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Epstein–Barr virus latent genes

Myung-Soo Kang1,2 and Elliott Kieff3

Latent Epstein–Barr virus (EBV) infection has a substantial role in causing many human disorders. The persistence of these viral

genomes in all malignant cells, yet with the expression of limited latent genes, is consistent with the notion that EBV latent

genes are important for malignant cell growth. While the EBV-encoded nuclear antigen-1 (EBNA-1) and latent membrane

protein-2A (LMP-2A) are critical, the EBNA-leader proteins, EBNA-2, EBNA-3A, EBNA-3C and LMP-1, are individually essential

for in vitro transformation of primary B cells to lymphoblastoid cell lines. EBV-encoded RNAs and EBNA-3Bs are dispensable.

In this review, the roles of EBV latent genes are summarized.

Experimental & Molecular Medicine (2015) 47, e131; doi:10.1038/emm.2014.84; published online 23 January 2015

INTRODUCTION

A physican by name Burkitt was the first to describe a unique
lymphoma. Epstein and Barr then discovered virus particles
in cultured lymphoblasts from Burkitt’s lymphoma (BL) in
1964.1 The Epstein–Barr virus (EBV) infection is ubiquitous
in adult humans.2–4 Higher titer of EBV antibody was evident
in BL, lymphoproliferative diseases (LPDs), Hodgkin’s
lymphoma (HL), endemic nasopharyngeal carcinoma (NPC)
and infectious mononucleosis.5–13 EBV primarily infects the
human oropharynx epithelial cells, and then replicates and
spreads to B cells, resulting in latent infection in B cells,
epithelial cells and natural killer/T cells after extensive host
T-cell immune surveillance.14–33 Latent EBV infection sub-
stantially causes many human malignancies. In immunocom-
petent people, EBV likely causes ~ 20% of BL in the
developed world, almost all African BL, 50% of HL, 10%
gastric carcinomas (GCs), almost all endemic NPC, certain
fractions of diffuse large B-cell lymphoma and T-cell lym-
phoma, multiple sclerosis and systemic lupus erythematosus
(SLE).5–13,34,35 In the absence of normal T-cell immune
responses, EBV-infected B-lymphocyte proliferations can
cause LPD, similar to posttransplant LPD. The persistence
of EBV genomes in all cells of these malignancies, even in
people with otherwise normal immune responses, is consis-
tent with the notion that EBV genomes are important for
malignant cell growth.

EBV LATENT INFECTION

Latent EBV genomes express five EBV-encoded nuclear anti-
gens (EBNA) and two latent membrane proteins (LMPs),
namely EBV-encoded small RNA (EBER) and non-
transcribed BART (BamHI-A region rightward transcript)
RNAs. Primary EBV infection establishes typically three distinct
latent infection statuses from the initial infection as a non-
integrated episome: latency types III, II and I depending on the
viral gene expression pattern.27–33 Actively proliferating (post-
transplantation) lymphoproliferative diseases and in vitro EBV
infection-mediated establishment of the lymphoblastoid cell
line (LCL) show type III latency, in which most latent genes are
expressed (EBER1/2 RNA, EBNA-leader protein (EBNA-LP),
EBNA-2, EBNA-3ABC, EBNA-1, LMP-2A/B, LMP-1 protein,
BART RNA). HL and NPC display type II latency (EBER1/2
RNA, EBNA-1, LMP-2A/B, LMP-1 (type IIa) or EBNA-2 (type
IIb), BART RNA) and BL shows type I latency (EBER1/2 RNA,
EBNA-1, LMP-2A/B, BART RNA). Although EBNA-1 and
LMP-2A play a critical role, EBNA-LP, EBNA-2, EBNA-3A,
EBNA-3C and LMP-1 are individually essential for in vitro
transformation of primary B cells to LCLs.36–38

The EBV’s role in cell growth is most evident in latency III
EBV-associated posttransplant LPD, as EBNA-2, EBNA-LP,
EBNA-3A and EBNA-3C in latency III infection coordinately
upregulate cMyc expression and cell proliferation, and EBV
LMP-1 enhances cell survival.39–58 Furthermore, EBV’s role is
also evident in latency II-infected HL and NPC, where LMP-1
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and LMP-2 expression likely contributes to cell survival by
activation of nuclear factor-κB (NF-κB) and phosphatidyl
inositol 3 kinase (PI3K) pathways.59–75 Moreover, EBERs are
expressed in latency types III, II and I and are implicated in the
survival of latency I BL cells.61,76–79 Thus, EBV gene expression
is likely critical for the growth and survival of EBV-associated
malignancies (see Table 1).

EBV-ENCODED NUCLEAR ANTIGEN-1

EBNA-1 roles
EBNA-1 is expressed in all forms of latent EBV infection; it is
essential for efficient EBV genome replication, persistence and
transcription in dividing cells80–83 and binds to and uses
nucleolin and nucleophosmin (NPM) for EBNA-1-dependent
transcriptional activation and genome persistence.84,85 EBNA-1
is the only nuclear EBV antigen expressed in both latent and
lytic modes of infection and contributes to the latent infection

in multiple ways. EBNA-1 suppresses spontaneous lytic reacti-
vation in latent infection status;86 however, it interacts with and
disrupts promyelocytic leukemia (PML) nuclear bodies and
also promotes lytic infection. EBNA-1 induces a family of
microRNAs (let-7 microRNAs (miRNAs)), which in turn
decreases the level of the cellular protein Dicer and inhibits
the reactivation of latent EBV and may increase metastasis.87

EBNA-1 in NPC and GC induces the loss of PML nuclear
bodies, and decreased p53 activation and apoptosis in response
to DNA damage.86,88

EBNA-1 binds to viral DNA elements and cellular
promoters,89,90 activates EBV viral Cp and Wp promoters,
inhibits Qp promoters,91 upregulates STAT1 (signal transdu-
cers and activators of transcription 1), whose expression
correlates with major histocompatibility complex class I and
II increase, downregulates tumor growth factor-β signaling
pathways, reduces SMAD2, a tumor growth factor-β signaling

Table 1 Roles of EBV-encoded latent genes

Latent genes Roles

EBNA-1 Sequence-specific DNA-binding protein to EBV element; sequence-nonspecific chromosome association protein; transactivator of viral
latent genes and host genes; responsible for episome replication, segregation and persistence of viral genome; involved in p53
degradation and oncogenesis

EBNA-LP Transcriptional coactivator of EBNA-2-dependent viral and cellular gene transcription; primarily indirectly associates with host DNA sites
located at or near the transcriptional start; associates with cellular transcriptional (co)factors and EBNA-2; dismisses repressor complex
from promoter or enhancer sites; is essential for EBV-mediated B-cell transformation

EBNA-2 Together with EBNA-LP cooperatively activates viral and cellular gene transcription for transformation; primarily indirectly associates with
host DNA sites located at the enhancer or intergenic region; associates with cellular transcriptional (co)factors and EBNA-LP; is critical for
EBV-mediated B-cell transformation

EBNA-3A A coactivator of EBNA-2, EBNA-3A and EBNA-3C associations with RBPJ inhibit RBPJ recruitments to DNA; downregulate cMyc
transcription and block EBNA-2 activation effects; and induce CDKN2 and chemokines. Induces G1 arrests, which is essential for
EBV-mediated B-cell transformation

EBNA-3B A coactivator of EBNA-2; dispensable for B-cell transformation; viral tumor suppressor; and upregulates CXCL10. EBNA-3B-knockout
induces DLBCL-like tumors

EBNA-3C Coactivates with EBNA-2 host CXCR4 and CXCL12 genes; induces CDKN2, chemokines and aurora kinase B; mediates RB degradation;
attenuates H2AX expression and overcomes EBV-infection-mediated DNA damage response; promotes cell proliferation; induces G1
arrests; essential for EBV-mediated B-cell transformation

LMP-1 Mimics the constitutively active form of CD40, a major EBV-encoded oncogene; activates NF-κB, JNK and p38 pathways; is critical for
EBV-mediated B-cell transformation, a major EBV-encoded oncogene; activates NF-κB, JNK and p38 pathways; and induces EMT of NPC
and acquisition of CSC-like properties

LMP-2A Mimics constitutively active, antigen-independent BCR signaling through constitutive activation of the ERK/MAPK pathway224; blocks
antigen-dependent BCR signaling; induces B-cell lymphoma in transgenic condition; is important but not essential for in vitro primary
B-lymphocyte growth transformation; rescues the LMP-1-generated impairment in germinal center in the response to antigen in animals;
confers resting B cells sensitive to NF-κB inhibition and apoptosis; suppresses differentiation and promotes epithelial cell spreading and
motility in epithelial cells; and enriches cancer stem cell-like population

EBER Most abundant EBV-encoded noncoding RNAs; augments colony formation and induces growth; confers cells resistance to
PKR-dependent apoptosis; induces cytokines and modulates innate immune response; binds to La, PKR, L22, PRR and RIG-I; and
EBER-mediated RIG-I activation likely contributes to EBV oncogenesis. EBER blockades of PKR-mediated phosphorylation of eIF2α
results in blockage of eIF2α-mediated inhibition of protein synthesis and resistance to IFNα-induced apoptosis

miRNAs Transcribed from BART and BHRF1; validated targets include Bim, BRUCE, CXCL11, DICER1, PUMA; has a role in sustaining latently
infected cells. BHRF1 miRNA and BART miRNAs interfere with apoptosis. The miR-BART15-3p promoted apoptosis 331

Abbreviations: BART, BamHI-A region rightward transcript; BHRF1, BamHI fragment H rightward open reading frame 1; CSC, cancer stem cell; DLBCL, diffuse large
B-cell lymphoma; EBER, EBV-encoded nuclear antigen; EBV, Epstein–Barr virus; eIF2α, eukaryotic initiation factor 2α; EMT, epithelial–mesenchymal transition; ERK,
extracellular signal-regulated kinase; IFN, interferon; JNK, c-Jun N-terminal kinase; LMP, latent membrane protein; MAPK, mitogen-activated protein kinase; NF-κB,
nuclear factor-κB; NPC, nasopharyngeal carcinoma; LP, leader protein; PKR, RNA-dependent protein kinase; PRR, pattern-recognition receptors; RBPJ, recombination
signal-binding immunoglobulin κJ region; RIG-1, retinoic acid-inducible gene I.
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mediator protein tyrosine phosphatase receptor K,92,93 upre-
gulates CCL20 in HL,94 inhibits the canonical NF-κB pathway
by inhibiting IKK (IκB kinase) phosphorylation in NPC95 and
enhances activity of the AP-1 transcription factor (TF) in NPC
cells by EBNA-1 binding to the promoters of c-Jun and ATF296

(see Table 1).

Domains of EBNA-1
EBNA-1 encodes 641 amino acids (a.a.) from a prototype EBV
strain.97 EBNA-1 a.a. 2–30 have no known function and are
dispensable for replication, DNA binding, transactivation and
persistence.98 Both arginine-glycine (RG)1 (a.a. 33–89) and
RG2 (a.a. 328–386)99–106 are necessary, sufficient and essential
for efficient association of EBNA-1 with host chromosomes
and EBNA-1-dependent transcription of latent genes, and for
EBV oriP (an Origin of Plasmid replication) genome persis-
tence. An almost inseparable dimerization domain (DD) and
oriP DNA-binding domain (a.a. 459–607) bind specifically to
EBV oriP, an enhancer of the transcription and origin of viral
genome replication, and thereby brings to chromosomes.
The dimerization domain/DNA-binding domain has central
functions in DNA binding, transcription, persistence and
replication.

RG1 and RG2 are separated by an irregular hydrophobic
glycine-alanine repeats domain.107–109 Deletion of the entire
glycine-alanine repeats has no discernible effect on EBNA-1
abundance or functional interaction with oriP. The glycine-
alanine domain minimizes translation,110 binds to proteasomes
and inhibits EBNA-1 proteolysis.111–113 As a consequence of
both decreased synthesis and very slow degradation, EBNA-1
peptides are poorly presented in the context of major histo-
compatibility complex class I. Cells expressing EBNA-1 are
therefore partially protected from recognition by CD8 cytotoxic
T lymphocytes.112–117

The EBNA-1 dimerization and DNA-binding domain (a.a.
459–607), were crystallized, bound to cognate DNA sites and
resolved at 2.2 Å.104,106 EBNA-1’s essential role in EBV episome
replication, transcription and persistence requires EBNA-1
homodimerization and DNA binding.106 This domain mediates
EBNA-1 interaction with oriP and supplementary sequence for
replication (Rep*), and also EBV Qp, the promoter for
EBNA-1 transcription in latencies I and II.82,118–123 EBNA-1
a.a. 379–386 is a nuclear localization sequence;99 K379 and
R380 are essential components and S385 phosphorylation has
an upregulatory effect on nuclear import, whereas S383 and
S386 phosphorylation inhibits nuclear import.124 EBNA-1 a.a.
379–641 is also a dominant-negative inhibitor of EBNA-1
interaction with cognate DNA, resulting in decreased EBNA-1-
dependent transcription and episome maintenance.125–130

Dominant-negative EBNA-1 proteins and EBNA-1 antisense
oligonucleotide or RNA interference inhibition of EBNA-1
result in EBV genome loss and abrogation of tumor cell growth
and survival, indicating that EBNA-1 inhibition is a valid target
for prevention or treatment of EBV-associated diseases.

EBNA-1 binds to viral element and host chromosomes to
tether for replication and maintenance of genome
EBV episomes persist in dividing malignant and non-malignant
cells through EBNA-1 interaction with multiple cognate sites in
EBV oriP DNA.81,82,122,131,132 OriP comprises a family of
repeats and a dyad symmetry. EBNA-1 interaction with oriP
enables EBV DNA replication once per cell cycle.133–137 The
family of repeats and dyad symmetry are required for efficient
episome persistence and transcriptional activation in infected
cells.80–83,91,131,138–141 The family of repeats is an EBNA-1-
dependent enhancer,91,141–145 whereas dyad symmetry is the
site of initiation of EBV episome DNA replication (see
Table 1).

EBNA-1-interacting proteins
EBNA-1 RG1/2 interactions with hEBP2 (human EBNA-1-
binding protein 2), P32/TAP (protein 32KD/HIV TAT-
associating protein), Nap1, Karyopherin a2, PRMT5 and
PRMT1 (protein methyl transferase-5 and -1), nucleolin and
NPM146–152 are implicated in transcriptional activation
(hEBP2, p32/TAP, Karyopherin, PRMT5, PRMT1, nucleolin
and NPM) or episome maintenance (hEBP2, Nap1, nucleolin
and NPM). EBNA-1 a.a. 395–450 binds to host USP7
(ubiquitin-specific protease 7)148 and forms a quaternary
complex with USP7, GMPSC and EBV oriP DNA, 153 and
this interaction alters histone modification at oriP, disrupts p53
and also the PML levels.154 EBNA-1 a.a. 387–394 interacts with
the host CK2 kinase α, α′ and β, and this interaction leads to
the disruption of PML bodies. EBNA-1 also associates with
PML proteins. The EBNA-1–CK2 complex phosphorylates
PML proteins and triggers the polyubiquitylation and
degradation of PML.155 EBNA-1 also binds to NAP1,
template-activating factor-Iβ/SET, CK2 and PRMT5.148

EBNA-1 interacts with NPM, heterogeneous ribonucleopro-
teins and La protein.156 EBNA-1 association with NPM
contributes to the EBNA-1 transactivation function.84

EBNA-LP AND EBNA-2

EBNA-2 and EBNA-LP are coexpressed soon after EBV
infection in B cells,39 are essential for B-cell transformation
to LCL and LCL outgrowth41,42,157 and cooperatively activate
viral and cellular gene transcriptions for transformation.158,159

Both LP and EBNA-2 associate with the transcriptional factor
and the linking factors bound to upstream DNA elements of
cMyc and also cMyc-regulated genes, forming a long-range
DNA looping, which ultimately leads to cell cycle entry for
proliferation.39,160,161

Recombination signal-binding immunoglobulin κJ region
(RBPJ) protein associates with the NCoR repressor and is thus
inherently a transcription repressor. Host DNA carries ~ 20 000
and ~10 000 sites, where LP or EBNA-2 and RBPJ bind (LP or
EBNA-2 sites and RBPJ sites, respectively). A considerable
fraction of LP sites were colocalized with EBNA-2 sites. LP and
EBNA-2 sites are primarily located at or near the transcrip-
tional start site, whereas EBNA-2 sites are more at the enhancer
or intergenic region. LP sites were enriched for sites of B-cell

EBV latent genes
M-S Kang and E Kieff

3

Experimental & Molecular Medicine



TFs including YY1, SP1, PAX5, BATF, IRF4, ETS1, RAD21,
PU.1, CTCF, RBPJ, ZNF143, SMC3, NF-κB, TBLR and EBF.
The CTCF as a transcription insulator associates with YY1,
RAD21 and SMC3 to mediate long-range chromatin interac-
tions (DNA linking) and promoter derepression.162 In addi-
tion, LP sites were marked by RNAPII and histone acetylase
P300, and also by activated histone tags such as H3K4me3,
H3K27ac, H2Az and H3K9ac, indicative of LP sites being
activated transcriptional sites. EBA2 induces cMyc transcription
within 24 h after EBV infection of resting B cells (see Table 1).

EBV-encoded nuclear antigen-LP
By costimulation of EBNA-2-dependent transcription, LP
coactivates EBNA-2 transcriptional activation,163 associates
with EBNA-2, HA95 and Hsp70/72,164,165 associates with and
relocates 14-3-3 and histone deacetylase 4,166 displaces Sp100
and Hp1α from ND10 bodies and disrupts matrix-associated
deacetylase bodies, dismisses repressor complex (NCoR/HA95)
from promoter or enhancer sites and shuttles them from the
nuclei to the cytoplasm.158,160,164,166 This LP dismissal of NCoR
and RBPJ repressors reduces the occupancy of repressors
NCoR and RBPJ at EBNA-2 sites without altering EBNA-2
occupancy. However, LP and EBNA-2 do not affect each
other’s association with the enhancer or promoter.158 These
multiple complexes load on or near promoter sites and increase
activated marks on the histone, leading to transcriptional
activation for EBV-dependent efficient cell transformation166

(see Table 1).

EBV-encoded nuclear antigen-2
The EBNA-2 does not directly bind to DNA but instead
associates with viral (LP) and cellular factors (RBPJ transcrip-
tional repressor and ZNF143)167 for transcriptional activa-
tion;168 it associates with NCoR-deficient RBPJ and increases
RBPJ binding to DNA, recruiting cellular TFs to EBNA-2 sites
in the enhancer or promoter clustered with RBPJ EBF, ETS1,
ZNF143, PU.1, NF-κB and RUNX1 sites.158,161

Similar to LP, EBNA-2 adds up the activation mark
H3K4me1 on the histone, depletes the nucleosome,
recruits transcriptional factors, coactivators and histone
acetylases161,167,169,170 and links the EBNA-2 site to target
promoters by associating with RBPJ and other factors (see
Table 1).

LATENT MEMBRANE PROTEIN-1

LMP-1 roles
LMP-1 and LMP-2A mimic CD40 and B-cell receptor (BCR)
signaling, respectively, on B cells. EBV infection rescues
BCR-negative, proapoptotic germinal center B cells from
apoptosis.171 LMP-1 is expressed in LCLs, HLs and undiffer-
entiated NPCs but not GCs, and also during EBV replication; it
is a major EBV-encoded oncogene and activates NF-κB, c-Jun
N-terminal kinase (JNK) and p38 pathways;54,57,58,172 it trans-
forms primary rodent fibroblasts and is essential for EBV-
mediated transformation; it induces an anchorage-independent
growth with increased tumor formation after subcutaneous

inoculation into nude mice, and also has effects on epithelial
cell differentiation;60,173–188 it upregulates surface molecules
ICAM1, LFA1, CD40, CD21 and CD23 and downregulates
CD10 expression, membrane ruffling and adhesion.189–200

LMP-1 is a major EBV-encoded oncogene and activates
NF-κB, JNK and p38 pathways in vitro and in vivo; it increases
the telomerase activity via cMyc induction201 and promotes
migration of NPC cells;202 it induces epithelial–mesenchymal
transition of NPC and acquisition of cancer stem cell-like
properties202 and inhibits LKB1-AMPK1 tumor suppressor
pathways in NPC through the phosphorylation of LKB1 at
serine 428, with subsequent suppression of the phosphorylation
of AMPK.203 LMP-1 induces a proapoptotic Bmi-1 (Bcl-2-
interacting mediator of cell death) in HL cells, which is
downregulated by EBNA-3A and EBNA-3C.204,205 LMP-1
induces IL8 expression through the NF-κB binding site, which
may contribute in part to angiogenesis in NPC.206 LMP-1
induces a proapoptotic Bmi-1 in HL cells, which is down-
regulated by EBNA-3A and EBNA-3C.204,205 LMP-1 induces
IL-8 expression through the NF-κB binding site, which may
contribute in part to angiogenesis in NPC.206 In LMP-1-
nonexpressing GC, BARF1 likely has a growth promoter
activity via activation of NF-κB in GC207 (see Table 1).

LMP1 structure, domain and interactions
The key LMP-1 functional domains are: (i) six transmembrane
domains (TM1–6), which mediate raft association, constitutive
aggregation and constitutive signaling; and (ii) two transforma-
tion effector sites (TES1 and TES2). LMP-1 oligomerizes on the
plasma membrane through TM1 interaction with TM3–6,
forming a ligand-independent signaling complex. TM1–4 is
important for wild-type LMP-1 C-terminus-mediated NF-κB
activation, whereas TM3–4, TM5–6 or TM3–6 is
dispensable.208 LMP-1 (also LMP-2) is palmitoylated at
cysteine residues, but palmitoylation is not required for raft
association or signaling (Figure 1).209

LMP-1 C-terminus domains have two transformation effec-
ter sites (TES 1 and TES2),which mediate tumor necrosis factor
receptor signaling. TES1 and TES2 are required for efficient
NF-κB- and EBV-mediated B-cell transformation. The PQQAT
motif in TES1 associates with TRAF1, 2, 3 and 5, to which
CD40 binds and thus provides mechanisms for LMP-1 to act as
a constitutively active CD40 decoy for TRAFs. The TES1
interaction with these TRAFs induces an NF-κB noncanonical
pathway by phosphorylating NIK, IKKα and p100, which in
turn process p100 to p52. TES1 is required for long-term
outgrowth, whereas TES2 associates with TRADD and func-
tionally links to TRAF6. TES2 is essential for the initial phase of
transformation and activates the classical NF-κB pathway. The
direct or indirect association of TRADD with TRAF6 activates
TRAF6 E3 ligase, TAK1 and TAK1-like kinase. The TAK1
kinases activate IKKβ, which phosphorylates IκBα, leading to
IκBα ubiquitylation and degradation, and release of p50/p65
complexes to the nucleus. Both TES1 and TES2, possibly
through TRAF3 and TRAF6, respectively, also induce IRAK1-
mediated activation of p38 and other kinase(s) that
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phosphorylate p65. IRAK1 is required for both p38 activation
and p65/RelA phosphorylation. LMP-1 activation of NF-κB is
largely IRAK1 and TRAF6 dependent, whereas tumor necrosis
factor receptor activation of NF-κB is largely IRAK1 and
TRAF6 independent (Figure 1).70,172,210–219

LATENT MEMBRANE PROTEIN-2A

LMP-2A roles in B cells
LMP-2A mimics constitutively active, antigen-independent,
BCR signaling. It can also block an antigen-dependent BCR
signaling that can be experimentally initiated by surface
immunoglobulin crosslinking to increase calcium mobilization
and by lytic reactivation of EBV;62,220,221 it binds BCR-
associated kinases and Nedd4 family ubiquitin-protein ligases,
which downmodulate LMP-2A activity by ubiquitinating
LMP-2A,222 prevents BCR recruitment to lipid rafts, thereby
abrogating BCR function, does not require palmitoylation to
localize to buoyant complexes or for function,223 requires a
cholesterol for LMP-2A trafficking and stability, provides a pre-
BCR-like signal to developing B cells through constitutive
activation of the extracellular signal-regulated kinase/mitogen-
activated protein kinase pathway,224 and requires LMP-2A
immunoreceptor tyrosine-based activation motif and PY motifs
for an Ag-dependent BCR block and subsequent activation of
the PI3K/AKT; in addition, β-catenin accumulation prevents
the switch from latent to lytic reactivation.225

LMP-2A promotes B-cell growth,62 induces B lymphoma,
has a transformation ability in vitro and in vivo, which was
blocked by an immunoreceptor tyrosine-based activation motif
LMP-2A mutant, the Syk inhibitor or Syk-specific small
interfering RNA,226 and is important but not essential for

in vitro primary B-lymphocyte growth transformation, latent
infection and lytic virus replication in vitro43,227,228 but is
essential for growth transformation of germinal center B cells,
which do not express the genuine BCR because of deleterious
somatic hypermutations in their immunoglobulin genes;221 it
increases the prosurvival and anti-inflammatory cytokine IL-10
via PI3K,229 upregulates genes associated with cell cycle
induction and inhibition of apoptosis and downregulates genes
associated with B-cell-specific factors and immunity similarly
to those in HRS cells of HL,230 and it counteracts the
antiproliferative effect of the S10A mutant to promote the
S-phase entry.231

LMP-2A rescues the LMP-1-generated impairment in
germinal center in response to antigen in LMP-1/2A
animals,232 makes resting B cells sensitive to NF-κB inhibition
and apoptosis,233 potentiates cMyc to promote cell cycle
progression and hyperproliferation by downregulating
cyclin-dependent kinase inhibitor p27 (kip1) in a
proteasome-dependent manner,231 bypasses p53 inactivation
in a cMyc-induced lymphomagenesis model,234,235 is down-
regulated by c-CBL ubiquitin ligase (E3), a critical negative
regulator in the BCR signal pathway,236 cooperates with Notch
1 to alter B-cell identity in vivo,237 activates its own promoter
and Notch promoter in an EBNA-2-independent manner,224

enhances the development of autoimmune diseases in trans-
genic LMP-2A expression in B cells,238 induces hypersensitivity
to TLR stimulation, leading to the activation of autoantigen-
reactive B cells through the BCR/TLR pathway,34 bypasses
anergy induction in response to low levels of soluble antigen,
induces NF-κB nuclear translocation independent of BCR
crosslinking239 and transactivates the human endogenous
retrovirus HERV-K18 superantigen240 (see Table 1).

LMP-2A in epithelial cells
LMP-2A suppresses differentiation,74 promotes epithelial cell
spreading and motility together with LMP-2B,241 leads to the
transcriptional repression of the hTERT gene,242 contributes to
anoikis resistance,243 enriches cancer stem cell-like population
from fibroblasts,244 enhances epithelial–mesenchymal transi-
tion in NPC via induction of metastatic tumor antigen (MTA1)
and mammalian target of rapamycin signaling,245 induces the
detected form of P63a (deltaP63) that impairs epithelial cell
differentiation,246 activates DNA methyltransferase 1 leading to
promoter hypermethylation of the PTEN gene in GC,247 is
frequently detected in NPC and induces UDP-glucose dehy-
drogenase expression via ERK and PI3K/AKT pathways but not
JNK and p38 pathways,248 does not induce anchorage-
independent cell growth in a human keratinocyte cell line
but does in a human GC cell line via the constitutive Ras/PI3K/
AKT pathway67 and limits the interferon together with
LMP-2B by targeting interferon receptors for degradation249

(see Table 1).

Structure, domain and interaction
EBV encodes two nearly identical LMP-2 with the same TMs
(LMP-2A and LMP-2B).250 The LMP-2A isoform has 12 TMs

Figure 1 Latent membrane protein-1 (LMP1)-mediated activation of
natural factor-κB (NF-κB) signaling.
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and extra 119 a.a.at the amino-terminal cytoplasmic signaling
domain, whereas the LMP-2b isoform is identical but lacks the
cytoplasmic signaling domain.250 LMP-2A/B are constitutively
expressed primarily in the plasma membrane, and also in
cytoplasmic location, in all EBV-infected cells.250,251 LMP-2
associates with and is a substrate for a B-lymphocyte tyrosine
kinase Lyn and Syk protein tyrosine kinases252 through the first
167 of the LMP-2A 497 a.a, colocalizes with the cellular
tyrosine-phosphorylated proteins on the plasma membrane
and is also serine and threonine phosphorylated.62,253 Although
in B cells LMP-2 is tyrosine phosphorylated by the Src family
kinase (Lyn, Syk), in epithelial cells it is mediated by the
C-terminal Src kinase, which is triggered by epithelial cell
adhesion to extracellular matrix proteins.254 The immunor-
eceptor tyrosine-based activation motif contributes to LMP-2A
phosphorylation and participates in signal transduction events
in epithelial cells. The BCR block by LMP-2A is bypassed
by raising intracellular-free Ca2+ levels with an ionophore or
by activating protein kinase C with phorbol 12-myristate
13-acetate. LMP-2A, but not LMP-2B, mediates this effect on
calcium mobilization.225 LMP-2A is secreted through exosomes
similarly to LMP-1.222 Cholesterol depletion from the plasma
membrane increases LMP-2A abundance and LMP-2A exo-
some secretion and also blocks endocytosis, phosphorylation
and ubiquitylation of LMP-2A, indicating that cholesterol-
dependent LMP-2A trafficking determines the fate of
LMP-2A.222

Latent membrane protein-2B
LMP-2B interferes with LMP-2A functions, increases lytic
activation from its latent forms upon BCR crosslinking, lowers
the threshold of BCR crosslinking required to induce lytic
EBV infection, colocalizes with LMP-2A and restores LMP-2A-
mediated Ca2+ mobilization upon BCR crosslinking. Collec-
tively, LMP-2B negatively regulates LMP-2A, the function in
preventing the switch from latent to lytic EBV replication.255,256

EBNA-3 FAMILY

EBNA-3A, EBNA-3B and EBNA-3C gene families have the
same promoter, similar gene structures, are similarly regulated
and regulate host transcription. Each has a domain for binding
to RBPJ, a cellular sequence-specific DNA-binding TF that
mediates EBNA-2 or Notch binding to DNA.257 All EBNA-3
families are coactivators of EBNA-2. EBNA-3C functions as a
coactivator and corepressor. The coactivation activities
EBNA-3A and EBNA-3B are around half that of
EBNA-3C.258 Although EBNA-3B is dispensable for B-cell
transformation, both EBNA-3A and EBNA-3C are
essential.49,50,259 Despite the similarity, EBNA-3C deletion can
only be rescued by 3C but not by EBNA-3A or EBNA-3B
expression in the restoration of LCL growth, and EBNA-3A
deletion can only be rescued by EBNA-3A.49,50,260,261

In contrast to EBNA-2, which tethers to DNA via the RBPJ
bridge, EBNA-3A and EBNA-3C associations with RBPJ
inhibits RBPJ recruitments to DNA, downregulates cMyc
transcription and blocks EBNA-2 activation effects.46,262,263

EBNA-3C residues a.a. 130–159 bind to IRF4 or IRF8,264 and
coactivate the EBV LMP-1 promoter with EBNA-2 through an
SPI1 site in the absence of RBPJ258,265 (see Table 1).

EBV-encoded nuclear antigen-3A
Both EBNA-3A and EBNA-3C repress the EBNA-2-activated
transcription by direct interaction with RBPJ proteins, a cellular
DNA-binding factor known to recruit EBNA-2 to EBNA-2-
responsive genes. EBNA-3A represses contiguous clusters
arrayed in the human genome by polycomb group-mediated
epigenetic silencing.266 The CXCL10 and CXCL9 chemokines
and their receptors (CXCR3/4) can control herpesvirus infec-
tions. EBNA-3A associates with intergenic enhancers located
between CXCL10 and CXCL9 and displaces the transactivator
EBNA-2, leading to a rapid transcriptional shutdown, which is
also because of a delayed gain of polycomb group histone
marks.266

A Bim is a cellular inducer of apoptosis. In the absence
of Bim, EBNA-3A and EBNA-3C provide no survival
advantage.205 The level of Bim is a critical regulator of B-cell
survival and reduced expression is a major determinant of LPD
in mice and humans. cMyc can induce apoptosis via Bim.
EBNA-3A and EBNA-3C likely repress Bim expression without
altering Bim protein or RNA stability, but through reduced
histone acetylation and increased DNA methylation on the Bim
promoter, which was preceded by polycomb protein-mediated
repression.267

EBNA-3A binds to the cMyc-interacting DNA-binding zinc-
finger protein-1. EBNA-3A interaction with cMyc-interacting
DNA-binding zinc-finger protein-1 prevents cMyc-interacting
DNA-binding zinc-finger protein-1 from binding to a
coactivator, NPM, resulting in a decrease in CDKN2B
transcription.268 EBNA-3A or EBNA-3C inactivation in LCLs
induces G1 arrests resulting from EBNA-3A/C-mediated induc-
tion of CDKN2A p16INK4A expression.260,261,269–272 Because
EBNA-2 activates cMyc expression through RBPJ, and associ-
ates less stably with RBPJ compared with EBNA-3A, EBNA-3B
or EBNA-3C, some EBNA-3 effects on transcription and LCL
growth may be in limitation of EBNA-2 access to RBPJ (10–14,
18–21). EBNA-3A or EBNA-3C association with RBPJ, but not
with the adenovirus E1a C-terminal binding protein, is
essential for LCL growth.260,261,269,270,273 Similar to EBNA-3C,
EBNA-3A interacts with many cellular partners, including
PU.1, Spi-B, histone deacetylase 1, DP103, prothymosin-α,
p300, Nm23-H1 and SUMO1, as well as SUMO3, cyclin A,
SCF-Skp2 ubiquitin ligase, pRb, Chk2, Mdm2 and MRS18-2.
Some of these interactions repress CDKN2A p16INK4A or
p14ARF for enabling LCL growth.270. EBNA-3A and EBNA-3C
cooperatively repress a transcription of the p16INK4A and
p14ARF tumor suppressors, allowing cell cycle entry270 (see
Table 1).

EBV-encoded nuclear antigen-3B
Among six latency-associated EBNAs, only EBNA-3B is com-
pletely dispensable for B-cell transformation in vitro and could
be a tumor suppressor. In contrast to EBNA-3A and EBNA-3C,
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both of which repress transcriptions of tumor suppressors
p14ARF, p16INK4Aand chemokine CXCL10, EBNA-3B upregu-
lates CXCL10 and has a growth inhibitory role. EBNA-3B
knockout induces diffuse large B-cell lymphoma-like tumors in
humanized NOD/SCID/γc− /− mice reconstituted with the
human immune system with the expansion of EBV-specific
T cells. The B cells infected with EBNA-3B knockout EBV
expand more rapidly and secrete less T-cell chemoattractant
CXCL10, leading to inefficient recruitment of T cells in vitro
and T-cell-mediated killing in vivo. Natural human B lym-
phoma cell lines from patients with truncated EBNA-3B EBV
exhibited similar genotypic and phenotypic characteristics,
including reduced CXCL10 secretion. Importantly, EBNA-3B-
mutated B-cell lymphomas were frequently found. EBNA-3B is
the EBV-encoded tumor suppressor whose inactivation drives
lymphomagenesis and immune evasion274 (see Table 1).

EBV-encoded nuclear antigen-3C
EBNA-3C through N-terminal a.a. 50–400 is essential for LCL
growth;50,273 it coactivates the EBV LMP-1 promoter with
EBNA-2 and host CXCR4 and CXCL12 gene expression but
represses the EBV C promoter.265,275,276.

EBNA-3C associates with SUMO-1, P300, prothymolysin
(ProTalpha), histone deacetylase 1/2, metastatic suppressor
NM23-H1 through EBNA-3C glutamine- and proline-rich
domain, corepressor mSinA and NCoR, SCF-Skp2, cyclin
A/D1277 and cMyc, Gemin3 (also called DDX20 or DP103),
p53, p53 regulatory proteins, the inhibitor of growth family
proteins ING4/5, IRF4/8, aurora kinase B, H2AX
and Pim-1;258,264,278–282 it regulates chromatin remodeling
via recruitment of histone (de)acetyltransferases, facilitates cell
cycle entry, stabilizes Geminin3 and cMyc, induces the Mdm2-
mediated p53 degradation and represses p53-dependent trans-
activation on its downstream genes p21 and Bax, as well as
p53- and E2F-mediated apoptosis in part through targeted
regulation of interferon regulatory factors 4 and 8.

EBNA-3C also mediates the degradation of the retinoblas-
toma protein through an SCF cellular ubiquitin ligase, upre-
gulates aurora kinase B transcription, increases aurora kinase B
protein stability by reducing ubiquitylation of aurora kinase B
and attenuates H2AX expression, stabilizes Pim-1 and Pim-1-
mediated proteasomal degradation of the cell cycle inhibitor
p21/WAF1, promoting cell proliferation, upregulates TCL1A
and ITGA4, downregulates JAG1 and NCALD and cooperates
with EBNA-3A in repressing Bim, a proapoptotic Bcl-2 family
protein.264,267,273,283–287

EBNA-3C coactivation of EBNA-2 requires PU.1 site, but
not RBPJ binding sites, in the LMP-1 promoter. The expression
of chemokine CXCL12 and its receptor contributes to EBV-
positive peripheral blood mononuclear cell growth in mice
with severe combined immunodeficiency disease.288 EBNA-3A-
and EBNA-3C-mediated B-cell transformation is primarily
through transcriptional deregulation of host genes. EBNA-3C
and EBNA-3A repress p14ARF and p16INK4A transcription,
which help in LCL growth. Depletion of p14ARF and p16INK4A

or knockout of p16INK4A supports LCL growth in the absence

of EBNA-3C.270,272 Repressive activities of EBNA-3A and
EBNA-3C are associated with histone modifications:
EBNA-3A induces repressive histone mark H3K27me3, which
is installed by polycomb group proteins at the CXCL10 and
CXCL9 chemokine genes,266 whereas EBNA-3C-mediated
histone modifications are important for p14ARF and p16INK4A

repression.289

Similar to EBNA-2 and LP, EBNA-3C regulates the viral and
cellular gene transcription through interactions with cellular
proteins including RBPJ264,265,290 at 13 000 promoter and
enhancer sites (called 3C sites). The 13 000 3C sites are located
on EBV LMP-1, BIM and ITGA4 promoters and were highly
colocalized with AICE (IRF4/BATF complex), EICE (IRF4/
SPI1) and RUNX3. EBNA-3C interactions with AICE and
EICE sites drive LCL proliferation.291 EBNA-3C recruits Sin3A
repressive complexes (Sin3A, histone deacetylases 1 and 2 and
RBPJ) to the p14ARF promoter to mediate p14ARF, and p16INK4A

repression in cooperation with EBNA-3A.272 EBNA-3C over-
comes p16(INK4a) increase-driven proliferation block after
EBV infection. In p16(INK4a)-null cells, functional EBNA-3C
is dispensable for the outgrowth of LCLs.272 EBNA-3C func-
tions as a gene regulator in combination with TFs, mostly
AICEs, EICEs and RUNX3.290–292 EBV uses B-cell TFs to drive
cell cycle entry for persistence or virus replication (see Table 1).

EBV-ENCODED RNA

EBV genomes abundantly express noncoding EBV-encoded
RNAs (called EBER1 and EBRE2). EBERs are transcribed
by host RNA polymerase III as small non coding nonpolyade-
nylated RNAs.293–296 The role of EBERs in EBV-induced
B-lymphocyte transformation has been contradictory. Earlier
reports described nonessential roles of EBER for B-lymphocyte
transformation.48,297 However, a critical role was also
demonstrated.298 EBER expression augments colony
formation and induces growth in in vitro or in vivo
tumorigenesis,79,299–301 resistance to RNA-dependent protein
kinase (PKR)-dependent apoptosis302 and cytokines including
IL-10, IL-9, IGF1 and IL-6,303–306 and modulates innate
immune response.307,308

EBERs binds to La,293 PKR, ribosomal protein L22
(also called as EAP),309 pattern-recognition receptors, retinoic
acid-inducible gene I (RIG-I), melanoma differentiation-
associated gene-5307 and AU-rich element binding factor 1.310

EBER-mediated RIG-I activation likely contributes to EBV
oncogenesis.307

EBERs in complex with La release from cells308 and bind to
the dephosphorylated PKR, which is double-stranded RNA-
dependent and an interferon (IFN)-inducible serine/threonine
kinase.311,312 Antibody to La is implicated in SLE.293 Viral
infection-induced IFNs activate PKR, which phosphorylates the
α-subunit of the protein synthesis initiation factor eukaryotic
initiation factor 2, leading to translational inhibition. EBER
blockades of PKR-mediated phosphorylation of eukaryotic
initiation factor 2α result in the blockage of eukaryotic
initiation factor 2α-mediated inhibition of protein synthesis
and resistance to IFNα-induced apoptosis.78,313,314 Most EBERs

EBV latent genes
M-S Kang and E Kieff

7

Experimental & Molecular Medicine



establish stable complexes with L22 in vivo, thereby modulating
protein translation.315 L22 and PKR compete for EBER binding
and L22 interferes with EBER inhibition of PKR and EBER-
induced gene expression.316 Interaction of EBERs with RIG-I,
AU-rich element binding factor 1 and pattern-recognition
receptors could activate host innate immune responses.317

EBER double-stranded RNA structures also activate RIG-
mediated NF-κB and IRF-3 signaling and subsequently type I
IFN induction. EBV latent infection is maintained by counter-
balancing to IFN-mediated viral clearance through PKR
inhibition. EBER induction of anti-inflammatory and growth-
promoting cytokine IL-10 promotes cell growth and this
process is a RIG-I-mediated IRF3-dependent but largely
NF-κB-independent process (see Table 1).

EBV-ENCODED MIRNAS

EBV genomes express many miRNAs from two regions of
EBV's genome: BART and BHRF1 (BamHI fragment H right-
ward open reading frame 1). The EBV genome transcribes at
least 25 pre-miRNAs that encode 40 short single-stranded
RNAs.318 These miRNAs were expressed in a variety of EBV-
infected malignant cells with abundance of individual miRNA
being largely cell type specific. The BART transcript encodes
miRNA. Although BART miRNA expression occurs in almost
all types of EBV-associated latency cells, BHRF1-encoded
miRNAs are quite restricted.319–322

Many of the EBV miRNA targets were validated. Cellular
targets of EBV miRNAs include Bim (BCL2L11), which is
targeted by BART-9, -11 and -12, BRUCE by BART15-3p,
CASP3 by BART1-3p, CLEC2D by BART`1-3p, CAPRIN2 by
BART13-3p, CXCL11 by BHRF1-3, DICER1 by BART6-5p,
DAZAP2, DICE1, IPO7, PDE7A and PELI1 by BART-3, LY75
and SP100 by BART1-5p, PDCD1LG2 by BHRF1-2-5p,
BART1-5p and 15-3p, PUMA by BART-5, T-bet(TBX21) by
BART-20-5p,TOMM22 by BART-16, NLRP3 by BART-15 and
ZNF451 by BHRF1-1.322 CXCL-11, miR-BHRF1–3 target, is a
chemokine that is induced by IFN-responsive reactive T cells
and binds CXCR3, a common chemokine receptor for many
chemokines expressed on T cells.323 The miR-BART2-5p
targets a stress-induced natural killer cell ligand, MICB,
allowing EBV-infected cells to escape recognition and subse-
quent elimination.324,325

Most EBV miRNAs have the ability to sustain latently
infected cells. BHRF1 miRNA facilitates progressive growth,
in vitro transformation of infected cells and acute systemic EBV
infection but not the overall oncogenic potential of EBV
in vivo.326–328 In addition, BHRF1 and BART miRNAs prevent
primary B cells or BLs, respectively, from apoptosis.327,329. In
contrast, miR-BART15-3p promoted apoptosis.330 Given that
most of the EBV infections persist for a lifetime with
asymptomatic penetration, viral miRNAs should also partici-
pate, at least in part, in the evasion from host immune
surveillance (see Table 1).

APPENDIX

EBV-induced immediate hyperproliferation of host cell mimics
and induces strong ATM/Chk2-mediated DNA damage
response, resulting in acute attenuation of infected B-cell
growth, which should be bypassed or suppressed for efficient
and ultimate immortalization by an EBV antigen. Biochemical
and genetic study demonstrated that EBNA3C may function in
overcoming the growth arrest.331 Despite its high stability as a
dimer in high salt condition, it has been recently shown that
EBNA-1 DNA-binding and transactivation activity could be
targeted by small molecules or peptides identified by high-
throughput cell-based or in silico screens.332–336
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