surfaces of the

MMS instanton correspond to spatial slices of global AdS2 × S2 spacetime, not Poincare

AdS2×S2, as was the case with Brill, and as is the case in this work. This is an important

distinction when it comes to interpreting the instanton as the splitting of the throat of an

ERN black hole. Secondly, MMS assumed (but did not show) that the value of the Eu-

clidean action for their instanton would be the same as the value Brill found. This might

not necessarily be the case, given that MMS use a different set of coordinates from Brill.

We define initial and final surfaces for the instanton with zero extrinsic curvature.

The initial surface is reached at τ = −∞ and the final surface at τ = ∞, where τ is a

suitably defined notion of Euclidean time. The initial surface is diffeomorphic to the spatial

slice of a Lorentzian Poincare AdS2 × S2 throat, and the final surface is diffeomorphic to

the spatial slice of a Lorentzian spacetime that is the aforementioned Poincare AdS2 × S2

space that splits into multiple AdS2×S2 spaces further down the throat, but remain joined

at the “top” of the throat. It is important that we are considering Poincare rather than

global AdS2 × S2 space times, as we want to consider the splitting of black hole throats,

and the throat of an ERN black hole is given by a Poincare AdS geometry.

Since we are dealing with Poincare AdS2 × S2 throats at all times, the initial

and final surfaces can be thought of as spatial slices through the black hole throats of two
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different black hole configurations. The initial surface corresponds to a spatial slice through

a single ERN black hole throat. The final surface corresponds to a spatial slice through

the throat of an ERN black hole that has split into multiple ERN black holes further down

the throat, but remain connected at the top of the original single throat so that the entire

configuration looks like a single ERN black hole when viewed from far away.

In order to find the gravitational instanton, we first analytically continue the time

coordinate to w = −it to obtain a solution to the Euclidean equations of motion:

ds2 = H−2dw2 +H2d~x2 (4.5)

?F = −dw ∧ dH−1, (4.6)

We then define the coordinate [93]:

y =

(
N∑
a=1

Qa√
|~x− ~xa|

)2

(4.7)

Finally, we can define the coodinates τ and σ (where in the end, we will take τ to be our

Euclidean time coordinate):

τ =
1

2
log(w2 + y2) (4.8)

σ = arctan
y

w
(4.9)

The relation between the coordinates (w, y) and (τ , σ) are shown in Figure 4.3, where the

semicircles represent the hypersurfaces of constant τ , and σ is the angular coordinate. We

let τ take the range of values −τ0 < τ < τ0 for some τ0, and we take σ to cover the range

ε < σ < π/2 for some infinitesimal ε > 0. We have regulated the lower limit of σ as σ = 0

corresponds to spatial infinity. In the end we will first take the limit ε→ 0, then τ0 →∞.
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Figure 4.3 The relationship between the coordinates (w, y) and (τ , σ). The semi-

circles represent hypersurfaces of constant τ , and σ is the angular coordinate.

We can now define the initial and final surfaces of the instanton. The initial

surface Σi is the hypersurface with τ = −τ0 and ε < σ < π/2, and the final surface Σf is

the hypersurface with τ = τ0 and ε < σ < π/2. We now have to show that the induced

metric on these surfaces corresponds to spatial slices of the desired initial and final black

hole configurations as we take the limit ε→ 0, τ0 →∞, and that the extrinsic curvatures

on these surfaces is zero.

On the initial surface Σi, we have w2 + y2 → 0 as τ0 →∞. So we have

y → Q2
∞
|~x|

(4.10)

And the metric (4.5) becomes:

ds2 = Q2
∞

(
dw2 + dy2

y2
+ dΩ2

)
(4.11)

= Q2
∞

(
dσ2

sin2 σ
+ dΩ2

)
(4.12)

Explicit computation shows that the extrinsic curvature on this surface is zero. We can

glue this to a spatial slice of Euclidean Poincare AdS2 × S2 with charge Q∞ [74], which is
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the initial spacetime we want, by applying the coordinate transformation:

Y =
2eτ0 sinσ

cosσ + cosh(τ + τ0)
(4.13)

W =
2eτ0 sinh(τ + τ0)

cosσ + cosh(τ + τ0)
(4.14)

The metric on Σi, where W = 0, in these coordinates is:

ds2 = Q2
∞

(
dY 2

Y 2
+ dΩ2

)
(4.15)

The coordinate Y covers the range εeτ0 < Y < eτ0 . If we first take the cutoff ε→ 0, then

take the limit τ0 → ∞, this covers the entire AdS2 × S2 space. We can therefore join Σi

smoothly onto a spatial slice of a Lorentzian single-centered AdS2×S2 solution with charge

Q∞.

The final surface Σf is slightly more complicated. We first choose a cutoff y = y0

for the y-coordinate. Then for the range of coordinates y < y0 + δ on Σf for some fixed,

small δ, we define the coordinates:

Y = y (4.16)

W = w

This section of Σf corresponds to the blue segment of the hypersurface in Figure 4.4. For

fixed y0, as τ0 →∞, we find that dw → 0 in this region. Specifically, the time-component

of the metric is H−2dw2, and we have:

H−1dw → H−1(eτdτ − eτ sinσdσ) (4.17)

→ −y0H
−1dσ = O(e−τ0) (4.18)

→ 0 (4.19)
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as τ0 → ∞, for y < y0 + δ. Thus the metric on this section of Σf is simply the Poincare

spatial slice of the full multi-centered solution for the range of coordinates εeτ0 < y < y0+δ.

Explicit computation shows that the extrinsic curvature on this section vanishes.

For the range of coordinates y > y0 − δ (corresponding to the red segment of the

hypersurface in Figure 4.4), if we choose a large enough cutoff y = y0, then we are on one

of the throats of the multi-centered solution, as we are in the region of large y. Thus we

have

y → Q2
a

|~x|
(4.20)

for one of the charges Qa, where we have redefined the coordinate ~x so that the origin is

centered at Qa. The metric approaches

ds2 = Q2
a

(
dw2 + dy2

y2
+ dΩ2

)
(4.21)

= Q2
a

(
dσ2

sin2 σ
+ dΩ2

)
(4.22)

as y0 → ∞. Explicit computation shows that the extrinsic curvature vanishes on this

section of Σf . In this region, we apply the coordinate transformation:

Y =
2eτ sinσ

cosσ + cosh(τ − τ0)
(4.23)

W =
2eτ sinh(τ − τ0)

cosσ + cosh(τ − τ0)

Note that in the overlap region, y0 − δ < y < y0 + δ, the definitions of the two sets of

coordinates (4.16) and (4.23) agree in the limit τ0 →∞ for any fixed cutoff y0.

The metric on this segment y > y0 − δ of Σf is, for each throat:

ds2 = Q2
a

(
dY 2

Y 2
+ dΩ2

)
(4.24)
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Figure 4.4 The initial and final surfaces of the gravitational instanton. The initial

surface Σi is given by the hypersurface τ = −τ0, and the final surface Σf is given

by the hypersurface τ = τ0. In order to define the coordinate transformation

that allows Σf to be glued to a spatial slice of the multi-centered solution, we

define two regions on Σf : the blue region corresponds to y < y0 + δ, and the red

region corresponds to y > y0 − δ, for some small fixed δ.

This is the Poincare spatial slice of an AdS2 × S2 throat of charge Qa.

Thus, we find that the blue segment of Σf (corresponding to y < y0 + δ), can be

glued to a spatial slice of a multi-centered solution cut off at y = y0, while the red segment

of Σf (corresponding to y > y0 + δ) consists of the spatial slices of multiple AdS2 × S2

throats attached to the multi-centered solution at the cutoff. Note that the cutoff y0 may

be taken to be arbitrarily large. As with the initial surface Σi, the coordinate Y covers

the range εeτ0 < Y < eτ0 . If we first take ε → 0, then take τ0 → ∞, this covers the

entire multi-centered solution. So Σf may be glued to the spatial slice of a multi-centered

solution.

86



4.3.2 The Value of the Euclidean Action

We can now evaluate the Euclidean action for the instanton. The action is given

by [73]:

−16πI =

∫
(R− FµνFµν)

√
gd4x+ 2

∫
K
√
hd3x+ C[hij ] (4.25)

where hij is the induced metric on the boundary, K is the trace of the second fundamental

form of the boundary, and C[hij ] is a term that depends solely on the induced metric at

the boundary. The action can be converted into a pure boundary term [92]:

−8πI =

∫
(K + Cµ ? F

µνnν)
√
hd3x+ C[hij ] (4.26)

where Cµ is a vector potential defined by:

?F = dC. (4.27)

The spacetime is bounded by the following surfaces: the constant τ hypersurfaces

τ = ±τ0, ε < σ < π/2, the constant σ hypersurface σ = π/2, −τ0 < τ < τ0, and the

constant σ hypersurface σ = ε, −τ0 < τ < τ0.

On the first three hypersurfaces τ = ±τ0, ε < σ < π/2 and σ = π/2, −τ0 <

τ < τ0, both the extrinsic curvature term and the electromagnetic term in (4.26) vanish,

and thus do not contribute to the Euclidean action. The constant σ hypersurface σ = ε,

−τ0 < τ < τ0 corresponds to the hypersurface |~x| = e−τ0/ε, e−τ0 < w < eτ0 . On this

surface, we find that

K =
1

Q∞
(4.28)

Cµ ? F
µνnν = − 1

Q∞
, (4.29)
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as ε → 0, so the two terms cancel, and this hypersurface also does not contribute to the

Euclidean action.

Thus the only non-zero contributions to the Euclidean action come from the

“edges” of the spacetime, at τ = ±τ0, σ = ε, and τ = ±τ0, σ = π/2. The contribution

from the “edges” can be calculated using the results in [99]: the contribution from an

edge formed by two boundaries with spacelike normals n0, n1 (which is the case here, in

Euclidean spacetime) is given by:∫
edge
−iησ1/2d2x = −iηAa (4.30)

Aa is the area of the edge |~x − ~xa| → 0, which is 4πQ2
a. The factor of −i comes from

Wick-rotation, and we have defined

η ≡ arccosh(−n0 · n1) (4.31)

In this case we have:

arccosh(−n0 · n1)→ arccosh (0) (4.32)

at all the edges. Note that the directions of the normals (i.e. whether they are inward or

outward-pointing) does not matter, since we can take the branch of arccosh such that

arccosh (0) =
iπ

2
(4.33)

whether 0 is approached from above or below. Thus each edge will give a contribution of

the same sign.

As with the contribution from the mantle surfaces, we want to normalize the

Euclidean action so that it is zero when evaluated on a single-centered solution of total
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charge Q∞ = Q1. Without normalizing, the edge terms for such a solution add up to:

1

8π
(
π

2
A1 +

3π

2
A∞) =

1

4
A∞, (4.34)

where the first term comes from the edge τ = τ0, σ = π/2, and the second term comes from

the edges τ = −τ0, σ = π/2, and τ = ±τ0, σ = ε. So we must subtract 1
4A∞ to obtain the

correct normalization (this can be done by setting C[hij ] = −1
4A∞.) This means that the

total contribution from the edge terms is:

− 1

8π

(
N∑
a=1

π

2
Aa +

3π

2
A∞ − 2πA∞

)
= − 1

16

N∑
a=1

Aa +
1

16
A∞ (4.35)

=
π

4

(
Q2
∞ −

N∑
a=1

Q2
a

)
(4.36)

This is equal to half the difference in entropy between the initial and final configurations.

This is different from the value of the Euclidean action for Brill’s instanton, which is

equal to the exact difference in entropy between a single AdS2 × S2 throat and multiple

completely disconnected AdS2×S2 throats. In some sense, it can be seen as natural that the

probability amplitude for our instanton is half that for the Brill instanton, as the instanton

in this work, unlike Brill’s, connects a single AdS2 × S2 throat to a configuration that

branches into several AdS2 × S2 throats at the bottom of the single throat, but remains

connected at the top. Therefore, it can be said in some sense that only “half” of the

original space becomes disconnected in the transition represented by the instanton, so that

the corresponding tunneling amplitude is also half that of the process which gives a set of

completely disconnected spacetimes.
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4.4 Discussion

We have found an instanton that can be interpreted as a tunneling process between

a single-centered black hole solution of charge Q∞ to a multi-centered black hole solution

of charges Q1, . . . , QN such that Q∞ = Q1 + · · · + QN . The amplitude for the tunneling

process is equal to half the difference in entropy between the initial and final configurations.

The black holes that we are considering are contained within an encapsulating AdS2 × S2

throat. Thus we may consider them as black holes in a BR universe, or alternatively, as an

AdS2 × S2 throat that divides into multiple branches as we move deeper into the throat.

In the latter interpretation, our instanton describes the splitting of the throat of an ERN

black hole by quantum tunneling.

Ultimately, it would be desirable to find an instanton that describes the complete

splitting of an ERN black hole into two or more ERN black holes separated by finite

coordinate distances in an asymptotically flat space. Our instanton suggests that this

process is not forbidden, as there is at least a finite probability for the throat of an ERN

black hole to split into multiple throats.
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Appendix A

Appendix to Chapter 2

A.1 Determining the Eigenvalues of the Angular Equation

We can obtain numerical values for the eigenvalue K of equation (2.20) by ex-

panding the solutions S(x) in a power series about x = x2, and then enforcing the Z2

symmetry boundary condition (i.e. the Neumann boundary condition) at x = 0, term by

term in the power series, so that each additional term gives greater accuracy. To carry out

this procedure, note that we can write the equation of motion for S(x) as:

G(x)2S′′(x) +G(x)G′(x)S′(x) +

(
G(x)(K + 2µAx)− m̂2

β2

)
S(x) = 0 (A.1)

Defining the polynomials:

s(x) ≡ G(x)2 (A.2)

t(x) ≡ G′(x)G(x) (A.3)

u(x) ≡ G(x)(K + 2µAx)− m̂2

β2 (A.4)
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we can expand these as finite sums in powers of x, around x = x2, so that s(x) =∑N
n=0 sn(x− x2)n, for example.

By Frobenius’ method, the two linearly independent solutions to the above dif-

ferential equation can be expanded about any regular, or regular singular point, as power

series of the form:

S(1)(x) = (x− x2)γ1
∑
n

b(1)
n (x− x2)n (A.5)

S(2)(x) = (x− x2)γ2
∑
n

b(2)
n (x− x2)n (A.6)

as long as the difference between the two indices γ1, γ2 is not an integer. If the difference

is an integer, then the two linearly independent solutions are of the form:

S(1)(x) = (x− x2)γ1
∑
n

b(1)
n (x− x2)n (A.7)

S(2)(x) = log(x− x2) + (x− x2)γ2
∑
n

b(2)
n (x− x2)n (A.8)

Writing S(x) = (x− x2)γ
∑

n bn(x− x2)n, we see from substituting this into the equation

of motion for S(x) at lowest order that γ1 = m̂/2 and γ2 = −m̂/2. Thus the difference

between γ1 and γ2 is always an integeter. In order to ensure regularity of S(x) at x = x2, we

take S(x) = (x− x2)γ1
∑

n b
(1)
n (x− x2)n. Inserting the finite partial sum into the equation

of motion gives the bn in terms of the recursion relation:

bn = − 1

Pn

n−1∑
k=0

(sn−kk(k − 1) + tn−kk + un−k) bk (A.9)

Pn = n(n− 1)s0 + nt0 + u0, (A.10)

where b0 is a free parameter. Setting b0 = 1, we then solve for the Z2 symmetric boundary

condition given by S′(x = 0) = 0 at the brane x = 0, imposed on the partial sum S(x) =
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(x− x2)γ
∑N

n=0 bn(x− x2)n for some N . This constraint allows us to solve for K, given a

pre-determined angular quantum number m̂. As N is taken larger and larger, S(x) is more

closely approximated by the partial sum and K is given to greater levels of accuracy.

A.2 Determining the Eigenvalues of the Radial Equation

We follow the same procedure as in Appendix A.1 in order to solve the differential

equation given in (2.25):

H(y)Ψ′′(y) +

(
H ′(y) +

2iω̂

Aβ

)
Ψ′(y) + (K − 2µAy)Ψ = 0 (A.11)

This time we define

s(y) ≡ H(y) (A.12)

t(y) ≡ H ′(y) +
2iω̂

Aβ
(A.13)

u(y) ≡ K − 2µAy, (A.14)

and we expand about y = yh. Using the Frobenius method around this point, we find that

Ψ(y) = (y − yh)γ
∑

n an(y − yh)n, where γ = 0,− 2iω̂
H′(yh) . We found in Section 2.2.1 that

these values of γ correspond exactly to ingoing and outgoing modes, respectively. Thus

we take γ = 0 in order to impose the ingoing mode boundary condition at the black hole

horizon. We find the following recursion relation for the an:

an = − 1

Pn

n−1∑
k=0

(sn−kk(k − 1) + tn−kk + un−k) ak (A.15)

Pn = n(n− 1)s0 + nt0 + u0, (A.16)
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We can determine the sk, tk, uk numerically given the parameters µ,A, λ, and we have

calculated K in the previous section. Thus the only unknown remaining is ω̂. We can

therefore find Ψ(y) as a partial sum, and then solve for ω̂ by imposing either the Dirichlet

boundary condition at y = 0 or the Neumann boundary condition (which gives Z2 sym-

metry) at y = 0. Note that we always find ωI < 0, which ensures that all the quasinormal

modes are decaying and thus stable.

A.3 The Equations of Motion in Canonical Heun Form

Before we proceed with the calculations of the QNM for the conformal scalar field

φ, it is enlightening to present the equations of motion in canonical form [?]. The analysis

of the radial equation can be applied to the angular equation to show that it, too, has four

regular singular points: two on the real line (one at the single real positive root of G(x),

the other at infinity), and two in the complex plane. Thus the solutions of both equations

are Heun functions. A canonical differential equation of the Heun type takes the form:

Y ′′(y) +

(
γ

y
+

δ

y − 1
+

ε

y − a

)
Y ′(y) +

αβy − q
y(y − 1)(y − a)

Y = 0 (A.17)

The Riemann P-symbol for a Heun equation of canonical form as shown in (A.17) is:

P =


0 1 a ∞

0 0 0 α y q

1− γ 1− δ 1− ε β

 , (A.18)

In its most general form, a differential equation with four regular singular points,

three in the finite complex plane at y = y0, y1, y2, and one at infinity, can be written as:

Y ′′(y) + P (y)Y ′(y) +Q(y)Y (y) = 0 (A.19)
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with the functions P (y) and Q(y) taking the form:

P (y) =
2∑
r=0

1− αr − α′r
y − yr

(A.20)

Q(y) =
1

H(y)

(
q′ + bb′y +

2∑
r=0

αrα
′
rH
′(yr)

y − yr

)
(A.21)

The solution to this equation is represnted by the Riemann P-symbol:

P =


y1 y2 y0 ∞

α1 α2 α3 b y q′

α′1 α′2 α′3 b′

 , (A.22)

which is constrained by b+ b′ +
∑

r αr + α′r = 2. Our radial equation of motion takes the

form:

R′′(y) +
H ′(y)

H(y)
R(y) +

1

H(y)

[
K − 2µAy +

ω̂2

A2β2H(y)

]
= 0 (A.23)

where we have defined β by setting ∆φ = 2πβ = 4π/|G′(x2)| in order to compare the

metric on the brane with the BTZ metric. We rescale ω as well as m because we need to

rescale both the time coordinate t and the angular coordinate φ in order to compare to the

BTZ metric.

We will now try to bring this to canonical Heun form. First we make the coordi-

nate transformation:

ȳ =
y − y0

y1 − y0
(A.24)

With this variable, the equation of motion becomes:

R̈(y) +
Ḣ(ȳ)

H(ȳ)
Ṙ(y) +

1

ãH(ȳ)

[
K − 2µA(y0 + ãȳ) +

ω̂2

A2β2ã3H(ȳ)

]
R = 0 (A.25)
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where H(ȳ) = ȳ(ȳ − 1)(ȳ − a) and ã ≡ y1 − y0. The locations of the finite regular singular

points move to 0, 1, and a, where

a ≡ y2 − y0

y1 − y0
. (A.26)

For the particular form of our radial equation, comparing the above equation to

(A.20)-(A.21) and using the constraint b + b′ +
∑

r αr + α′r = 2, it is straightforward to

calculate that:

αr + α′r = 0 (A.27)

bb′ = −2µA (A.28)

b′ = 2− b (A.29)

q′ =
K − 2µAy0

y1 − y0
(A.30)

The parameters in the Riemann P-symbol remain unchanged under this trans-

formation, except of course for the argument y. Then, changing the independent variable

according to

Y (y) ≡ yα1(y − 1)α2(y − a)α3 Ỹ (y) (A.31)

transforms the Riemann P-symbol into the form:

P =


0 1 a ∞

0 0 0 α y q

−2α1 −2α2 −2α3 β

 (A.32)

where α, β, and q can be computed in terms of the parameters in the original form of the

equation. The equation is thus converted into canonical Heun form. For the particular
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form of our radial equation, it is straightforward to calculate that:

α1 =
iω̂

aAβ(y1 − y0)2
(A.33)

α2 =
a

a− 1
α1 (A.34)

α3 =
1

a− 1
α1 (A.35)

q =
K − 2µAy0

y1 − y0
+ 2aα2(1 + 2α1) (A.36)

α = b+ 2α2 (A.37)

β = b′ + 2α2 (A.38)

A similar procedure can also be carried out for the angular equation of motion. Note that

I have defined q slightly differently from in Oscar and Maria’s notes, so that my q is in

fact their qαβ. Our results are the same except for a couple of numerical factors where I

think there has just been a simple error in calculation. For instance their value of α1 has

an extra factor of 1/2 relative to mine, and their value for qαβ as given in Eq. (24) has

an extra factor of 1/µA in the first term in the parentheses, and the second term has a

factor y1 in the numerator whereas I have y0. I also do not have α = β = δ. The biggest

difference is that I have α1 ∼ iω rather than α1 ∼ ω, which is a consequence of the ω2 term

in the differential equation having a positive sign, rather than a negative sign like the m2

term in the angular equation.
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A similar process can be carried out for the angular equation, where we find that

αr + α′r = 0 (A.39)

bb′ = −2µA (A.40)

b′ = 2− b (A.41)

q′ =
K − 2µAx2

x1 − x2
(A.42)

For the original, untransformed equation, and that for the transformed equation:

α1 =
m̂

aβ(x1 − x2)2
(A.43)

α2 =
a

a− 1
α1 (A.44)

α3 =
1

a− 1
α1 (A.45)

q =
K − 2µAx2

x1 − x2
+ 2aα2(1 + 2α1) (A.46)

α = b+ 2α2 (A.47)

β = b′ + 2α2 (A.48)

Where this time we have α1 ∼ m, not α1 ∼ im.
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Appendix B

Appendix to Chapter 3

B.1 The Dirac Equation in the Vierbein Formalism

Here we give the explicit form of the Dirac equation for a particular choice of

vierbein. We use the following representation for the γ-matrices in the Dirac equation

(3.54):

γ0 =

 1 0

0 −1

 γi =

 0 −σi

σi 0

 (B.1)

and the following representation for Σab:

Σab = −1

4
[γa, γb] (B.2)
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We use the following choice of vierbein:

V 0 = eU dt (B.3)

V 1 = e−Ur dθ (B.4)

V 2 = e−Ur sin θ dφ (B.5)

V 3 = e−U
√

1 +
c2

r2
dr (B.6)

The Dirac equation for a spinor

Ψ =



ψ0

ψ1

ψ2

ψ3


(B.7)

then becomes:

e−U (∂t + iAt + iµ)ψ0 +
e

3U
2

r
∂r(re

−U
2 ψ2)

√
1 +

c2

r2
(B.8)

+
eU

r

(
∂θ −

i

sin θ
∂φ −

(
q − 1

2

)
cot θ +

q

sin θ

)
ψ3 = 0 (B.9)

e−U (∂t + iAt + iµ)ψ1 −
e

3U
2

r
∂r(re

−U
2 ψ3)

√
1 +

c2

r2
(B.10)

+
eU

r

(
∂θ +

i

sin θ
∂φ +

(
q +

1

2

)
cot θ − q

sin θ

)
ψ2 = 0 (B.11)

e−U (∂t + iAt − iµ)ψ2 +
e

3U
2

r
∂r(re

−U
2 ψ0)

√
1 +

c2

r2
(B.12)

+
eU

r

(
∂θ −

i

sin θ
∂φ −

(
q − 1

2

)
cot θ +

q

sin θ

)
ψ1 = 0 (B.13)

e−U (∂t + iAt − iµ)ψ3 −
e

3U
2

r
∂r(re

−U
2 ψ1)

√
1 +

c2

r2
(B.14)

+
eU

r

(
∂θ −

i

sin θ
∂φ +

(
q +

1

2

)
cot θ − q

sin θ

)
ψ0 = 0 (B.15)
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where we have defined

q ≡ 〈γ,Γ〉
2

. (B.16)

We now use the fact that

D ≡ −∂θ −
i

sin θ
∂φ + j cot θ (B.17)

D̄ ≡ −∂θ +
i

sin θ
∂φ − j cot θ (B.18)

are raising and lowering operators for the monopole spherical harmonics that satisfy:

DYj,l,m =
√

(l − j)(l + j + 1)Yj+1,l,m (B.19)

D̄Yj,l,m = −
√

(l + j)(l − j + 1)Yj−1,l,m (B.20)

We substitute the ansatz:

ψ0 = R0(r)Yq+1/2,l,m(θ, φ)eiqφe−iεt (B.21)

ψ1 = R1(r)Yq−1/2,l,m(θ, φ)eiqφe−iεt (B.22)

ψ2 = R2(r)Yq+1/2,l,m(θ, φ)eiqφe−iεt (B.23)

ψ3 = R3(r)Yq−1/2,l,m(θ, φ)eiqφe−iεt, (B.24)

and see that if q > 0, then there is a possible set of solutions to the Dirac equation with

ψ0 = ψ2 = 0, and l = q − 1
2 . Similarly, if q < 0, then there is a possible set of solutions

with ψ1 = ψ3 = 0, and l = −q − 1
2 .
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B.2 Solving the Dirac Equation Using the WKB Approxi-

mation

Here we give the details of the calculations for solving the Dirac Equation using

the WKB approximation. As shown in Section 3.3.4, this comes down to solving equations

(3.71) and (3.72) for the radial parts of the Dirac spinor components.

In the region r ≫ c, Eq. (3.71) becomes:

S′20 = E0A
2
1α

2
0

1 +
E

1
2
0

r

2

(B.25)

and Eq. (3.72) becomes:

r

(
1 +

r

E
1/2
0

)(
B0S

′′
0 + 2B′0S

′
0

)
+B0S

′
0 = 0 (B.26)

These equations can be solved exactly to give:

B0(r) = B̃0 (B.27)

S0(r) = ±a1α0

E
1
2
0

(r + E
1
2
0 log r) (B.28)

As r →∞, the solutions become:

eU/2

r
B0(r) =

B̃0

r
(B.29)

S±(r) = ±a1α0

E
1
2
0

r (B.30)

Imposing outgoing boundary conditions at infinity (so we only keep S+), the far region

solution is:

ψ ∼ B̃0

r
eia1α0E

− 1
2

0 r (B.31)
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In order to patch the solutions in the regions r ≫ c and r ≪ 1
c̃2

, we evaluate B0(r) and

S+(r) in the limit r ≪ 1
c̃2

, which gives:

eU/2

r
B0(r) =

B̃0

r
1
2E

1
4
0

(B.32)

S+(r) = a1α0 log r (B.33)

Thus the solution in the region r ≫ c is:

ψ ∼ B̃0

r
1
2E

1
4
0

ria1α0 (B.34)

Defining z ≡ r2

c2
, in the region r ≪ 1

c̃2
, Eq. (3.71) becomes:

S′20 =
a2

1

4z2(1 + z)

(
(βα0 −

√
1 + z)2 + (α2

0 − 1)z
)
, (B.35)

where a prime denotes differentiation with respect to z. And Eq. (3.72) becomes:

2(1 + z)B0(S′0 + 2zS′′0 ) (B.36)

+ 2z

[
1− 2(1 + z)

(
z1/2 d

dz (z−1/2(βα0 −
√

1 + z))

βα0 −
√

1 + z − z1/2
√

1− α2
0

)]
B0S

′
0 (B.37)

+ 8z(1 + z)B′0S
′
0 = 0 (B.38)

Equation (B.35) can be solved exactly to give:

S0(z) = S±(z) (B.39)

= ±a1

2

[
−2βα0Arctanh(

√
1 + z)− log(−z) + 2α0 log

[
−β + α0

√
1 + z + f(z)

]
+ (1− βα0) log

[
1− f(z) + α0

(
α0(−1 +

√
1 + z) + β2α0 − β(1 +

√
1 + z − f(z))

)]
+ (1 + βα0) log

[
1 + f(z) + α0

(
−α0(1 +

√
1 + z) + β2α0 + β(1−

√
1 + z + f(z))

)]]
(B.40)
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where

f(z) ≡
√

1− 2βα0

√
1 + z + (z + β2)α2

0, (B.41)

The form of B0(z) may also be determined exactly, but we will not give it here as it is

extremely complicated and not particularly illuminating.

In order to patch the solution to the region r ≫ c, we solve Eq. (3.71)-(3.72) for

z ≫ 1:

S′20 =
a2

1α
2
0

4z2
(B.42)

4zB0(S′0 + zS′′0 ) + 8z2B′0S
′
0 = 0 (B.43)

to give:

eU/2

r
B0(z) ∼ 1

z
1
4

(B.44)

S±(z) = ±a1α0

2
log z (B.45)

Matching to (B.34), we find that the solution in the region z ≫ 1 is:

ψ ∼ B̃0c
ia1α0

E
1
4
0 c

1
2 z

1
4

zi
a1α0

2 (B.46)

We can extend this solution up to the outer turning point at z = z+, by taking S+(z)

to select the wave that gives this form of ψ for z ≫ 1. At the turning point, the WKB

approximation becomes invalid, as B0(z) diverges. Thus, in order to continue the WKB

solution past z+, we must derive connection formulas that allow us to patch together the

solutions in the regions z < z− and z > z−. We then repeat the procedure at the other

turning point z−. This can be done using Airy functions: detailed calculations are given

in Appendix B.3.
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Using the connection formulas, we find that the solution in the region z < z− is:

ψ ∼ cia1α0

E
1
4
0 c

1
2

B0(z)

((
Γt −

1

2Γt

)
eiS+(z) − i

(
Γt +

1

2Γt

)
eiS−(z)

)
(B.47)

where the tunneling amplitude Γt is given by (3.53). The functions B0(z) and S±(z) in the

region z ≪ 1 are determined by the equations:

S′20 =
a2

1

4z2
(1− βα0)2 (B.48)

4B0(S′0 + zS′′0 ) + 8zB′0S
′
0 = 0, (B.49)

which give:

B0(z) =
α

1
2
0

(1− βα0)
1
2

cia1α0

E
1
4
0 c

1
2

B̃0 (B.50)

S0(z)± = ±a1

2
(1− βα0) log z (B.51)

where B̃0 is a constant. The wavefunction in the region z ≪ 1 is thus:

ψ ∼ eU/2

r
B0e

iS0/~ (B.52)

=
α

1
2
0

(1− βα0)
1
2

cia1α0

E
1
2
0 c

B̃0z
−1/4

((
Γt −

1

2Γt

)
z+

ia1
2

(1−βα0) − i
(

Γt +
1

2Γt

)
z−

ia1
2

(1−βα0)

)
(B.53)

It may appear that the solution blows up and becomes unphysical as z → 0, but as we will

see in Section (3.3.5), this is not a problem as the charge density always remains finite.

This solution is the limit of the general solution for z ≪ 1.
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B.3 Deriving the connection formulas for the WKB approx-

imation using Airy functions

Here we outline the calculation for deriving the connection formulas that allow

the WKB solutions to be extended across the turning points at z+ and z−. The general

procedure is to solve radial equation using a linear approximation to the potential at the

turning point, and then match this solution to the WKB approximation to the left and

right of the turning point.

If we define the potential

V (z) ≡ a2
1

4z2(1 + z)

[(
βα0 −

√
1 + z

)2
+ (α2

0 − 1)z
]
, (B.54)

then the radial equations for the WKB ansatz ψ = Br(r)e
i
~ (S(r)+εt)Yq,l,m(θ, φ) are:

S′2 = V (z) (B.55)

2(1 + z)Br(S
′ + 2zS′′) + 2z

[
1− 2(1 + z)

(
z1/2 d

dz (z−1/2(βα0 −
√

1 + z))

βα0 −
√

1 + z − z1/2
√

1− α2
0

)]
BrS

′

(B.56)

+ 8z(1 + z)B′rS
′ = 0 (B.57)

We can rewrite the second equation as:

2(1 + z)Br(S
′ + 2zS′′) + 8z(1 + z)B′rS

′ + 2z [1− 2(1 + z)M1(z, α0, β)]BrS
′ = 0 (B.58)

for some function M1(z, α0, β).

The exact radial equation, given by (3.69), is:

T ′′ +M(z, α0, β)T ′ + V (z)T = 0 (B.59)
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for some function M(z, α0, β), where T (r) ≡ re−U/2R(r) and R(r) is the radial part of the

Dirac spinor components.

The Linear Approximation

Consider a turning point at z = z0. Defining the coordinate w ≡ z − z0, we can

take the linear approximation to the potential around z0:

V (z) ≈ V (z0) + V ′(z0)w (B.60)

= ρw (B.61)

where ρ ≡ V ′(z0). Note that we have ρ < 0 for z0 = z− and ρ > 0 for z0 = z+. The radial

equation can then be approximated as:

T ′′(w) +M(z0, α0, β)T ′(w) + ρwT (w) = 0 (B.62)

This equation has the general solution:

T (w) = e
−wM(z0,α0,β)

2
[
C1Ai(w′) + C2Bi(w′)

]
(B.63)

where Ai(w′) and Bi(w′) are Airy functions, and we have defined

w′ ≡ (−ρ)
1
3w +

M(z0, α0, β)2

4(−ρ)
2
3

(B.64)

At each turning point we assume that there is a region in which the linear approximation

is valid, and that the second term in the expression for w′ is negligible compared to the

first, so that we can take:

w′ ≈ (−ρ)
1
3w. (B.65)
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The turning point at z+

First consider the turning point at z = z+. The general solution in the region

around z+ where the linear approximation is valid, is:

e
−wM(z+,α0,β)

2

[
C̃1Ai(w′) + C̃2Bi(w′)

]
(B.66)

where w′ is defined as in (B.65). Since ρ is positive, we find that

w′ ∼ (−1)
1
3 ρ

1
3w, (B.67)

and thus in order to match the above solutions to the WKB approximation to the left and

right of z+, we need the asymptotic behavior of the Airy functions for w′ → (−1)
1
3 ×−∞:

Ai(w′) ∼ 1

2
√
π(−w′)

1
4

[
−ie

2i
3

(−w′)3/2 + e
−2i
3

(−w′)3/2
]

(B.68)

Bi(w′) ∼ 1

2
√
π(−w′)

1
4

[
−ie

−2i
3

(−w′)3/2 + e
2i
3

(−w′)3/2
]

(B.69)

and w′ → (−1)
1
3 ×∞:

Ai(w′) ∼ 1

2
√
πw′

1
4

e
2
3
w′3/2 (B.70)

Bi(w′) ∼ 1
√
πw′

1
4

[
i

2
e

2
3
w′3/2 + e−

2
3
w′3/2

]
(B.71)

We now need to solve the WKB equations to the left and right of the turning point. The

radial equations for the WKB ansatz in the region where the linear approximation is valid

are:

S′(w)2 = ρw (B.72)

2(1 + z+)Br(S
′ + 2z+S

′′) + 8z+(1 + z+)B′rS
′ (B.73)

+ 2z+ [1− 2(1 + z+)M1(z+, α0, β)]BrS
′ = 0 (B.74)

108



These equations have the solutions:

S(w) = ±2i

3

√
ρw3 (B.75)

and

Br =
B0e

−wM(z+,α,β)

2

w
1
4

, (B.76)

where B0 is a constant and M(z+, α, β) is the same function as in (B.86). Note that ρw3

is negative on the left of the turning point, and positive on the right.

Since we are imposing the boundary condition that only the outgoing wave is

present at spatial infinity, the WKB solution to the right of the turning point is:

B0e
−wM(z+,α,β)

2

w
1
4

e
2i
3

√
ρw3

(B.77)

In order to match the linear solution in (B.66) to the WKB solution, note that:

2

3
(w′)

3
2 =

2i

3
(ρw3)

1
2 (B.78)

and use the asymptotic form of the Airy functions as w′ → (−1)
1
3 ×∞. We assume that

there is a region in which the linear approximation is valid, and |w′| is large enough for the

linear solution to be well approximated by this asymptotic form. We find that:

C̃1 = 2
√
π(−1)

1
12 ρ

1
12B0 (B.79)

C̃2 = 0. (B.80)

We now want to match the linear solution to the WKB solution on the left of the turning

point. In this region, the general WKB solution is:

e−
wM(z+,α,β)

2

w
1
4

[
D̃1e

− 2
√
ρ

3
w3/2

+ D̃2e
2
√
ρ

3
w3/2

]
(B.81)
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The linear solution takes the following asymptotic form as w′ → (−1)
1
3 ×−∞:

C̃1e
−wM(z0,α,β)

2

2
√
π(−w′)

1
4

[
−ie

2i
3

(−w′)3/2 + e
−2i
3

(−w′)3/2
]

(B.82)

where

2

3
(−w′)

3
2 =

2i

3
(ρ)

1
2 (−w)

3
2 (B.83)

Matching the linear solution to the WKB solution to the left of the turning point gives:

D̃1 = −iD̃2 (B.84)

= −ie−iπ/4B0. (B.85)

The turning point at z−

We now repeat the derivation of the connection formulas at z = z−. The general

solution in the region around z− where the linear approximation is valid is:

e
−wM(z−,α0,β)

2
[
C1Ai(w′) + C2Bi(w′)

]
, (B.86)

As ρ is now negative, and w′ ∼ (−ρ)
1
3w, we need the asymptotic behavior of the Airy

functions for w′ → −∞:

Ai(w′) ∼ 1

2i
√
π(−w′)

1
4

[
e
iπ
4 e

2i
3

(−w′)3/2 − e
−iπ
4 e

−2i
3

(−w′)3/2
]

(B.87)

Bi(w′) ∼ 1

2
√
π(−w′)

1
4

[
e
iπ
4 e

2i
3

(−w′)3/2 + e
−iπ
4 e

−2i
3

(−w′)3/2
]

(B.88)

and for w′ →∞:

Ai(w′) ∼ 1

2
√
πw′

1
4

e−
2
3
w′3/2 (B.89)

Bi(w′) ∼ 1
√
πw′

1
4

e
2
3
w′3/2 (B.90)
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The WKB solution to the right of the turning point is:

e−
wM(z−,α,β)

2

w
1
4

[
D1e

2
√
|ρ|

3
w3/2

+D2e
− 2
√
|ρ|

3
w3/2

]
(B.91)

where D1 and D2 are related to D̃1 and D̃2 in (B.84) by:

D̃1 = ΓtD1 (B.92)

D̃2 =
1

Γt
D2 (B.93)

Γt ≡ e
−

∫ z+
z−
|R′(z′)|dz′

(B.94)

On the left hand side of the turning point, the general WKB solution is:

e−
wM(z0,α,β)

2

w
1
4

[
G1e

− 2i
3

√
ρw3

+G2e
2i
3

√
ρw3
]

(B.95)

Matching the linear and WKB solutions to the left and right of the turning point as before,

gives:

G1 = −iB0

(
Γt +

1

2Γt

)
(B.96)

G2 = B0

(
Γt −

1

2Γt

)
. (B.97)

Thus, using these formulas we can extend the WKB solution across the turning points,

from the region z ≫ 1 to the region z ≪ 1.
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