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Abstract 
Recently, Multiple Annealing and Looping-Based Amplification Cycles (MALBAC) has 

been developed for whole genome amplification of an individual cell, relying on 

quasilinear instead of exponential amplification to achieve high coverage. Here we adapt 

MALBAC for single-cell transcriptome amplification, which gives consistently high 

detection efficiency, accuracy and reproducibility. With this newly developed technique, 

we successfully amplified and sequenced single cells from 3 germ layers from mouse 

embryos in the early gastrulation stage, and examined the epithelial-mesenchymal 

transition (EMT) program among cells in the mesoderm layer on a single-cell level. 

 



Introduction 
mRNA expression analyses have been extensively used in biomedical research by 

fluorescence in situ  hybridization (FISH), qRT-PCR, and microarray, and recently have 

been carried out on the entire transcriptome with the advent of next-generation 

sequencing via RNA-seq[1]. In general, FISH at single molecule resolution[2–4] gives 

the most quantitative measurement, but has limited dynamic range and low throughput. 

Similarly, RT-qPCR has high accuracy but cannot achieve whole transcriptome scale 

analyses[5–9]. RNA-seq has surpassed microarrays in both accuracy and dynamic range 

[10,11]. In a single cell, gene expression is intrinsically stochastic and cannot be 

synchronized among cells, which leads to cell-to-cell variations in mRNA expression 

levels[2,4,12]. This necessitates single cell transcriptome measurements, which have 

prompted intense recent efforts. 

 

The first single-cell RNA-Seq method[10,11,13,14] was developed with PCR-based 

exponential amplification scheme, taking advantage of adding a poly-A tail to the 3’end 

of first-strand cDNAs by terminal transferase prior to the second strand synthesis. This 

PCR-based RNA-seq method lacked spike-in controls and displayed general 

amplification bias towards the 3’ ends of mRNAs as expected. Another PCR-based 

technique named Quartz-Seq[15] was developed with different strategy, while the same 

problems remained. Subsequent methods relied on a reverse transcriptase with template-

switching activity, such as STRT[16–18] and SMART-seq[19–21]. Although they have 

the potential to amplify full-length mRNA, these PCR-based techniques may still consist 

of significant bias dependent on the length of mRNAs, considering the general 

preferences of PCR towards shorter amplicons. CEL-seq[22] and MARS-Seq[23] utilize 

in-vitro transcription (IVT) as the amplification method instead of PCR, and reduce 

hands-on time with the ability to pool many samples before amplification. At the same 

time, the requirement for barcoding limits coverage to only the 3’ or 5’ ends of the 



transcripts. Another method[24] based on random priming has been demonstrated 

recently, but could not address the low amplification efficiency issue.  

 

Multiple annealing and looping-based amplification cycles (MALBAC)[25] was able to 

significantly reduce the amplification bias compared to previous MDA-based whole 

genome amplification[26]. It can also confidently detect copy-number variations and 

point mutations in the genome, presenting great downstream opportunities, such as 

profiling meiotic recombination and genome aneuploidy in sperm[27]. Taking advantage 

of its effectiveness in DNA amplification, here we present a single-cell transcriptome 

amplification method based on MALBAC, named MALBAC-RNA. Throughout this 

work, we systematically analyze the efficiency and technical consistency of this novel 

technique, and demonstrate its ability by applying it to single embryonic stem cells 

during mouse gastrulation.   

 

Every organ or somatic tissue of a mouse is derived from a single sheet of epiblast[28,29]. 

During the gastrulation stage from 6.5 to 8.5 days post coitum (d.p.c.), the cup-shaped 

epiblast diversifies to generate three distinct germ layers known as ectoderm, mesoderm 

and endoderm. During this period, the mesoderm and endoderm delaminate from the 

epiblast in a specialized region, namely the primitive streak, which contains a narrow 

stripe of egressing and differentiating cells running down one side of the cup. Each layer 

then gives rise to different components of the fetal organ primordia. Therefore, 

gastrulation represents a crucial phase of cytodifferentiation, morphogenesis and pattern 

formation, dramatically transforming an epithelial sheet into an embryo with 

recognizable vertebrate form within 48 hours. 

 

During the early stage of gastrulation, in order to move into the primitive streak in the 

embryo and further differentiate into 3 distinct germ layers, the epiblast cells have to lose 



their cell-cell adhesion through an epithelial-mesenchymal transition (EMT)[30]. With 

the induction of EMT, cells within the newly formed mesoderm layer acquire the 

characteristics of the mesenchymal cells[31]. 

 

Transcriptome profiling of each of the germ layers could shed light on the differences in 

gene expression between the ectoderm, mesoderm and visceral endoderm. However, the 

study of post-implantation embryonic development has been hampered by the limited 

amount of RNA obtainable from a mammalian embryo. Taking advantage of our 

MALBAC-RNA single cell sequencing method, we were able to compare single-cell 

transcriptomes between germ layers, which enables us to have a detailed look at the 

transcriptional network active during the EMT process.  

 

Materials and Methods 
 

Mouse Embryo Dissection 
At 7.0 days post coitum (dpc), C57BL/6 mice were sacrificed under anesthesia by 

isoflurane overdose followed by cervical dislocation, and the embryos were collected. 

The extra embryonic tissues were mechanically removed in M2 medium with 10% fetal 

calf serum. The remaining embryonic region was rinsed in PBS and then digested with 

dispase, followed by mechanical dissection. The isolated ectoderm, mesoderm, visceral 

endoderm pieces were trypsinized into single cells, which were individually mouth 

picked into cell lysis buffer in PCR tubes for single-cell amplification.  Animal 

experiments were approved by the Institutional Animal Care and Use Committees 

(IACUC) at Harvard University. 

 



Cell culture and sample preparation before single cell 
amplification 
Obtained from American Type Culture Collection (ATCC), SW480 cells were cultured in 

Leibovitz’s L-15 Medium with 10% fetal bovine serum, 100 I.U./ml Penicillin and 100 

µg/ml Streptomycin. Prior to the experiment, the cells were treated with 0.25% Trypsin-

EDTA and washed once with 1x phosphate buffered saline (PBS). After the wash, cells 

are diluted and counted under the microscope to estimate the cell concentration. With 

calculated amount of dilution from the original cell suspension with 1xPBS, a final 

concentration of 100 cells/uL is reached. 1uL of the well-mixed diluted cell suspension is 

added into a total of 4uL cell lysis buffer, which contains 1x first-strand buffer for 

Superscript III Reverse Transcriptase, 5mM DTT, 0.5mM each dNTP mix, 0.45% 

IGEPAL CA-630, 0.4U/uL RNase inhibitor, 0.2U/uL SUPERase In, 2.5uM GAT-12dT 

primer. Cell is lysed by heating at 70°C for 90 seconds and then the reaction undergoes 

MALBAC-RNA amplification as described below. 

 

Multiple annealing and looping-based amplification cycles 
RNA amplification 
To start reverse transcription, 0.33uL of superscript III reverse transcriptase, 0.07uL of 

T4 gene 32 protein, and 0.05uL of RNase inhibitor is added to the separated supernatant, 

then followed by a thermal cycling program with 4°C 2 minutes, 10°C 2 minutes, 20°C 2 

minutes, 30°C 2 minutes, 40°C 2 minutes, 50°C 50 minutes and 70°C 15 minutes. 

Starting a similar MALBAC step, a 16uL reaction is mixed with the final concentration 

of 0.5uM GAT-7N primer, 1x thermo buffer, 0.4mM each dNTP mix, 1mM MgSO4 and 

0.06U/uL deep vent (exo-) DNA Polymerase. MALBAC amplification starts with 95°C 5 

minutes, and then 10 cycles of 20°C 50 seconds, 30°C 50 seconds, 40°C 45 seconds, 

50°C 45 seconds, 65°C 4 minutes, 95°C 20 seconds, 58°C 20 seconds. After pre-

amplification, a 14uL PCR mix, containing 0.36uM GAT-COM primer, 0.4uM each 



dNTP mix, 1x thermo buffer, 1uM MgSO4 and 0.06U/uL deep vent (exo-) DNA 

Polymerase, is added to the 16uL reaction from previous step. The PCR program starts 

with 95°C 1 minute, 19 cycles of 95°C 20 seconds, 58°C 30 seconds, 72°C 3 minutes, 

and a final 5 minutes additional extension at 72°C. Amplified cDNA products are 

purified with Zymo DNA Clean & Concentrator-5 and eluted into 50uL EB buffer. These 

MALBAC amplified DNA products are directly used for standard Illumina HiSeq library 

preparation. 

 

Library preparation and sequencing 
For each sample, several micrograms of amplified cDNA were generated by the PCR 

amplification, following MALBAC-RNA. With the validation on a few housekeeping 

and highly expressed genes with qPCR, including Gapdh, Rps13, Rpl21, Rps8, Actb, 

libraries were constructed for Illumina HiSeq 2000 sequencer, with about 1ug cDNA 

from each sample. The number of reads for each cell sequenced ranges from 3 to 7 

million, with 100 bp paired-end sequencing. All data are accessible at the NCBI 

Sequence Read Archive through the accession number SRP049515. 

 

Sequencing data analysis 
Reads were aligned to the reference genome using Tophat 2.0.4[32] and FPKM values 

were estimated using Cufflinks 2.0.1[33].  Data from SW480 cells were aligned to genes 

annotated in the UCSC knownGenes table for the hg19 reference genome.  Gene 

expression estimates were rescaled using upper quartile normalization of genes with 

detectable expression in at least one of the replicates[34].  For technical evaluations, 

spike-ins were limited to those with GC content between 40% and 60%.  Data from 

mouse embryos and was aligned to the mm9 reference genome using RefSeq annotations.  

Hierarchical clustering was performed in R using heatmap.2 and differential expression 



analysis was performed using DESeq[35].  Gene ontology enrichment was performed 

using GOrilla[36]. 

	  

Primer sequences 
GAT-12dT: 

5- GTG AGT GAT GGT TGA GGT AGT GTG GAG TTT TTT TTT TTT -3 

GAT-7N: 

5- GTG AGT GAT GGT TGA GGT AGT GTG GAG NNN NNN N -3 

GAT-COM: 

5- GTG AGT GAT GGT TGA GGT AGT GTG GAG -3 

 

Reagents List 
M2 medium (Sigma-Aldrich, cat. no. M7167-100ML) 

Fetal calf serum (Fisher Scientific, cat. no. R92157) 

Phosphate buffered saline (PBS), 1x (Thermo Scientific, cat. no. SH30256.01) 

Dispase (BD Biosciences, cat. no. 354235) 

Leibovitz’s L-15 medium (ATCC, cat. no. 30-2008) 

Fetal bovine serum (ATCC, cat. no. 30-2020) 

Penicillin-Streptomycin, 100x (Mediatech, Inc., cat. no. 30-001-CI) 

Trypsin-EDTA, 0.25% (Mediatech, Inc., cat. no. 25-053-CI) 

Nuclease-free water (Ambion, cat. no. AM9937) 

Dithiothreitol (DTT), 1M (Life Technologies, cat. no. P2325) 

Superscript III Reverse Transcriptase (Life Technologies, cat. no. 18080-044) 

First-strand buffer, 5x (Life Technologies, cat. no. 18080-044) 

dNTP Mix, 10mM each (New England Bioloabs, Inc., cat. no. N0447L) 

IGEPAL CA-630 (Sigma-Aldrich, cat. no. I8896-50ML) 

RNase inhibitor (40U/µL) (Life Technologies, cat. no. AM2682) 



SUPERase-In (20U/µL) (Life Technologies, cat. no. cat. no. AM2694) 

T4 gene 32 protein (New England Bioloabs, Inc., cat. no. M0300L) 

ThermoPol reaction buffer, 10x (New England Bioloabs, Inc., cat. no. B9004S) 

Magnesium Sulfate (MgSO4) Solution (100 mM) (New England Bioloabs, Inc., cat. no. 

B1003S) 

Deep-ventR (exo-) DNA Polymerase (2,000 U/mL) (New England Bioloabs, Inc., cat. no. 

M0259L) 

DNA clean & concentrator-5 (Zymo Research, cat. no. D4013) 

 

 

Results and Discussion 
Single Cell Transcriptome Amplification with MALBAC-RNA 
During the experiment, each cell is picked and transferred into PCR reaction tubes 

preloaded with mild cell lysis buffer. After cell lysis, mRNA is reverse transcribed to 

cDNA with poly-T primers, which include a 27-nucleotide sequence. With cDNA being 

synthesized, the same 27 nucleotides together with 7 random nucleotides are used for 

cDNA amplification. Those 7 random nucleotides can hybridize evenly onto reverse 

transcribed cDNA at 4°C (Figure 1). As the temperature is slowly increased to 65°C, 

second strand cDNA synthesis is started. With strand displacement activity, DNA 

polymerase enables the primer from behind to displace the primer downstream base-by-

base as it proceeds along the template. Upon reaching the end of extension, each newly 

synthesized cDNA has a 27-base tag at its 3’ end complementary to its 5’ end, thanks to 

the same sequence being used at both reverse transcription and second strand synthesis. 

In order to avoid being further amplified, after being melted at 95°C, cDNA with 

complementary tags at both ends is able to form a loop at 58°C, finishing a full 

MALBAC cycle. A total of 10 MALBAC pre-amplification cycles are used to generate 



enough amplicons for PCR. Since during each cycle, only the original cDNA template is 

targeted for amplification, MALBAC does not generate as much bias, and the overall 

amplification efficiency is quasilinear. In order to acquire enough material for sequencing, 

a further 19-cycle PCR amplification is applied using the same 27-base common 

sequence as in the primers. 

 

Figure 1 - Single-cell MALBAC-RNA amplification diagram 

After reverse transcription, primers with 7 random nucleotides at the 3’ end are annealed 

to the cDNA template at 4°C, then extended by DNA polymerase with strand 

displacement activity as temperature is increased. Amplicons are then melted off the 

original template after DNA extension, and looped at 58°C to protect themselves from 

being further amplified thanks to their 5’ ends being complementary to their 3’ ends. This 

MALBAC-RNA step includes a total of 10 cycles of quasilinear amplification, followed 

by another 19 cycles of PCR. 

 

To evaluate the technical reproducibility of MALBAC-RNA, we amplified two replicates 

by diluting and aliquoting a 100-cell lysate from the colorectal cancer cell line SW480 

into single-cell portions.  These technical replicates should differ in molecular counts 

only by Poisson fluctuations.  Additionally, we amplified and sequenced nine SW480 

single cells which would exhibit biological variability as well.  MALBAC-RNA exhibits 

a linear detection of synthetic spike-in transcripts across five orders of magnitude (Figure 

2A). Of the 11,233 genes detected in bulk mRNA sequencing, only 1045 were not 

detected in at least one of the single cells, while an additional 1622 genes were detected 

in at least one of the single cells but not the bulk.  The correlation between the two 

technical replicates is shown in Figure 2B. MALBAC-RNA shows high reproducibility 

with a correlation coefficient of 0.995, while the nine SW480 single cells exhibited 

reduced correlation due to biological variations between cells (Figure S1 in File S1).  



However, correlation is primarily influenced by a handful of highly expressed genes and 

is therefore a poor metric for evaluating technical reproducibility (Figure S2 in File S1).  

More tellingly, MALBAC-RNA exhibits reproducibility in detecting expressed genes 

(Figure 2C) with low amplification noise, as depicted by a 10-fold or more FPKM 

difference for the same gene after amplification (Figure 2D).  Moreover, because random 

primers are incorporated throughout the transcripts, amplification is not biased against 

longer transcripts (Figure S3 in File S1). 

 

Figure 2 - Technical reproducibility of MALBAC-RNA amplification 

(A) Mean expression level measured in across two technical replicates and nine SW480 

single cells for synthetic spike-ins of a particular concentration.  Error bars represent 

standard errors. (B) Scatter plot of two technical replicates exhibits a high correlation 

coefficient (R =0.995).  To prepare technical replicates, single-cell amount of RNA was 

aliquoted from 100 cells after cell membrane lysis and they should only differ by Poisson 

fluctuations in molecular counts.  (C) Probability of detecting a transcript in one technical 

replicate as a function of its expression level in the other replicate.  (C) Probability that 

the expression level of a transcript in one replicate will differ by at least 10-fold from the 

measurement in the other replicate. 

 

Transcriptome Amplification of Single Embryonic Stem Cells 
Having demonstrated that MALBAC-RNA generates quantitative and reproducible 

single-cell transcriptomes, we asked whether a global analysis of cells isolated from early 

gastrulation stage embryos could reveal germ layer-specific transcriptomic patterns and 

trace the origin of germ-layer derivation.  

 

To this end, we amplified and sequenced a total of 11 single-cell transcriptomes from 

each of the three germ layers—ectoderm, mesoderm, and visceral endoderm—from a 



7.0dpc embryo (Table S1 in File S1). With principal component analysis, samples from 

the three germ layers were clearly separated (Figure 3A). In particular, the first principal 

component distinguishes the visceral endoderm from the other two layers, whereas the 

second principal component represents the difference between ectoderm and mesoderm. 

The germ-layer origin of these embryonic cells is additionally confirmed by the 

expression of known germ-layer-specific markers (Figure 3B). All visceral endoderm 

cells express high levels for endoderm specific marker genes, such as Cited1, Hnf4a, 

Cubn, Afp, Apoa1, but not mesoderm markers, such as Aplnr. The data show a distinct 

differentiation for the 3 germ layers based on their unique expression profiles.  A total of 

738 genes were found to be differentially expressed between ectoderm and mesoderm, 

1783 between ectoderm and visceral endoderm, and 1831 between mesoderm and 

visceral endoderm.  Differentially expressed genes were enriched for processes including 

those related to embryonic morphogenesis, pattern specification processes, cell 

differentiation, and regulation of Wnt signaling pathway (Table S3).  Therefore, both the 

global transcriptomes and the expression of known germ layer associated marker genes 

clearly support the germ-layer identity of all the examined single cells. 

 

Figure 3  - Gene expression profiles of 7.0dpc mouse embryo stem cells from 3 

different germ layers 

MALBAC-RNA distinguishes single cells from different germ layers of a post-

implantation mouse embryo (7.0dpc). A total of 12 single cells were isolated from a 

7.0dpc mouse embryo, among which 3 were from the ectoderm, 5 from the mesoderm, 

and 4 from the visceral endoderm. (A) Principle component analysis of transcriptomes 

clearly separates the 12 single cells into three clusters, each representing one germ layer. 

(B) Top: Hierarchical clustering of transcriptomes classifies the 12 single cells into three 

non-overlapping sub-trees representing the three germ layers. Bottom: Known marker 

genes of the three germ layers exhibit strong layer-specific patterns of expression, 



although some show significant cell-to-cell variation within a layer. Principle component 

analysis and hierarchical clustering were based on the ranking of each gene’s FPKM 

among all cells. 

 

We next investigated the relationship between the three germ layers. Interestingly, they 

are not equally separated from each other. In principal component analysis, the visceral 

endoderm is more distinct from the other two layers and this difference constitutes the 

most significant component of variance. Consistent with this observation, hierarchical 

clustering placed ectoderm and mesoderm under the same subtree (Figure 3B). Therefore, 

our data suggest a more distinct separation of visceral endoderm from the other two germ 

layers at 7.0dpc. 

 

In addition, we also investigated the results of EMT programming within the mesoderm, 

as compared to the other two germ layers, based on their single-cell transcriptomes. As 

can be seen in Figure 4, both FGF10 and Snai1 have been significantly overexpressed in 

mesoderm, whereas the E-cadherin level is lowered compared to ectoderm and visceral 

endoderm, indicating the downregulation of E-cadherin expression by FGF signals, 

through the regulation of snail gene expression[37]. As Sox3 genes have been completely 

depleted in mesoderm, the reciprocal repression between Snail and Sox3 is suggested in 

our experiment as well as previously reported[38]. At the same time, both Eomes and 

Mesp1 are highly expressed in the mesoderm, supporting the theory that Eomes acts 

upstream of Mesp[30], although in our data only the upregulation of Mesp1 is observed 

rather than both Mesp1 and Mesp2. A few other EMT signature genes have also been 

found significantly overexpressed in mesoderm cells, like CDH2, Wnt5a, Wnt3, Hmga2, 

Smad1, Fgf10, which further confirms the transition of the cells in gastrulation stage. 

 

Figure 4 - Gene expression heat map of EMT-related genes 



Genes related to epithelial-mesenchymal transition (EMT) are differentially expressed 

across the three germ layers. Among them, FGF10 and Snai1 are significantly 

overexpressed in the mesoderm, whereas E-cadherin and Sox3 are depleted. At the same 

time, Eomes and Mesp1 are highly expressed in the mesoderm, although Mesp2 is not 

significantly expressed. Other EMT-related genes, including CDH2, Wnt5a, Wnt3, 

Hmga2, Smad1, and Fgf10, are also enriched in the mesoderm, which confirms the 

cellular transitions during gastrulation.	  

 

Lastly, MALBAC-RNA revealed novel patterns of gene expression during early 

gastrulation. Some known germ-layer-specific markers for mesoderm, like BMP2, are not 

expressed in our samples. In some cases a known marker, such as T, is observed but only 

in one or two of the corresponding single cells. In addition, we identified new genes that 

are specific for each germ layer. For example Cotl1, a Coactosin-like protein, is found to 

be highly expressed in all cells from visceral endoderm. 

	  

Conclusions 
In this work, we developed a new single-cell transcriptome amplification method based 

on MALBAC. Instead of performing a second strand synthesis right after the reverse 

transcription, as is usually done by most other RNA amplification methods, we deployed 

a modified version of MALBAC genome amplification on first-strand synthesized cDNA 

directly, followed by PCR amplification. Furthermore, we showed that MALBAC-RNA 

has great amplification sensitivity and consistency, especially for the genes at relatively 

low expression levels.  

 

Although a critical stage during embryonic development, gastrulation has never been 

thoroughly studied transcriptome-wide on a single-cell level. And recently, there has 



been a strong interest in identifying the key components in the transcriptomes of different 

germ layers during gastrulation. To demonstrate our ability to amplify single-cell 

transcriptomes with MALBAC-RNA, the complete transcriptomes for the three germ 

layers of early gastrulation in mouse are uncovered for the first time at single-cell and 

single-base resolution.  

 

With the availability of the single-cell transcriptomes from the early gastrulation stage of 

mouse embryos, we were able to examine the EMT process during embryonic 

development. We successfully found some of the transcriptional networks on single-cell 

levels as suggested in previous research. The cells from the mesoderm layer showed 

characteristics of the cells that went through EMT, compared to the other two germ layers 

that were sequenced. This analysis demonstrates that as an accurate single-cell RNA 

amplification method, MALBAC-RNA could be used to analyze certain cellular 

mechanisms on a single-cell level, which provides more detailed information than would 

be possible with bulk population analysis. 

 

Probing gene expression in small populations of cells in vivo is critical for the study of 

developmental biology. Although cell lines exist to imitate some of these processes in 

vitro, which provide a large amount of RNA for molecular analysis, many events that 

involve complex morphogenesis and pattern formation, such as the mammalian 

gastrulation, can only be studied in living embryos. These cases call for a reliable 

technique that directly assesses changes in gene expression in vivo. In particular, this 

technique should not be limited to studying genes that are already identified due to their 

activity in other biological systems, because such approaches impose an inherent 

prejudice and may thus overlook novel pathways or responses. Here, we precisely micro-

dissected single cells form an embryo in its gastrulation stage and sequenced the 

transcriptomes of three to five individual cells from each of the three germ layers. This 



provides a useful resource for studying differential gene expression between the three 

germ layers – the three most important cell populations within gastrulating embryos. The 

validity of the micro-dissection was confirmed by unsupervised hierarchical clustering, 

correlation analyses of gene expression levels and the profiling of known marker genes 

from each germ layer. We find that single cells from the same germ layer exhibit similar 

gene expression patterns. Therefore, we demonstrate that analyses of germ-layer-specific 

gene expression can provide a rapid screen for novel genes that are expressed in a tissue- 

or region-specific manner. 
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